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Abstract In this paper, based on the theory of variable exponent Sobolev space, we study
a class of nonlinear elliptic equations with principal part having degenerate coercivity and
obtain some existence and regularity results for the solutions.
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1 Introduction

Recently, the following problem{
−div (a(x, u)|∇u|p−2∇u) = f (x) x ∈ �,
u(x) = 0 x ∈ ∂�,

with a(x, t) vanishing for t going toward infinity has been considered in [1,4–6,15]. This
degeneracy implies that the classical methods for elliptic equations cannot be applied even
if the datum f is regular. In order to get existence and regularity of solutions, in [1,4], and
[6], the authors use an approximation procedure.

Motivated by their works, in this paper, we will study the following nonlinear elliptic
problem
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134 X. Zhang, Y. Fu

{
−div a(x, u,∇u) = f (x) x ∈ �,
u(x) = 0 x ∈ ∂�, (P)

where � ⊂ R
N (N ≥ 2) is a bounded domain and f ∈ Lm(x)(�), for some Lebesgue mea-

surable function m(x) ≥ m− ≥ 1. We will use the variable exponent spaces W 1,p(x)(�) and
W 1,p(x)

0 (�), the definitions of which will be given in Sect. 2. Under various hypotheses on
the data f , we obtain some existence and regularity results for (P).

In order to study problem (P), throughout this paper, we assume that p ∈ C(�̄) satisfies

1 < p− ≤ p(x) ≤ p+ < N (1.1)

and a : �× R × R
N → R

N is a Carathéodory function satisfying the following conditions:

(a1) For any (t, ξ) ∈ R × R
N ,

a(x, t, ξ)ξ ≥ b(x, |t |)|ξ |p(x) a.e. in �,

where b(x, t) = c0
(1+t)θ(p(x)−1) , for some c0 > 0 and θ ≥ 0.

(a2) For any (t, ξ) ∈ R × R
N ,

|a(x, t, ξ)| ≤ c1(g(x)+ |t |p(x)−1 + |ξ |p(x)−1) a.e. in �,

where c1 > 0 and g is a nonnegative function in L p′(x)(�) with p′(x) = p(x)
p(x)−1 .

(a3) For any t ∈ R and ξ, η ∈ R
N with ξ 	= η,

(a(x, t, ξ)− a(x, t, η))(ξ − η) > 0 a.e. in �.

Remark 1.1 0 is not the solution of problem (P). In fact, if we take ξ ∈ R
N with ξ 	= 0 and

λ > 0, using assumption (a1), we obtain

a(x, t, λξ)ξ ≥ λp(x)−1b(x, |t |)|ξ |p(x)

and

−a(x, t,−λξ)ξ ≥ λp(x)−1b(x, |t |)|ξ |p(x).

Let λ → 0+, we get a(x, t, 0) = 0.

As far as the existence and regularity results for (P) are concerned, there are two difficulties
associated with this kind of problems.

Firstly, from hypothesis (a2), the operator A(u) = −div a(x, u,∇u) is well defined
between W 1,p(x)

0 (�) and its dual space W −1,p′(x)(�). However, by assumption (a1), the

operator A is in general not coercive. For example, take a(x, t, ξ) = |ξ |p(x)−2ξ

(1+|t |)θ(p(x)−1) and

un(x) = |x |
n(p+−N )
(n+1)p+ − 1, for |x | ≤ 1. We obtain that ‖∇un‖p(x) tends to infinity while

〈A(un),un〉
‖∇un‖p(x)

→ 0. So, classical methods used in order to prove the existence of a solution for
(P) cannot be applied.

The second difficulty appears when we give a variable exponential growth condition (a2)
for a. The operator A possesses more complicated nonlinearities; thus, some techniques used
in the constant exponent case cannot be carried out for the variable exponent case.

In this paper, the results are achieved by using the approximation procedure and we con-
sider a sequence of nondegenerate Dirichlet problems, which thus have solutions. We will
obtain some a priori estimates on approximate solutions and pass to the limit to find a solution
for (P).

The first result deals with data f having higher summability.
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Solutions for nonlinear elliptic equations 135

Theorem 1.1 Assume that 0 ≤ θ ≤ p−−1
p+−1 and f ∈ Lm(x)(�) with m− > N

p− . Then, there

exists at least one nontrivial weak solution u ∈ W 1,p(x)
0 (�) ∩ L∞(�) for problem (P), in

the sense that for any v ∈ W 1,p(x)
0 (�),∫
�

a(x, u,∇u)∇v dx =
∫
�

f v dx . (1.2)

The next result deals with data f , which give unbounded solutions in W 1,p(x)
0 (�).

Theorem 1.2 Assume that 0 ≤ θ <
p−−1
p+−1 and f ∈ Lm(x)(�) with m− = N

p− . Then, there

exists at least one nontrivial weak solution u ∈ W 1,p(x)
0 (�) in the sense of (1.2). Moreover,

for any r > 0, u ∈ Lr (�).

Theorem 1.3 Assume that 0 ≤ θ <
p−−1
p+−1 and f ∈ Lm(x)(�) with

(θp+ − θ + 1)N + (p− − 1 − θp+ + θ)Nα

(θp+ − θ + 1)p− + (p− − 1 − θp+ + θ)Nα
≤ m− <

N

p−
, (1.3)

where α ∈ (0, 1). Then, there exists at least one nontrivial weak solution u ∈ W 1,p(x)
0 (�)

for problem (P) in the sense of (1.2). Moreover, |u|s ∈ L1(�) with

s = p− − 1 − θ(p+ − 1)

N − m− p−
m−Nα. (1.4)

Remark 1.2 Under condition (1.3), we could verify that s > 1.

If we continue to decrease the summability of f , solutions we obtain in general do not
belong to W 1,p(x)

0 (�). In the following, we will introduce a different definition of solution,
which also involves a different definition of gradient for a measurable function.

We start with the existence of weak gradient for every measurable function u such that
for any k > 0, Tk(u) ∈ W 1,p(x)

0 (�), where the truncation function Tk is defined by

Tk(t) = max{−k,min{k, t}},
for any t ∈ R. And we recall the following result which appears in [23].

Proposition 1.1 If u is a measurable function such that for any k > 0, Tk(u) ∈ W 1,p(x)
0 (�),

then there exists a unique measurable function v : � → R
N such that for any k > 0,

vχ{x∈�:|u|<k} = ∇Tk(u) a.e. x ∈ �, (1.5)

where χE denotes the characteristic function of a measurable set E. Moreover, if u belongs
to W 1,1

0 (�), then v coincides with the standard distributional gradient of u.

A function u such that Tk(u) ∈ W 1,p(x)
0 (�), for any k > 0, does not necessarily belong

to W 1,1
0 (�). However, according to the above proposition, it is possible to define its weak

gradient, still denoted by ∇u, as the unique function v which satisfies (1.5).
We will extend the notion of entropy solution (see [23]) to problem (P) as follows:
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Definition 1.1 A measurable function u is an entropy solution to problem (P) if, for any
k > 0, Tk(u) ∈ W 1,p(x)

0 (�) and∫
{x∈�:|u−φ|<k}

a(x, u,∇u)(∇u − ∇φ) dx ≤
∫
�

f Tk(u − φ) dx,

for any φ ∈ W 1,p(x)
0 (�) ∩ L∞(�).

It is useful to extend the above definition of entropy solution to more general truncation
functions than Tk . We introduce the class T of functions T ∈ C2(R) ∩ L∞(R) satisfying:

T (0) = 0 and T (−t) = −T (t), T ′(t) ≥ 0, for any t ∈ R,

T ′(t) = 0, for any t large enough and T ′′(t) ≤ 0, for any t ≥ 0.

Proposition 1.2 The definition 1.1 is equivalent to the following statement that∫
�

a(x, u,∇u)∇T (u − φ) dx ≤
∫
�

f T (u − φ) dx,

for any T ∈ T and φ ∈ W 1,p(x)
0 (�) ∩ L∞(�).

The proof of Proposition 1.2 is similar to Lemma 3.2 in [3], and we will omit it here.

