Higher differentiability for the solutions of nonlinear elliptic systems with lower-order terms and $L^{1, \theta}$-data

G. R. Cirmi - S. Leonardi

Received: 13 January 2012 / Accepted: 10 March 2012 / Published online: 24 March 2012
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012

Abstract

In this paper we study the higher differentiability of the solutions to a class of nonlinear systems of elliptic partial differential equations with a lower-order term having natural growth with respect to the gradient and with data belonging to a suitable Morrey space.

Keywords Nonlinear elliptic systems $\cdot L^{1}$-data \cdot Differentiability
Mathematics Subject Classification 35J25.35D10

1 Introduction

In this paper we study the higher differentiability of the weak solutions of a class of nonlinear elliptic systems whose model is

$$
\begin{cases}-\operatorname{div}\left[\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{2}} D u\right]+u|D u|^{p}=f & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}^{n}(n \geq 3)$ with sufficiently regular boundary, $p \in$ $\left[2, n\left[, u: \Omega \rightarrow \mathbb{R}^{N}(N \geq 1)\right.\right.$ is the unknown vector, $s \geq 0$ is a constant and $f \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ is a vector-valued function belonging to a suitable Morrey space.

The existence of a weak solution with finite energy (that is $u \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$) for systems whose prototype is (1) has been proved by Bensoussan and Boccardo in [2], assuming that the main part of the operator satisfies the so-called "Landes condition" (see [9]), which

[^0]amounts to a sort of diagonal structure of the system, and that the lower-order term verifies a sign (or angle) condition (see below for the precise statements of the assumptions).

Recently, Mingione (see [10]) has investigated the differentiability properties of the distributional solutions of a nonlinear elliptic equation $(N=1)$ of the type

$$
-\operatorname{div}\left[\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{2}} D u\right]=\mu
$$

where s is a non-negative constant, $p>1$ and μ is a signed Radon measure with finite total variation $|\mu|(\Omega)<+\infty$ enjoying the following density condition

$$
|\mu|\left(B_{R}\right) \leq M R^{n-\theta}, \quad \text { for some } M>0, \theta \in[0, n]
$$

for any ball $B_{R} \subset \Omega$.
This differentiability result has been extended to the very weak solutions of non-diagonal linear elliptic systems ($N \geq 2$) without lower-order terms in [5].

It is the aim of the present paper to prove similar differentiability properties for the usual weak solutions to systems of nonlinear elliptic equations, under the Landes condition, with lower-order terms having natural (or critical) growth with respect to the gradient and satisfying a sign condition.

Namely, at first, we will establish that if f belongs to the Morrey space $L^{1, \theta}\left(\Omega, \mathbb{R}^{N}\right)$, with $\theta \in[0, n[$, then any weak solution of that problem (1) has the property that the following expression of the gradient

$$
V(D u)=\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{4}} D u
$$

belongs to the Morrey space $L_{l o c}^{2, \theta}\left(\Omega, \mathbb{R}^{n N}\right)$ (see also [4]). This Morrey regularity property in turn will allow us to gain that $D u$ belongs to the space $L_{l o c}^{p, \theta}\left(\Omega, \mathbb{R}^{n N}\right)$ and that it has fractional derivatives in $L_{l o c}^{p}\left(\Omega, \mathbb{R}^{n N}\right)$.

Our result turns out to be optimal for this class of systems. As a matter of fact, as shown in the Remark 7, the differentiability of a solution fails whether $\theta=n$, that is under the sole requirement that f is just in $L^{1}\left(\Omega, \mathbb{R}^{N}\right)$, while in the case of the operator without lower-order term a small amount of differentiability still holds (see [10]).

2 Notations and results

In $\mathbb{R}^{n}(n \geq 3)$, with generic point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we shall denote by Ω a bounded open non-empty set with diameter d_{Ω} and $C^{0,1}$-boundary $\partial \Omega$.

For $R>0$ and $x^{0} \in \mathbb{R}^{n}$, we define

$$
\begin{aligned}
B_{R}\left(x^{0}\right) & =\left\{x \in \mathbb{R}^{n}:\left|x-x^{0}\right|<R\right\} \\
\Omega\left(x^{0}, R\right) & =\Omega \cap B_{R}\left(x^{0}\right) \\
Q_{R}\left(x^{0}\right) & =\left\{x \in \mathbb{R}^{n}: \sup _{1 \leq i \leq n}\left|x_{i}-x_{i}^{0}\right|<R\right\} \\
d\left(x^{0}, \partial \Omega\right) & =\operatorname{dist}\left(x^{0}, \partial \Omega\right)
\end{aligned}
$$

We shall often use the short notation B_{R} and Q_{R}, instead of $B_{R}\left(x^{0}\right)$ and $Q_{R}\left(x^{0}\right)$, respectively, when no ambiguity will arise.

Moreover, if $u \in L^{1}\left(B, \mathbb{R}^{N}\right), N \geq 1$, and $0<|B|<+\infty\left({ }^{1}\right)$, we denote by

$$
u_{B}:=\frac{1}{|B|} \int_{B} u(x) \mathrm{d} x
$$

Now, let us define the functional spaces we will use. We propose a modification of the usual definitions, essentially equivalent, to simplify the treatment in the following.

Definition 1 (Morrey space) Let $q \geq 1$ and $\theta \in[0, n]$. By $L^{q, \theta}\left(\Omega, \mathbb{R}^{N}\right)$, we denote the space of all vector functions $u \in L^{q}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\|u\|_{L^{q, \theta}(\Omega)}=\sup _{B_{R} \subset \Omega, R \leq 1}\left\{R^{\theta-n} \int_{B_{R}}|u(x)|^{q} \mathrm{~d} x\right\}^{1 / q}
$$

is finite. $L^{q, \theta}\left(\Omega, \mathbb{R}^{N}\right)$ equipped with the above norm is a Banach space.
Now, we recall some basic facts about fractional-order Sobolev spaces.
Definition 2 (Fractional Sobolev space) Let $t \in] 0,1]$ and $q \geq 1 . W^{t, q}\left(\Omega, \mathbb{R}^{N}\right)$ is the space of all vector functions $u \in L^{q}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\|u\|_{W^{t, q}\left(\Omega \mathbb{R}^{N}\right)}=\|u\|_{L^{q}\left(\Omega, \mathbb{R}^{N}\right)}+[u]_{t, q, \Omega}<+\infty
$$

where

$$
[u]_{t, q, \Omega}= \begin{cases}\left(\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{q}}{|x-y|^{n+t q}} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{q}} & \text { if } t<1 \\ \|D u\|_{L^{q}(\Omega)} & \text { if } t=1\end{cases}
$$

Here, $D u$ represents the gradient of the vector-valued function u; that is,

$$
D u \equiv\left(\frac{\partial u^{v}}{\partial x_{i}}\right)_{v=1, \ldots, N ; i=1, \ldots, n} \equiv\left(D_{i} u^{\nu}\right)_{v=1, \ldots, N ; i=1, \ldots, n}
$$

The following result is the Sobolev's embedding theorem in the case of fractional space (see [1] and also Lemma 3 of [6]).

