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Abstract We consider the problem e2Au—ud+uP =0inQ,u > 0in Q, g—]’j =0onadf2

where Q is a smooth bounded domain in RV, 1 < qg<p< % if N > 2 and ¢ is a small
positive parameter. We determine the location and shape of the least energy solution when

e — 0.
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1 Introduction

There has been considerable interest in understanding the behavior of positive solutions of
the elliptic problem

l EAu+ fw)=0 inQ
(1.1)

u>0inQ, 2% =0 oniQ
where ¢ > 0 is a parameter, f is a changing sign superlinear nonlinearity and €2 is a smooth
bounded domain in RV . Let F () = fou f()dr. We consider the problems in the zero mass

case, that is, when f(0) = 0 and f’(0) = 0. It is easy to check that the problem (1.1) admits
solutions on € if f/(0) < 0, while there may be no nontrivial solutions for small ¢ > 0 if
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40 S. Santra, J. Wei

f7(0) > 0. Thus, problem (1.1) can be viewed as borderline problems. Berestycki and Lions
in [2] proved the existence of ground state solutions if f(u) behaves like |u|” for large u
and |u|? for small u where p and ¢ are, respectively, supercritical and subcritical. This type
of equations arise in the Yang-Mills theory, in various mathematical models derived from
population theory, chemical reactor theory, and are much harder to handle; see Gidas [6] and
Gidas et al. [7]. In this paper, we consider the following singular perturbed problem,

&2Au—ul +uP =0 inQ

u>0 in Q (12)
%:0 on 0%2,

where Q is a bounded domain in R with a smooth boundary 92 and ¢ > 0 is a small
number and v denotes the unit normal to Q2. Here, 1 < ¢ < p < %—f% and N > 2.
This problem with the Dirichlet boundary condition was first studied by Dancer and Santra

[3], and they have proved that there exists g, = % called the zero mass exponent such

that when ¢ € (%, %—f%), the least energy solution, concentrates at a harmonic center of

2. Moreover, ¢, is critical to (1.2) in the determination of concentration of the least energy
solution. Furthermore, Dancer et al. [4] proved that g € (1, %), the least energy solution
concentrates at the global minimum of R, (re-normalized energy) where

Ry(§) = lim

1 1 (q — 1) 9 +1

Iy , 5 RS , _ S 2—2a, 4

x / 2| Gy(x, &) +q+lgq (x, 8) 2(g + D@2+ 20 — N) @
Q\Bs(§)

(1.3)
and G, (-, &) is the unique positive weakly singular solution to the problem

AxGq(x,8) = Gg(x,£)7 =0 inQ\ {§},
Gy (x,6) ~ otw forx ~ & (1.4)
Gy(x,6)=0 on 0Q

and when g = q,, u. concentrates at the global minima of ¥, , where W, is defined by

W, &) :=/|VHq*(x,s>}2dx

Q
+ (N —2)? / : d
— X
Ix — §2NV=D|log |x — &[|N—2
RM\Q
+ 1(N 2)? / ! d
_ — X
2 Ix — §[2V=D|log |x — &[|N—1
RVM\Q
(N—-DWN -2 1
+ d
2 lx —&PNDlog [x — &[N

RN\Q
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Profile of the least energy solution 41

where Hy, (-, &) is the solution to the problem

AcHy, (x,8) =0 inQ,
1 .
Hy(6.§) = — ondQ (1.5)
Ix —&IN2|log|x — & 7
and
ZilA-w-2] ifg<a
A N-2 (1.6)
(NT_ZZ) if ¢ = ¢x.

In this paper, we consider the analogue Neumann problem (1.2). As in the Dirichlet prob-
lem, there are zero mass exponents for the Neumann problem. We now derive the zero mass
exponent, which will be crucial in determining the points of concentration.

As in [12], we first define the least energy solution. Let the associated functional to the
problem (1.2) be

2
€ 2 | P U g+
Lw) = | (Z=Vul> = ——@HP* + —— @) )dx.
e (1) /(2|u| p+1(u) +q+1(u) x
Q

Easy to check that I, (u) satisfies Palais-Smale condition and all the conditions of the
mountain pass theorem and hence there exists a mountain pass solution u, > 0 and a moun-
tain pass critical value characterized by

0 = inf 1 t
< ce yl?rg tg%gﬁ] «(y (1))

where
T, ={y € C([0,1], H'(2)) : y(0) = 0, y (1) = e},

where /;(¢) < 0 and e(x) = k is a constant function on €2, k chosen sufficiently large. Note
that as O is a strict local minima of /I, ¢, > 0, Ve > 0. Let

No(Q) = [u € Hl(sz):82/|W|2+/(u+)q+l :/(qu)erl].
Q Q Q

The problem is now to obtain the asymptotic behavior of ¢, as ¢ — 0. To this end, we
start with the entire problem

AU -U?4+UP =0 inRV,

U=>0 in RV,
U—0 as x| — oo, a7
UecC*RY).

By Li and Ni [11] and Kwong and Zhang [10], (1.7) has a unique radial solution U such that
U e D2 (RY) N LI+ (RV) where DI2(RY) = {u : [Vu| € L>(RY) and u € L?' (RV)}
when N > 3. Moreover, U behaves at infinity as

12 if 1l<g< %,
qul
1 . N N+2
U(r)~{ =2 if ¥ <q <755 (1.8)

1

N-2
rN=2(logr) 2
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42 S. Santra, J. Wei

When g = 1, Ni and Takagi [12] showed that for sufficiently small ¢, the least energy
solution is a single boundary spike and has only one local maximum P, € 9€2. Moreover, in
[13], they prove that H (P;) — maxpcyq H(P) ase — 0 where H (P) is the mean curvature
of 9€2 at P. A simplified proof was given by Del Pino and Felmer in [5], for a wide class of
nonlinearities.

We first point out a useful lemma whose proof follows from the computations in Ni and
Takagi [12].

Lemma 1.1 Let A(x) be a radial function with A(x) ~ ﬁ as|x| > +ooandy > N + 1.
Then, for P € 02, we have the following asymptotic expansion

()=l ]
/A dx =¢ 5~ eKH(P)+o(e) 1.9)
Q

&

where H (P) is the mean curvature of the boundary at the point P

= / A(x)dx

RN
and

1 2
=5 lyI“A(y, 0)dy.

aRY
Now, we take

1 1
G(x) = —|VU| +—ypitt - _pyrtl (1.10)

qg+1 p+1
We claim that K > 0. Note that from algebraic decay of U, we obtain

K = / (W'~ F)lbPay =+ / (U — F(U)lyndy’
3]RN
N+1 /(U (3D yndy. (L11)

+

This proves the claim.

Observe that the restriction y > N + 1 is necessary otherwise K is not defined.

