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Abstract In this paper we study the higher differentiability of the solutions to a class of
nonlinear systems of elliptic partial differential equations with a lower-order term having
natural growth with respect to the gradient and with data belonging to a suitable Morrey
space.
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1 Introduction

In this paper we study the higher differentiability of the weak solutions of a class of nonlinear
elliptic systems whose model is

—div [(s2 + | Dul®) T Dul + u|Dul” = f in Q2 a
u=0 on d§2

where £2 is an open bounded subset of R” (n > 3) with sufficiently regular boundary, p €
[2,n[, u: 2 — RN (N > 1) is the unknown vector, s > 0 is a constant and f € LY(2,RY)
is a vector-valued function belonging to a suitable Morrey space.

The existence of a weak solution with finite energy (that is u € W&’p (82, RM)) for Sys-
tems whose prototype is (1) has been proved by Bensoussan and Boccardo in [2], assuming
that the main part of the operator satisfies the so-called “Landes condition” (see [9]), which
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116 G. R. Cirmi, S. Leonardi

amounts to a sort of diagonal structure of the system, and that the lower-order term verifies
a sign (or angle) condition (see below for the precise statements of the assumptions).

Recently, Mingione (see [10]) has investigated the differentiability properties of the dis-
tributional solutions of a nonlinear elliptic equation (N = 1) of the type

-2
—div [(s> + |Dul) "> Dul = p

where s is a non-negative constant, p > 1 and u is a signed Radon measure with finite total
variation | |(£2) < +o0 enjoying the following density condition

lul(Br) < MR, forsome M > 0, 6 € [0, n)

for any ball Bg C £2.

This differentiability result has been extended to the very weak solutions of non-diagonal
linear elliptic systems (N > 2) without lower-order terms in [5].

It is the aim of the present paper to prove similar differentiability properties for the usual
weak solutions to systems of nonlinear elliptic equations, under the Landes condition, with
lower-order terms having natural (or critical) growth with respect to the gradient and satis-
fying a sign condition.

Namely, at first, we will establish that if f belongs to the Morrey space L'? (€2, RV), with
0 € [0, n[, then any weak solution of that problem (1) has the property that the following
expression of the gradient

p—2
V(Du) = (s> + |Du®)" 7 Du

belongs to the Morrey space L%o’f (82, R™V) (see also [4]). This Morrey regularity property in

turn will allow us to gain that Du belongs to the space L [1269 (£2, R™V) and that it has fractional
derivatives in L (2, R™V),

Our result turns out to be optimal for this class of systems. As a matter of fact, as shown
in the Remark 7, the differentiability of a solution fails whether 6 = n, that is under the sole
requirement that f is justin L' (£2, R"), while in the case of the operator without lower-order

term a small amount of differentiability still holds (see [10]).

2 Notations and results

In R" (n > 3), with generic point x = (xy, x2, ..., x,), we shall denote by §2 a bounded
open non-empty set with diameter dg; and C%!-boundary 9£2.
For R > 0 and x¥ € R", we define

Br(x") = {(x e R" : |x —x°| < R},
(% R) = 2N Br(xY),

Or(x") = (x eR": sup |x; —x]| < R},
1<i<n

d(x°,382) = dist(x°, 992).

We shall often use the short notation Bg and Q g, instead of B (x%) and Qg (x?), respec-
tively, when no ambiguity will arise.

@ Springer



Higher differentiability for nonlinear elliptic systems 117

Moreover, if u € L'(B,RY), N > 1,and 0 < |B| < +0o0 (!), we denote by

1
upg = ﬁ/u(x)dx
B

Now, let us define the functional spaces we will use. We propose a modification of the
usual definitions, essentially equivalent, to simplify the treatment in the following.

Definition 1 (Morrey space) Let ¢ > 1 and 6 € [0, n]. By L9?(£2, RV), we denote the
space of all vector functions u € L7(£2, R") such that

1/q

lullpaoiy = sup Re’"/lu(x)lqu
BRrC£2,R<1

is finite. LY (£2, RV) equipped with the above norm is a Banach space.
Now, we recall some basic facts about fractional-order Sobolev spaces.