Theorem 1 (Fractional Sobolev embedding) Let Ω be a domain of \mathbb{R}^{n} with $C^{0,1}$ boundary, $q \geq 1$ and $t \in] 0,1]$ such that $t q<n$. Then,

$$
W^{t, q}\left(\Omega, \mathbb{R}^{N}\right) \subset L^{\frac{n q}{n-t q}}\left(\Omega, \mathbb{R}^{N}\right)
$$

with continuous embedding.
Moreover, the following proposition extends the classical Poincare's inequality to the case of fractional Sobolev space (see [10] and related references).

Proposition 1 (Fractional Poincaré Inequality) Let $B_{R}, R>0$, be a ball in \mathbb{R}^{n} and $u \in$ $\left.W^{t, q}\left(B_{R}, \mathbb{R}^{N}\right), t \in\right] 0,1[, q \geq 1$. Then,

[^1]$$
\int_{B_{R}}\left|u(x)-u_{B_{R}}\right|^{q} d x \leq c(n) R^{t q} \int_{B_{R}} \int_{B_{R}} \frac{|u(x)-u(y)|^{q}}{|x-y|^{n+t q}} \mathrm{~d} x \mathrm{~d} y\left(^{2}\right) .
$$

Given a vector-valued function $\omega: \Omega \rightarrow \mathbb{R}^{N}$ and a real number h, for any $i=1, \ldots, n$, we define the finite difference operator $\tau_{i h}$ as

$$
\tau_{i h}(\omega)(x)=\omega\left(x+h e_{i}\right)-\omega(x),
$$

for $x \in \Omega$ such that $x+h e_{i} \in \Omega$, where $\left\{e_{i}\right\}_{i=1, \ldots, n}$ denotes the canonical basis of \mathbb{R}^{n}.
Lemma 1 Let $u \in L^{q}\left(\Omega, \mathbb{R}^{N}\right), q \geq 1$. Assume that there exist $\left.\left.\bar{t} \in\right] 0,1\right], S>0$ and an open set $\bar{\Omega} \subset \subset \Omega$ such that

$$
\left\|\tau_{i h}(u)\right\|_{L^{q}(\bar{\Omega})} \leq S|h|^{\bar{t}}
$$

for every $1 \leq i \leq n$ and every $h \in \mathbb{R}$ satisfying $0<|h| \leq \min \{1, \operatorname{dist}(\bar{\Omega}, \partial \Omega)\}$.
Then,

$$
\left.u \in W_{\text {loc }}^{t, q}\left(\bar{\Omega}, \mathbb{R}^{N}\right) \quad \text { for every } \quad t \in\right] 0, \bar{t}[
$$

and for every open set $A \subset \subset \bar{\Omega}$ there exists a constant c, independent of S and u, such that

$$
\|u\|_{W^{t, q}(A)} \leq c\left[S+\|u\|_{L^{q}(A)}\right]
$$

We denote by $A(x, \xi)$ a matrix-valued function whose entries are the functions

$$
A_{i}^{v}: \Omega \times \mathbb{R}^{n N} \rightarrow \mathbb{R}
$$

for $i=1, \ldots, n$ and $v=1, \ldots, N$. Each entry is a Carathéodory functions (i.e., continuous in $\xi \in \mathbb{R}^{n N}$ for a.e. $x \in \Omega$ and measurable in x for every ξ) satisfying the following conditions for a.e. $x \in \Omega$, for every non-negative real number s and for every $\xi, \eta \in \mathbb{R}^{n N}$ such that $\xi \neq \eta\left({ }^{3}\right)$:

$$
\begin{align*}
\exists \Lambda_{1}>0:\left(A_{i}^{v}(x, \xi)-A_{i}^{v}(x, \eta)\right)\left(\xi_{i}^{\nu}-\eta_{i}^{\nu}\right) & \geq \Lambda_{1}\left(s^{2}+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2}, \tag{2}\\
\exists \Lambda_{2}>0:|A(x, \xi)| & \leq \Lambda_{2}\left(s^{2}+|\xi|^{2}\right)^{\frac{p-2}{2}}|\xi|, \quad p \in[2, n[, \tag{3}\\
A_{i}^{v}(x, 0) & =0, \tag{4}\\
A_{i}^{v}(x, \xi)\left[\xi_{i}^{v}|\gamma|^{2}-\gamma^{v} \gamma^{\mu} \xi_{i}^{\mu}\right] & \geq 0 \quad \forall \gamma \in \mathbb{R}^{N} . \tag{5}
\end{align*}
$$

Remark 1 Since $p \geq 2$, the assumption (2) implies the strong monotonicity assumption

$$
\begin{equation*}
\left(A_{i}^{v}(x, \xi)-A_{i}^{v}(x, \eta)\right)\left(\xi_{i}^{v}-\eta_{i}^{\nu}\right) \geq c\left(\Lambda_{1}, p\right)|\xi-\eta|^{p} . \tag{6}
\end{equation*}
$$

For $s \geq 0$, we set

$$
\begin{equation*}
V(\xi) \equiv V_{s}(\xi):=\left(s^{2}+|\xi|^{2}\right)^{\frac{p-2}{4}} \xi \quad \forall \xi \in \mathbb{R}^{n N} \tag{7}
\end{equation*}
$$

The assumptions (2) and (4) imply the ellipticity condition

$$
\begin{equation*}
A_{i}^{v}(x, \xi) \xi_{i}^{v} \geq \Lambda_{1}|V(\xi)|^{2}, \text { a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^{n N} \tag{8}
\end{equation*}
$$

[^2]Moreover, from Lemma 2.1 of [7] and (2) (see also [10]), we have the following properties

$$
\begin{align*}
& c(n, p)^{-1}\left(s^{2}+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \leq \frac{|V(\xi)-V(\eta)|^{2}}{|\xi-\eta|^{2}} \leq c(n, p)\left(s^{2}+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}} \tag{9}\\
& \left(A_{i}^{v}(x, \xi)-A_{i}^{v}(x, \eta)\right)\left(\xi_{i}^{v}-\eta_{i}^{v}\right) \geq c\left(\Lambda_{1}, n, p\right)|V(\xi)-V(\eta)|^{2} \tag{10}
\end{align*}
$$

The assumption (3) and Young's inequality yield

$$
\begin{equation*}
|A(x, \xi)| \leq c\left(\Lambda_{2}, p\right)\left(s^{2}+|\xi|^{2}\right)^{\frac{p-1}{2}} \tag{11}
\end{equation*}
$$

Remark 2 The assumption (5) is the so-called Landes condition. Note that it is automatically implied by (8), whenever $N=1$.