Then, the lowestdecay ratein (1.10) is given by the gradient term since 2(a+1) < a(g+1).
Note that the equality holds for o = %1

So,if 2(¢+1) > N + 1, we obtain an estimate depending only on the mean curvature. As
aresultif 2(w 4+ 1) > N + 1, we obtain an estimate on the least energy (as in [12]) depending

only on the mean curvature. So, if ¢ > %, we have

co =&V [% —¢KH(P,) + o(e)] (1.12)

where P is the unique local maximum point of u, and H (P;) is the boundary mean curvature
function at P, € 0L2.

Following the same argument in Ni and Takagi [12], we can then prove that H (P¢) —
maxpecyo H(P) ase — 0.
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Profile of the least energy solution 43

Observe that ¢ > NT_I is satisfied if and only if either N > 4, or N = 3,¢q < 3, or

N=24<5.
The most interesting cases are

1) N =3,q >3, (e =1). Note that when N = 3 and ¢ = 3, we are in the situation of a
Zero mass exponent.

2) N=2,q25,(a=qzj).

The main objective of this paper is to locate the maximum point P, in the remaining
cases. It turns out that as in the Dirichlet problem, the location of the spikes is determined in
a nonlocal way.

Let P € 9€2. We define a diffeomorphism straightening of the boundary in a neighbor-
hood of P. After rotation and translation of the coordinate system, we may assume that the
inward normal to 92 at P points in the direction of the positive xy axis and that P = 0.

Letx’ = (x1, X2, ..., xy—1) and By = {x’ e RN 7! : |x’| < §p} and Q| = QN B(P, ),
where B(P,89) = {x € RN : |x — P| < 8}. Since 92 is smooth, we can choose a
8o > 0 such that 92 N B(P, dp) can be represented by the graph of a smooth function
f = fp:B(@)) - R where

Fp(0) =0,V £p(0) =0 and 322N B(P,8)

{(X/ xy) € B(P,d8) : xy — Py > fp(x/ — p/)}
N 1

- Zk (i — P2+ O(Ix' — P'P)

i=1

frx" =P

where k;(i = 1,..., N — 1) are the principal curvatures at P. Note that the first condition
implies that {x = 0} is a tangent plane of 92 at P.
We deform the boundary near P. For x € Q; = Q N B(P, dp), set

ey =x'— P, eyy=xy—Py— f(x' = P). (1.13)

This transformation we denote by y = T (x). Note that the Jacobian of T, equals eN. Its
inverse is called x = T{1 (y). Moreover,

x' =P +¢ey, xy=Py+syny+ fe(y/ = P)). (1.14)

The Laplace operator and the boundary operator reduces to

v(x) = (Var fo =1 (1.15)

1
VI+IVef?

= Tl B e )
— = (1.16)
v 1+ |V f2 Z j 8x  dxy XN —Py=f('—P')
and the Laplace operator becomes
d
&2A z f,a oo "/fBTN' (1.17)

Throughout this paper, we use the following notation:

y=0 N Y =01y yv-n and RY T = (y e RY 1y > 0},
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44 S. Santra, J. Wei

When N = 2, we define a space
12,52, . c . ¢
D= {M € WIOC (R ) : |V1/l| < MTH, |M()C)| < W whenever |x| > l},

where C > 0 is independent of u. Then,

1 1 1
Iso(U) = —|IVU|? = ——uPtt 4 — pyitt |d 1.18
0o (U) /(2| | 1 +q+1 X (1.18)
RN

is well defined on D. Note that when N > 3, Ioo(U) is well defined in D12 (RN )N LI TL(RY).
In this paper, we show that when o < % and N = 2, the asymptotic behavior of the least
energy solution of the Neumann problem (1.2) is not determined by the mean curvature of
92, instead it is determined by a nonlinear singular problem. For any P € 92, we define
the renormalized energy in R? by

1 1
@, (P) = lim | = v P)? — p)jatt
q(P) 5%[2 / IVG4(x, P)| dx+q+1 / |Gy (x, P)[T7 dx
Q\QNB;s(P) Q\QNB;s(P)
9—1 at+2) g+l
_ 5 _ 1.19
4 + Da “a (1.19)

where G is the unique (up to a modulo constant) positive solution

AyGy(x, P) = Gy(x, P)1 =0 inQ\ {P},

0G4 (x, P)
T =0 on 39\{13} (1.20)
G(xP)NL when x ~ P

o e — Pl '

Now, we state the main results of the paper

Theorem 1.1 There exists eg > 0 such that for every ¢ € (0, gg), the least energy positive
solution of (1.2) uy € HY(Q) has a unique point of maximum P, € 0€2.

(@) When N = 2 and q > 5, ug concentrates at the global minimum of ®4, where @,
satisfies (1.3) and

g2
—1

5 oo+€2+20(q)q(P8)+0(82+20()

I (ue) =
where @ satisfies (1.19).

(b) When N = 2 and q = 5, u; concentrates at a local maxima of H, where H is the
boundary curvature function and

2 _
I (ug) = %Ioo — %83(10{@{ é)H(PS) +0(83(10g é))

for some og < 1.

Theorem 1.2 There exists ¢g > 0 such that for every ¢ € (0, &g), the least energy positive
solution of (1.2) ug € H'(Q) has a unique point of maximum Py € 3.
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Profile of the least energy solution 45

(@) When N = 3 and q > 3, u, concentrates at a local maximum of H, where H is the
boundary curvature function and

3
€ 1 1
I (uy) = EIOO — y32£4<10g E)H(Pg) + 0(54(log g))

where y3 = lim x| 400 |X|U (X).
(b) When N = 3 and q = 3,(corresponds to the zero mass exponent) u, concentrates at a
local maximum of H, where H is the boundary curvature function

3
I (us) = %IOO — 84(log (log )) H(4P8) + 0(54(10g (log é)))

By concentration, we mean u, converge uniformly to zero in compact subsets of Q2 \ {P}
while there exists a ¢ > 0 such that u.(P;) > case — 0.

Renormalized energy is a well-known concept in theoretical physics for instance see Beth-
uel et al. [1] is independent of the core radius and is a function of the singularity position
which characterizes the energy content of a dislocated body. They established that a family
of global minimizers of

R IO D
Ke(u) = 2IVbt|-|r4€2(1 [ul®)*; ue H (R2,C) (1.21)
Q

with Dirichlet constraint u = g on 92 where g is a smooth function with values in S'. When
n = deg(g; 92) > 0, it was found that u, has exactly n zeros (called vortices) of local
degree one, which approach, up to subsequence, n distinct points &; for which

U (x) — €9 S)H £ —w(x,é).

Besides, & globally minimizes a re-normalized energy, W (§), characterized as the limit

1
W (&) = lim / |Vew|* —nrlog — | . (1.22)
p—0 0
Q\Uj=1"B,(&;)

for which explicit expression in terms of Greens functions can be found in Bethuel et al.
[1]. The asymptotic expansion of W (&), of (1.22) shows that the renormalized energy is the
remaining energy after the removal of the singular core energy nx log % has been removed,
see Kleman [9].

2 Preliminaries

We recall some well-known results to (1.2).