Definition 2 (Fractional Sobolev space) Let t €]0, 11andg > 1. W"4(82, RY) is the space
of all vector functions u € L9(§2, RV) such that

lullweaoryy = lullpa@ ryy + [Ulig.2 < +00

where

lu(x) — u(y)|? .
[ulig.0 = <ﬁ/ Ix — y|r+ia g dxdy ift <1

| Dullza(2) ifr=1.

Here, Du represents the gradient of the vector-valued function u; that is,

ou"
— —_ v
Du = (3 : = (Dju")v=1,..N;i=1,..n-
Xi Jy=1,...N;i=1,..n

.....

The following result is the Sobolev’s embedding theorem in the case of fractional space
(see [1] and also Lemma 3 of [6]).

Theorem 1 (Fractional Sobolev embedding) Let §2 be a domain of R" with C 01 boundary,
g > landt €]0, 1] such that tq < n. Then,

Wi (@ RY) ¢ L (2,RY)
with continuous embedding.

Moreover, the following proposition extends the classical Poincaré’s inequality to the case
of fractional Sobolev space (see [10] and related references).

Proposition 1 (Fractional Poincaré Inequality) Let Bg, R > 0, be a ball in R" and u €
W4 (Bg,RN), t €10, 1[, ¢ > 1. Then,

1 | B| is the n-dimensional Lebesgue measure of set B.
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118 G. R. Cirmi, S. Leonardi

/|u(x)—u3R|qu <c(n)R’q//dedy(2).

|n+tq
Br Bgr

Given a vector-valued function @ : £2 — RY and a real number 4, for anyi =1,...,n,
we define the finite difference operator t;;, as

Tin(w)(x) = w(x + he;) — w(x),

for x € §2 such that x + he; € 2, where {¢;};—; __, denotes the canonical basis of R".

,,,,,

Lemma 1_ Letu € L1(2,RN), q > 1. Assume that there exist t €]0,1], S > 0 and an
open set §2 CC $2 such that

lin @)l o3y < SIRI

forevery 1 <i < n and every h € R satisfying 0 < |h| < min{1, dist(2, 9§2)}.
Then,

u € Wloq(.Q RN) forevery t€]0,1[
and for every open set A CC §2 there exists a constant c, independent of S and u, such that
lullweacay < c[S+ llullzocay]-
We denote by A(x, &) a matrix-valued function whose entries are the functions
AV 2 xRN R

fori =1,...,nandv =1,..., N. Each entry is a Carathéodory functions (i.e., continuous
in& € R™ forae. x € £2 and measurable in x for every &) satisfying the following condi-
tions for a.e. x € £2, for every non-negative real number s and for every £, n € R"V such

that& # n ():

A > 0 (AY(,E) — AL EY — ) = A1 2+ 6P+ DT g =0l @)
A, >0 [AG.8)] < Ay P+ EPTIEl. pel2oal (3)

Al(x,0) =0, 4)

A, E) [E 1y 1P — vy el ] = 0 vy eRY. )

Remark 1 Since p > 2, the assumption (2) implies the strong monotonicity assumption

(A} (x,8) — A} (x,m) (& —n}) = c(Ar, p) |E —nl”. (©)

For s > 0, we set

VE = V@) = (P +EDTE VEeRN )

The assumptions (2) and (4) imply the ellipticity condition
A, D)E = MVE)P, ae.x € 2, V& e RN, ®)
2 Asa permanent convention, we will denote by c(-, ..., ) a positive constant which depends on various

parameters.

3 We assume the use of Einstein’s convention throughout the paper.
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Higher differentiability for nonlinear elliptic systems 119

Moreover, from Lemma 2.1 of [7] and (2) (see also [10]), we have the following properties

2
Ve -veP

c(n, p) ' (% + 1€ + DT < e, P>+ 1ER + D)7,

& — nl?
©))
(A} (x, &) — A} (x, ME —n)) = c(Ar,n, p)IVE) — V(I (10)
The assumption (3) and Young’s inequality yield
AL 8] < Az, p) (* + 6D (1D

Remark 2 The assumption (5) is the so-called Landes condition. Note that it is automatically
implied by (8), whenever N = 1.

Forv=1,...,Nletg’: £ x RN x R"™N — R be Carathéodory functions and denote
by g(x, u, &) the vector-valued function whose v-th component is g". For g(x, u, §), we will
assume the following conditions for a.e. x € £2, for every u € RV and for every & € R™V:

lgCx, u, £)| < b(lu]) [d(x) + £]7], (12)
and
g, u, &) >0 [VEI* YueRY:|ul > 1. (13)

where b(-) is a real valued, positive, increasing and continuous function, d(x) is a non-nega-
tive function in L !¢ (2,RM), 0 ¢ p. n[, sis anon-negative real number and o is a positive
real number.