For $v=1, \ldots, N$ let $g^{\nu}: \Omega \times \mathbb{R}^{N} \times R^{n N} \rightarrow \mathbb{R}$ be Carathéodory functions and denote by $g(x, u, \xi)$ the vector-valued function whose ν-th component is g^{ν}. For $g(x, u, \xi)$, we will assume the following conditions for a.e. $x \in \Omega$, for every $u \in \mathbb{R}^{N}$ and for every $\xi \in \mathbb{R}^{n N}$:

$$
\begin{equation*}
|g(x, u, \xi)| \leq b(|u|)\left[d(x)+|\xi|^{p}\right], \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(x, u, \xi)| \geq \sigma|V(\xi)|^{2} \quad \forall u \in \mathbb{R}^{N}:|u| \geq 1 \tag{13}
\end{equation*}
$$

where $b(\cdot)$ is a real valued, positive, increasing and continuous function, $d(x)$ is a non-negative function in $L^{1, \theta}\left(\Omega, \mathbb{R}^{N}\right), \theta \in[p, n[, s$ is a non-negative real number and σ is a positive real number.

Moreover, we assume the following angle condition

$$
\begin{equation*}
g^{\nu}(x, u, \xi)\left(u^{\nu}-\tau^{\nu}\right) \geq 0, \quad \forall \tau, u \in \mathbb{R}^{N}:|\tau| \leq|u| \tag{14}
\end{equation*}
$$

which amounts to a sign condition in the scalar case $N=1$.
We consider the following system

$$
\left\{\begin{array}{l}
u \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right), \quad g(x, u, D u) \in L^{1}\left(\Omega, \mathbb{R}^{N}\right) \tag{15}\\
-D_{i} A_{i}^{v}(x, D u)+g^{\nu}(x, u, D u)=f^{v}
\end{array}\right.
$$

where, for any $v=1, \ldots, N, f^{v}$ denotes the v-th component of the vector

$$
\begin{equation*}
f \in L^{1, \theta}\left(\Omega, \mathbb{R}^{N}\right), \quad \theta \in[p, n[. \tag{16}
\end{equation*}
$$

By a weak solution of the system of equations (15), we mean a vector-valued function $u \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\left\{\begin{array}{l}
g(x, u(x), D u(x)) \in L^{1}\left(\Omega, \mathbb{R}^{N}\right) \tag{17}\\
\int_{\Omega} A_{i}^{v}(x, D u) D_{i} v^{v} \mathrm{~d} x+\int_{\Omega} g^{v}(x, u, D u) v^{v} \mathrm{~d} x=\int_{\Omega} f^{v} v^{v} \mathrm{~d} x \\
\forall v \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right) \cap L^{\infty}\left(\Omega, \mathbb{R}^{N}\right) .
\end{array}\right.
$$

In [2], the following result has been proved
Theorem 2 Let assumptions (2), (3), (4), (5), (12), (13), (14) be satisfied and let $f \in$ $L^{1}\left(\Omega, \mathbb{R}^{N}\right)$. Then, there exists a weak solution $u \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ of the problem (15).

Here, we prove the following

Theorem 3 Let assumptions (2), (3), (4), (5), (12), (13), (14), (16) be satisfied and let $u \in$ $W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution of the problem (15).

Then,

$$
\begin{equation*}
V(D u) \in L_{l o c}^{2, \theta}\left(\Omega, \mathbb{R}^{n N}\right), \quad D u \in L_{l o c}^{p, \theta}\left(\Omega, \mathbb{R}^{n N}\right) \tag{18}
\end{equation*}
$$

and for any $\Omega^{\prime} \subset \subset \Omega$, there exist two positive constants c_{1} and c_{2}, depending only on data, such that

$$
\begin{equation*}
\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime}\right)} \leq c_{1} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\|D u\|_{L^{p, \theta}\left(\Omega^{\prime}\right)} \leq c_{2} \tag{20}
\end{equation*}
$$

Remark 3 The particular scalar case (i.e., $N=1$) has been studied in [3].
Remark 4 The previous Morrey regularity result holds as well if $\theta \in[0, p$ assuming also $u \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$. In the case $N=1$, the boundedness of u has been proved in [3].

To prove the differentiability of a weak solution u, we shall require the following Hölder continuity assumption on the map $x \rightarrow A(x, \xi)$:

$$
\left\{\begin{array}{l}
\text { there exist } L>0 \text { and } \eta \in] 0,1] \text { such that } \tag{21}\\
\left|A(x, \xi)-A\left(x_{0}, \xi\right)\right| \leq L\left|x-x_{0}\right|^{\eta}\left(s^{2}+|\xi|^{2}\right)^{\frac{p-1}{2}}, \quad \forall x, x_{0} \in \Omega, \xi \in \mathbb{R}^{n N}
\end{array}\right.
$$

Theorem 4 Let the assumptions (2), (3), (4), (5), (12), (13), (14), (16), (21) be satisfied and let $u \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution of the problem (15). Set

$$
\begin{equation*}
\delta=\min \left\{1, \frac{n-\theta}{2}\right\} \tag{22}
\end{equation*}
$$

Then,

$$
\begin{equation*}
V(D u) \in W_{l o c}^{t, 2}\left(\Omega, \mathbb{R}^{n N}\right), \quad D u \in W_{l o c}^{2 t / p, p}\left(\Omega, \mathbb{R}^{n N}\right) \tag{23}
\end{equation*}
$$

for every $t \in[0, \eta \delta[$.
Moreover, for every couple of open subset $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$, there exist two positive constants c_{1} and c_{2}, independent on u, such that

$$
\begin{equation*}
[V(D u)]_{W^{t, 2}\left(\Omega^{\prime}\right)}^{2} \leq c_{1}\left[\int_{\Omega^{\prime \prime}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right] \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
[D u]_{W^{2 t / p, p}\left(\Omega^{\prime}\right)}^{p} \leq c_{2}\left[\int_{\Omega^{\prime \prime}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\|D u\|_{L^{p, \theta}\left(\Omega^{\prime \prime}\right)}^{p}\right] \tag{25}
\end{equation*}
$$

Remark 5 In the case $\theta \in[0, p[$, the differentiability result stated above holds for the bounded weak solutions of the problem (15).

Remark 6 As a consequence of the fractional Sobolev embedding Theorem 1, we gain a better integrability on $D u$. Namely,

$$
D u \in L_{l o c}^{\frac{p n}{n-2 t}}\left(\Omega, \mathbb{R}^{n N}\right) \text { for every } t \in[0, \eta \delta[
$$

where δ is the number defined in (22).
Given a vector $u \in \mathbb{R}^{N}$ and a real number $k>0$ let us denote by $T_{k}(u)$, the vector-valued function whose components are defined by

$$
\left[T_{k}(u)\right]^{v}= \begin{cases}u^{v} & \text { if }|u| \leq k \tag{26}\\ k \frac{u^{\nu}}{|u|} & \text { if }|u|>k\end{cases}
$$

for $v=1, \ldots, N$. Obviously

$$
\left|T_{k}(u)\right| \leq k, \quad\left|T_{k}(u)\right| \leq|u| \quad \forall u \in \mathbb{R}^{N}, \quad \forall k \in \mathbb{R}^{+}
$$