Lemma 2.1 (a) Foralle > 0

ce = inf max I, t)) = inf I, (u)= inf max I (tu).
£ yer rel0,1] ey () = ueN(Q) =) ueH (Q),uz0 10 =(ou)
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46 S. Santra, J. Wei

Proof For the sake of completeness, we prove this well-known lemma. Let ¢ > 0 be fixed.
First, note that

inf max I, (y(t)) < mf max I (tu) 2.1)
yel; te[0,1] ](Q) t>0

We first claim that  inf Ig(u) inf max I.(tu). Define B(t) = I.(tu). Due to the
ueNe(Q ueH\(Q) 1=

nature of the nonhnearlty, we have 8(0) = 0, ,B (t) > 0 for small + > 0 and B(¢) < O for
t > 0 sufficiently large. Hence, {(I)laX ),B(I) is achieved. Also note that /() = 0 implies
1€[0,+00

&2 ||u|? = g(t) where

HY(Q)

g(t) = tp—l /(u+)p+l _ tq—l /(u+)q+l'

It is easy to see that g is an increasing function of r+ whenever g(¢) > 0. Thus, there exists
a unique 7 such that [|u|l 51 o) = (7). Hence, there exists a unique point 6 (u) such that
B (O(w)u) = 0 and O(u)u € N.(S2). This implies that NV, (R2) is radially homeomorphic to
H'(Q) \ {0} if we prove that 6 : H'(2) \ {0} - R is continuous. In order to do so, let
up — uin H'(Q) \ {0}. Then, u, — u in H'(Q) and u, — u in L"(Q) for all r < {43
and

/ 2| Vu, > = 07 (uy) / @H?T — 677 (uy) / (w,Hat! 2.2)
Q Q

Q

which proves there exist constants m > 0 and M > 0 independent of n such that m <
0(u,) < M. By passing to the limit in (2.2), the whole sequence {0 (u,)} converges as u,, is
convergent and hence 6 (1) = 6y where Opu € N which proves our claim.

Next, we claim that inf max I.(y(1) = 1nf I (u). It is easy to see that inf max
yels t€l0, ueN(Q) yels tel0,1]

I.(y(t)) = 1nf Ig(u) by (2. 1) It is enough to prove that any y € I, intersects V. Note

that I, (1) > 0 for ||u | 1 (q) sufficiently small and 7 (y (1)) < O which implies the required
result. o

Lemma 2.2 When N = 2, then I, satisfies the Palais Smale condition on D and hence the
functional I, satisfies all the conditions of mountain pass theorem on D.

Proof Define a norm on D as

1/2 1/q+1

lullp = /|W|2 + /|u|'f+l YueD.
R2 R2

Note that (D, |lu|p) is a Banach space. We claim that D < LP*!(R?) is a continuous
embedding provided 1 < p < o0o. Define I, : D — R as

1 1 1
)i — IVul? — — ettt et
oo (1) /(2| ul erlIul +q+1|ul

R2
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Profile of the least energy solution 47

Now, we need to show that I, satisfies Palais Smale condition on D. Let u,, be a sequence
in D such that Ioo () < C and I (uy)u, = o(1)||uy || p. Then, we obtain that u,, satisfies

(5- m)/ vl + (5 - m)/ = -+ olully

Hence, there exists C; > 0 such that

/lvun|2""/|“n|qJrl =C+o)lunlp
2 2

which implies that
[19u | =€+ oo

/|un|q+1 < C + o) unllp-
R2

Hence,
lunllp < min {(C +o(D)llunllp)"?, (C + o(Dllunllp)/4*'}

which implies that u,, is bounded in D.

This implies
/ |Vun|2 <C
R2

and

/ a1 < C.
RZ

Hence by reflexivity, we obtain Vi, — Vu in L? and u, — u in L9, Also by Rellich
Lemma u,, converges strongly in compact subset of L2 and LIF!, Hence there exists a sub-
sequence of u, such that u, — u a.e. But |u,| < |a and |Vu,| < 5 I““ for |x| > 1. By
using the decay estimates, we can show that u,, converges strongly u in D.

Let D, be the subspace of D consisting of radially symmetric functions. Then, D, —
LPH(R?) is a compact embedding provided 2 < p 4+ 1 < oo.
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48 S. Santra, J. Wei

Suppose T is a bounded set in D,. Then, |u(r)| < € ifu € T and r > R. Hence
) ) o0
St = [t < [t < el
R R R

Now, we know that bounded sets in D, will converge strongly in L”T!(R?) on compact
subsets and hence we can use the usual diagonalization argument to obtain a strongly con-
vergent subsequence in L?!(R?) from a sequence in 7. As a matter of fact, I, satisfies all
the conditions of the mountain pass theorem in D,.. Hence there exists a ¢ > 0 such that

¢ = inf max [ 1)) = inf max I (¢
yel 1€[0,1] 2oy (1) ueD, 120 ooltu)

where
F'={y eC(0,1]; D;); ¥(0) =0, Ic(y(1)) <0}

Hence there exists a positive radial solution of (1.7) obtained by the mountain pass theorem.
Hence by Lemma 2.1, U is a mountain pass solution of (1.7). O

Since

Ce = ueiNngf(Q) Te(u) = Ie(ue)

we have

1 1 1 1
ce = I (ug) = 52(5 - m) / |V148|2 + (m - m)/ug+l (2.3)
Q Q

which implies that 62 [, |[Vu|?, [, uP ! and Jo ul™ are uniformly bounded. Let P; be a

local maxima of (1.2), then u. (P;) > 1. By Gidas and Spruck [8], we obtain |u, ||L°C(§) <C.
Hence ””‘EHCM@) < Cforsome( < B8 < 1, as aresult u.(P; + £x) — U (x) uniformly in
loc
Qe p = {x/P: + ex € Q} where U satisfies (1.7).
Moreover, if o := max{q%l, N — 2}, by Dancer and Santra [3],

\xlliinoo x|*U(x) = wg >0, if g # g, 2.4)
It is easy to check that if
q < g« 2.5)
thena > N — 2 and
S ) ! 2.6
U(X)—|x|a+ [x[—eta as [x| — oo, (2.6)
[(N—2)244w?
where o = —% + qu. Moreover,

: alg+1)772 _ g+l
lim r*9"VU(r) = wy .
r—00
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Profile of the least energy solution 49

3 Linear theory in R2

Consider the operator L = A + f/(U).

Lemma 3.1 Let ¢ be a bounded solution of
L(y) =0.