Moreover, we assume the following angle condition

G u, &)’ —1") =20, Yr,u e RV : |t < |u] (14)

which amounts to a sign condition in the scalar case N = 1.
We consider the following system

ue Wy (2,RY), gx,u, Du) e L'(2,RY) 15)
—D; A (x, Du) + g"(x,u, Du) = f"
where, forany v = 1, ..., N, fY denotes the v-th component of the vector
feLlY@.RrRY), 0elp.nl (16)

By a weak solution of the system of equations (15), we mean a vector-valued function
u e Wol’p(.Q, R™) such that

g(x, u(x), Du(x)) € L'(2, RN)

/A (x, Du) D;v" dx—l—/g (x,u, Du)v" dx—/f”v”dx

2
Vv e WyP(2,RN) N L2, RY).

arn

In [2], the following result has been proved

Theorem 2 Let assumptions (2), (3), (4), (5), (12), (13), (14) be satisfied and let [ €
LY(2,RN). Then, there exists a weak solution u € Wol’p(.Q, RM) of the problem (15).

Here, we prove the following
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120 G. R. Cirmi, S. Leonardi

Theorem 3 Let assumptions (2), (3), (4), (5), (12), (13), (14), (16) be satisfied and let u €
W(;’p(.Q, RN be a weak solution of the problem (15).
Then,
V(D) € LEY (@, ®R"Y), DueLl’(2,rR™), (18)

c loc

and for any £2' CC £2, there exist two positive constants ¢ and ¢y, depending only on data,
such that

IV (Du)ll 265y < c1. (19)
and
| Dullppoory < c2. (20)
Remark 3 The particular scalar case (i.e., N = 1) has been studied in [3].

Remark 4 The previous Morrey regularity result holds as well if 6 € [0, p[ assuming also
u € L8, RN). In the case N = 1, the boundedness of u has been proved in [3].

To prove the differentiability of a weak solution u, we shall require the following Holder
continuity assumption on the map x — A(x, £):

{ there exist L > 0 and n €]0, 1] such that o)

|AGx, §) — Ao, )] < Llx — xo["(s2 + [E) T, V¥, xo€ 2.6 e RV,

Theorem 4 Let the assumptions (2), (3), (4), (5), (12), (13), (14), (16), (21) be satisfied and
letu € W&'p(.Q, RY) be a weak solution of the problem (15). Set

. n—=~0
(SZmln[l,i]. (22)
2
Then,

V(Du) € W22, R™), Du e Wo/PP (2, R"™Y) (23)

foreveryt € [0, ndl.
Moreover, for every couple of open subset 2’ CC 2" CC 2, there exist two positive
constants c| and c¢;, independent on u, such that

V(Do < €1 / (s + [Du|P) dx + |V (DW)|I7 20 g, (24)
Q//
and
(DUl < 2| [ 67+ 1DUI @+ 1Dul] 0 g | @s)

Remark 5 In the case 8 € [0, p[, the differentiability result stated above holds for the
bounded weak solutions of the problem (15).
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Higher differentiability for nonlinear elliptic systems 121

Remark 6 As a consequence of the fractional Sobolev embedding Theorem 1, we gain a
better integrability on Du. Namely,

_pn_
Du e L] ” (2, R"™) forevery € [0, né[

where § is the number defined in (22).

Given a vector u € R" and a real number k > 0 let us denote by Ty (u), the vector-valued
function whose components are defined by

u’ iflul <k
T = 1 i (26)
u

forv=1,..., N. Obviously
ITe@)| <k, |T@)] < lul VueRY, VkeR*.
Moreover, if v € Wy'” (2, RY), then Ty (v) € W,'" (22, RN), and forany i = 1,...,n and
v=1,..., N, wehave
D;v" if |v] <k
. v k 1
DilTi ()] — | Div" — — v v Do | if |v| > k
[v| v]?
see [9].