Theorem 1.4 Assume that 0 ≤ θ <
p−−1
p+−1 and f ∈ Lm(x)(�) with

max

{
1,

(θp+ − θ + 1)N + (p− − 1 − θp+ + θ)Nα

(θp+ − θ + 1)p− + (p− − 1 − θp+ + θ)p−Nα

}

< m− <
(θp+ − θ + 1)N + (p− − 1 − θp+ + θ)Nα

(θp+ − θ + 1)p− + (p− − 1 − θp+ + θ)Nα
, (1.6)

where α ∈ (0, 1). Then, there exists at least one nontrivial entropy solution u ∈ W 1,q(x)
0 (�)

for problem (P), where

q(x) = (p− − 1 − θp+ + θ)m−Nαp(x)

(θp+ − θ + 1)(N − m− p−)+ (p− − 1 − θp+ + θ)Nα
. (1.7)

Moreover, |u|s ∈ L1(�) with s as in (1.4).

Remark 1.3 According to the definition of q(x), we could verify that q(x) ≥ 1 is equivalent
to

m− ≥ (θp+ − θ + 1)N + (p− − 1 − θp+ + θ)Nα

(θp+ − θ + 1)p− + (p− − 1 − θp+ + θ)p−Nα
.

Theorem 1.5 Assume that 0 ≤ θ <
p−−1
p+−1 and f ∈ Lm(x)(�) with

1 ≤ m− ≤ max

{
1,

(θp+ − θ + 1)N + (p− − 1 − θp+ + θ)Nα

(θp+ − θ + 1)p− + (p− − 1 − θp+ + θ)p−Nα

}
, (1.8)

where α ∈ (0, 1). Let q(x) be as in (1.7), then there exists at least one nontrivial entropy
solution u for problem (P) such that

∫
�

|∇u|q(x) dx < ∞. Moreover, |u|s ∈ L1(�) with s
as in (1.4).
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Solutions for nonlinear elliptic equations 137

2 Variable exponent function spaces

In recent years, the differential equations and variational problems with nonstandard variable
growth conditions have been greatly studied, see for example [7,12,14,18–21]. In the studies
of this class of nonlinear problems, variable exponent spaces play an important role. Since
they were thoroughly studied by Kováčik and Rákosník [16], variable exponent spaces have
been used to model various phenomena. In [22], Růžička presented the mathematical theory
for the application of variable exponent spaces in electro-rheological fluids. As another appli-
cation, Chen et al. [8] suggested a model for image restoration based on a variable exponent
Laplacian.

For the convenience of the reader, we recall some definitions and basic properties of var-
iable exponent spaces L p(x)(�) and W 1,p(x)(�), where � ⊂ R

N is a domain. For a deeper
treatment on these spaces, we refer to [9].

Let P(�) be the set of all Lebesgue measurable functions p : � → [1,∞], we denote

ρp(x)(u) =
∫

�\�∞

|u|p(x) dx + sup
x∈�∞

|u(x)|,

where �∞ = {x ∈ � : p(x) = ∞}.
The variable exponent Lebesgue space L p(x)(�) is the class of all functions u such that

ρp(x)(tu) < ∞, for some t > 0. L p(x)(�) is a Banach space equipped with the norm

‖u‖p(x) = inf{λ > 0 : ρp(x)(λu) ≤ 1}.
For any p ∈ P(�), we define the conjugate function p′(x) as

p′(x) =

⎧⎪⎨
⎪⎩

∞, x ∈ �1 = {x ∈ � : p(x) = 1},
1, x ∈ �∞,

p(x)
p(x)−1 , x ∈ � \ (�1 ∪�∞).

Theorem 2.1 For any u ∈ L p(x)(�) and v ∈ L p′(x)(�),∫
�

|uv| dx ≤ 2‖u‖p(x)‖v‖p′(x).

For any p ∈ P(�), denote

p+ = sup
x∈�

p(x), p− = inf
x∈� p(x)

and we denote by p1 � p2 the fact that inf x∈� (p2(x)− p1(x)) > 0.
The variable exponent Sobolev space W 1,p(x)(�) is the class of all functions u ∈ L p(x)(�)

such that |∇u| ∈ L p(x)(�) and it can be equipped with the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x). (2.1)

By W 1,p(x)
0 (�), we denote the subspace of W 1,p(x)(�), which is the closure of C∞

0 (�)

with respect to the norm (2.1). We know that if� ⊂ R
N is a bounded domain and p ∈ C(�̄),

‖u‖1, p(x), and ‖∇u‖p(x) are equivalent norms on W 1, p(x)
0 (�). Under condition 1 ≤ p− ≤

p(x) ≤ p+ < ∞, W 1,p(x)(�) and W 1,p(x)
0 (�) are separable and reflexive Banach spaces.

And we denote the dual space of W 1,p(x)
0 (�) by W −1,p′(x)(�).
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Theorem 2.2 (Fan, [11]) Let � be a bounded domain with the cone property. If p ∈ C(�̄)
satisfying (1.1) and q is a measurable function defined on � with

p(x) ≤ q(x) � p∗(x) �
N p(x)

N − p(x)
a.e. x ∈ �,

then there is a compact embedding W 1,p(x)(�) ↪→ Lq(x)(�).

Theorem 2.3 (Fan, [11]) Let� be a bounded domain with the cone property. If p is Lipschitz
continuous and satisfies (1.1), q is a measurable function defined on � with

p(x) ≤ q(x) ≤ p∗(x) a.e. x ∈ �,
then there is a continuous embedding W 1,p(x)(�) ↪→ Lq(x)(�).

3 A priori estimates

In order to prove all the existence results for problem (P), in this part, we will give some a
priori estimates for solutions of the following approximating problems:{

−div a(x, Tn(u),∇u) = fn(x) x ∈ �,
u(x) = 0 x ∈ ∂�, (Pn)

where n ∈ N and fn ∈ L∞(�).
For u ∈ W 1,p(x)

0 (�), define the operator An : W 1,p(x)
0 (�) → W −1,p′(x)(�) by

〈An(u), v〉 =
∫
�

a(x, Tn(u),∇u)∇v dx

for any v ∈ W 1,p(x)
0 (�).

First, using the classical theory of pseudo-monotone operators in reflexive Banach spaces
(see [17]), we obtain the following existence result for problem (Pn).

Lemma 3.1 For any n ∈ N, there exists at least one weak solution un ∈ W 1,p(x)
0 (�) for

(Pn) in the sense that for any v ∈ W 1,p(x)
0 (�),∫

�

a(x, Tn(un),∇un)∇v dx =
∫
�

fnv dx . (3.1)

Proof (1) The operator An is coercive on W 1,p(x)
0 (�). In fact, using assumption (a1) we

obtain

〈An(u), u〉 ≥
∫
�

c0|∇u|p(x)

(1 + |Tn(u)|)θ(p(x)−1)
dx ≥ c0

(1 + n)θ(p+−1)

∫
�

|∇u|p(x) dx .

which implies

〈An(u), u〉
‖∇u‖p(x)

≥ c0

(1 + n)θ(p+−1)

‖∇u‖p−
p(x)

‖∇u‖p(x)
→ ∞,

as ‖∇u‖p(x) → ∞.
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Solutions for nonlinear elliptic equations 139

(2) The operator An is pseudo-monotone on W 1,p(x)
0 (�).

(i) An is bounded on W 1,p(x)
0 (�). In fact, let E ⊂ W 1,p(x)

0 (�) be bounded. For any
u ∈ E , condition (a2) yields

‖An(u)‖ = sup
‖∇v‖p(x)=1

|〈An(u), v〉| = sup
‖∇v‖p(x)=1

|
∫
�

a(x, Tn(u),∇u)∇v dx |

≤ sup
‖∇v‖p(x)=1

∫
�

c1(g(x)+ |Tn(u)|p(x)−1 + |∇u|p(x)−1)|∇v| dx

≤ C sup
‖∇v‖p(x)=1

‖g + |Tn(u)|p(x)−1 + |∇u|p(x)−1‖p′(x)‖∇v‖p(x) ≤ C.

(ii) If um → u weakly in W 1,p(x)
0 (�), as m → ∞ and lim supm→∞〈An(um), um −v〉 ≤ 0,

for any v ∈ W 1,p(x)
0 (�), then

lim inf
m→∞ 〈An(um), um − v〉 ≥ 〈An(u), u − v〉.