Then, V¥ € span {‘)—U 3—U} .

dx1’ dxp
Proof Let us write
o0
¥ =D ¢r(r)Si(0)
k=1

where r = [x|,6 = 7 € S!; and —Ag1 S; = A Sk where Ax = k; k € Z* U {0} and whose

multiplicity is given by My — My_» where M; = w for k > 2. Note that L.y = 0 has
algebraic multiplicity one and A; = 1 has algebraic multiplicity 2. Then, ¢y satisfy an infinite
system of ODE given by,

| A
o+ ¢+ (pUP~' —qui=' = 2 )¢ =0, r € (0, 00). (3.1)
r r2

Also note that (3.1) has two linearly independent solutions z; x and z . Let
" 1 ’ -1 -1 Ak
A@) =¢"+—¢'+ pUP™ —qU1 - 2)¢

Also recall that if one solution z; 4 to (3.1) is known, a second linearly independent solution
can be found in any interval where z; x does not vanish as

-2 -1
2u) = 2140 [ e

where [ denotes antiderivatives. One can obtain the asymptotic behavior of any solution z
as r — oo by examining the indicial roots of the associated Euler equation. The limiting
equation becomes

rP¢" +r¢' — (qo’ +1)¢ =0 (3.2)
whose indicial roots are given by
V@@t itz o
=
Jqo itk=0

In this way, we see that the asymptotic behavior is ruled by z(r) ~ r " as r — +00; where
1 satisfies the problem

1= (qol ™ + ) =0 ifa=q_1.

(3.3)
O

Claim 1 If k = 0, Eq. (3.1) has no nontrivial solution in D.
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50 S. Santra, J. Wei

Since (3.1) is a second-order differential equation, it has two solutions g; and g»>. The
other solution g; satisfies

(rg1.)r = = (U@E)rgi ). (34

Note that we can choose R > 0 such that for » > R we obtain f'(U(r)) < 0. If we choose
g1(R) = 1 and g/l(R) > 0, we obtain (3.4) that g, is increasing for all » > R and
hence there exist a constant ¢ > 0 such that rg; , > c. Hence by integration, we can show
g1(r) — 4+ooasr — o0o. As a result, g does not belong to D. We consider the solution
g2(0) = 1 we can show exactly as in [10] that g, satisfies lim,_, 0 g2(r) = K # 0. Hence,
g2(r) ¢ D. Furthermore, note that the operator is not nondegenerate in the space of bounded
functions.

Claim 2 If k = 1, then all solutions of Eq. (3.1) are constant multiples of U’.

In this case, A1 = 1, and hence we have z; 1(r) = —U’(r) is a solution to the problem (3.1)
and is positive (0, +00). Hence we define

z1,2(r) =Z1,1(F)/Zl,1(5)72571ds
1

Let us check how z1 2 (r) behaves at infinity.

Again when o = q%l, then |U,| ~ r~*4*! as r — oo and hence z1>(r) ~ r*4~! and as
aqg =24 a > 2, z12 ¢ D. Hence any family of solutions of (3.1) is given by ¢; = cU’(r)
for some ¢ € R.

Claim 3 Ifk > 2,Eq. (3.1) admits only trivial solution in D. We will show thatif Ag (¢x) = 0,
then ¢, = 0. Note that —U’ is a positive solution of A;. Let us study the first eigenvalue of
the problem

Al(¢) =1y inR?
/ $ =1 (3.5)
RZ

We know U,, ~ r%q as r — oo. Note that if A; > 0, then fRZ ¢1U" = 0 and hence there
exists a point in R? such that ¢ changes sign. But ¢y is the first eigenfunction corresponding
to A1 and hence it has a definite sign. Hence A; < 0. Thus, A; is an operator having no
positive eigenvalues. Hence for k > 2, ¢, = k2 —1> 0. Now,

k-1

A=A — 1
k 1 P

2
where [ is the identity. Hence 0 = — [po Ax(dx)dr > ck [ % and as ¢ € C(R?), we
have ¢y = 0.

Remark 3.1 Hence deduce that for any ¢ € Ker(—A — pur~! +qU"’1), theng = U’ (r)S)
where S| satisfies

—ASI S] = )\.151.

@ Springer



Profile of the least energy solution 51

Now, Ker(—Ag1 —A17) is 2 dimensional and hence Ker(—Agi — A1) = span{Sj 1, S12} =
span R2. Hence

, , , oU aU
Ker(A + f'(U)) = span{U"(r)S1,1, U'(r)S1.2} = span .
’ ’ 8x1 3xz

This implies that Ker(A + f/(U)) = {%, %} inD.

. — (0 on 8R2 } then

ay2

Corollary 3.1 If we restrict Ker(A + f'(U)) to D(RY) = D N {2L
Ker(A+ f'(U) ND®3) = {52},

ay1
Remark 3.2 When N > 3,Ker(A + f'(U)) N DM2RY) = {g—;f1 dXN ]} where
DM2RY) = {u e D2RY), 2 = 0onRY).
For any P € R" and for any & > 0 set
Uep(x) :=U (x - P) x eRV.
It is clear that Ug p solves
AU, p—U! p+ U, =0 inRY. (3.6)

4 Profile of spike N =2 and g > 5.
Lemma 4.1 Then, (1.20) admits a solution. Furthermore,
Goe Py = —21 _yof—1 4.1
Ty — Pl |x — Ple—1 )0 '

Proof In order to prove existence of solution of (1.20), we consider

A¢0—¢0:0 in Q

d oU, 4.2
a0 _[30o| g (4.2)
av av
2
where Uy = wy|x — P| a1 nd P € 922. Note that this problem has L°° solution since it
is easy to check that | % dUO | < e P\“ and the solution |¢g| < Cy|x — P|'~* 4+ C5. Secondly,

we use Ug = C¢yg as sub -super solution to the problem

AG, —G{ =0 in Q. =Q\ B:(P)
0,G, =0 on 02N 082 4.3)
G, =wye™ in B, (P)

Then, we can show that
Up—Ceo =G, <= Up+ Co
for C large independent of €. Taking ¢ — 0, we obtain
Up—Coho < G4 < Uy + Coyo.

This proves the existence of G, as well as the asymptotic behavior. Note that this solution
is unique up to a constant. O
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We define
@y
fag(x, P) = G4(x, P) — m-
Lemma 4.2 Then, close to P € 0%, the following happens
IV fq(x, P)| = O(x — P|™%) 4.4
and
|Afy(x, P)l = O(lx — P|~FD) 4.5)

near P.
Proof Without loss of generality, we consider P = 0. Then,

2
Af =T p = o(x| ), 4.6)
x|

It is easy to check that there exists a R > 0 such that
| ()l < Clx|” in Br(0) N Q.

