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Abstract In this paper we study the higher differentiability of the solutions to a class of
nonlinear systems of elliptic partial differential equations with a lower-order term having
natural growth with respect to the gradient and with data belonging to a suitable Morrey
space.
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1 Introduction

In this paper we study the higher differentiability of the weak solutions of a class of nonlinear
elliptic systems whose model is{

−div [(s2 + |Du|2) p−2
2 Du] + u|Du|p = f in Ω

u = 0 on ∂Ω
(1)

where Ω is an open bounded subset of R
n (n ≥ 3) with sufficiently regular boundary, p ∈

[2, n[, u : Ω → R
N (N ≥ 1) is the unknown vector, s ≥ 0 is a constant and f ∈ L1(Ω,RN )

is a vector-valued function belonging to a suitable Morrey space.
The existence of a weak solution with finite energy (that is u ∈ W 1,p

0 (Ω,RN )) for sys-
tems whose prototype is (1) has been proved by Bensoussan and Boccardo in [2], assuming
that the main part of the operator satisfies the so-called “Landes condition” (see [9]), which
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116 G. R. Cirmi, S. Leonardi

amounts to a sort of diagonal structure of the system, and that the lower-order term verifies
a sign (or angle) condition (see below for the precise statements of the assumptions).

Recently, Mingione (see [10]) has investigated the differentiability properties of the dis-
tributional solutions of a nonlinear elliptic equation (N = 1) of the type

−div [(s2 + |Du|2) p−2
2 Du] = μ

where s is a non-negative constant, p > 1 and μ is a signed Radon measure with finite total
variation |μ|(Ω) < +∞ enjoying the following density condition

|μ|(BR) ≤ M Rn−θ , for some M > 0, θ ∈ [0, n]

for any ball BR ⊂ Ω .
This differentiability result has been extended to the very weak solutions of non-diagonal

linear elliptic systems (N ≥ 2) without lower-order terms in [5].
It is the aim of the present paper to prove similar differentiability properties for the usual

weak solutions to systems of nonlinear elliptic equations, under the Landes condition, with
lower-order terms having natural (or critical) growth with respect to the gradient and satis-
fying a sign condition.

Namely, at first, we will establish that if f belongs to the Morrey space L1,θ (Ω,RN ), with
θ ∈ [0, n[, then any weak solution of that problem (1) has the property that the following
expression of the gradient

V (Du) = (s2 + |Du|2) p−2
4 Du

belongs to the Morrey space L2,θ
loc (Ω,R

nN ) (see also [4]). This Morrey regularity property in

turn will allow us to gain that Du belongs to the space L p,θ
loc (Ω,R

nN ) and that it has fractional
derivatives in L p

loc(Ω,R
nN ).

Our result turns out to be optimal for this class of systems. As a matter of fact, as shown
in the Remark 7, the differentiability of a solution fails whether θ = n, that is under the sole
requirement that f is just in L1(Ω,RN ), while in the case of the operator without lower-order
term a small amount of differentiability still holds (see [10]).

2 Notations and results

In R
n (n ≥ 3), with generic point x = (x1, x2, . . . , xn), we shall denote by Ω a bounded

open non-empty set with diameter dΩ and C0,1-boundary ∂Ω .
For R > 0 and x0 ∈ R

n , we define

BR(x
0) = {x ∈ R

n : |x − x0| < R},
Ω(x0, R) = Ω ∩ BR(x

0),

Q R(x
0) = {x ∈ R

n : sup
1≤i≤n

|xi − x0
i | < R},

d(x0, ∂Ω) = dist(x0, ∂Ω).

We shall often use the short notation BR and Q R , instead of BR(x0) and Q R(x0), respec-
tively, when no ambiguity will arise.
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Higher differentiability for nonlinear elliptic systems 117

Moreover, if u ∈ L1(B,RN ), N ≥ 1, and 0 < |B| < +∞ (1), we denote by

u B := 1

|B|
∫
B

u(x) dx

Now, let us define the functional spaces we will use. We propose a modification of the
usual definitions, essentially equivalent, to simplify the treatment in the following.

Definition 1 (Morrey space) Let q ≥ 1 and θ ∈ [0, n]. By Lq,θ (Ω,RN ), we denote the
space of all vector functions u ∈ Lq(Ω,RN ) such that

‖u‖Lq,θ (Ω) = sup
BR⊂Ω,R≤1

⎧⎪⎨
⎪⎩Rθ−n

∫
BR

|u(x)|qdx

⎫⎪⎬
⎪⎭

1/q

is finite. Lq,θ (Ω,RN ) equipped with the above norm is a Banach space.

Now, we recall some basic facts about fractional-order Sobolev spaces.