In fact, by Theorem 2.2, we get um → u in L p(x)(�). Moreover, we assume that um → u
a.e. in �.

In the following, we will verify that An(um) → An(u) weakly ∗ in W −1,p′(x)(�), as
m → ∞. For any m ∈ N, denote

hm(x) = (a(x, Tn(um),∇um)− a(x, Tn(u),∇u))(∇um − ∇u).

Then, it follows that

〈An(um)− An(u), um − u〉 =
∫
�

hm(x) dx .

Note that lim supm→∞〈An(um), um − u〉 ≤ 0, we get

lim sup
m→∞

∫
�

hm(x) dx ≤ 0. (3.2)

Denote h+
m(x) = max{hm(x), 0}, h−

m(x) = max{−hm(x), 0}, then hm(x) = h+
m(x) −

h−
m(x). By condition (a2), we obtain

hm(x)=a(x, Tn(um),∇um)∇um −a(x, Tn(um),∇um)∇u−a(x, Tn(u),∇u)(∇um −∇u)

≥ c0

(1 + n)θ(p+−1)
|∇um |p(x) − c1(g(x)+ n p(x)−1 + |∇um |p(x)−1)|∇u|

− c1(g(x)+ n p(x)−1 + |∇u|p(x)−1)(|∇um | + |∇u|).
Take 0 < ε ≤ c0

2(1+n)θ(p+−1) , by Young inequality, we get

hm(x) ≥ c0

(1 + n)θ(p+−1)
|∇um |p(x) − ε|∇um |p(x) − C(1 + g(x)p′(x) + |∇u|p(x))

≥ c0

2(1 + n)θ(p+−1)
|∇um |p(x) − C(1 + g(x)p′(x) + |∇u|p(x)−1).

(3.3)

Therefore, {|∇um |p(x)} is bounded almost everywhere in the set {x ∈ � : hm(x) < 0}
and

h−
m(x) ≤ C(1 + g(x)p′(x) + |∇u|p(x)−1). (3.4)
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Note that

hm(x) = (a(x, Tn(um),∇um)− a(x, Tn(um),∇u))(∇um − ∇u)

+ (a(x, Tn(um),∇u)− a(x, Tn(u),∇u))(∇um − ∇u),

condition (a3) implies that

hm(x) ≥ (a(x, Tn(um),∇u)− a(x, Tn(u),∇u))(∇um − ∇u).

If hm(x) < 0, −h−
m(x) = hm(x), we obtain

0 ≥ lim inf
m→∞ −h−

m(x) ≥ lim inf
m→∞ (a(x, Tn(um),∇u)− a(x, Tn(u),∇u))(∇um − ∇u) = 0,

which implies lim supm→∞ h−
m(x) = 0. Thus,

lim
m→∞ h−

m(x) = 0.

It follows from inequality (3.4) that {h−
m} is equi-integral in L1(�). Thus, using Vitali

theorem [25], we obtain ∫
�

h−
m dx → 0, as m → ∞.

Note that ∫
�

h+
m dx =

∫
�

hm dx +
∫
�

h−
m dx,

combining with (3.2), we derive∫
�

h+
m dx → 0, as m → ∞.

Passing to a subsequence, still denoted by {h+
m}, we assume that h+

m(x) → 0 a.e. in �.
Therefore, ∫

�

hm dx → 0 and hm(x) → 0 a.e. in�.

By inequality (3.3), {|∇um |p(x)} is equi-integral in L1(�) and bounded a.e. in �. For
almost everywhere x ∈ �, up to a subsequence, we assume that ∇um(x) → ξ , as m → ∞.
By the definition of hm(x), we get

(a(x, Tn(u), ξ)− a(x, Tn(u),∇u))(ξ − ∇u) = 0.

Then, it follows from condition (a3) that ∇u(x) = ξ . Thus, ∇um(x) → ∇u(x) a.e. in �,
as m → ∞, which implies

a(x, Tn(um),∇um) → a(x, Tn(u),∇u) a.e. in �.

For any v ∈ W 1,p(x)
0 (�), condition (a2) implies

|a(x, Tn(um),∇um)∇v| ≤ c1(g(x)+ n p(x)−1 + |∇um |p(x)−1)|∇v|,
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Solutions for nonlinear elliptic equations 141

thus {|a(x, Tn(um),∇um)∇v|} is equi-integral in L1(�). By Vitali theorem, we get

〈An(um), v〉 =
∫
�

a(x, Tn(um),∇um)∇v dx →
∫
�

a(x, Tn(u),∇u)∇v dx,

as m → ∞, i.e. An(um) → An(u) weakly-∗ in W −1,p′(x)(�).
Note that

〈An(um), um − v〉
=〈An(um)− An(u), um − u〉 + 〈An(um), u − v〉 + 〈An(u), um − u〉, (3.5)

we derive

lim
m→∞〈An(um), um − v〉 = 〈An(u), u − v〉.

By (1) and (2), the operator An is surjective (see Theorem 2.7 in [17]). As fn ∈ L∞(�) ⊂
W −1,p′(x)(�), we obtain the existence of weak solution for (Pn). ��

In the following, we will prove some a priori estimates on the solutions of approximating
problems (Pn), which are based on the rearrangement techniques.

Let u : � → R be a measurable function, for simplicity, we denote

{u > t} = {x ∈ � : u(x) > t} and {u ≤ t} = {x ∈ � : u(x) ≤ t}.
Next, we recall the definition of decreasing rearrangement of u. If we denote |E | by the

Lebesgue measure of a measurable set E , the distribution function μu(t) of u is defined by

μu(t) = |{|u| > t}|,
for any t ≥ 0. The decreasing rearrangement u∗ of u is defined by

u∗(σ ) = inf{t ∈ R : μu(t) ≤ σ },
for σ ∈ (0, |�|).

We recall that for any t ≥ 0, μu(t) = μu∗(t). Then, for any monotone function ψ , it
follows

∫
�

ψ(|u(x)|) dx =
|�|∫
0

ψ(u∗(σ )) dσ,

and in particular, for any r ∈ [1,∞], ‖u‖Lr (�) = ‖u∗‖Lr (0,|�|).
We say that a measurable function u belongs to the Marcinkiewicz space Mr (�) with

r > 0, if there exists a constant C such that for any t > 0,

μu(t)t
r ≤ C.

And the above condition is equivalent to the following statement: for any σ ∈ (0, |�|),
u∗(σ )σ 1

r ≤ C , where C is a positive constant.
The norm on Marcinkiewicz space is defined by

‖u‖Mr (�) = sup
σ∈(0,|�|)

u∗(σ )σ
1
r .

We also recall that if u ∈ Lr (�), then u ∈ Mr (�).
For solutions of (Pn), we obtain the following differential inequality:
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Lemma 3.2 For any t ≥ 0, define

B(t) =
t∫

0

(1 + s)
− θ(p+−1)

p−−1 ds.

Suppose un is a weak solution of (Pn), then for almost every σ ∈ (0, |�|),

− d

dσ
B

(
u∗

n(σ )
) ≤ 2

1
p−−1

⎛
⎜⎜⎝

(
NC

1
N
N σ

1
N ′

)−1

+ c
1

1−p−
0

(
NC

1
N
N σ

1
N ′

)−p′−

⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

⎞
⎟⎟⎠ , (3.6)

where CN is the measure of unit ball in R
N , p′− = p−

p−−1 , and N ′ = N
N−1 .

Proof For any k > 0, t > 0, choose v = Tk(un − Tt (un)) as a test function in (3.1), we
obtain ∫

�

a(x, Tn(un),∇un)∇Tk(un − Tt (un)) dx =
∫
�

fnTk(un − Tt (un)) dx,

which implies ∫
{t<|un |≤t+k}

a(x, Tn(un),∇un)∇un dx ≤ k
∫

|un |>t

| fn | dx .