Letx € B(%) andr = "% For any y € B, we define f(y) = f(x +ry). Then, from (4.6),
we have

Af =rAf =qa® f+O(x +ryl'™).
Hence by elliptic estimates
IVFO)] < CUlfllzo o) + IAFLos 0))

< ClIf LB, )
< CllfllLe s (x))-

As aresult, |V f(x)] < C|x|~%. Similarly
IAFO)] < Cll fllzs 0
and hence we have

|Af(x)] < Clx|~@+D,

O
5 Construction of the projection
Consider the problem
2
Aga—%go:OinR{
x| (5.1)
Rl 1 5
—_— = on dR% \ {0}.
ay2  fx|®
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Letg = #yz + ¢ be a solution of (5.1). Then, ¢ satisfies
A 2, 1 2y . 2
Afp %(p—i—A(Wyz)—%ﬁ_O inRZ, 52)
g)‘g =0 on 9R% .
Consider ¢ = 8 0 (0) with B=1—caand Q@) = Q(—0). Then, we have
2
qo _
ACPQO) = “5r7 0©) = (B = qa*) Q0) + Qo). (5.3)
As a result, we have
Qg + (B — qa*) Q(0) = —[(sin0)gp + (B — qa*) sin 0]
= (qga® — B>+ 1) sin6. (5.4)
Now, we need to solve

Qoo + (B> — qa®) Q(0) = [sinb|(ga® — B>+ 1) in (0, ), 55
0'(0)=Q'(m) =0 : '

This problem can be uniquely solved as long as

52 . an " n2
that is

(1 —a)? —ga® £ 1.
We denote this solution as go(0). Thus, we can write

1 = r'"[sin + qo(O)]. (5.6)
Next, we solve
Agy —qUI gy + pUP~lpy =0 inR2,
990 _ 1 2 (5.7)
- x® on 8R+ \ {0}.
Let o = @1 + @9 be a solution of (5.7). Then, ¢ satisfies

Ao — qU™ o + pUP~ go + 0(7|x\2+§+a—1) =0 inRZ,
g0 __
dyr 0

(5.8)
on dR2
<.

which can be uniquely solved if ¢y is even in y;, and by super-solution method, we obtain
for |x| > 1

R 1
pole) = O(u*)

Choose an =ns € CgO(RZ) suchthat 0 <n <1

1 infx— Pl <6,
’75(x)_[0 inlx — P| > 25. (5.9)

We define a nonlinear projection in the following way: PU, p € H!(Q) is defined as

PUs p = n(Us,p +e90(Te () + (1 — m)e® Gy (x, P). (5.10)
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Then, we have

PUgp = (Ue,p + e90(Te(x))) + (1 = )[e*Gy(x, P) — (Us,p + £90)].

Lemma 5.1 Forany P € 02, the following expansion holds

2

I (PU,. p) = %IOO(U) + %420, (P) + 0 (:2442) (5.11)
where
p—1 qg—1
IoU) = | | ———UPH(x) - 1 — _pat! ]d. 5.12
) /2[2(p+1)u () = 5 U fax (5.12)
R

Proof Set F(s) := ﬁ(s“‘)p‘H — TJA(5+)q+1' Here o = %. We compute the energy as
follows.

2 1
Je (PUep) = %/W(Pua,p(x)) Pdx + m/ (PU..p(x)""" dx
Q Q

—7/ (PU. p(0))"* dx.

Q

Using the definition of

/ (PU. p(0))" " dx = / (Ue,p+e@o(Te (x))) 1! @D / Gt (x, P)
Q Bs(P)NQ Q\(Bas(P)NR)

+ / (e%Gy + (Ue,p + e9p — £%Gg)n)H!
QN{5<|x—P| <26}

_ / Ue.p(0)7H 4 2@ +D / G (x, P)

QNBs(P) Q\(Bs(P)NQ)

+ / [(69 G+ (Ue p+690—£G )1+ — (%G )T+ 1dx
S<|x—P|<2§
=L+hL+13
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We have
I = / (Ue,p + e00(T, (x))4 !
Bs(P)NQ
1
= / vl +80( / Uzpwo(Ts(x)))
Bs(P)NQ Bs(P)NQ
1 1
= / ulp - / Ul + 0@
B (P) B (P)\Q
= gz/UfiJrldx - / qu;ldx — / Uz}tl + 03
R R3\B; (P) B (P)\Q
wq+l
:82/Uq+ldx— ;1 g20+25-20-2 _ / qu_;l+0(83)
o :
RY B (P)\Q
wq+1
:gz/Uqux_ ;1 p2et2g-20-2 _ 2 / Ut 1 o),
o
R BY(P)\Q
Now, we estimate
s fleyp
e / uat! 252/ / UTH (y1, y2)dyady
0 0

By (P)\Q

Sleyp)

&

5
:82/ / (U9 (31, 0) + Oy |UTT (', 0)1dyady
0 0

8

3 e
= # / (U9 (31, 0)y7dys + OEH)] = 0(e®F2)  (5.13)
0

by choosing § sufficiently close to ¢.
Using the fact that @(¢ + 1) = o + 2, we have

Iy = / (6% Gy + Ue.p + 290 — £%G T+ — (7 Gy) T 1dx
QN{d<|x—P|<26}

= O(1)e* / Gi(x, E)(Ue,p + 90 — % Gy)dx
QN{S<|x—&|<28}

a(p—q)
— O(1)e2+ / GZ(x,g)‘ g (p—q

+ |x —g|1*“]dx
QN{d<|x—&|<28}

|x — £|e(P—D+a

— 0(82+2(¥).

@ Springer



56 S. Santra, J. Wei

First, note that

VU, p + ¢V in|x — P| <6,
VPU.pr) =], on T | | (5.14)
e“VGy in|x — P| > 24.
and in the annulus § < |x — P| < 2§, we have
VPUg p(x) =€*"VGy(x, P) + Vn(e*Gy(x, P) — U p — £90)
+nV(e*Gy(x, P) — U p — £90).
Hence we obtain
/ IVPU.p|* = / |VU, p +eVgol* + ™ / IVG,y(x, P)I?
Q QNBs(P) Q\QNB;(P)
+ / VnPIe“ Gy (x, P) — Us.p — ool
QN{s<|x—P|<268}
+2 / N1}V (e* Gy (x, P) — Us p — e90)|*
QN{S<|x—P|<28}
+2e* / NVGyV(e*Gy(x, P) — Ug p — £90)
QN{s<|x—P|<28}
+2&% / VnVG4(e*Gy(x, P) — U p — £9p)
QN{s<|x—P| <28}
+2 / nVnV(e*Gy — Ug p — 90)(e* Gy — Ug, p — £40).

QN{s<|x—P|<28}

Thus, we obtain

82/ IV (PU,,p(x)) |*dx
Q

= 82/ VU + > / IVGg(x, P)* — wg“afz"*z] +o(e27)
Ri Q\QNB;s(P)
and similarly we have
/(PUND()C))”*1 dx = “;’V/UPJrl + 0(e%42).
Q RZ
Hence we have

2
&
I, (PU. p) = 7l t 22D, (P) + o(1)e? 2, (5.15)

Let

Eelu] = €*Au+ f(u).

Now, we estimate the error due to PU; p(x).
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Lemma 5.2 For § > 0, sufficiently small, there exists o' > 0 such that

e2O(f" (Ue,p) 95 (T2 (x))) in|x — P| <38,
E:[PU, p(x)] = O(.;““&““ﬁ) ind <|x— Pl <28 (5.16)
PGl in|x — P| > 28.
Proof First, it is easy check that
E¢[PU, p(x)] =e*’Glin |x — P| > 28 (5.17)

First, we estimate the error in the [x — P| < 8. As ¢ > 5 we have
E;[PUgp(x)] = [sZAUs,p + f(Ue,P)]
+8[82A§0() + f/(Us,P)(/’O]

+[f(Ua,P + &¢g) — f(Us,P) - Sf/(Us,P)(/’O]
= &2 O(f" (Ue, p) g (T2 (x))).
So, we need to calculate the error when § < [x — P| < 25. We write
PUg p(x) = Ue, p(x) + (1 =) (*Gy(x, P) — Ue, p(x) — £9p).
Hence we have

APUg p(x) = AUg p(x) + A(1 = n)(e*Gy(x, P) — Ue p(x) — ¢0)
= AU, p(x) + (1 = AE*Gy(x, P) — Ue,p(x) — £90)
—2VyV(e*Gy(x, P) — Ue p(x)—£90) +An(e” Gy (x, P)—Ug,p(x) —£¢0).