Moreover, if $v \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$, then $T_{k}(v) \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$, and for any $i=1, \ldots, n$ and $\nu=1, \ldots, N$, we have

$$
D_{i}\left[T_{k}(v)\right]^{v}= \begin{cases}D_{i} v^{v} & \text { if }|v| \leq k \\ \frac{k}{|v|}\left[D_{i} v^{v}-\frac{1}{|v|^{2}} v^{v} v^{\mu} D_{i} v^{\mu}\right] & \text { if }|v|>k\end{cases}
$$

see [9].
Remark 7 The regularity result stated in Theorem 4 fails if $f \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$. Indeed, let $n \geq 3, \theta=n, N=2($ or $\mathrm{N}=1), \Omega=B(0,1 / 2)$ and, for a. e. $x \in B(0,1 / 2)$, define

$$
u(x)=\left(\int_{|x|}^{1 / 2} \frac{1}{\rho^{n / 2}|\log \rho|} \mathrm{d} \rho, \int_{|x|}^{1 / 2} \frac{1}{\rho^{n / 2}|\log \rho|} \mathrm{d} \rho\right)
$$

We can easily prove that $u \in W_{0}^{1,2}\left(B(0,1 / 2), \mathbb{R}^{2}\right)$ is a solution of the Dirichlet problem associated with the system

$$
-\Delta u+T_{1}(u)|D u|^{2}=f(x)
$$

where

$$
f(x)=\frac{1-(n / 2-1) \log |x|}{|x|^{n / 2+1} \log ^{2}|x|}+T_{1}(u(x))|D u(x)|^{2} .
$$

Easy calculations show that

$$
\left.D u \notin L_{l o c}^{2, \theta}\left(\Omega, \mathbb{R}^{2 n}\right) \text { for any } \theta \in\right] 0, n[,
$$

this implies that the vector-valued function f belongs to $L^{1}\left(\Omega, \mathbb{R}^{2}\right)$ but doesn't belong to $L^{1, \theta}\left(\Omega, \mathbb{R}^{2}\right)$ for any $\left.\theta \in\right] 0, n[$.

Moreover,

$$
\left.D u \notin W_{l o c}^{t, 2}\left(\Omega, \mathbb{R}^{2 n}\right) \text { for any } t \in\right] 0,1[
$$

since otherwise, being $W_{l o c}^{t, 2}\left(\Omega, \mathbb{R}^{2 n}\right) \subset L_{l o c}^{\frac{2 n}{n-2 t}}\left(\Omega, \mathbb{R}^{2 n}\right)$, it would be $D u \in L_{l o c}^{2, n-2 t}\left(\Omega, \mathbb{R}^{2 n}\right)$.

3 Proofs of the main results

In this section, we prove our results and we recall, among others, some well-known results on the weak solutions to homogeneous elliptic systems.

The following Lemma, whose proof can be found in [8, Lemma 3.3] or in [10, Lemma 3.2], concerns the $W^{2, p}$-regularity of the weak solutions u of homogeneous elliptic systems with coefficients depending only on $D u$.

Namely, we denote by $A_{0}(\xi)$ a matrix-valued function whose entries are the continuous functions

$$
A_{0 i}^{\nu}: \mathbb{R}^{n N} \rightarrow \mathbb{R}
$$

for $i=1, \ldots, n$ and $v=1, \ldots, N$. Each entry satisfies the following conditions for every non-negative real number s and for every $\xi, \eta \in \mathbb{R}^{n N}$ such that $\xi \neq \eta$:

$$
\begin{align*}
\left(A_{0 i}^{v}(\xi)-A_{0 i}^{v}(\eta)\right)\left(\xi_{i}^{v}-\eta_{i}^{\nu}\right) & \geq \alpha_{0}\left(s^{2}+|\xi|^{2}+|\eta|^{2}\right)^{\frac{p-2}{2}}|\xi-\eta|^{2} \tag{27}\\
\left|A_{0}(\xi)\right| & \leq \beta_{0}\left(s^{2}+|\xi|^{2}\right)^{\frac{p-2}{2}}|\xi|, \tag{28}\\
A_{0 i}^{v}(0) & =0 . \tag{29}
\end{align*}
$$

with α_{0} and β_{0} positive constants.
Lemma 2 Let $v_{0} \in W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution to the system

$$
\operatorname{div} A_{0}\left(D v_{0}\right)=0 \text { in } \Omega
$$

Then,

$$
V\left(D v_{0}\right) \in W_{l o c}^{1,2}\left(\Omega, \mathbb{R}^{n N}\right)
$$

and there exists a constant $c=c\left(n, N, p, \Lambda_{1}, \Lambda_{2}\right)>0$ such that for every $z_{0} \in \mathbb{R}^{n N}$ and every ball $B_{R} \subset \subset \Omega$ we have

$$
\begin{equation*}
\int_{B_{R / 2}}\left|D V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \leq \frac{c}{R^{2}} \int_{B_{R}}\left|V\left(D v_{0}\right)-V\left(z_{0}\right)\right|^{2} \mathrm{~d} x . \tag{30}
\end{equation*}
$$

We can continue proving Theorem 3.
Proof of Theorem 3 It is enough to prove that, for any $R \leq 1$ for which $B_{R} \subset \Omega$, the integral

$$
\frac{1}{R^{n-\theta}} \int_{B_{R}}|V(D u)|^{2} \mathrm{~d} x
$$

is bounded.
Let $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be the standard cut-off function of the ball $B_{2 R}$, that is

$$
\begin{array}{ll}
0 \leq \psi(x) \leq 1 & \text { if } x \in \overline{B_{2 R}} \\
\psi(x)=1 & \text { if } x \in B_{R} \\
\psi(x)=0 & \text { if } x \in \mathbb{R}^{n} \backslash \overline{B_{2 R}} \\
|D \psi(x)| \leq \frac{c}{R} & \text { if } x \in \overline{B_{2 R} \backslash B_{R}}
\end{array}
$$

Let us take as test function in (17) the function

$$
v=\psi^{p} T_{1}(u)
$$

where $T_{1}(u)$ is the vector-valued function defined by (26). We obtain

$$
\begin{align*}
& \int_{\Omega} \psi^{p} A_{i}^{v}(x, D u) D_{i}\left[T_{1}(u)\right]^{v} \mathrm{~d} x+p \int_{\Omega} \psi^{p-1} A_{i}^{v}(x, D u)\left[T_{1}(u)\right]^{\nu} D_{i} \psi \mathrm{~d} x \\
& \quad+\int_{\Omega} \psi^{p} g^{v}(x, u, D u)\left[T_{1}(u)\right]^{v} \mathrm{~d} x=\int_{\Omega} \psi^{p} f^{v}\left[T_{1}(u)\right]^{v} \mathrm{~d} x . \tag{31}
\end{align*}
$$

Note that

$$
\begin{align*}
I_{1} \equiv & \int_{\Omega} \psi^{p} A_{i}^{\nu}(x, D u) D_{i}\left[T_{1}(u)\right]^{\nu} \mathrm{d} x \\
= & \int_{\Omega \cap\{|u| \leq 1\}} \psi^{p} A_{i}^{v}(x, D u) D_{i} u^{\nu} \mathrm{d} x \\
& +\int_{\Omega \cap\{|u|>1\}} \psi^{p} A_{i}^{v}(x, D u) \frac{1}{|u|}\left[D_{i} u^{\nu}-\frac{1}{|u|^{2}} u^{v} u^{\mu} D_{i} u^{\mu}\right] . \tag{32}
\end{align*}
$$