Definition 2 (Fractional Sobolev space) Let t ∈]0, 1] and q ≥ 1. W t,q(Ω,RN ) is the space
of all vector functions u ∈ Lq(Ω,RN ) such that

‖u‖W t,q (ΩRN ) = ‖u‖Lq (Ω,RN ) + [u]t,q,Ω < +∞
where

[u]t,q,Ω =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎝∫
Ω

∫
Ω

|u(x)− u(y)|q
|x − y|n+tq

dx dy

⎞
⎠

1
q

if t < 1

‖Du‖Lq (Ω) if t = 1.

Here, Du represents the gradient of the vector-valued function u; that is,

Du ≡
(
∂uν

∂xi

)
ν=1,...,N ; i=1,...,n

≡ (Di uν)ν=1,...,N ; i=1,...,n .

The following result is the Sobolev’s embedding theorem in the case of fractional space
(see [1] and also Lemma 3 of [6]).

Theorem 1 (Fractional Sobolev embedding) LetΩ be a domain of R
n with C0,1 boundary,

q ≥ 1 and t ∈]0, 1] such that tq < n. Then,

W t,q(Ω,RN ) ⊂ L
nq

n−tq (Ω,RN )

with continuous embedding.

Moreover, the following proposition extends the classical Poincaré’s inequality to the case
of fractional Sobolev space (see [10] and related references).

Proposition 1 (Fractional Poincaré Inequality) Let BR, R > 0, be a ball in R
n and u ∈

W t,q(BR,R
N ), t ∈]0, 1[, q ≥ 1. Then,

1 |B| is the n-dimensional Lebesgue measure of set B.
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118 G. R. Cirmi, S. Leonardi

∫
BR

|u(x)− u BR |qdx ≤ c(n)Rtq
∫
BR

∫
BR

|u(x)− u(y)|q
|x − y|n+tq

dx dy(2).

Given a vector-valued function ω : Ω → R
N and a real number h, for any i = 1, . . . , n,

we define the finite difference operator τih as

τih(ω)(x) = ω(x + hei )− ω(x),

for x ∈ Ω such that x + hei ∈ Ω , where {ei }i=1,...,n denotes the canonical basis of R
n .

Lemma 1 Let u ∈ Lq(Ω,RN ), q ≥ 1. Assume that there exist t̄ ∈]0, 1], S > 0 and an
open set Ω̄ ⊂⊂ Ω such that

‖τih(u)‖Lq (Ω̄) ≤ S|h|t̄

for every 1 ≤ i ≤ n and every h ∈ R satisfying 0 < |h| ≤ min{1, dist (Ω̄, ∂Ω)}.
Then,

u ∈ W t,q
loc (Ω̄,R

N ) for every t ∈]0, t̄[
and for every open set A ⊂⊂ Ω̄ there exists a constant c, independent of S and u, such that

‖u‖W t,q (A) ≤ c
[
S + ‖u‖Lq (A)

]
.

We denote by A(x, ξ) a matrix-valued function whose entries are the functions

Aνi : Ω × R
nN → R

for i = 1, . . . , n and ν = 1, . . . , N . Each entry is a Carathéodory functions (i.e., continuous
in ξ ∈ R

nN for a.e. x ∈ Ω and measurable in x for every ξ ) satisfying the following condi-
tions for a.e. x ∈ Ω , for every non-negative real number s and for every ξ, η ∈ R

nN such
that ξ �= η (3):

∃Λ1 > 0 : (Aνi (x, ξ)− Aνi (x, η))(ξ
ν
i − ηνi ) ≥ Λ1 (s

2 + |ξ |2 + |η|2) p−2
2 |ξ − η|2, (2)

∃Λ2 > 0 : |A(x, ξ)| ≤ Λ2 (s
2 + |ξ |2) p−2

2 |ξ |, p ∈ [2, n[, (3)

Aνi (x, 0) = 0, (4)

Aνi (x, ξ)
[
ξνi |γ |2 − γ νγ μξ

μ
i

] ≥ 0 ∀γ ∈ R
N . (5)

Remark 1 Since p ≥ 2, the assumption (2) implies the strong monotonicity assumption(
Aνi (x, ξ)− Aνi (x, η)

)
(ξνi − ηνi ) ≥ c(Λ1, p) |ξ − η|p. (6)

For s ≥ 0, we set

V (ξ) ≡ Vs(ξ) := (s2 + |ξ |2) p−2
4 ξ ∀ξ ∈ R

nN (7)

The assumptions (2) and (4) imply the ellipticity condition

Aνi (x, ξ)ξ
ν
i ≥ Λ1 |V (ξ)|2, a.e. x ∈ Ω, ∀ξ ∈ R

nN . (8)

2 As a permanent convention, we will denote by c(·, . . . , ·) a positive constant which depends on various
parameters.
3 We assume the use of Einstein’s convention throughout the paper.
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Higher differentiability for nonlinear elliptic systems 119

Moreover, from Lemma 2.1 of [7] and (2) (see also [10]), we have the following properties

c(n, p)−1(s2 + |ξ |2 + |η|2) p−2
2 ≤ |V (ξ)− V (η)|2

|ξ − η|2 ≤ c(n, p)(s2 + |ξ |2 + |η|2) p−2
2 ,

(9)

(Aνi (x, ξ)− Aνi (x, η))(ξ
ν
i − ηνi ) ≥ c(Λ1, n, p) |V (ξ)− V (η)|2. (10)

The assumption (3) and Young’s inequality yield

|A(x, ξ)| ≤ c(Λ2, p) (s2 + |ξ |2) p−1
2 . (11)

Remark 2 The assumption (5) is the so-called Landes condition. Note that it is automatically
implied by (8), whenever N = 1.