As a result, we have
8a(p—q)+a+2

2 _ 2 24y, _ p)—(a+l)
e°APUg p(x) = " AU, p(x) + (9(8 |x — P| + X — Pler—arrat?

e (P—gq)+a+2

24« _ —a
e = P g

g (p—q)+a+2 )

24y, _ pil-a
+&2t%|x — P| PR

(PUe.p (1)) = (Ue.p(0))? + OWUL, (9Gy — Us.p — £90))

g2(p—q@)+a+2
= UZP + O(m + 82+a|x — P|_(a+l));
and
-1
(PUe,p (X)) = (Ue,p (X)) + OUL, (6%Gy — Ue,p — £90))

a(p—q)+a+2
€ + 82+C{ |x _ P|7((¥+l)).

_ P
=Up+ O(ilx — i
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Summing up all the terms and using the fact (3.6), we obtain

8a(pfq)+a+2

_ 240, _ pj—(a+l)
EJ[PUg p(x)] = O(&‘ |[x — P| + X — P ratl

g¥(P—q@)t+a+2

240y, -
e = P g

g¥(P—q)+a+2
|x — p|ot(p—q)+oz)

+ &2ty — P|’°"1).

+e¥x — P 4

g¥(p—q)+a+2
( = P

As a result, we can choose o’ € (0, 1) sufficiently small such that

82+a51—a)

E[PU;p(x)] = O( x — P|2

6 Refinement of the projection

Now, we refine the projection PU, p. We define a projection of the form

Ve.p = PUg p +£%8' %0

where
Av; +qU? v =0 in Q,
d 1 JPU
o TR .
v gagl-a gy
IV p

Note that v; is bounded and is chosen in such a way that —>~ = 0 on 9€2.

v
Lemma 6.1 Forany P € 02, the following expansion holds

e (Veop) = I (PUq,p) + 0 (:2%2).

Proof By definition, we have

82+2a52(1—a)
Ie (Ve.p) = I: (PUe.p) + f/wmz
Q

fg2tes-o / VPU, pVu
Q

—/{F(PUg,p +&%8'7%v)) — F(PU; p)}
Q

82+2a82(]—a)
2
=1 (PUe,P) + f/|vvl|
Q
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+es(=) /{ezwus,pw] + f(PUs p)vi}
Q

—/{F(Pug,p +&%8'7%)) — F(PUe p) — %8 f(PU, p)v1}
Q

g212052(1—a)
2
=1, (PUep) + f/|vvl|

Q

aPU
—80‘8(1_a)/{82APU&P + f(PU. p)}v +82+aa<l—a>/T&Pvl
Q

0Q2

—/{F(Pug,p 16951 0) — F(PUs.p) — 698" £ (PU,.p)u1)
Q

82+2a52(] —a)
2
= I (PUep) + f/|vvl|
Q

oPU,
—e“(s(l—“)/EE(PUE,p)vl +82+‘*5<1—“>/T€’Pu1
Q IQ
—/{F(PUg,p +&%817 %)) — F(PU, p) — €%8' " f(PUs p)uv1)

Q
It is easy to check that
£2+20 52(1—a)

2 /|VU1|2 :0(82+2(¥)

Q

82+a8(1—a)/ OPUek \ _ oe2+2ay,
av
Q2

Now, we estimate

/ES(PUe,pwldx: / E.(PU.p)v1 + / Eo(PU,.p)v;

Q QNBs(P) QN(B2s (P)\Bs(P))
+ / E;(PUg p)vidx
Q\Bs(P)
=h+ L+ 1.

Now, we estimate /1. Then, we have

E;(PUg p)v = / E.(PUg p)ur + / Ec(PUg p)v; = 0(84)
QNBs(P) QNBer(P) QN(Bs\B:r(P))
+0(€2+o¢827a)

From /> we have

L = O(*8' " log §).
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Furthermore, we obtain

I = o(e*1).

As g > 5, we obtain

/{F(PUE,P +&%817%0)) — F(PUg p) — £%8' f(PU; p)u1)
Q

_ g2 /f’(PUg,p)v% _ O(e2H2ag2-2ay,
Q

Using the above facts, we obtain

Iy (Vep) = I (PUs p) + 0(*T).

Lemma 6.2 The error due to the refined projection is given by

Ee[Ve,p(x)] = Ec[PUq p(x)] + 2748174 Avy + %8O (f'(PUe p)v1).

Proof We have

EelVe,p(0)] = Ec[PUe p(x)] + 775 A,
HS(PUep(x) + 8! v1) — f(PUep (1)),

When |x — P| < § we have

Ee[Ve,p(0)] = £ O(f"(Us.p + £00)9) + €78 Avy
+6%8' " O(f' (Us, p + £90)v1).

In the neck region, 6 < |[x — P| < 2§ we have

E&‘[VE,P(X)] = 82+a81_a0( ) + 82+0181—01Av1

x — P|?
9817 O(f (Ue.p + £90)v1).

Lemma 6.3 Moreover, if P € 02, then

2
&
ce = S loot 22D, (P) + 0(e2F2).

Proof Fort > 0let B(t) = I.(tV, p), then by Lemma 2.1 we have
ce < max fB(t)
t>0
and hence there exists a unique 7, > 0 such that

B(t:) = r}laé( B(t) and B'(z;) = 0.
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We claim that r, = 1 + O(s"‘*"’) for some o’ > 0 sufficiently small. We have

1 1
(IL(Ve.p), Ve.p) = / (ezwvg,pﬁ—(ve,p)i* +<Va,p>i*)

= / Ec[Ve plVe p = O3, (6.5)
Q

Since (I/(t:Ve.p), Ve.p) = 0 and (I(Ve. p), Ve p) = O(1)e>T2%, we have
(I(t:Ve,p) — IL(Ve.p). Ve, p) = O(1)g2@F D+’

which implies

(2 — 1>/sz|vvs,p|2 — (Pt — 1)/(v€,p>i“ + @t -1
Q Q

> /‘(ngP)i‘Fl — (’)(1)82+2a+°'/
Q

and letting Vggp(x) = V¢ p(ex 4+ P) in Q. we have
~ ~ ] ~ l 7
(12 - 1)/ IVVe pl? — @2+ — 1)/<Vs,p)f;+ + (4t — 1)/(\/5,1:)3* = O(1)e” +e
Qe Qe Qe
which implies that 7, — 1 = O(1)¢**°". Furthermore,

1 1
I/ (Ve,p)(Ve,p, Ve.p) =/(82|vvg,p|2—p(vg,P>i+ +q(vg,p>q:)

€

= sN/ (— (p— DU 4 (g — 1>Uq“) + O(1)e*ath
]RN

= sz(— (p—q)/UP“ —(q - 1)/|VU|2+0(1))
R2 R2
= 0(&?). (6.6)
As a result, we obtain
I (ug) < 1}138( IS([VS,P) = Js(tsVe,P)

I:(Ve,p) + (te — D{IL(Ve,p), Ve p) + (1 — 1D*O(e?)
Je(Ve,p) + o(1)e? T2

A

2
&
Eloo + 82+20lq>q(P) + 0 (82+2(X) .