By virtue of (5), the last integral in (32) is non-negative, and thus, using the assumptions (8) and (6), we estimate I_{1} from above as follows

$$
\begin{equation*}
I_{1} \geq c\left(\Lambda_{1}, p\right) \int_{\Omega \cap\{|u| \leq 1\}} \psi^{p}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x \tag{33}
\end{equation*}
$$

On the other hand, exploiting (11) and Young's inequality, we obtain

$$
\begin{align*}
I_{2} & \equiv p \int_{\Omega} \psi^{p-1} A_{i}^{v}(x, D u)\left[T_{1}(u)\right]^{v} D_{i} \psi \mathrm{~d} x \\
& \geq-p \int_{\Omega} \psi^{p-1}\left|A^{v}(x, D u)\right||D \psi|\left|\left[T_{1}(u)\right]^{\nu}\right| \mathrm{d} x \\
& \geq-\varepsilon \int_{\Omega} \psi^{p}\left(s^{2}+|D u|^{2}\right)^{\frac{p}{2}}\left|T_{1}(u)\right| \mathrm{d} x-c\left(\varepsilon, \Lambda_{2}, p\right) \int_{\Omega}|D \psi|^{p}\left|T_{1}(u)\right| \mathrm{d} x \\
& \geq-\varepsilon \int_{\Omega} \psi^{p}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x-\varepsilon s^{p} R^{n}-c\left(\varepsilon, \Lambda_{2}, p, n\right) R^{n-p} . \tag{34}
\end{align*}
$$

Moreover, by (14) we deduce,

$$
\begin{align*}
I_{3} & \equiv \int_{\Omega} \psi^{p} g^{\nu}(x, u, D u)\left[T_{1}(u)\right]^{\nu} \mathrm{d} x \\
& =\int_{\Omega \cap\{|u| \leq 1\}} \psi^{p} g^{\nu}(x, u, D u) u^{v} \mathrm{~d} x+\int_{\Omega \cap\{|u|>1\}} \psi^{p} g^{\nu}(x, u, D u) \frac{u^{\nu}}{|u|} \mathrm{d} x \\
& \geq \int_{\Omega \cap\{|u|>1\}} \psi^{p} g^{\nu}(x, u, D u) \frac{u^{\nu}}{|u|} \mathrm{d} x . \tag{35}
\end{align*}
$$

Note that the angle condition (14) implies

$$
\begin{equation*}
g^{\nu}(x, u, D u) \frac{u^{\nu}}{|u|} \geq|g(x, u, D u)| \text { for } \quad \text { a.e. } x \in \Omega \quad \text { and } \quad \text { for }|u|>1 \tag{36}
\end{equation*}
$$

so that, plugging (13) and (36) in (35) and observing that

$$
\begin{equation*}
|V(\xi)|^{2} \geq|\xi|^{p} \tag{37}
\end{equation*}
$$

we get

$$
\begin{equation*}
I_{3} \geq \sigma / 2 \int_{\Omega \cap\{|u|>1\}} \psi^{p}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x . \tag{38}
\end{equation*}
$$

Gathering together (31), (33), (34) and (38), we obtain

$$
\begin{align*}
& \left(c\left(\Lambda_{1}, p\right)-\varepsilon\right) \int_{\Omega \cap\{|u| \leq 1\}} \psi^{p}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x \\
& \quad+(\sigma / 2-\varepsilon) \int_{\Omega \cap\{|u|>1\}} \psi^{p}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x \\
& \leq R^{n-\theta}\|f\|_{L^{1, \theta}(\Omega)}+\left[\varepsilon s^{p} R^{p}+c\left(\varepsilon, \Lambda_{2}, p, n\right)\right] R^{n-p} \tag{39}
\end{align*}
$$

whence, choosing a suitable $\varepsilon>0$ and taking into account that $\theta \geq p$, we have

$$
\begin{equation*}
\int_{B_{R}}\left(|V(D u)|^{2}+|D u|^{p}\right) \mathrm{d} x \leq R^{n-\theta}\left[\left(c\left(\Lambda_{1}, \Lambda_{2}, \sigma, p, n, \theta\right)+s^{p} d_{\Omega}^{p}\right) d_{\Omega}^{\theta-p}+\|f\|_{L^{1, \theta}(\Omega)}\right] \tag{40}
\end{equation*}
$$

which, by a covering argument, implies the assertions (19) and (20).
We are now in position to prove Theorem 4.
Proof of Theorem 4 We shall follow the outline of Lemma 6.2 of [10]. Let $B \subset \subset \Omega$ be a ball of radius R and let \hat{B} be the enlarged ball of radius $16 R$. We shall denote by $Q_{i n n}(B)$ and $Q_{\text {out }}(B)$ the largest and the smallest cubes, concentric to B and with sides parallel to the coordinate axes, contained in B and containing B, respectively. If we put

$$
Q_{\mathrm{inn}}=Q_{\mathrm{inn}}(B), \quad Q_{\mathrm{out}}=Q_{\mathrm{out}}(B)
$$

and

$$
\hat{Q}_{\text {inn }}=Q_{\text {inn }}(\hat{B}), \quad \hat{Q}_{\text {out }}=Q_{\text {out }}(\hat{B}),
$$

we have the following inclusions

$$
\begin{equation*}
Q_{\text {inn }} \subset B \subset \subset 4 B \subset \subset \hat{Q}_{\text {inn }} \subset \hat{B} \subset \hat{Q}_{\text {out }} . \tag{41}
\end{equation*}
$$

Let Ω^{\prime} and $\Omega^{\prime \prime}$ be a couple of open subset such that $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ and $x^{0} \in \Omega^{\prime}$. For any $\beta \in] 0,1\left[\right.$ (that will be chosen later) we fix $h \in \mathbb{R}$ with $0<|h| \ll \min \left\{1, d\left(\Omega^{\prime}, \partial \Omega^{\prime \prime}\right)\right\}$ such that, denoted with $B=B\left(x^{0},|h|^{\beta}\right)$ the ball centered in x^{0} and with radius $|h|^{\beta}$, the outer cube of $B, \hat{Q}_{\text {out }}$ is included in $\Omega^{\prime \prime}$.