Remark 7 The regularity result stated in Theorem 4 fails if f € L'(£2, RY). Indeed, let
n>3,60=n, N=2(orN=1), 2 = B(0,1/2) and, for a. e. x € B(0, 1/2), define

1/2 1/2
(x) / Ly / L4
ulx) = _— s —
p"Pllogpl " | prPliogol ”
x| x|

We can easily prove that u € WO1 ’2(B (0, 1/2), R?) is a solution of the Dirichlet problem
associated with the system

—Au+ Ty ()| Dul* = f(x)
where

1—(m/2 —1)log|x]|
|x|"/2 1 og?|x|

fx) = + Ty (u(x))| Du(x) .

Easy calculations show that
Du ¢ L;;0(2,R*™) forany 6 €]0, n[,

this implies that the vector-valued function f belongs to L'(£2, R?) but doesn’t belong to
L'9(£2, R?) for any 6 €]0, nl.
Moreover,

Du ¢ W;2($2,R*") forany 1 €]0, 1

2n

since otherwise, being W, ;>(2, R*)CL> ¥ (2, R*), it would be DueL;;" > (2, R™).

loc loc
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122 G. R. Cirmi, S. Leonardi

3 Proofs of the main results

In this section, we prove our results and we recall, among others, some well-known results
on the weak solutions to homogeneous elliptic systems.

The following Lemma, whose proof can be found in [8, Lemma 3.3] or in [10, Lemma
3.2], concerns the W2 ?-regularity of the weak solutions u of homogeneous elliptic systems
with coefficients depending only on Du.

Namely, we denote by Ag(§) a matrix-valued function whose entries are the continuous
functions

Af R > R

fori =1,...,nandv =1, ..., N. Each entry satisfies the following conditions for every
non-negative real number s and for every &, n € R*" such that £ # n:

(AL (E) — AL E” — 1Y) = a0 52 + 6% + D) T 1€ — )%, 27)
1A0(®)] < fo (s> + [ED) T I&. 28)
Ap;(0) = 0. (29)

with o and B positive constants.

Lemma 2 Let vg € W'P(§2, RN be a weak solution to the system
div Ag(Dvy) =0 in £2.

Then,
V(Dv) € W52, R™Y)

loc

and there exists a constant ¢ = c(n, N, p, A1, Ay) > 0 such that for every zo € RN and
every ball Bg CC $2 we have

/ |DV(Dv0)|2dx < %/ |V (Dvgy) — V(ZO)|2 dx. (30)
Bg

Bg)2
We can continue proving Theorem 3.

Proof of Theorem 3 1tis enough to prove that, for any R < 1 for which Bg C £2, the integral

1

W/IV(DM)Izdx

Br

is bounded.
Let ¢ € C°°(R") be the standard cut-off function of the ball B,g, that is

0<y) <1 if xeBxr

Yx) =1 if x € By
Y(x)=0 if x e R"\ Bog
IDY(x)] <& if x € Bog \ Bg.

Let us take as test function in (17) the function

v =yl T(u)
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Higher differentiability for nonlinear elliptic systems 123

where T (u) is the vector-valued function defined by (26). We obtain

/ WP AY (x, Du) Dy[T1 )] dx + p/ WP AY (v, Du) [Ty )] Dip dx
2 2
+ / WP g" (e, u, Du) [T w)]" dx = / WP £ LT ) d. 31)
2 2

Note that

L = /pr;)(x,Du) D;[Ty(w)]" dx
2

= / Y’ A/ (x, Du) Diju" dx

L0fJu|<1}

/ YPAY (x, Du)| | |: ﬁu u*D; u“i| (32)

20{lu|>1}

By virtue of (5), the last integral in (32) is non-negative, and thus, using the assumptions
(8) and (6), we estimate /1 from above as follows

Iy =z ¢(Ay, p) / YP(IV(Du)[* + | Dul”) dx. (33)
20{Ju|<1}

On the other hand, exploiting (11) and Young’s inequality, we obtain

L= p/ YP AL (x, Du) [Ty (w)]” D;i ¢ dx

2
> —P/llfp_llA”(x,Du)IIDWII[Tl(u)]”Idx
2
> —¢ /W’(s2+ 1Dul®) T Ty ()| dx — c(e, Aa, p) /|DW|”|T1(u)|dx
2 2
> —¢ /wp (|\V(Du)|> + |Du|?)dx — e s? R" — (e, Ay, p,n) R"P. (34)