By condition (a1), we get∫
{t<|un |≤t+k}

c0|∇un |p(x)

(1 + |Tn(un)|)θ(p(x)−1)
dx ≤ k

∫
|un |>t

| fn | dx,

then

c0

(1 + k + t)θ(p+−1)

∫
{t<|un |≤t+k}

|∇un |p(x) dx ≤ k
∫

|un |>t

| fn | dx . (3.7)

As 1 < p− ≤ p(x), using Young inequality, we obtain∫
{t<|un |≤t+k}

|∇un |p− dx ≤
∫

{t<|un |≤t+k}
|∇un | dx +

∫
{t<|un |≤t+k}

|∇un |p(x) dx,

moreover, (∫
{t<|un |≤t+k} |∇un |p− dx∫

{t<|un |≤t+k} |∇un | dx

) 1
1−p−

≥
(∫

{t<|un |≤t+k} |∇un | dx + ∫
{t<|un |≤t+k} |∇un |p(x) dx∫

{t<|un |≤t+k} |∇un | dx

) 1
1−p−

.
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Note that the function s
1

1−p− is convex for s > 0, Jensen’s inequality for convex functions
gives

(∫
{t<|un |≤t+k} |∇un |p− dx∫

{t<|un |≤t+k} |∇un | dx

) 1
1−p−

≤ μun (t)− μun (t + k)∫
{t<|un |≤t+k} |∇un | dx

.

Combining with (3.7), we obtain

μun (t)− μun (t + k)∫
{t<|un |≤t+k} |∇un | dx

≥
(∫

{t<|un |≤t+k} |∇un | dx + c−1
0 k(1 + k + t)θ(p+−1)

∫
|un |>t | fn | dx∫

{t<|un |≤t+k} |∇un | dx

) 1
1−p−

.

Let k → 0+, we get

−μ′
un
(t)

d
dt

∫
|un |≤t |∇un | dx

≥
( d

dt

∫
|un |≤t |∇un | dx + c−1

0 (1 + t)θ(p+−1)
∫
|un |>t | fn | dx

d
dt

∫
|un |≤t |∇un | dx

) 1
1−p−

,

thus

(−μ′
un
(t))1−p−

⎛
⎜⎝ d

dt

∫
|un |≤t

|∇un | dx

⎞
⎟⎠

p−

≤ d

dt

∫
|un |≤t

|∇un | dx + c−1
0 (1 + t)θ(p+−1)

∫
|un |>t

| fn | dx .

Note that

NC
1
N
N μun (t)

1
N ′ ≤ d

dt

∫
|un |≤t

|∇un | dx, (3.8)

where CN is the measure of unit ball in R
N . Inequality (3.8) is an easy consequence of

Fleming–Rishel formula [13] and of the isoperimetrie theorem. The proof is essentially the
same as Lemma 2 in [24] and we will omit it here.

Using inequality (3.8), we obtain

(−μ′
un
(t))−1

≤
(

NC
1
N
N μun (t)

1
N ′

)−1

⎛
⎜⎝1 + c−1

0 (1 + t)θ(p+−1)
(

NC
1
N
N μun (t)

1
N ′

)−1 ∫
|un |>t

| fn | dx

⎞
⎟⎠

1
p−−1

≤ 2
1

p−−1

((
NC

1
N
N μun (t)

1
N ′

)−1

+ c
1

1−p−
0 (1 + t)

θ(p+−1)
p−−1

(
NC

1
N
N μun (t)

1
N ′

)−p′−

⎛
⎜⎝ ∫

|un |>t

| fn | dx

⎞
⎟⎠

1
p−−1

⎞
⎟⎟⎠
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≤ 2
1

p−−1 (1 + t)
θ(p+−1)

p−−1

((
NC

1
N
N μun (t)

1
N ′

)−1

+ c
1

1−p−
0

(
NC

1
N
N μun (t)

1
N ′

)−p′−
⎛
⎜⎝ ∫

|un |>t

| fn | dx

⎞
⎟⎠

p′−
p−

⎞
⎟⎟⎟⎠ .

Note that

d

dσ
B(u∗

n(σ )) = B ′(u∗
n(σ ))(μ

′
un
(t))−1 =

(
(1 + t)

θ(p+−1)
p−−1 μ′

un
(t)

)−1

,

therefore,

− d

dσ
B(u∗

n(σ )) ≤ 2
1

p−−1

((
NC

1
N
N μun (t)

1
N ′

)−1

+ c
1

1−p−
0

(
NC

1
N
N μun (t)

1
N ′

)−p′−
⎛
⎜⎝ ∫

|un |>t

| fn | dx

⎞
⎟⎠

p′−
p−

⎞
⎟⎟⎟⎠

= 2
1

p−−1

⎛
⎜⎜⎝

(
NC

1
N
N σ

1
N ′

)−1

+c
1

1−p−
0

(
NC

1
N
N σ

1
N ′

)−p′−
⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

⎞
⎟⎟⎠.

We get the inequality (3.6). ��
Theorem 3.1 Assume that 0 ≤ θ ≤ p−−1

p+−1 and m− > N
p− . Let un be a weak solution of (Pn),

then there exists a constant C > 0 which depends on �, θ,m−, N , p+, p−, and ‖ fn‖m(x)

such that

‖un‖∞ ≤ C

and

‖∇un‖p(x) ≤ C.

Proof Note that u∗
n(|�|) = 0. Integrating both sides of (3.6) between σ̃ and |�|, we obtain

B(u∗
n (̃σ ))

≤2
1

p−−1

⎛
⎜⎜⎝C

− 1
N

N |�| 1
N + c

1
1−p−
0

(
NC

1
N
N

)−p′−
|�|∫
σ̃

σ
− p′−

N ′

⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

dσ

⎞
⎟⎟⎠ .

(3.9)

As fn ∈ L∞(�), f ∗
n ∈ Lm−(0, |�|). By Hölder inequality, we get

σ∫
0

f ∗
n (τ ) dτ ≤ σ

1
m′− ‖ f ∗

n ‖m− ,
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where m′− = m−
m−−1 , thus

|�|∫
σ̃

σ
− p′−

N ′

⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

dσ ≤‖ f ∗
n ‖

p′−
p−

m−

|�|∫
σ̃

σ

p′−
m′− p− − p′−

N ′
dσ

=m−N (p− − 1)

m− p− − N

(
|�|

m− p−−N
m− N (p−−1) − σ̃

m− p−−N
m− N (p−−1)

)
‖ fn‖

p′−
p−

m− .

Using inequality (3.9), we derive

B(u∗
n (̃σ ))

≤ 2
1

p−−1

(
C

− 1
N

N |�| 1
N + c

1
1−p−
0

(
NC

1
N
N

)−p′− m−N (p− − 1)

m− p− − N
|�|

m− p−−N
m− N (p−−1) ‖ fn‖

p′−
p−

m−

)
.

Note that B(u∗
n(0)) = B(‖un‖∞), we get

B(‖un‖∞)

≤ 2
1

p−−1

(
C

− 1
N

N |�| 1
N +c

1
1−p−
0

(
NC

1
N
N

)−p′− m−N (p− − 1)

m− p− − N
|�|

m− p−−N
m− N (p−−1) ‖ fn‖

p′−
p−

m−

)
.

Thus,

‖un‖∞ ≤ B−1(C). (3.10)

As un is a weak solution for (Pn), we obtain∫
�

a(x, Tn(un),∇un)∇un dx =
∫
�

fnun dx .

By condition (a1), we derive

c0

∫
�

|∇un |p(x)

(1 + |Tn(un)|)θ(p(x)−1)
≤

∫
�

| fnun | dx,

which implies∫
�

|∇un |p(x) dx ≤ C(1 + ‖un‖∞)θ(p+−1)‖un‖∞‖ fn‖m− dx ≤ C.

Now, we complete the proof. ��
Theorem 3.2 Assume that 0 ≤ θ <

p−−1
p+−1 and m− = N

p− . Let un be a weak solution of (Pn),
then for any r > 0, there exists a constant C > 0 which depends on�, θ,m−, N , p+, p−, r
and ‖ fn‖m(x) such that

‖|un |r‖1 ≤ C

and

‖∇un‖p(x) ≤ C.
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Proof As fn ∈ Lm−(�) ⊂ Mm−(�),

f ∗
n (τ )τ

1
m− ≤ τ

1
m− −1

τ∫
0

f ∗
n (τ ) dτ ≤ ‖ fn‖m− .