For ν = 1, . . . , N let gν : Ω × R
N × RnN → R be Carathéodory functions and denote

by g(x, u, ξ) the vector-valued function whose ν-th component is gν . For g(x, u, ξ), we will
assume the following conditions for a.e. x ∈ Ω , for every u ∈ R

N and for every ξ ∈ R
nN :

|g(x, u, ξ)| ≤ b(|u|) [d(x)+ |ξ |p], (12)

and

|g(x, u, ξ)| ≥ σ |V (ξ)|2 ∀u ∈ R
N : |u| ≥ 1. (13)

where b(·) is a real valued, positive, increasing and continuous function, d(x) is a non-nega-
tive function in L1,θ (Ω,RN ), θ ∈ [p, n[, s is a non-negative real number and σ is a positive
real number.

Moreover, we assume the following angle condition

gν(x, u, ξ)(uν − τ ν) ≥ 0, ∀τ, u ∈ R
N : |τ | ≤ |u| (14)

which amounts to a sign condition in the scalar case N = 1.
We consider the following system{

u ∈ W 1,p
0 (Ω,RN ), g(x, u, Du) ∈ L1(Ω,RN )

−Di Aνi (x, Du)+ gν(x, u, Du) = f ν
(15)

where, for any ν = 1, . . . , N , f ν denotes the ν-th component of the vector

f ∈ L1,θ (Ω,RN ), θ ∈ [p, n[. (16)

By a weak solution of the system of equations (15), we mean a vector-valued function
u ∈ W 1,p

0 (Ω,RN ) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(x, u(x), Du(x)) ∈ L1(Ω,RN )∫
Ω

Aνi (x, Du) Div
ν dx +

∫
Ω

gν(x, u, Du) vν dx =
∫
Ω

f ν vν dx

∀ v ∈ W 1,p
0 (Ω,RN ) ∩ L∞(Ω,RN ).

(17)

In [2], the following result has been proved

Theorem 2 Let assumptions (2), (3), (4), (5), (12), (13), (14) be satisfied and let f ∈
L1(Ω,RN ). Then, there exists a weak solution u ∈ W 1,p

0 (Ω,RN ) of the problem (15).

Here, we prove the following
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120 G. R. Cirmi, S. Leonardi

Theorem 3 Let assumptions (2), (3), (4), (5), (12), (13), (14), (16) be satisfied and let u ∈
W 1,p

0 (Ω,RN ) be a weak solution of the problem (15).
Then,

V (Du) ∈ L2,θ
loc (Ω,R

nN ), Du ∈ L p,θ
loc (Ω,R

nN ), (18)

and for anyΩ ′ ⊂⊂ Ω , there exist two positive constants c1 and c2, depending only on data,
such that

‖V (Du)‖L2,θ (Ω ′) ≤ c1, (19)

and

‖Du‖L p,θ (Ω ′) ≤ c2. (20)

Remark 3 The particular scalar case (i.e., N = 1) has been studied in [3].

Remark 4 The previous Morrey regularity result holds as well if θ ∈ [0, p[ assuming also
u ∈ L∞(Ω,RN ). In the case N = 1, the boundedness of u has been proved in [3].

To prove the differentiability of a weak solution u, we shall require the following Hölder
continuity assumption on the map x → A(x, ξ):{

there exist L > 0 and η ∈]0, 1] such that

|A(x, ξ)− A(x0, ξ)| ≤ L|x − x0|η(s2 + |ξ |2) p−1
2 , ∀x, x0 ∈ Ω, ξ ∈ R

nN .
(21)

Theorem 4 Let the assumptions (2), (3), (4), (5), (12), (13), (14), (16), (21) be satisfied and
let u ∈ W 1,p

0 (Ω,RN ) be a weak solution of the problem (15). Set

δ = min

{
1,

n − θ

2

}
. (22)

Then,

V (Du) ∈ W t,2
loc(Ω,R

nN ), Du ∈ W 2t/p,p
loc (Ω,RnN ) (23)

for every t ∈ [0, ηδ[.
Moreover, for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω , there exist two positive

constants c1 and c2, independent on u, such that

[V (Du)]2
W t,2(Ω ′) ≤ c1

⎡
⎣ ∫
Ω ′′
(s p + |Du|p) dx + ‖V (Du)‖2

L2,θ (Ω ′′)

⎤
⎦ (24)

and

[Du]p
W 2t/p,p(Ω ′) ≤ c2

⎡
⎣ ∫
Ω ′′
(s p + |Du|p) dx + ‖Du‖p

L p,θ (Ω ′′)

⎤
⎦ . (25)

Remark 5 In the case θ ∈ [0, p[, the differentiability result stated above holds for the
bounded weak solutions of the problem (15).
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Higher differentiability for nonlinear elliptic systems 121

Remark 6 As a consequence of the fractional Sobolev embedding Theorem 1, we gain a
better integrability on Du. Namely,

Du ∈ L
pn

n−2t
loc (Ω,RnN ) for every t ∈ [0, ηδ[

where δ is the number defined in (22).