2

Moreover, by (14) we deduce,

I3 E/W’g”(x,u,Du) (71 (w)]" dx
2

v
u
£20{lu|<1} 2n{ju|>1}

U

> / vPg"(x,u, Du)ﬁ . (35)

20{|u|>1}
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124 G. R. Cirmi, S. Leonardi

Note that the angle condition (14) implies

v

g (x,u, Du) % > |g(x,u, Du)| for a.ex € 2 and for|u| > 1 (36)

so that, plugging (13) and (36) in (35) and observing that
Ve = g7, (37)

we get

I >0/2 / YP(|V(Du)|? + | Du|P) dx. (38)

2n{ju|>1}
Gathering together (31), (33), (34) and (38), we obtain
(c(A1, p) —¢) / YP(|V(Dw)|* + | Du|P) dx
2nf{lul<1}

+o/2—e) / YV (D[ + | Dul?) dx
20{u|>1)
<R\ fllpe) +[es? R? +c(e, Ay, p,n)] R"™P (39)

whence, choosing a suitable ¢ > 0 and taking into account that & > p, we have
/(|V(Du)|2+|Du|”) dx < R"? [(C(Al, As, 0, pon, 9)+spdg)d§;”+||f||L1,g(m]

Bgr
(40)

which, by a covering argument, implies the assertions (19) and (20).
We are now in position to prove Theorem 4. O

Proof of Theorem 4 We shall follow the outline of Lemma 6.2 of [10]. Let B CC £2 be a
ball of radius R and let B be the enlarged ball of radius 16 R. We shall denote by Q;,,(B)
and Q,,;(B) the largest and the smallest cubes, concentric to B and with sides parallel to
the coordinate axes, contained in B and containing B, respectively. If we put

Qinn = Qim(B), Qou = Qour(B)
and
Oimn = Qim(B),  Qour = Qou(B),
we have the following inclusions
Qinn C B CC 4B CC Qinn C B C Qour. (41)

Let 2’ and £2” be a couple of open subset such that 2’ cC £2” cc 2 and x° € £2’. For
any B €]0, 1[ (that will be chosen later) we fix h € R with 0 < |h| << min {1, d($2’, 89”)}
such that, denoted with B = B(x?, |1|#) the ball centered in x° and with radius |k|?, the
outer cube of B, Oy is included in £2”.
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Higher differentiability for nonlinear elliptic systems 125

Step 1
Letv € WhP(B,RY) be the unique weak solution to the problem

[le A(x, Dv) =0 in BA (42)
vV=u on 0B,
and let vg € WP (8B, RY) be the unique weak solution to the problem
div A(x”, Dvg) =0in 8B (43)
vg=v on J08B.
Then, we have
/|Tih(V(Du))|2dx <c /ITm(V(Dvo))I2 dx + / |V (Du) — (Dv)|* dx
B B B
+/ |V (Dv) — V(Dvg)|*dx | . (44)
8B

First of all we estimate

/|V(Du) — V(Dv)|? dx.

B

Let us observe that the function w = v —u € W(}’p (é, RY) is a weak solution to the
system

[ div A(x, D(w +u)) =0in B (45)

w=0 on 9B.
For such a solution we have
/A(x, D(w +u))Dwdx —/A(x, Du)Dwdx = —/A(x, Du)Dw dx
B B

whence, by (10), (3) and (9), we deduce

B

/|V(Du> — V(Dv)|*dx = / [V (D(u + w)) — V(Du)|* dx
B B

S/IA(x, Du)||Dw] dx
B

2 2,252
< Ay [ (>4 |Du)T |Dul|Dw| dx
B
-2 -2
< Az/(52+ 1DV + [Du) T D — v)| (s> + [Dul®) T | Du dx

B
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126 G. R. Cirmi, S. Leonardi

se/(s2+|Dv|2+|Du|2)”T‘2 |D(u—v)|2dx+c<s>/<s2+|Du|2>”T‘2|Du|2dx

B B

§£/|V(Du)— V(Dv)|?dx + c(e, p)/|V(Du)|2dx (46)
B B

with ¢ positive constant independent of the radius of B.
In turn, for a sufficiently small ¢, inequality (46) yields

/|V(Du) — V(Dv)|dx < c/ [V (Du)|? dx. (47)
B B

Now, we estimate

/lV(Dv) — V(Dvp)|? dx.
8B

Since v and v are the weak solutions, respectively, to the Dirichlet problems (42) and
(43), the following integral identities hold