Step 1
Let $v \in W^{1, p}\left(\hat{B}, \mathbb{R}^{N}\right)$ be the unique weak solution to the problem

$$
\begin{cases}\operatorname{div} A(x, D v)=0 & \text { in } \hat{B} \tag{42}\\ v=u & \text { on } \partial \hat{B},\end{cases}
$$

and let $v_{0} \in W^{1, p}\left(8 B, \mathbb{R}^{N}\right)$ be the unique weak solution to the problem

$$
\begin{cases}\operatorname{div} A\left(x^{0}, D v_{0}\right)=0 & \text { in } 8 B \tag{43}\\ v_{0}=v & \text { on } \partial 8 B .\end{cases}
$$

Then, we have

$$
\begin{align*}
\int_{B}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq & c\left[\int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \mathrm{~d} x+\int_{\hat{B}}|V(D u)-(D v)|^{2} \mathrm{~d} x\right. \\
& \left.+\int_{8 B}\left|V(D v)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x\right] \tag{44}
\end{align*}
$$

First of all we estimate

$$
\int_{\hat{B}}|V(D u)-V(D v)|^{2} \mathrm{~d} x
$$

Let us observe that the function $w=v-u \in W_{0}^{1, p}\left(\hat{B}, \mathbb{R}^{N}\right)$ is a weak solution to the system

$$
\begin{cases}\operatorname{div} A(x, D(w+u))=0 & \text { in } \hat{B} \tag{45}\\ w=0 & \text { on } \partial \hat{B} .\end{cases}
$$

For such a solution we have

$$
\int_{\hat{B}} A(x, D(w+u)) D w \mathrm{~d} x-\int_{\hat{B}} A(x, D u) D w \mathrm{~d} x=-\int_{\hat{B}} A(x, D u) D w \mathrm{~d} x
$$

whence, by (10), (3) and (9), we deduce

$$
\begin{aligned}
& \int_{\hat{B}}|V(D u)-V(D v)|^{2} \mathrm{~d} x=\int_{\hat{B}}|V(D(u+w))-V(D u)|^{2} \mathrm{~d} x \\
& \leq \int_{\hat{B}}|A(x, D u)||D w| \mathrm{d} x \\
& \leq \Lambda_{2} \int_{\hat{B}}\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{2}}|D u||D w| \mathrm{d} x \\
& \leq \Lambda_{2} \int_{\hat{B}}\left(s^{2}+|D v|^{2}+|D u|^{2}\right)^{\frac{p-2}{4}}|D(u-v)|\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{4}}|D u| \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
& \leq \varepsilon \int_{\hat{B}}\left(s^{2}+|D v|^{2}+|D u|^{2}\right)^{\frac{p-2}{2}}|D(u-v)|^{2} \mathrm{~d} x+c(\varepsilon) \int_{\hat{B}}\left(s^{2}+|D u|^{2}\right)^{\frac{p-2}{2}}|D u|^{2} \mathrm{~d} x \\
& \leq \varepsilon \int_{\hat{B}}|V(D u)-V(D v)|^{2} \mathrm{~d} x+c(\varepsilon, p) \int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x \tag{46}
\end{align*}
$$

with c positive constant independent of the radius of \hat{B}.
In turn, for a sufficiently small ε, inequality (46) yields

$$
\begin{equation*}
\int_{\hat{B}}|V(D u)-V(D v)|^{2} \mathrm{~d} x \leq c \int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x . \tag{47}
\end{equation*}
$$

Now, we estimate

$$
\int_{8 B}\left|V(D v)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x .
$$

Since v and v_{0} are the weak solutions, respectively, to the Dirichlet problems (42) and (43), the following integral identities hold

$$
\begin{equation*}
\int_{8 B} A(x, D v) D\left(v-v_{0}\right) \mathrm{d} x=0 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{8 B} A\left(x^{0}, D v_{0}\right) D\left(v-v_{0}\right) \mathrm{d} x=0 . \tag{49}
\end{equation*}
$$

By virtue of the strong monotonicity condition (10) and using (21), (48), (49), Young's inequality and (9) we deduce

$$
\begin{aligned}
\int_{8 B} & \left|V(D v)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \\
& \leq \frac{1}{c\left(\Lambda_{1}, n, p\right)} \int_{8 B}\left[A\left(x^{0}, D v\right)-A\left(x^{0}, D v_{0}\right)\right] D\left(v-v_{0}\right) \mathrm{d} x \\
& =\frac{1}{c} \int_{8 B}\left[A\left(x^{0}, D v\right)-A(x, D v)\right] D\left(v-v_{0}\right) \mathrm{d} x \\
& \leq \frac{1}{c} \int_{8 B}\left|A\left(x^{0}, D v\right)-A(x, D v)\right|\left|D\left(v-v_{0}\right)\right| \mathrm{d} x \\
& \leq \frac{L}{c} \int_{8 B}\left|x-x^{0}\right|^{\eta}\left(s^{2}+|D v|^{2}\right)^{\frac{p-1}{2}}\left|D\left(v-v_{0}\right)\right| \mathrm{d} x \\
& \leq \frac{L}{c}\left[c(\epsilon)|h|^{2 \beta \eta} \int_{8 B}\left(s^{p}+|D v|^{p}\right) \mathrm{d} x+\epsilon \int_{8 B}\left|V(D v)-V\left(v_{0}\right)\right|^{2} \mathrm{~d} x\right] .
\end{aligned}
$$

Choosing ϵ sufficiently small, it follows

$$
\int_{8 B}\left|V(D v)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \leq c|h|^{2 \eta \beta} \int_{8 B}\left(s^{p}+|D v|^{p}\right) \mathrm{d} x
$$

consequently, using again the inequalities (37) and (47), we deduce

$$
\begin{equation*}
\int_{8 B}\left|V(D v)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \leq c|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x . \tag{50}
\end{equation*}
$$

Summing up (47) and (50), we have

$$
\begin{equation*}
\int_{8 B}\left|V(D u)-V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \leq c\left[|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x\right] . \tag{51}
\end{equation*}
$$

Now, we have to estimate the first integral in the right-hand side of (44). Using a wellknown result about the translation operator, we have

$$
\int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \mathrm{~d} x \leq|h|^{2} \int_{4 B}\left|D V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x
$$

and by virtue of the estimate (30), we obtain

$$
\begin{equation*}
\int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \mathrm{~d} x \leq c|h|^{2(1-\beta)} \int_{8 B}\left|V\left(D v_{0}\right)-V\left(z_{0}\right)\right|^{2} \mathrm{~d} x \tag{52}
\end{equation*}
$$

for every $z_{0} \in \mathbb{R}^{n N}$.
Step 2.
Let us assume, for a moment, that there exists some $\bar{t} \in[0, \eta \delta[$ such that

$$
\begin{equation*}
V(D u) \in W_{l o c}^{\bar{t}, 2}\left(\Omega, \mathbb{R}^{n N}\right), \tag{53}
\end{equation*}
$$

and that for every couple of open subset $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$, there exists a positive constant \bar{c} depending on $\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega^{\prime \prime}\right)$ such that

$$
\begin{equation*}
[V(D u)]_{W^{\bar{t}, 2}\left(\Omega^{\prime}\right)}^{2} \leq \bar{c}\left[\int_{\Omega^{\prime \prime}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right] \tag{54}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
V(D u) \in W_{l o c}^{t, 2}\left(\Omega, \mathbb{R}^{n N}\right) \quad \text { for every } t \in[0, \gamma(\bar{t})[\tag{55}
\end{equation*}
$$

where $\gamma(t)=\frac{\eta \delta}{1-t+\eta \delta}$, and that for every couple of open subset $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$ there exists a positive constant $c=c\left(n, \Lambda_{1}, \Lambda_{2}, \sigma, p, N, \beta, \eta, L, d\left(\Omega^{\prime}, \partial \Omega^{\prime \prime}\right)\right)$ such that

$$
\begin{equation*}
[V(D u)]_{W^{t, 2}\left(\Omega^{\prime}\right)}^{2} \leq c\left[\int_{\Omega^{\prime \prime}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right] \tag{56}
\end{equation*}
$$