Given a vector u ∈ R
N and a real number k > 0 let us denote by Tk(u), the vector-valued

function whose components are defined by

[Tk(u)]ν =
⎧⎨
⎩

uν if |u| ≤ k

k
uν

|u| if |u| > k
(26)

for ν = 1, . . . , N . Obviously

|Tk(u)| ≤ k, |Tk(u)| ≤ |u| ∀u ∈ R
N , ∀k ∈ R

+.

Moreover, if v ∈ W 1,p
0 (Ω,RN ), then Tk(v) ∈ W 1,p

0 (Ω,RN ), and for any i = 1, . . . , n and
ν = 1, . . . , N , we have

Di [Tk(v)]ν =
⎧⎨
⎩

Div
ν if |v| ≤ k

k

|v|
[

Div
ν − 1

|v|2 v
νvμDiv

μ

]
if |v| > k

see [9].

Remark 7 The regularity result stated in Theorem 4 fails if f ∈ L1(Ω,RN ). Indeed, let
n ≥ 3, θ = n, N = 2 (or N=1), Ω = B(0, 1/2) and, for a. e. x ∈ B(0, 1/2), define

u(x) =
⎛
⎜⎝

1/2∫
|x |

1

ρn/2|logρ|dρ,

1/2∫
|x |

1

ρn/2|logρ|dρ

⎞
⎟⎠ .

We can easily prove that u ∈ W 1,2
0 (B(0, 1/2),R2) is a solution of the Dirichlet problem

associated with the system

−Δu + T1(u)|Du|2 = f (x)

where

f (x) = 1 − (n/2 − 1)log|x |
|x |n/2+1log2|x | + T1(u(x))|Du(x)|2.

Easy calculations show that

Du /∈ L2,θ
loc (Ω,R

2n) for any θ ∈]0, n[,
this implies that the vector-valued function f belongs to L1(Ω,R2) but doesn’t belong to
L1,θ (Ω,R2) for any θ ∈]0, n[.

Moreover,

Du /∈ W t,2
loc(Ω,R

2n) for any t ∈]0, 1[

since otherwise, being W t,2
loc(Ω,R

2n)⊂L
2n

n−2t
loc (Ω,R2n), it would be Du∈L2,n−2t

loc (Ω,R2n).
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3 Proofs of the main results

In this section, we prove our results and we recall, among others, some well-known results
on the weak solutions to homogeneous elliptic systems.

The following Lemma, whose proof can be found in [8, Lemma 3.3] or in [10, Lemma
3.2], concerns the W 2,p-regularity of the weak solutions u of homogeneous elliptic systems
with coefficients depending only on Du.

Namely, we denote by A0(ξ) a matrix-valued function whose entries are the continuous
functions

Aν0i : R
nN → R

for i = 1, . . . , n and ν = 1, . . . , N . Each entry satisfies the following conditions for every
non-negative real number s and for every ξ, η ∈ R

nN such that ξ �= η:

(Aν0i (ξ)− Aν0i (η))(ξ
ν
i − ηνi ) ≥ α0 (s

2 + |ξ |2 + |η|2) p−2
2 |ξ − η|2, (27)

|A0(ξ)| ≤ β0 (s
2 + |ξ |2) p−2

2 |ξ |, (28)

Aν0i (0) = 0. (29)

with α0 and β0 positive constants.

Lemma 2 Let v0 ∈ W 1,p(Ω,RN ) be a weak solution to the system

div A0(Dv0) = 0 in Ω.

Then,

V (Dv0) ∈ W 1,2
loc (Ω,R

nN )

and there exists a constant c = c(n, N , p,Λ1,Λ2) > 0 such that for every z0 ∈ R
nN and

every ball BR ⊂⊂ Ω we have∫
BR/2

|DV (Dv0)|2 dx ≤ c

R2

∫
BR

|V (Dv0)− V (z0)|2 dx . (30)

We can continue proving Theorem 3.

Proof of Theorem 3 It is enough to prove that, for any R ≤ 1 for which BR ⊂ Ω , the integral

1

Rn−θ

∫
BR

|V (Du)|2 dx

is bounded.
Let ψ ∈ C∞(Rn) be the standard cut-off function of the ball B2R , that is

0 ≤ ψ(x) ≤ 1 if x ∈ B2R

ψ(x) = 1 if x ∈ BR

ψ(x) = 0 if x ∈ R
n \ B2R

|Dψ(x)| ≤ c
R if x ∈ B2R \ BR .