Take r > 0, inequality (3.9) implies

|�|∫
0

(
B(u∗

n (̃σ ))
)r

dσ̃ ≤ 2
r+ r

p−−1
(

C
− r

N
N |�| r

N +1

+ c
r

1−p−
0

(
NC

1
N
N

)−p′−r
|�|∫
0

⎛
⎜⎜⎝

|�|∫
σ̃

σ
− p′−

N ′

⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

dσ

⎞
⎟⎟⎠

r

dσ̃

⎞
⎟⎟⎠ .

Note that f n(σ ) = 1
σ

∫ σ
0 f ∗

n (τ ) dτ is decreasing, it follows from Lemma 2.1 in [2] that

|�|∫
0

⎛
⎜⎜⎝

|�|∫
σ̃

σ
− p′−

N ′

⎛
⎝ σ∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−
p−

dσ

⎞
⎟⎟⎠

r

dσ̃ ≤ C

|�|∫
0

( f n (̃σ ))
p′−r
p− σ̃

p′−r
p− +r− p′−r

N ′ dσ̃

= C

|�|∫
0

⎛
⎝ σ̃∫

0

f ∗
n (τ ) dτ

⎞
⎠

p′−r
p−

σ̃
p′−r
p− +r− p′−r

N ′ − p′−r
p− dσ̃ ≤ C

|�|∫
0

f ∗
n (̃σ )

p′−r
p− σ̃

p′−r
N dσ̃ .

Thus, we obtain

|�|∫
0

(B(u∗
n (̃σ )))

r dσ̃

≤ 2
r+ r

p−−1

⎛
⎝C

− r
N

N |�| r
N +1 + c

r
1−p−
0

(
NC

1
N
N

)−p′−r

C

|�|∫
0

f ∗
n (τ )

p′−r
p− τ

p′−r
N dτ

⎞
⎠

≤ 2
r+ r

p−−1

⎛
⎝C

− r
N

N |�| r
N +1 + c

r
1−p−
0

(
NC

1
N
N

)−p′−r

C‖ fn‖
p′−r
p−

m−

|�|∫
0

τ
p′−r

N − p′−r
m− p− dτ

⎞
⎠ .

(3.11)

In the following, we will verify that

B(u∗
n(σ )) = (B(|un |))∗(σ ).

If (B(|un |))∗(σ ) = t , we obtain |{x ∈ � : B(|un(x)|) > t}| = σ , thus |{x ∈ � : |un(x)| >
B−1(t)}| = σ. Moreover, we get u∗

n(σ ) = B−1(t), i.e., B(u∗
n(σ )) = t .

Therefore, we obtain

‖(B(|un |))r‖1 = ‖((B(|un |))∗)r‖1 = ‖(B(u∗
n))

r‖1 ≤ C,
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which implies ∥∥∥∥|un |
(

1− θ(p+−1)
p−−1

)
r
∥∥∥∥

1
≤ C. (3.12)

As r is arbitrary, we obtain

‖|un |r‖1 ≤ C.

Similarly to Lemma 3.2, we obtain

c0

k

∫
{t<|un |≤k+t}

|∇un |p(x)

(1 + |un |)θ(p(x)−1)
dx ≤

∫
|un |>t

| fn | dx,

which follows

c0

k

∫
{t<|un |≤k+t}

|∇un |p(x)(1 + |un |)−θ(p+−1)

(1 + |un |)θ(p(x)−1)−θ(p+−1)
dx ≤

∫
|un |>t

| fn | dx .

Let k → 0+, we get

d

dt

∫
|un |≤t

|∇un |p(x)

(1 + |un |)θ(p(x)−p+) dx ≤ c−1
0 (1 + t)θ(p+−1)

∫
|un |>t

| fn | dx

= c−1
0 (1 + t)θ(p+−1)

μun (t)∫
0

f ∗
n (σ ) dσ,

thus

∞∫
0

d

dt

∫
|un |≤t

|∇un |p(x)

(1 + |un |)θ(p(x)−p+) dx dt ≤ c−1
0

∞∫
0

(1 + t)θ(p+−1)

μun (t)∫
0

f ∗
n (σ ) dσ dt

= c−1
0

|�|∫
0

u∗
n(σ )∫
0

(1 + t)θ(p+−1) f ∗
n (σ ) dt dσ

= c−1
0

|�|∫
0

1

θ(p+ − 1)+ 1

((
1 + u∗

n(σ )
)θ(p+−1)+1 − 1

)
f ∗
n (σ ) dσ

≤ C

|�|∫
0

u∗
n(σ )

θ(p+−1)+1 f ∗
n (σ ) dσ + C

|�|∫
0

f ∗
n (σ ) dσ

≤ C‖ f ∗
n ‖m−

⎛
⎝ |�|∫

0

u∗
n(σ )

m′−(θ(p+−1)+1) dσ

⎞
⎠

1
m′−

+ C‖ f ∗
n ‖m− ,
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which implies ∫
�

|∇un |p(x)

(1 + |un |)θ(p(x)−p+) dx ≤ C,

then ∫
�

|∇un |p(x) dx ≤
∫
�

|∇un |p(x)

(1 + |un |)θ(p(x)−p+) dx ≤ C.

Now, we get the result. ��
Theorem 3.3 Assume that 0 ≤ θ <

p−−1
p+−1 and 1 ≤ m− < N

p− . Let s and q(x) be as in (1.4)
and (1.7), respectively, and un be a weak solution of (Pn), then there exists a constant C > 0
which depends on �, θ,m−, N , p+, p−, and ‖ fn‖m(x) such that

‖|un |s‖1 ≤ C.

Moreover, we obtain

(1) if m− satisfies (1.3), ‖∇un‖p(x) ≤ C;
(2) if m− satisfies (1.6), ‖∇un‖q(x) ≤ C;
(3) if m− satisfies (1.8), ‖|∇un|q(x)‖1 ≤ C and for any k > 0, {Tk(un)} is bounded in

W 1,p(x)
0 (�).

Proof Take r = m− N (p−−1)
N−m− p− α, where α ∈ (0, 1). Inequality (3.11) implies

‖((B(|un |))∗)r‖1 ≤ C,

thus ‖(B(|un |))r‖1 ≤ C. Moreover,

‖|un |s‖1 ≤ C. (3.13)

Therefore,

u∗
n(σ )

sσ ≤
σ∫

0

u∗
n(τ )

s dτ ≤ ‖(u∗
n)

s‖1 = ‖|un |s‖1 ≤ C,

which implies

‖un‖Ms (�) ≤ C. (3.14)

Similarly to Lemma 3.2, we obtain

c0

k

∫
{t<|un |≤k+t}

|∇un |p(x)

(1 + |un |)θ(p(x)−1)
dx ≤

∫
|un |>t

| fn | dx,

which follows

c0

k

∫
{t<|un |≤k+t}

|∇un |p(x)(1 + |un |)1− s
m′−

(1 + |un |)θ(p(x)−1)+1− s
m′−

dx ≤
∫

|un |>t

| fn | dx .
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Let k → 0+, we get

d

dt

∫
|un |≤t

|∇un |p(x)

(1 + |un |)θ(p(x)−1)+1− s
m′−

dx ≤ c−1
0 (1 + t)

s
m′−

−1
∫

|un |>t

| fn | dx

= c−1
0 (1 + t)

s
m′−

−1
μun (t)∫
0

f ∗
n (σ ) dσ.

Similarly to Theorem 3.2, we obtain

∞∫
0

d

dt

∫
|un |≤t

|∇un |p(x)

(1+|un |)θ(p(x)−1)+1− s
m′−

dx dt ≤C‖ f ∗
n ‖m−

⎛
⎝ |�|∫

0

|u∗
n(σ )|s dσ

⎞
⎠

1
m′−

+ C‖ f ∗
n ‖m− ,

which implies ∫
�

|∇un |p(x)

(1 + |un |)θ(p+−1)+1− s
m′−

dx ≤ C.

(i) If (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)Nα ≤ m− < N

p− , where α ∈ (0, 1), we could derive

θ(p+ − 1)+ 1 − s

m′−
≤ 0,

then ∫
�

|∇un |p(x) dx ≤
∫
�

|∇un |p(x)

(1 + |un |)θ(p+−1)+1− s
m′

1

dx ≤ C.