/A(x, Dv)D(v — vp)dx =0 (48)
8B
and
/A(xo, Dvo)D(v — vg) dx = 0. (49)
8B

By virtue of the strong monotonicity condition (10) and using (21), (48), (49), Young’s
inequality and (9) we deduce

/lV(Dv) — V(Dup)|* dx
8B |
< /[A(xo, Dv) — A", Dvy)]D(v — vp) dx
c(Aq,n, p)SB

%/[A(xo, Dv) — A(x, Dv)]1D(v — vg) dx

IA

8B
%/ |A(x?, Dv) — A(x, DV)||D(v — vg)| dx

IA

8B

L —1

;/ lx — x°7 (s> + |Dv|) T |D(v — vp)| dx
8B

L
= c(e)|h|2ﬂ’7/(sf'+|Du|f’)dx+e/|V(Du)—V(v0)|2dx
8B 8B

IA

c
Choosing € sufficiently small, it follows

/|V(Dv) — V(Do) dx < c|h|2"ﬂ/<sp + |Dv|P) dx
8B 8B
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Higher differentiability for nonlinear elliptic systems 127

consequently, using again the inequalities (37) and (47), we deduce

/|V(Dv) — V(Dvp)|? dx < c|h|*" /(s" + |Du|?) dx. (50)
8B B
Summing up (47) and (50), we have

/lV(Du)—V(Dvo)|2dx§c |h|2’7ﬂ/(sp+|1)u|f’)dx+/|V(Du)|2dx . (51)
8B B B

Now, we have to estimate the first integral in the right-hand side of (44). Using a well-
known result about the translation operator, we have

/|Tih(V(DUO))|2dX < |h|2/|DV(Dvo)|2dx
B 4B

and by virtue of the estimate (30), we obtain
/ |zin (V (Dvo))|* dx < c|h|*0—P) / |V (Dvo) — V(z0)|* dx, (52)
B 8B

for every zo € R™V.
Step 2.
Let us assume, for a moment, that there exists some 7 € [0, nd[ such that

V(Du) € Wh2(2, R™Y), (53)

and that for every couple of open subset 2’ CC 2" CC 2, there exists a positive constant
¢ depending on dist(£2’, 352") such that

V(D)LY < / (s + [DulPydx + V(D220 | - (54)
9//
We claim that

V(Du) € WhX(@,R"™) for every 1€ [0,y (55)

where y (1) = % and that for every couple of open subset 2’ CC 2" CC 2 there
exists a positive constant ¢ = c¢(n, Ay, Ay, 0, p, N, 8,1, L,d(£2',352")) such that

V(D20 < € / (57 + 1Dul?) dx + [V (D) 20 g | - (56)
Q//

As a matter of the fact, if = 0, we choose zg = 0 in (52) and we have

/|r,-h<V(Dvo>>|2dx sc|h|2”*ﬁ>/|V<Dvo)|2dx
B 8B

< clh?1=P) /lV(Dvo)—V(Du)lzdx+/|V(Du)|2dx ) (57)
8B 8B
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128 G. R. Cirmi, S. Leonardi

Using inequality (51), we deduce

/|rih(vwvo>>|2 < clhP0P |h|2"ﬂ/(sp+|Du|P)dx+/|V<Du)|2dx L (58)
B

B B

In the case 7 €]0, nd[, we choose zo = V1 ((V (Du))gp) in (52), and again exploiting (51),
we deduce

/ [zin (V (Dvo)) > dx < c|h?1=P) / |V(Dvo) — (V(Du))sp|* dx
B 8B

< clh20-P) / V(Dvo) — V(Dw) 2 dx + / V(D) — (V(Du))sa ds
B 8B

< c|h)21=P) |h|2'7ﬂ/(s1’+|Du|P)dx +/|V(Du)|2dx

B B

4 / \V(Du) — (V(Du))ss P dx
8B

We estimate the last integral in the right-hand side by fractional Poincaré inequality and we
obtain

/|r,-h(Dvo)|2 < clhP4=P |h|2"ﬁ/<sp+|Du|p)dx+/|V(Du>|2dx
B B B
281 2
HAPF Y (DR, 5 ] (59)

We observe that the inequalities (58) and (59) may be summarize as follows

/ (tin (Do) < clh 20 | 2P / (s + |Dul?) dx
B B

+ [ VDR a4 ORIV DR |

B
where x(t) = 0ift =0and x(r) = 1ift > 0.