Let us take as test function in (17) the function

v = ψ pT1(u)
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Higher differentiability for nonlinear elliptic systems 123

where T1(u) is the vector-valued function defined by (26). We obtain∫
Ω

ψ p Aνi (x, Du) Di [T1(u)]ν dx + p
∫
Ω

ψ p−1 Aνi (x, Du) [T1(u)]ν Diψ dx

+
∫
Ω

ψ pgν(x, u, Du) [T1(u)]ν dx =
∫
Ω

ψ p f ν [T1(u)]ν dx . (31)

Note that

I1 ≡
∫
Ω

ψ p Aνi (x, Du) Di [T1(u)]ν dx

=
∫

Ω∩{|u|≤1}
ψ p Aνi (x, Du) Di u

ν dx

+
∫

Ω∩{|u|>1}
ψ p Aνi (x, Du)

1

|u|
[

Di u
ν − 1

|u|2 uνuμDi u
μ

]
. (32)

By virtue of (5), the last integral in (32) is non-negative, and thus, using the assumptions
(8) and (6), we estimate I1 from above as follows

I1 ≥ c(Λ1, p)
∫

Ω∩{|u|≤1}
ψ p(|V (Du)|2 + |Du|p) dx . (33)

On the other hand, exploiting (11) and Young’s inequality, we obtain

I2 ≡ p
∫
Ω

ψ p−1 Aνi (x, Du) [T1(u)]νDiψ dx

≥ −p
∫
Ω

ψ p−1|Aν(x, Du)| |Dψ ||[T1(u)]ν | dx

≥ −ε
∫
Ω

ψ p (s2 + |Du|2) p
2 |T1(u)| dx − c(ε,Λ2, p)

∫
Ω

|Dψ |p |T1(u)| dx

≥ −ε
∫
Ω

ψ p (|V (Du)|2 + |Du|p)dx − ε s p Rn − c(ε,Λ2, p, n) Rn−p. (34)

Moreover, by (14) we deduce,

I3 ≡
∫
Ω

ψ pgν(x, u, Du) [T1(u)]ν dx

=
∫

Ω∩{|u|≤1}
ψ pgν(x, u, Du) uν dx +

∫
Ω∩{|u|>1}

ψ pgν(x, u, Du)
uν

|u| dx

≥
∫

Ω∩{|u|>1}
ψ pgν(x, u, Du)

uν

|u| dx . (35)
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124 G. R. Cirmi, S. Leonardi

Note that the angle condition (14) implies

gν(x, u, Du)
uν

|u| ≥ |g(x, u, Du)| for a.e.x ∈ Ω and for |u| > 1 (36)

so that, plugging (13) and (36) in (35) and observing that

|V (ξ)|2 ≥ |ξ |p, (37)

we get

I3 ≥ σ/2
∫

Ω∩{|u|>1}
ψ p(|V (Du)|2 + |Du|p) dx . (38)

Gathering together (31), (33), (34) and (38), we obtain

(c(Λ1, p)− ε)

∫
Ω∩{|u|≤1}

ψ p(|V (Du)|2 + |Du|p) dx

+(σ/2 − ε)

∫
Ω∩{|u|>1}

ψ p(|V (Du)|2 + |Du|p) dx

≤ Rn−θ‖ f ‖L1,θ (Ω) + [ε s p R p + c(ε,Λ2, p, n)] Rn−p (39)

whence, choosing a suitable ε > 0 and taking into account that θ ≥ p, we have∫
BR

(|V (Du)|2+|Du|p) dx ≤ Rn−θ [
(c(Λ1,Λ2, σ, p, n, θ)+s pd p

Ω)d
θ−p
Ω +‖ f ‖L1,θ (Ω)

]

(40)

which, by a covering argument, implies the assertions (19) and (20).
We are now in position to prove Theorem 4. ��

Proof of Theorem 4 We shall follow the outline of Lemma 6.2 of [10]. Let B ⊂⊂ Ω be a
ball of radius R and let B̂ be the enlarged ball of radius 16R. We shall denote by Qinn(B)
and Qout (B) the largest and the smallest cubes, concentric to B and with sides parallel to
the coordinate axes, contained in B and containing B, respectively. If we put

Qinn = Qinn(B), Qout = Qout(B)

and

Q̂inn = Qinn(B̂), Q̂out = Qout(B̂),

we have the following inclusions

Qinn ⊂ B ⊂⊂ 4B ⊂⊂ Q̂inn ⊂ B̂ ⊂ Q̂out. (41)

LetΩ ′ andΩ ′′ be a couple of open subset such thatΩ ′ ⊂⊂ Ω ′′ ⊂⊂ Ω and x0 ∈ Ω ′. For
any β ∈]0, 1[ (that will be chosen later) we fix h ∈ R with 0 < |h| << min

{
1, d(Ω ′, ∂Ω ′′)

}
such that, denoted with B = B(x0, |h|β) the ball centered in x0 and with radius |h|β , the
outer cube of B, Q̂out is included in Ω ′′.
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Step 1
Let v ∈ W 1,p(B̂,RN ) be the unique weak solution to the problem{

div A(x, Dv) = 0 in B̂
v = u on ∂ B̂ ,

(42)

and let v0 ∈ W 1,p(8B,RN ) be the unique weak solution to the problem{
div A(x0, Dv0) = 0 in 8B
v0 = v on ∂8B.