As a matter of the fact, if $\bar{t}=0$, we choose $z_{0}=0$ in (52) and we have

$$
\begin{align*}
& \int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \mathrm{~d} x \leq c|h|^{2(1-\beta)} \int_{8 B}\left|V\left(D v_{0}\right)\right|^{2} \mathrm{~d} x \\
& \leq c|h|^{2(1-\beta)}\left(\int_{8 B}\left|V\left(D v_{0}\right)-V(D u)\right|^{2} \mathrm{~d} x+\int_{8 B}|V(D u)|^{2} \mathrm{~d} x\right) . \tag{57}
\end{align*}
$$

Using inequality (51), we deduce

$$
\begin{equation*}
\int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \leq c|h|^{2(1-\beta)}\left[|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x\right] . \tag{58}
\end{equation*}
$$

In the case $\bar{t} \in] 0, \eta \delta\left[\right.$, we choose $z_{0}=V^{-1}\left((V(D u))_{{ }_{8 B}}\right)$ in (52), and again exploiting (51), we deduce

$$
\begin{aligned}
& \int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \mathrm{~d} x \leq c|h|^{2(1-\beta)} \int_{8 B}\left|V\left(D v_{0}\right)-(V(D u))_{8 B}\right|^{2} \mathrm{~d} x \\
& \leq c|h|^{2(1-\beta)}\left(\int_{8 B}\left|V\left(D v_{0}\right)-V(D u)\right|^{2} \mathrm{~d} x+\int_{8 B}\left|V(D u)-(V(D u))_{8 B}\right|^{2} \mathrm{~d} x\right) \\
& \leq c|h|^{2(1-\beta)}\left[|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x\right. \\
& \left.\quad+\int_{8 B}\left|V(D u)-(V(D u))_{8 B}\right|^{2} \mathrm{~d} x\right] .
\end{aligned}
$$

We estimate the last integral in the right-hand side by fractional Poincaré inequality and we obtain

$$
\begin{align*}
\int_{B}\left|\tau_{i h}\left(D v_{0}\right)\right|^{2} \leq & c|h|^{2(1-\beta)}\left[|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x\right. \\
& \left.+|h|^{2 \beta \bar{t}}[V(D u)]_{W^{\bar{T}, 2}(\hat{B})}^{2}\right] . \tag{59}
\end{align*}
$$

We observe that the inequalities (58) and (59) may be summarize as follows

$$
\begin{aligned}
\int_{B}\left|\tau_{i h}\left(D v_{0}\right)\right|^{2} \leq & c|h|^{2(1-\beta)}\left[|h|^{2 \eta \beta} \int_{\hat{B}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x\right. \\
& \left.+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x+\chi(\bar{t})|h|^{2 \beta \bar{t}}[V(D u)]_{W^{\bar{t}, 2}(\hat{B})}^{2}\right]
\end{aligned}
$$

where $\chi(t)=0$ if $t=0$ and $\chi(t)=1$ if $t>0$.
Moreover, since $\bar{t}<\eta$ and $|h|<1$, from the previous estimate, we deduce

$$
\begin{equation*}
\int_{B}\left|\tau_{i h}\left(V\left(D v_{0}\right)\right)\right|^{2} \leq c|h|^{2(1-\beta)+2 \beta \bar{t}} \lambda(\hat{B})+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x \tag{60}
\end{equation*}
$$

where λ is the set function defined by

$$
\begin{equation*}
\lambda(A)=\int_{A}\left(s^{p}+|D u|^{p}\right)+\chi(\bar{t})[V(D u)]_{W^{\bar{t}, 2}(A)}^{2} \tag{61}
\end{equation*}
$$

for any measurable set $A \subset \Omega$.
We remark that the function λ is countable super-additive.
Gathering together (44), (47), (50) and (60), we find

$$
\begin{equation*}
\int_{B}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq c\left[\left(|h|^{2(1-\beta)+2 \beta \bar{t}}+|h|^{2 \beta \eta}\right) \lambda(\hat{B})+\int_{\hat{B}}|V(D u)|^{2} \mathrm{~d} x\right] \tag{62}
\end{equation*}
$$

Now we use a covering argument as in [10]. Firstly, we take a lattice of cubes with equal side length, comparable to $|h|^{\beta}$, sides parallel to the coordinate axes, and centered in Ω^{\prime}, and we consider them as the inner cubes of the balls $B_{j}=B\left(x_{j},|h|^{\beta}\right)$, with $x_{j} \in \Omega^{\prime}$. By the compactness property of Ω^{\prime} and the Vitali's covering Theorem, we can find $\bar{J}=\bar{J}(h) \in \mathbb{N}$ such that

$$
\left|\Omega^{\prime} \quad \bigcup_{i=1}^{\bar{J}} Q_{i n n}\left(B_{i}\right)\right|=0 \quad \text { and } \quad Q_{i n n}\left(B_{i}\right) \cap Q_{i n n}\left(B_{j}\right)=\emptyset \text { if } i \neq j .
$$

Then, using (62), we obtain

$$
\begin{aligned}
& \int_{\Omega^{\prime}}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x=\sum_{i=1}^{\bar{J}} \int_{Q_{i n n}\left(B_{i}\right)}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq \sum_{i=1}^{\bar{J}} \int_{B_{i}}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \\
& \quad \leq \sum_{i=1}^{\bar{J}}\left[\left(|h|^{2(1-\beta)+2 \beta \bar{t}}+|h|^{2 \beta \eta}\right) \lambda\left(\hat{B}_{i}\right)+\int_{\hat{B}_{i}}|V(D u)|^{2} \mathrm{~d} x\right]
\end{aligned}
$$

We point out that

$$
\sum_{i=1}^{\bar{J}} \lambda\left(\hat{B}_{i}\right) \leq c(n) \sum_{i=1}^{\bar{J}} \lambda\left(Q_{i n n}\left(B_{i}\right)\right) \leq c(n) \lambda\left(\bigcup_{i=1}^{\bar{J}} Q_{i n n}\left(B_{i}\right)\right) \leq c(n) \lambda\left(\Omega^{\prime \prime}\right)
$$

and moreover that

$$
\begin{aligned}
\sum_{i=1}^{\bar{J}} \int_{\hat{B}_{i}}|V(D u)|^{2} \mathrm{~d} x & \leq c(n) \sum_{i=1}^{\bar{J}} \int_{Q_{i n n}\left(B_{i}\right)}|V(D u)|^{2} \mathrm{~d} x \\
& \leq c(n)\left[|h|^{\beta(n-\theta)}\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right] .
\end{aligned}
$$

At least we have (recall that $\eta \leq 1$)

$$
\begin{gathered}
\int_{\Omega^{\prime}}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq c(n)\left[\left(|h|^{2(1-\beta)+2 \beta \bar{t}}+|h|^{2 \beta \eta}+|h|^{\beta \eta(n-\theta)}\right)\right. \\
\left.\cdot\left(\lambda\left(\Omega^{\prime \prime}\right)+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right)\right]
\end{gathered}
$$

for any $\beta \in] 0,1[, h \in \mathbb{R},|h|<1$, fixed at the beginning of the proof and for every couple of open subset $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$.