Moreover, since 7 < 1 and || < 1, from the previous estimate, we deduce

/ [zin(V (Do) < clhPA=P+2P15.(B) + / |V (Du)|? dx (60)
] )

B

where A is the set function defined by

@ Springer
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A(A) = / (s + 1Dul?) + XD [V (D s ©1)

for any measurable set A C 2.
We remark that the function X is countable super-additive.
Gathering together (44), (47), (50) and (60), we find

[ v @R ax < c | (KPP ) ad + [ vkl 6

B
Now we use a covering argument as in [10]. Firstly, we take a lattice of cubes with equal
side length, comparable to | |, sides parallel to the coordinate axes, and centered in £2’, and
we consider them as the inner cubes of the balls B; = B(x;, |7|#), with x; j € §2'. By the

compactness property of £2” and the Vitali’s covering Theorem, we can find J = J(h) € N
such that

J
-Q/\ U Qimn(Bi)| =0 and Qinn(B;i) N Qinn(Bj) =0 ifi #j.

i=1

Then, using (62), we obtain

J
/Ifzh(V(DM))I dx—z / Tin(V (D)) > dx < Z/ 7in (V(Du)) | dx
i=1 B;

Q/ Q”H’l (B )

J
< 0| (PP ) 2B + / IV (Dw dx
i=1

We point out that

D By < ) D" MQinn(B)) < cA Qinn(Bi) < c(m)r(2")

i=1 i=1 i=1

and moreover that

Zijzl/|V(Du)|2dx <cmYL, / IV (Du)|? dx
é- Q[nn(B‘)
—0
= e [PV (D2 g |-

At least we have (recall that n < 1)

[ v @ ax < et [ (WP 4 4200 4 pine)
Q/
(M@ 1V D0, )]

forany g €]0, 1[, h € R, |h| < 1, fixed at the beginning of the proof and for every couple
of open subset 2’ CC 2" CC £2.
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Now, since § = min{l, ”59} and |h| < 1 the powers |k|*#" and |7~ are less than
|71]>87% and the previous inequality implies

[ v @R ax < con [ (WP 4 pen).
Q/
(M@ + VDR, ) |-

Choosing 8 = 17517“;5’ we minimize the right-hand side of the latter inequality with

respect to & and we obtain

[ 1V )P dx < PO @)+ 1V D)o g (63)
Q/
8
where y (t) = 717.
1—t+né

In turn, since the sets £2’, 2" are arbitrary, the previous estimate, Lemma 1 and the assump-
tion (54) imply

V(Du) € Wt’z(.Q, R"N) for every te€[0,y®@)I[,

loc

and the estimate (56) holds.
Step 3.

We shall complete the proof via iteration reasoning as in the proof of Lemma 6.2 of [10].
Namely, let us introduce the two sequences {#;} and {s} defined by setting

nd

= — 5 =y(s
20+ n8) k+1 = ¥ (sk)

S1

(sx) + v (t)
=281, tiy1 = %

and we note that

{sr}is increasing
lim s = né
sk <ty <nd VkeN.

Using the result of the previous step, we prove, by induction, that

V(Du) € W (2, R"N) for every k € N

loc

and for every couple of open subset 2 CC 2" CC £2, there exists a positive constant c,
independent of k, such that

[V (D)2 g0 < € / (s” + 1Dul?) dx + [V(Di)| 20 (g0, |, forevery k € N

and these two facts will imply the assertion (23) concerning V (Du)) and the estimate (24).
Now we can prove the result concerning Du.
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Letitbe £2” cC £2. Using (9), we obtain

| Du(x) — Du(y)|”
[D”](})VZI/MP(_Q’) = / |x _ y|n+2t dXdy
2

<o [ [ 9P+ 1DuG)D"* | Dutx) = DuE |
- |x — y|n+2t

21 2 V2
- c// (s2 +1DuC) + 1Duy)P) = [Dutx) = Dumi® |
. ey g

2 2 5

V(Du(x)) — V(Du

<o [T ety = VDO Rz

22

At least, the estimate (25) follows from the above inequality, by virtue of estimate (24) and
the fact that

IV E)* <27 + |EI7).
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