(43)

Then, we have

∫
B

|τih(V (Du))|2 dx ≤ c

⎡
⎢⎣∫

B

|τih(V (Dv0))|2 dx +
∫
B̂

|V (Du)− (Dv)|2 dx

+
∫

8B

|V (Dv)− V (Dv0)|2 dx

⎤
⎦ . (44)

First of all we estimate ∫
B̂

|V (Du)− V (Dv)|2 dx .

Let us observe that the function w = v − u ∈ W 1,p
0 (B̂,RN ) is a weak solution to the

system {
div A(x, D(w + u)) = 0 in B̂
w = 0 on ∂ B̂.

(45)

For such a solution we have∫
B̂

A(x, D(w + u))Dw dx −
∫
B̂

A(x, Du)Dw dx = −
∫
B̂

A(x, Du)Dw dx

whence, by (10), (3) and (9), we deduce∫
B̂

|V (Du)− V (Dv)|2 dx =
∫
B̂

|V (D(u + w))− V (Du)|2 dx

≤
∫
B̂

|A(x, Du)||Dw| dx

≤ Λ2

∫
B̂

(s2 + |Du|2) p−2
2 |Du||Dw| dx

≤ Λ2

∫
B̂

(s2 + |Dv|2 + |Du|2) p−2
4 |D(u − v)| (s2 + |Du|2) p−2

4 |Du| dx
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≤ ε

∫
B̂

(s2 + |Dv|2 + |Du|2) p−2
2 |D(u − v)|2 dx + c(ε)

∫
B̂

(s2 + |Du|2) p−2
2 |Du|2 dx

≤ ε

∫
B̂

|V (Du)− V (Dv)|2 dx + c(ε, p)
∫
B̂

|V (Du)|2 dx (46)

with c positive constant independent of the radius of B̂.
In turn, for a sufficiently small ε, inequality (46) yields∫

B̂

|V (Du)− V (Dv)|2 dx ≤ c
∫
B̂

|V (Du)|2 dx . (47)

Now, we estimate ∫
8B

|V (Dv)− V (Dv0)|2 dx .

Since v and v0 are the weak solutions, respectively, to the Dirichlet problems (42) and
(43), the following integral identities hold∫

8B

A(x, Dv)D(v − v0) dx = 0 (48)

and ∫
8B

A(x0, Dv0)D(v − v0) dx = 0. (49)

By virtue of the strong monotonicity condition (10) and using (21), (48), (49), Young’s
inequality and (9) we deduce∫

8B

|V (Dv)− V (Dv0)|2 dx

≤ 1

c(Λ1, n, p)

∫
8B

[A(x0, Dv)− A(x0, Dv0)]D(v − v0) dx

= 1

c

∫
8B

[A(x0, Dv)− A(x, Dv)]D(v − v0) dx

≤ 1

c

∫
8B

|A(x0, Dv)− A(x, Dv)||D(v − v0)| dx

≤ L

c

∫
8B

|x − x0|η (s2 + |Dv|2) p−1
2 |D(v − v0)| dx

≤ L

c

⎡
⎣c(ε)|h|2βη

∫
8B

(s p + |Dv|p) dx + ε

∫
8B

|V (Dv)− V (v0)|2 dx

⎤
⎦ .

Choosing ε sufficiently small, it follows∫
8B

|V (Dv)− V (Dv0)|2 dx ≤ c|h|2ηβ
∫

8B

(s p + |Dv|p) dx
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consequently, using again the inequalities (37) and (47), we deduce∫
8B

|V (Dv)− V (Dv0)|2 dx ≤ c|h|2ηβ
∫
B̂

(s p + |Du|p) dx . (50)

Summing up (47) and (50), we have

∫
8B

|V (Du)− V (Dv0)|2 dx ≤ c

⎡
⎢⎣|h|2ηβ

∫
B̂

(s p + |Du|p) dx +
∫
B̂

|V (Du)|2 dx

⎤
⎥⎦ . (51)

Now, we have to estimate the first integral in the right-hand side of (44). Using a well-
known result about the translation operator, we have∫

B

|τih(V (Dv0))|2 dx ≤ |h|2
∫

4B

|DV (Dv0)|2 dx

and by virtue of the estimate (30), we obtain∫
B

|τih(V (Dv0))|2 dx ≤ c|h|2(1−β)
∫

8B

|V (Dv0)− V (z0)|2 dx, (52)

for every z0 ∈ R
nN .