Now, since $\delta=\min \left\{1, \frac{n-\theta}{2}\right\}$ and $|h|<1$ the powers $|h|^{2 \beta \eta}$ and $|h|^{\beta \eta(n-\theta)}$ are less than $|h|^{2 \beta \eta \delta}$ and the previous inequality implies

$$
\begin{array}{r}
\int_{\Omega^{\prime}}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq c(n)\left[\left(|h|^{2(1-\beta)+2 \beta \bar{t}}+|h|^{2 \beta \eta \delta}\right) .\right. \\
\left.\cdot\left(\lambda\left(\Omega^{\prime \prime}\right)+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right)\right] .
\end{array}
$$

Choosing $\beta=\frac{1}{1-\bar{t}+\eta \delta}$, we minimize the right-hand side of the latter inequality with respect to h and we obtain

$$
\begin{equation*}
\int_{\Omega^{\prime}}\left|\tau_{i h}(V(D u))\right|^{2} \mathrm{~d} x \leq c|h|^{2 \gamma(\bar{t})}\left[\lambda\left(\Omega^{\prime \prime}\right)+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right] \tag{63}
\end{equation*}
$$

where $\gamma(t)=\frac{\eta \delta}{1-t+\eta \delta}$.
In turn, since the sets $\Omega^{\prime}, \Omega^{\prime \prime}$ are arbitrary, the previous estimate, Lemma 1 and the assumption (54) imply

$$
V(D u) \in W_{l o c}^{t, 2}\left(\Omega, \mathbb{R}^{n N}\right) \quad \text { for every } t \in[0, \gamma(\bar{t})[
$$

and the estimate (56) holds.
Step 3.
We shall complete the proof via iteration reasoning as in the proof of Lemma 6.2 of [10]. Namely, let us introduce the two sequences $\left\{t_{k}\right\}$ and $\left\{s_{k}\right\}$ defined by setting

$$
\begin{aligned}
& s_{1}=\frac{\eta \delta}{4(1+\eta \delta)}, \quad s_{k+1}=\gamma\left(s_{k}\right) \\
& t_{1}=2 s_{1}, \quad t_{k+1}=\frac{\gamma\left(s_{k}\right)+\gamma\left(t_{k}\right)}{2}
\end{aligned}
$$

and we note that

$$
\begin{aligned}
& \left\{s_{k}\right\} \text { is increasing } \\
& \lim s_{k}=\eta \delta \\
& s_{k}<t_{k}<\eta \delta \quad \forall k \in \mathbb{N} .
\end{aligned}
$$

Using the result of the previous step, we prove, by induction, that

$$
V(D u) \in W_{l o c}^{t_{k}, 2}\left(\Omega, \mathbb{R}^{n N}\right) \text { for every } k \in \mathbb{N}
$$

and for every couple of open subset $\Omega^{\prime} \subset \subset \Omega^{\prime \prime} \subset \subset \Omega$, there exists a positive constant c, independent of k, such that

$$
[V(D u)]_{W^{t}, 2}^{2}\left(\Omega^{\prime}\right) \leq c\left[\int_{\Omega^{\prime \prime}}\left(s^{p}+|D u|^{p}\right) \mathrm{d} x+\|V(D u)\|_{L^{2, \theta}\left(\Omega^{\prime \prime}\right)}^{2}\right], \quad \text { for every } k \in \mathbb{N}
$$

and these two facts will imply the assertion (23) concerning $V(D u)$) and the estimate (24). Now we can prove the result concerning $D u$.

Let it be $\Omega^{\prime} \subset \subset \Omega$. Using (9), we obtain

$$
\begin{aligned}
{[D u]_{W^{2 t / p, p}\left(\Omega^{\prime}\right)}^{p} } & =\int_{\Omega^{\prime}} \int_{\Omega^{\prime}} \frac{|D u(x)-D u(y)|^{p}}{|x-y|^{n+2 t}} \mathrm{~d} x \mathrm{~d} y \\
& \leq c \int_{\Omega^{\prime}} \int_{\Omega^{\prime}} \frac{(|D u(x)|+|D u(y)|)^{p-2}|D u(x)-D u(y)|^{2}}{|x-y|^{n+2 t}} \mathrm{~d} x \mathrm{~d} y \\
& \leq c \int_{\Omega^{\prime}} \int_{\Omega^{\prime}} \frac{\left(s^{2}+|D u(x)|^{2}+|D u(y)|^{2}\right)^{\frac{p-2}{2}}|D u(x)-D u(y)|^{2}}{|x-y|^{n+2 t}} \mathrm{~d} x \mathrm{~d} y \\
& \leq c \int_{\Omega^{\prime}} \int_{\Omega^{\prime}} \frac{|V(D u(x))-V(D u(y))|^{2}}{|x-y|^{n+2 t}} \mathrm{~d} x \mathrm{~d} y=c[V(D u)]_{W^{t, 2}\left(\Omega^{\prime}\right)}^{2}
\end{aligned}
$$

At least, the estimate (25) follows from the above inequality, by virtue of estimate (24) and the fact that

$$
|V(\xi)|^{2} \leq 2\left(s^{p}+|\xi|^{p}\right)
$$

References

1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. Bensoussan, A., Boccardo, L.: Nonlinear systems of elliptic equations with natural growth conditions and sign conditions. Appl. Math. Optim. 46(1), 143-166 (2002)
3. Cirmi, G.R.: Nonlinear elliptic equations with lower order terms and $L^{1, \lambda}$ data. Nonlinear Anal. T.M.A. 68(12), 2741-2749 (2008)
4. Cirmi, G.R., Leonardi, S.: Regularity results for solutions of nonlinear elliptic equations with $L^{1, \lambda}$ data. Nonlinear Anal. T.M.A. 69(1), 230-244 (2008)
5. Cirmi, G.R., Leonardi, S.: Higher differentiability for solutions of linear elliptic systems with measure data. Discrete Contin. Dyn. Syst. 26(1), 89-104 (2010)
6. Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functional with (p, q)-growth. J. Differ. Equ. 204, 5-55 (2004)
7. Hamburger, C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. (Crelles J.) 431, 7-64 (1992)
8. Kristensen, J., Mingione, G.: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180, 331-398 (2006)
9. Landes, R.: On the existence of weak solutions of perturbated systems with critical growth. J. Reine Angew. Math. 393, 21-38 (1989)
10. Mingione, G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. VI(5), 195-261 (2007)

[^0]: G. R. Cirmi • S. Leonardi (\triangle)

 Dipartimento di Matematica ed Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
 e-mail: leonardi@dmi.unict.it
 G. R. Cirmi
 e-mail: cirmi@dmi.unict.it

[^1]: ${ }^{1}|B|$ is the n-dimensional Lebesgue measure of set B.

[^2]: ${ }^{2}$ As a permanent convention, we will denote by $c(\cdot, \ldots, \cdot)$ a positive constant which depends on various parameters.
 ${ }^{3}$ We assume the use of Einstein's convention throughout the paper.