(ii) If max
{

1, (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)p− Nα

}
< m− < (θp+−θ+1)N+(p−−1−θp++θ)Nα

(θp+−θ+1)p−+(p−−1−θp++θ)Nα ,
we obtain

θ(p+ − 1)+ 1 − s

m′−
> 0

and

1 ≤ q(x) < p(x).

Thus, using Theorem 2.1 we obtain∫
�

|∇un |q(x) dx

=
∫
�

|∇un |q(x)

(1 + |un |)
(
θ(p+−1)+1− s

m′−

)
q(x)
p(x)

(1 + |un |)
(
θ(p+−1)+1− s

m′−

)
q(x)
p(x)

dx

≤C

∥∥∥∥∥∥∥
|∇un |q(x)

(1+|un |)
(
θ(p+−1)+1− s

m′−

)
q(x)
p(x)

∥∥∥∥∥∥∥
p(x)
q(x)

∥∥∥∥∥∥(1+|un |)
(
θ(p+−1)+1− s

m′−

)
q(x)
p(x)

∥∥∥∥∥∥(
p(x)
q(x)

)′
.
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It follows from (1.4) and (1.7) that

s =
(
θ(p+ − 1)+ 1 − s

m′−

)
q(x)

p(x)− q(x)
,

which implies

∫
�

(1 + |un |)
(
θ(p+−1)+1− s

m′−

)
q(x)
p(x)

(
p(x)
q(x)

)′

dx =
∫
�

(1 + |un |)s dx ≤ C,

thus ∫
�

|∇un |q(x) dx ≤ C.

(iii) If 1 < m− ≤ max
{

1, (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)p− Nα

}
.Similarly to the above

discussion, we obtain ∫
�

|∇un |q(x) dx ≤ C.

In addition, we could verify

s < N ′ < m′−.

Note that

c0

k

∫
t<|un |≤k+t

|∇un |p(x)

(1 + |un |)θ(p(x)−1)
dx ≤

∫
|un |>t

| fn | dx .

Let k → 0+, we get

d

dt

∫
|un |≤t

|∇un |p(x) dx ≤ c−1
0 (1 + t)θ(p+−1)

∫
|un |>t

| fn | dx

= c−1
0 (1 + t)θ(p+−1)

μun (t)∫
0

f ∗
n (σ ) dσ,

then

∫
|un |≤k

|∇un |p(x) dx ≤ c−1
0

k∫
0

(1 + t)θ(p+−1)

μun (t)∫
0

f ∗
n (σ ) dσ dt.

Using Hölder inequality and (3.14), we obtain

μun (t)∫
0

f ∗
n (σ ) dσ ≤ (μun (t))

1
m′− ‖ f ∗

n ‖m− ≤ Ct
− s

m′− ,
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thus

∫
|un |≤k

|∇un |p(x) dx ≤C

k∫
0

(1 + t)θ(p+−1)t
− s

m′− dt

≤C(1 + k)θ(p+−1)k
1− s

m′−

≤Ck
θ(p+−1)− s

m′−
+1
,

as k is large enough, i.e.,∫
�

|∇Tk(un)|p(x) dx ≤ Ckθ(p+−1)− s
m′− +1

. (3.15)

(iv) If m− = 1. It follows from (3.9) that

(B(|un |))∗(̃σ ) ≤ 2
1

p−−1

×
(

C
− 1

N
N |�| 1

N +c
1

1−p−
0

(
NC

1
N
N

)−p′−
‖ f ∗

n ‖
p′−
p−

1
N (p− − 1)

N − p−
σ̃

1− p′−
N ′

)

≤ 2
1

p−−1 σ̃
1− p′−

N ′
(

C
− 1

N
N |�| 1

N + N−p−
N (p−−1)

+c
1

1−p−
0

(
NC

1
N
N

)−p′− N (p− − 1)

N − p−
‖ f ∗

n ‖
p′−
p−

1

)
,

thus (B(|un |))∗(̃σ ) ≤ C σ̃ 1− p′−
N ′ , which implies

‖B(|un |)‖
M

N (p−−1)
N−p− (�)

≤ C.

We obtain ‖un‖
M

N (p−−1−θp++θ)
N−p− (�)

≤ C , then

‖|un |s‖1 ≤ C.

Similarly to the above discussion, we could obtain∫
�

|∇un |q(x) dx ≤ C

and ∫
�

|∇Tk(un)|p(x) dx ≤ Ckθ(p+−1)+1. (3.16)

Now, we complete the proof. ��
Remark 3.1 The definition of the function B(t) in Lemma 3.2 implies the following:

(i) If θ > p−−1
p+−1 , B(t) ≤ 1

θ(p+−1)
p−−1 −1

, for any t ≥ 0;
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(ii) If θ ≤ p−−1
p+−1 , limt→∞ B(t) = ∞, i.e. B(t) is unbounded.

In the proof of Theorems 3.1–3.3, we assume that θ ≤ p−−1
p+−1 , thus, we could obtain

(3.10), (3.12) and (3.13). We also observe that in Theorems 3.2 and 3.3, the case
θ = p−−1

p+−1 is a limit case where it is not possible. In fact, from ‖(B(|un |))r‖1 ≤ C we

can only get that {(ln(1 + |un |))r } is bounded in L1(�).

4 Proof of the main results

In order to obtain the existence of solution for problem (P), firstly, we will prove the fol-
lowing result about the almost everywhere convergence of the gradients of the approximate
solutions un , which allow us to pass to the limit in the approximate equations (Pn).

Lemma 4.1 Let fn ∈ L∞(�) be a sequence of functions which is strongly convergent to
f ∈ L1(�) and let un be the weak solution of (Pn) which converges to u almost everywhere
in �. If

(1) for any k > 0, Tk(u) ∈ W 1,p(x)
0 (�);

(2) there exists r1 > 0 such that {|un |r1} is bounded in L1(�) and |u|r1 ∈ L1(�);
(3) there exists r2 > 0 such that {|∇un |r2} is bounded in L1(�) and |∇u|r2 ∈ L1(�),

then, up to a subsequence, ∇un converges to ∇u almost everywhere in �.

Proof Take λ ∈ (0, 1). Denote

In =
∫
�

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))∇(un − u)

)λ dx,

using condition (a3), we obtain In ≥ 0.
In the following, we will verify that limn→∞ In = 0. Take k > 0. By condition (a2), the

integral on {|u| ≥ k} gives

I 1
n,k �

∫
{|u|≥k}

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))∇(un − u)

)λ dx

≤ C
∫

{|u|≥k}
(gλp′(x) + |un |λp(x) + |∇un |λp(x) + |∇u|λp(x)) dx

≤ C
∫

{|u|≥k}
(1 + g p′(x) + |un |λp+ + |∇un |λp+ + |∇u|λp+) dx .

Take λ sufficiently small such that λp+ < min{r1, r2}. By Hölder inequality, we obtain

∫
{|u|≥k}

|un |λp+ dx ≤
⎛
⎜⎝ ∫

|u|>k

|un |r1

⎞
⎟⎠

λp+
r1

|{|u| ≥ k}|1− λp+
r1

and

∫
{|u|≥k}

|∇un |λp+ dx ≤
⎛
⎜⎝ ∫

|u|>k

|∇un |r2

⎞
⎟⎠

λp+
r2

|{|u| ≥ k}|1− λp+
r2 .
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Note that |u|r1 ∈ L1(�), we obtain u ∈ Mr1(�), i.e., for any k > 1,

|{|u| ≥ k}| ≤ |{|u| > k − 1}| ≤ C

(k − 1)r1
.

As g p′(x), |∇u|λp+ ∈ L1(�) and {|un |r1}, {|∇un |r2} are bounded in L1(�), respectively,
using the above inequalities and the absolute continuity of Lebesgue integral, we obtain

lim
k→ lim sup

n→∞
I 1
n,k = 0.

Denote

I 2
n,k =

∫
{|u|<k}

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))∇(un − u)

)λ dx .

As ∇u = ∇Tk(u) on the set {|u| < k}, we obtain

I 2
n,k ≤

∫
�

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))∇(un − Tk(u))

)λ dx .

Take h > k + 1. We split the integral on the right side of the above inequality into two
parts:

I 3
n,k =

∫
{|un−Tk (u)|≥h}

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))∇(un − Tk(u))

)λ dx,

I 4
n,k =

∫
{|un−Tk (u)|<h}

(
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))∇(un − Tk(u))

)λ dx .