Step 2.
Let us assume, for a moment, that there exists some t̄ ∈ [0, ηδ[ such that

V (Du) ∈ W t̄,2
loc (Ω,R

nN ), (53)

and that for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω , there exists a positive constant
c̄ depending on dist (Ω ′, ∂Ω ′′) such that

[V (Du)]2
W t̄,2(Ω ′) ≤ c̄

⎡
⎣ ∫
Ω ′′
(s p + |Du|p) dx + ‖V (Du)‖2

L2,θ (Ω ′′)

⎤
⎦ . (54)

We claim that

V (Du) ∈ W t,2
loc(Ω,R

nN ) for every t ∈ [0, γ (t̄)[, (55)

where γ (t) = ηδ
1−t+ηδ , and that for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω there

exists a positive constant c = c(n,Λ1,Λ2, σ, p, N , β, η, L , d(Ω ′, ∂Ω ′′)) such that

[V (Du)]2
W t,2(Ω ′) ≤ c

⎡
⎣ ∫
Ω ′′
(s p + |Du|p) dx + ‖V (Du)‖2

L2,θ (Ω ′′)

⎤
⎦ . (56)

As a matter of the fact, if t̄ = 0, we choose z0 = 0 in (52) and we have∫
B

|τih(V (Dv0))|2 dx ≤ c|h|2(1−β)
∫

8B

|V (Dv0)|2 dx

≤ c|h|2(1−β)
⎛
⎝ ∫

8B

|V (Dv0)− V (Du)|2 dx +
∫

8B

|V (Du)|2 dx

⎞
⎠ . (57)
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Using inequality (51), we deduce

∫
B

|τih(V (Dv0))|2 ≤ c|h|2(1−β)

⎡
⎢⎣|h|2ηβ

∫
B̂

(s p + |Du|p) dx +
∫
B̂

|V (Du)|2 dx

⎤
⎥⎦ . (58)

In the case t̄ ∈]0, ηδ[, we choose z0 = V −1((V (Du))8B) in (52), and again exploiting (51),
we deduce∫

B

|τih(V (Dv0))|2 dx ≤ c|h|2(1−β)
∫

8B

|V (Dv0)− (V (Du))8B |2 dx

≤ c|h|2(1−β)
⎛
⎝∫

8B

|V (Dv0)− V (Du)|2 dx +
∫

8B

|V (Du)− (V (Du))8B |2 dx

⎞
⎠

≤ c|h|2(1−β)

⎡
⎢⎣|h|2ηβ

∫
B̂

(s p + |Du|p) dx +
∫
B̂

|V (Du)|2 dx

+
∫

8B

|V (Du)− (V (Du))8B |2 dx

⎤
⎦ .

We estimate the last integral in the right-hand side by fractional Poincaré inequality and we
obtain

∫
B

|τih(Dv0)|2 ≤ c|h|2(1−β)

⎡
⎢⎣|h|2ηβ

∫
B̂

(s p + |Du|p) dx +
∫
B̂

|V (Du)|2 dx

+|h|2β t̄ [V (Du)]2
W t̄,2(B̂)

]
. (59)

We observe that the inequalities (58) and (59) may be summarize as follows

∫
B

|τih(Dv0)|2 ≤ c|h|2(1−β)

⎡
⎢⎣|h|2ηβ

∫
B̂

(s p + |Du|p) dx

+
∫
B̂

|V (Du)|2 dx + χ(t̄)|h|2β t̄ [V (Du)]2
W t̄,2(B̂)

⎤
⎥⎦ ,

where χ(t) = 0 if t = 0 and χ(t) = 1 if t > 0.
Moreover, since t̄ < η and |h| < 1, from the previous estimate, we deduce

∫
B

|τih(V (Dv0))|2 ≤ c|h|2(1−β)+2β t̄λ(B̂)+
∫
B̂

|V (Du)|2 dx (60)

where λ is the set function defined by
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λ(A) =
∫
A

(s p + |Du|p)+ χ(t̄) [V (Du)]2
W t̄,2(A)

(61)

for any measurable set A ⊂ Ω .
We remark that the function λ is countable super-additive.
Gathering together (44), (47), (50) and (60), we find

∫
B

|τih(V (Du))|2 dx ≤ c

⎡
⎢⎣(

|h|2(1−β)+2β t̄ + |h|2βη
)
λ(B̂)+

∫
B̂

|V (Du)|2 dx

⎤
⎥⎦ . (62)

Now we use a covering argument as in [10]. Firstly, we take a lattice of cubes with equal
side length, comparable to |h|β , sides parallel to the coordinate axes, and centered inΩ ′, and
we consider them as the inner cubes of the balls B j = B(x j , |h|β), with x j ∈ Ω ′. By the
compactness property of Ω ′ and the Vitali’s covering Theorem, we can find J̄ = J̄ (h) ∈ N

such that∣∣∣∣∣∣Ω ′
∖

J̄⋃
i=1

Qinn(Bi )

∣∣∣∣∣∣ = 0 and Qinn(Bi ) ∩ Qinn(B j ) = ∅ if i �= j.