[m}
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Lemma 6.4 For sufficiently small ¢ > 0, u, has a unique maximum P, € 9S2.

Proof First, note by an application of mountain pass theorem, &2 fQ |Vue|> < C and hence
by Moser iteration, u.(x) is uniformly bounded. Thus, applying Schauder estimates, we
obtain a C > 0 such that ||eDug|z~ < C. Let P, € Q be a local maxima of u,. If
P. € Q, then u.(P;) > 1. If P, € 9%, then there exists a point Sy such that u.(Sg) > 1,
otherwise by the boundary Hopf lemma, we must have 3”98& > (0, a contradiction. Suppose
@ — 400, as ¢ — 0, then by the change of variable v (x) = u.(P; + €x) and v,
satisfies

Ave — vl +vP =0 in Q. P,

ve(x) >0 in Q¢ p, 6.7)
% =0 on 082 p,

where Q; p, = é(Q — P;)and vy — vin C]2OC where

Av—v?+vP =0 in R2
v(x) >0 in R2 (6.8)
u(x) — 0as|x| - oo

Using this, we can show that ¢, = 82(100 4+ 0(1)), a contradiction to Lemma 6.3. As a result,
M is uniformly bounded. If possible, let P¢ 1 and Pg > are two distinct local maxima
of ug. Then, ug(Pe,1) > 1 and ug(Ps2) > 1. Suppose Q, = %
subsequence | Q.| — 8o € [0, +00). Let Q = limg_,¢ w. Then, if 89 > 0, then define

Ve (¥) = ug(ey + Pe2) then it follows that, v — U in CIZOC(]RN) and satisfies

. Suppose along a

—AU =UP —-U? inR?
U'(0)=U'(8) =0
U—20 as |x| — oo

which is a contradiction as U’ (r) < Oforr € (0, +00). Now, suppose 8y = 0. Then, v, — U
in C, 1200 (R%), and U has a unique critical point at O (since U(0) > 1 and U is a radial). Thus,
v, has a critical point in a neighborhood of zero which is a contradiction. Hence | Q.| — +00
ase — 0.

We claim that u, has exactly one maximum for sufficiently small ¢ > 0. First, note that as
u, is a mountain pass solution and hence it has Morse index at most one. By the above result

IPI'SE;P“' — +o00 as ¢ — 0. Now by Sect. 2, the principal eigenvalue A; > 0 such that

AY+f'(U)¥ = —\ ¥ andis easy to check that | € D(R?) hence [, [V [>— f/(U)Y? <
0. Now, using an appropriate cut-off function, we can obtain the same property for { with
compact support. Now, define a two-dimensional subspace spanned by ¥ (x) = (%)

and Yo (x) = 1//(%) where x € 2. Note that the support supp ¥ N supp ¥ = @ as
|P1.£_P2,s|

. — +o00. Hence we obtain a two-dimensional space on which &2 fQ |V 12 —

fudW? = [en IVYil> — f/(UW? < 0fori = 1,2. Asu, — U in C} (R?), ¥; has
compact support. Hence u, has Morse index at least two, a contradiction.
The proof of P, € 9S2 follows exactly as Ni and Takagi [12]. O

7 Lower bound

First, we prove that
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Lemma 7.1 There exists constants C; > 0 and C» > 0 such that
C1e%Gy(x, Ps) < ue(x) < C2e%Gy(x, P) in Q\ QN Ber(Pe) (7.1)
for some R > O sufficiently large.

Proof Tn Q\ Beg(xe), us and %Gy (-, P;) are bounded. We have e?Au, —ul = —u? <0
and AG, — GZ = 0. Note uz(P:) = ||uelloo > 1. Since by Hopf maximum principle, we
can choose 0 < 1 < 1 such that

9 G, (x, P,
8”6 < ganM on d(2\ QN Ber(Pe)).
v
Then, we have
A(Gy) — 1GyT =nAGy —1'Gg = (n —1")G§ = 0. (7.2)

Hence
&2 Ay — 1e*Gy) — ul + (ne“Gy)?1 <0

which implies that

ul — (e Gy)1

2 o
g“A —ne“Gy) —
(e — 1 q) e — 1e°G,

(”8 - HSQGq) = 0.
Hence by the maximum principle, we have u; > ne*Gy in Q \ Begr(Py).

For the upper bound, let 0 < 6 < 1 such that u, < 6 in Q \ Bzg(P:) and 1 > 1 such
that

0 aG,(x, P,
e o oy G Pe) oo\ QN Bar(P)).
v av
then we have
AMGy) — (mGy)? = nAGy — 1 GY = (n1 — n})GY. (7.3)

Then, u, satisfies
&2 Aug —ul > —6P in Q\ Beg(Pe).
As a result, we obtain

uf — (me*Gy)1

2 o
e Aug —ne"Gy) —
(e —m1 q) 0, _7718an

(e —me*Gy) = =07 — (m —n{)G§ = 0.

Hence we obtain by the maximum principle in Q \ Bzg(Pe)

ug(x) < C26%Gy(x, Pe).

In order to obtain the lower bound, we define
ug = Ve p, + % Ye (7.4)
If we plug this in Eq. (1.2), then y, € H'(Q) satisfies

[ezAws + [ (Ve.p)Ve = —& YEe[Ve p 1+ Nelte] in 9,

. 7.5
Ve =0 on 9S2. 7
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where
NelWel = e {f (Ve,p. +&Ve) — f(Ve,p) — & f' (Ve p) Ve )
Lemma 7.2 For sufficiently small ¢ > 0, there exists C > 0 such that
1Well o < C. (7.6)

Proof We claim that ¥, is uniformly bounded. If possible, let there exists a sequence & such
that || kllcoc = 00. Let || have its maximum at a point k, € Q2. As aa‘/ff = 0 by Hopf’s
lemma k; € int($2).

We claim that @ < C.

Suppose this is not true then @ — 4-00. Then, we have three cases; | P, — k.| < 6,8 <

[Py — kel < 28 or | Py — kg| > 26.

Case 1 When | P, — k.| > 26, and as a result —A,.(k.) > 0 and there exists a ¢ > 0 such
that ¥, (k;) > ¢. We have from (7.5)

0= _82+QAWE(k8) = {f(VE,Pg(kg) + Saws(ks)) - f(vs,Pg)} - Es[va,xg]
which reduces to
(G ke, Po) + 8" 01 (ks) + ) < Gl(ke, Py) + o(1)

and hence a contradiction.
Case 2 When | P, — k.| < 6. Then, eR < |P; — k.| < &

{f(Ve,Pg(ke) + galps(ks)) - f(VE,Pg)} - Ea[vs,Pg] > 0.