As |un | ≥ h − k on the set {|un − Tk(u)| ≥ h}, we get

|{|un − Tk(u)| ≥ h}| ≤ |{|un | ≥ h − k}| ≤ C

(h − k − 1)r1
.

Similarly to the discussion of I 1
n,k , we obtain

lim
k→∞ lim

h→∞ lim sup
n→∞

I 3
n,k = 0.

Note that ∇Th(un − Tk(u)) = ∇(un − Tk(u)) on the set {|un − Tk(u)| < h}, by Hölder
inequality, we derive

I 4
n,k ≤ |�|1−λ

⎛
⎝∫
�

(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))∇Th(un − Tk(u)) dx

⎞
⎠
λ

Next, we will verify

lim
k→∞ lim

h→∞ lim sup
n→∞

∫
�

(a(x, Tn(un),∇un)−a(x, Tn(un),∇Tk(u)))∇Th(un −Tk(u)) dx = 0,

which implies

lim
k→∞ lim

h→∞ lim sup
n→∞

I 4
n,k = 0.
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Denote

I 5
n,k =

∫
�

a(x, Tn(un),∇un)∇Th(un − Tk(u)) dx

and

I 6
n,k =

∫
�

a(x, Tn(un),∇Tk(u))∇Th(un − Tk(u)) dx .

As un is a weak solution for (Pn), we get∫
�

a(x, Tn(un),∇un)∇Th(un − Tk(u)) dx =
∫
�

fnTh(un − Tk(u)) dx .

As fn → f in L1(�), we obtain limn→∞ I 5
n,k = ∫

�
f Th(u − Tk(u)) dx .

For almost every x ∈ �, there exists k0 > 0 such that |u(x)| < k0. If k > k0, Tk(u(x)) =
u(x), thus

lim
k→∞ lim

h→∞ lim
n→∞ I 5

n,k = 0.

Take n sufficiently large such that n > h+k. As |un | < h+k on the set {|un −Tk(u)| < h},
we obtain

I 6
n,k =

∫
�

a(x, Th+k(un),∇Tk(u))∇Th(un − Tk(u)) dx .

By condition (a2), we obtain

|a(x, Th+k(un),∇Tk(u))| ≤ c1

(
g(x)+ (h + k)p(x)−1 + |∇Tk(u)|p(x)−1

)
.

Note that

a(x, Th+k(un),∇Tk(u)) → a(x, u,∇Tk(u)) a.e. in�,

using Lebesgue dominated convergence theorem, we derive

a(x, Th+k(un),∇Tk(u)) → a(x, u,∇Tk(u)) in (L p′(x)(�))N , as n → ∞. (4.1)

As un is a weak solution for (Pn), choose v = Tk+h(un) as a test function in (3.1), we
obtain that {Tk+h(un)} is bounded in W 1,p(x)

0 (�). It follows that∫
�

|∇Th(un − Tk(u))|p(x) dx ≤ C
∫

|un |≤k+h

(|∇un |p(x) + |∇Tk(u)|p(x)) dx ≤ C.

Thus, {Th(un − Tk(u))} is bounded in W 1,p(x)
0 (�), passing to a subsequence, still denoted

by {Th(un − Tk(u))}, we assume that

Th(un − Tk(u)) → v weakly in W 1,p(x)
0 (�), as n → ∞.

By Theorem 2.2, we get Th(un −Tk(u)) → v in L p(x)(�). Moreover, we assume Th(un −
Tk(u)) → v a.e. in �, as n → ∞. Thus, v = Th(u − Tk(u)) and

Th(un − Tk(u)) → Th(u − Tk(u)) weakly in W 1,p(x)
0 (�),
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as n → ∞. Using (4.1), we obtain

lim
n→∞ I 6

n,k =
∫
�

a(x, u,∇Tk(u))∇Th(u − Tk(u)) dx,

thus limk→∞ limh→∞ limn→∞ I 6
n,k = 0.

Combining with the above discussion, we get lim supn→∞ In = 0, thus

lim
n→∞ In = 0,

which implies

((a(x, Tn(un),∇un)− a(x, Tn(un),∇u))∇(un − u))λ → 0 in L1(�).

Passing to a subsequence, we assume that

(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))∇(un − u) → 0 a.e. in�. (4.2)

Next, we will verify that ∇un → ∇u a.e. in �. Firstly, we claim that for almost every
x ∈ �, the sequence {|∇un(x)|} is bounded. In fact, on the contrary, there exists a subse-
quence, still denoted by {|∇un(x)|}, such that

|∇un(x)− ∇u(x)| > 1,
∇un(x)− ∇u(x)

|∇un(x)− ∇u(x)| → ξ∗ 	= 0,

as n → ∞.
In the following, for the sake of simplicity, we omit the dependence of un and u on x . By

condition (a3), we get(
a(x, Tn(un),∇un)−a

(
x, Tn(un),∇u+ ∇un −∇u

|∇un −∇u|
)) (

∇un −∇u − ∇un −∇u

|∇un −∇u|
)

≥ 0,

which implies(
a(x, Tn(un),∇un)− a

(
x, Tn(un),∇u + ∇un − ∇u

|∇un − ∇u|
))

(∇un − ∇u) ≥ 0.

Note that

0 ≤
(

a

(
x, Tn(un),∇u + ∇un − ∇u

|∇un − ∇u|
)

− a(x, Tn(un),∇u)

) ∇un − ∇u

|∇un − ∇u|
=

(
a

(
x, Tn(un),∇u + ∇un − ∇u

|∇un − ∇u|
)

− a(x, Tn(un),∇un)

) ∇un − ∇u

|∇un − ∇u|
+ (a(x, Tn(un),∇un)− a(x, Tn(un),∇u))

∇un − ∇u

|∇un − ∇u|
≤(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))

∇un − ∇u

|∇un − ∇u|
≤(a(x, Tn(un),∇un)− a(x, Tn(un),∇u))(∇un − ∇u),

using (4.2), we obtain(
a

(
x, Tn(un),∇u + ∇un − ∇u

|∇un − ∇u|
)

− a(x, Tn(un),∇u)

) ∇un − ∇u

|∇un − ∇u| → 0.
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For almost every x ∈ �, un(x) → u(x), which implies |un(x)| ≤ |u(x)| + 1 ≤ n for n
large enough, thus Tn(un(x)) = un(x). We obtain(

a

(
x, un,∇u + ∇un − ∇u

|∇un − ∇u|
)

− a(x, un,∇u)

) ∇un − ∇u

|∇un − ∇u| → 0,

as n → ∞, thus

(a(x, u,∇u + ξ∗)− a(x, u,∇u))ξ∗ = 0,

this contradiction proves our claim. Therefore, there exists a subsequence, still denoted by
{|∇un(x)|} such that

∇un(x) → ξ,

as n → ∞. It follows from (4.2) that

(a(x, un,∇un)− a(x, un,∇u))∇(un − u) → 0,

which implies

(a(x, u, ξ)− a(x, u,∇u))(ξ − ∇u) = 0.

By condition (a3), we obtain ξ = ∇u(x), thus

∇un → ∇u a.e. in �, as n → ∞.

Therefore, we get the result. ��
In the following, we are going to prove Theorems 1.1–1.5.
As C∞

0 (�) is dense in (Lm(x)(�), ‖ ·‖m(x)) (see Theorem 1.8 in [10]), there exists { fn} ⊂
C∞

0 (�) such that

fn → f in Lm(x)(�).

Then, there exists a weak solution un for (Pn) in the sense of (3.1).
Firstly, we will verify that {un} satisfies the assumptions of Lemma 4.1.
For any k > 0, choose v = Tk(un) as a test function in (3.1), we obtain∫

�

a(x, Tn(un),∇un)∇Tk(un) dx =
∫
�

fnTk(un) dx .

By condition (a1), it is easy to verify that {Tk(un)} is bounded in W 1,p(x)
0 (�). We assume

that Tk(un) → vweakly in W 1,p(x)
0 (�), as n → ∞. Using Theorem 2.2, we obtain Tk(un) →

v in L p(x)(�). Moreover, we assume that Tk(un) → v a.e. in �, as n → ∞.
Let s be as in (1.4), it follows from Theorems 3.1–3.3 that {un} is bounded in Ms(�).