Then, using (62), we obtain

∫
Ω ′

|τih(V (Du))|2 dx =
J̄∑

i=1

∫
Qinn(Bi )

|τih(V (Du))|2 dx ≤
J̄∑

i=1

∫
Bi

|τih(V (Du))|2 dx

≤
J̄∑

i=1

⎡
⎢⎣(

|h|2(1−β)+2β t̄ + |h|2βη
)
λ(B̂i )+

∫
B̂i

|V (Du)|2 dx

⎤
⎥⎦ .

We point out that

J̄∑
i=1

λ(B̂i ) ≤ c(n)
J̄∑

i=1

λ(Qinn(Bi )) ≤ c(n)λ(
J̄⋃

i=1

Qinn(Bi )) ≤ c(n)λ(Ω ′′)

and moreover that

∑ J̄
i=1

∫
B̂i

|V (Du)|2 dx ≤ c(n)
∑ J̄

i=1

∫
Qinn(Bi )

|V (Du)|2 dx

≤ c(n)
[
|h|β(n−θ)‖V (Du)‖2

L2,θ (Ω ′′)

]
.

At least we have (recall that η ≤ 1)∫
Ω ′

|τih(V (Du))|2 dx ≤ c(n)
[(

|h|2(1−β)+2β t̄ + |h|2βη + |h|βη(n−θ)
)

·
(
λ(Ω ′′)+ ‖V (Du)‖2

L2,θ (Ω ′′)

)]
for any β ∈]0, 1[, h ∈ R, |h| < 1, fixed at the beginning of the proof and for every couple
of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω .
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Now, since δ = min{1, n−θ
2 } and |h| < 1 the powers |h|2βη and |h|βη(n−θ) are less than

|h|2βηδ and the previous inequality implies∫
Ω ′

|τih(V (Du))|2 dx ≤ c(n)
[(

|h|2(1−β)+2β t̄ + |h|2βηδ
)

·

·
(
λ(Ω ′′)+ ‖V (Du)‖2

L2,θ (Ω ′′)

)]
.

Choosing β = 1
1−t̄+ηδ , we minimize the right-hand side of the latter inequality with

respect to h and we obtain∫
Ω ′

|τih(V (Du))|2 dx ≤ c|h|2γ (t̄)
[
λ(Ω ′′)+ ‖V (Du)‖2

L2,θ (Ω ′′)

]
(63)

where γ (t) = ηδ

1 − t + ηδ
.

In turn, since the setsΩ ′,Ω ′′ are arbitrary, the previous estimate, Lemma 1 and the assump-
tion (54) imply

V (Du) ∈ W t,2
loc(Ω,R

nN ) for every t ∈ [0, γ (t̄)[,
and the estimate (56) holds.
Step 3.

We shall complete the proof via iteration reasoning as in the proof of Lemma 6.2 of [10].
Namely, let us introduce the two sequences {tk} and {sk} defined by setting

s1 = ηδ

4(1 + ηδ)
, sk+1 = γ (sk)

t1 = 2s1, tk+1 = γ (sk)+ γ (tk)

2

and we note that

{sk} is increasing
lim sk = ηδ

sk < tk < ηδ ∀ k ∈ N.

Using the result of the previous step, we prove, by induction, that

V (Du) ∈ W tk ,2
loc (Ω,R

nN ) for every k ∈ N

and for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω , there exists a positive constant c,
independent of k, such that

[V (Du)]2
W tk ,2(Ω ′) ≤ c

⎡
⎣∫
Ω ′′
(s p + |Du|p) dx + ‖V (Du)‖2

L2,θ (Ω ′′)

⎤
⎦ , for every k ∈ N

and these two facts will imply the assertion (23) concerning V (Du)) and the estimate (24).
Now we can prove the result concerning Du.
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Let it be Ω ′ ⊂⊂ Ω . Using (9), we obtain

[Du]p
W 2t/p,p(Ω ′) =

∫
Ω ′

∫
Ω ′

|Du(x)− Du(y)|p

|x − y|n+2t
dxdy

≤ c
∫
Ω ′

∫
Ω ′

(|Du(x)| + |Du(y)|)p−2 |Du(x)− Du(y)|2
|x − y|n+2t

dxdy

≤ c
∫
Ω ′

∫
Ω ′

(
s2 + |Du(x)|2 + |Du(y)|2) p−2

2 |Du(x)− Du(y)|2
|x − y|n+2t

dxdy

≤ c
∫
Ω ′

∫
Ω ′

|V (Du(x))− V (Du(y))|2
|x − y|n+2t

dxdy = c [V (Du)]2
W t,2(Ω ′).

At least, the estimate (25) follows from the above inequality, by virtue of estimate (24) and
the fact that

|V (ξ)|2 ≤ 2(s p + |ξ |p).

��
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