Then, there exists C > 0 such that for any k > 0,

|{|un | > k}| ≤ C

ks
,

we get

lim
k→∞ lim sup

n→∞
|{|un | > k}| = 0.

Take t > 0, we obtain

{|un − um | > t} ⊂ {|un | > k} ∪ {|um | > k} ∪ {|Tk(un)− Tk(um)| > t},
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thus

|{|un − um | > t}| ≤ |{|un | > k}| + |{|um | > k}| + |{|Tk(un)− Tk(um)| > t}|.
Note that

|{|Tk(un)− Tk(um)| > t}|

≤
∫

{|Tk (un)−Tk (um )|>t}

∣∣∣∣ Tk(un)− Tk(um)

t

∣∣∣∣
p(x)

dx

≤(t−p+ + t−p−)
∫

{|Tk (un)−Tk (um )|>t}
|Tk(un)− Tk(um)|p(x) dx

thus

lim
m,n→∞ |{|Tk(un)− Tk(um)| > t}| = 0,

which implies

lim
m,n→∞ |{|un − um | > t}| = 0,

i.e. {un} is a Cauchy sequence in measure. Furthermore, there exists a measurable function
u such that

un → u in measure and a.e. in�,

as n → ∞, then v = Tk(u) ∈ W 1,p(x)
0 (�). Moreover,

Tk(un) → Tk(u) weakly in W 1,p(x)
0 (�),

as n → ∞.

(1) There exists r1 > 0 such that {|un |r1} is bounded in L1(�) and |u|r1 ∈ L1(�). In fact,
it follows from Theorems 3.1–3.3 that∫

�

|un |s dx ≤ C,

where s is as in (1.4). By Fatou Lemma, we obtain∫
�

|u|s dx ≤ lim inf
n→∞

∫
�

|un |s dx ≤ C.

Thus |u|s ∈ L1(�), furthermore, u ∈ Ms(�).

(2) There exists r2 > 0 such that {|∇un |r2} is bounded in L1(�) and |∇u|r2 ∈ L1(�).

(i) If m− ≥ (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)Nα , where α ∈ (0, 1).

It follows from Theorems 3.1, 3.2, and 3.3(1) that {un} is bounded in W 1,p(x)
0 (�). As

W 1,p(x)
0 (�) is reflexive, passing to a subsequence, we assume that un → ũ weakly in

W 1,p(x)
0 (�), as n → ∞. By Theorem 2.2, un → ũ in L p(x)(�). Furthermore, we assume

that un → ũ a.e. in �, thus ũ = u.
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Note that
∫
�

|∇v|p(x) dx is convex and continuously differentiable on W 1,p(x)
0 (�), we

obtain ∫
�

|∇u|p(x) dx ≤ lim inf
n→

∫
�

|∇un |p(x) dx ≤ C.

(ii) If max
{

1, (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)p− Nα

}
< m− < (θp+−θ+1)N+(p−−1−θp++θ)Nα

(θp+−θ+1)p−+(p−−1−θp++θ)Nα .

It follows from Theorem 3.3(2) that {un} is bounded in W 1,q(x)
0 (�). Similarly to (i), up to

a subsequence, we assume that un → u weakly in W 1,q(x)
0 (�), then∫

�

|∇u|q(x) dx ≤ lim inf
n→

∫
�

|∇un |q(x) dx ≤ C.

(iii) If 1 < m− ≤ max
{

1, (θp+−θ+1)N+(p−−1−θp++θ)Nα
(θp+−θ+1)p−+(p−−1−θp++θ)p− Nα

}
.

Using (3.15), we obtain∫
�

|∇Tk(un)|p(x) dx ≤ Ck
θ(p+−1)− s

m′−
+1
,

thus ∫
�

|∇Tk(u)|p(x) dx ≤ lim inf
n→∞

∫
�

|∇Tk(un)|p(x) dx ≤ Ck
θ(p+−1)− s

m′−
+1
.

For any t > 1, we have

|{|∇u| > t}| ≤ |{|∇u| > t, |u| ≤ k}| + |{|∇u| > t, |u| > k}|

≤
∫

{|∇u|>t,|u|≤k}

∣∣∣∣∇u

t

∣∣∣∣
p(x)

dx + C

ks

≤ C

(
k
θ(p+−1)− s

m′−
+1

t−p− + k−s
)
.

Take the minimization of h(k) = k
θ(p+−1)− s

m′−
+1

t−p− + k−s , we obtain

|{|∇u| > t}| ≤ Ct−γ ,

where γ = sp−
θ(p+−1)− s

m′−
+1+s , thus |∇u| ∈ Mγ (�). Furthermore, there exists 0 < γ̃ < γ ,

such that

|∇u|γ̃ ∈ L1(�).

(iv) If m− = 1.

By (3.16), we get ∫
�

|∇Tk(un)|p(x) dx ≤ Ckθ(p+−1)+1,
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similarly to (iii), there exists γ > 0, such that

|∇u|γ ∈ L1(�).

Combining with the above discussion, it follows from Lemma 4.1 that

∇un → ∇u a.e. in�, as n → ∞. (3.3)

The Proof of Theorems 1.1–1.3 As un is a weak solution for (Pn) in the sense of (3.1), for
any v ∈ W 1,p(x)

0 (�) ∩ L∞(�), we derive∫
�

a(x, Tn(un),∇un)∇v dx =
∫
�

fnv dx .

As {un} is bounded in W 1,p(x)
0 (�), using condition (a2), we get {a(x, Tn(un),∇un)}

is bounded in (L p′(x)(�))N . Note that a(x, Tn(un),∇un) → a(x, u,∇u) a.e. in �, then
a(x, Tn(un),∇un) → a(x, u,∇u) weakly in (L p′(x)(�))N . Moreover, we obtain∫

�

a(x, u,∇u)∇v dx =
∫
�

f v dx,

i.e., u is a solution for (P) in the sense of (1.2). ��
The Proof of Theorems 1.4–1.5 For any T ∈ T and φ ∈ W 1,p(x)

0 (�) ∩ L∞(�), choose
v = T (un − φ) as a test function in (3.1), we obtain∫

�

a(x, Tn(un),∇un)∇T (un − φ) dx =
∫
�

fnT (un − φ) dx .

Take s0 > 0 such that T ′(s) = 0, for any s ≥ s0. Denote M = ‖φ‖∞ + s0 and take
n > M , we get∫

�

a(x, Tn(un),∇un)∇T (un − φ) dx

=
∫

{|un−φ|<s0}
a(x, un,∇un)∇(un − φ) · T ′(un − φ) dx

=
∫
�

a(x, un,∇un)∇un · T ′(un − φ) dx −
∫
�

a(x, un,∇un)∇φ · T ′(un − φ) dx .

By Fatou Lemma,∫
�

a(x, u,∇u)∇u · T ′(u − φ) dx ≤ lim inf
n→∞

∫
�

a(x, un,∇un)∇un · T ′(un − φ) dx .

Using condition (a2), we obtain

|a(x, un,∇un)T
′(un − φ)| ≤ C(g(x)+ M p(x)−1 + |∇TM (un)|p(x)−1),

thus {|a(x, un,∇un)T ′(un − φ)|} is bounded in L p′(x)(�). Note that a(x, un,∇un)T ′(un −
φ) → a(x, u,∇u)T ′(u − φ) a.e. in �, we get

a(x, un,∇un)T
′(un − φ) → a(x, u,∇u)T ′(u − φ) weakly in (L p′(x)(�))N ,
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thus ∫
�

a(x, un,∇un)∇φ · T ′(un − φ) dx →
∫
�

a(x, u,∇u)∇φ · T ′(u − φ) dx .

It is easy to verify that ∫
�

fnT (un − φ) dx →
∫
�

f T (u − φ) dx,

therefore, ∫
�

a(x, u,∇u)∇(u − φ)T ′(u − φ) dx ≤
∫
�

f T (u − φ) dx,

i.e., u is an entropy solution for (Pn).
Moreover, using (3.3) and Fatou Lemma, we obtain∫

�

|∇u|q(x) dx ≤ lim inf
n→∞

∫
�

|∇un |q(x) dx ≤ C.

Now, we get the result. ��
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