This implies that

1 1
)< ()
<|ké‘_Ps|a |k£_Pe|a

which is a contradiction. The other case is much easier to handle.
Thus, we consider ¥, (x) = Y. (ke + €x)

_
el

e

By the Schauder estimates, we obtain || W, || .1, is bounded for some 6 € (0, 1] and hence by

I,
loc
the Arzela-Ascoli’s theorem there exists Wo € C! such that | ¥, — \IJ0||C11 — Oase — 0.
loC

Using the fact that M < C, v satisfies
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Profile of the least energy solution 65

— : 2
AW+ f'(U)¥o=0  inR7

Wl < 1
ol = (1.7)
— =0 in 9R%

dy2

Now, we show that W € D.
We obtain a contradiction by showing that VW, (0) = 0. Using the fact that Vu,(P;) =0
and

Vug(Pg) — VVS,PS(PS)

VO = [ Ve lloo

we obtain VW, (0) — 0 as ¢ — 0. This implies that VW, (0) = 0 by pointwise convergence
and hence V(a; U )(0) = 0 and this implies that a; = 0. ]

xy
Lemma 7.3 We have,

2

&
ce = 5 Ioo(U) + 212D, (P,) 4 o(2@ D), (7.8)

Proof We want to write uy = Ve p, + £*¢. So, we have

Je(ug) = Js(Ve,Pg)

+&% / 2V Ve, p. Ve — f(Ve, p)Ye)dx
Q

2u

+%( / 2|V [2dx — f’(vg,xg)wf)
Q

2a
_/ |:F(V8,Pg + 80(’3”5) - F(Vs,Pg) - Saf(VS,Pg)WS - %f/(vs,Pg)Wgz}

Q

which can be expressed as

Je(ug) = Jg(VE,Pg)

+8a/ Ee[vs,Pg]wsdx

Q

2a
+%(32/ Ve | ?dx — f/(VS,Pg)wSz)
Q

2a
_/ |:F(V8,Pg + 80(\05) - F(Vs,Pg) - Saf(VE,Pg)l/fs - %f/(vs,Pg)‘pgz}

Q
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Now, we estimate the following terms

/Es[vs,Pg]wedx = / Es[Vs,Pg]l/fs + / Es[Vs,PE]ws

Q |x—Ps|<eR eR<|x—Ps|<28
+ / ES[VS,PS]V/A; + / ES[VS,Pg]wE
S<|x—Ps| <28 [x—Pg|>26

< Ce* + Ce>8' | log 8|

o | e

[x — P8|2
S<|x—Pg|<28 [x—Pg|>26
< o(1)e* 2,
From (7.5)
/{sﬂwgﬁdx—f/<vs,p5)w3} =s‘°‘/Eg[va,p€]wa —/Ng[wgws.
Q Q Q

As a result, we only estimate

/Ns[lpa]l//s = / Na[ws]WE + / Ns[l//s]WE
Q

|x—P.|<eR eR<|x—P,|<8

+ / Nel[elve + / Nel[relre

S<|x—Pg|<28 [x—Pe|>26

=h+h+ / Na[l/fs]ws + / Ne[Wa]ws-

S<|x—P|<28 |x—Py|>28

We compute /1. As g > 5, we obtain

I = €%0 / (Ue.p, +e00) 1292 | = O@*™).

<R (Pe)
We calculate 7.
L =¢"0 / (Ue,p, + &)1 2y}
Bs (Pe)\ B (Pe)
w e 250
=¢&"0 / m = O(e“8%).

Bs (Pe)\Bgr (Pe)

Estimating in the neck region

Ngwg]wg:o(e“ / vHI/fg).

&, Pe
S<|x—Ps|<28 S<|x—Pg|<28
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In the neck region we have
Ve.p, = Uep, + (1 =) (e*Gy — Ug,p, — £90).

In order to estimate

o q-2,3 _ 2 1 3
€ / Vs,Pg Ve =¢ / lx — P8|a(q—2) Vi

S<|x—Pg|<26 S<|x—Pg|<28
1
< cé? —_—
|x — Pe|==¢
S<|x—Pg|<28
= O(e?6%).

Whenever |x — P.| > 2§, we have

Nele e = 0(e%9).

[x—Pg|>26
Similarly, we show that
8201 )
/ |:F(V8,Pg + 80(\05) - F(Vs,Pg) - gaf(vs,Pg)l/fs - Tf/(va,Pg)Wg]
Q
— 0(82+20l).
The estimate follows exactly as the previous estimate. This completes the proof. O

Remark 7.1 As aresult of Lemmas 6.3 and 7.3, we obtain ®,(P;) — }n%@q(m' Hence
€

Theorem 1.1 is proved.

8 Profile of spikes N =2 and ¢ =5

In this case, o = % The proof of Theorem 1.1 remains almost the same. So, we calculate
only estimate (8.1) as K is not integrable. So, we have

I Sy
&2 / U6=82/ / US(y1, y2)dyady,
BE(P)\QE 0 0

fleyp)

5
:82/ / [U6(y1’0)+O(|YZ|U6()”,0))]dyzdy1
0 0

3

3 B
2O [[etonontan + oo ont]an. @b
0

2
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of
As U 6(yl, 0) ~ ? , we estimate the first term in (8.2) in the following way,

R e
3 7 3 3
e’H(P) e’H(P) e’ H(P)
/U6(y1 0)yidy; = /U6()’1, 0)yrdyr + /U6(y1, 0)yrdyi
R
3
6 &
w? H(P) 1
=0@EY) + ”753/7@1
2 yi
R
6 3
w)H(P)e 5
=4 " log-+ 0. (8.2)
2 g
Moreover, it is also easy to check that
ot 3
g H(P)e )
/ VU, p|* = log — + O(?) (8.3)
2 e
As § = £9°, we have from (8.2) and (8.3)
g’ 1 —o0p 4 1 4 1
Io(ug) = —Iloo — ———¢" | log— |H(P:) +ole"| log—) ). (8.4)
2 8 & £
as w, = —=.
197 V2
9 Profile of spikes N =3 and g > 3
When g > 3, U(r) ~ £ asr — +o00. The projection PU, p = nU,, p where 1 is the same

cut-off function deﬁned in (5.9). In this case, we perform the reduction in pl2 (]R3 ). Note that
in this case, K is not integrable. Therefore, from Lemma 1.1, we estimate the terms involved
in K. Note that in this case, 52|VU8, p|? is the lowest order term in the energy expansion and

hence
oUg. p
82/|VU£,p|2=52/U5,P - +/U5,Pf(Us,P)

Q aQ Q

— ¢? / Ug,p8U5P+O() 9.1)

av
3QNBs(P)

Now, from (1.16), we have

av az; azN

2
. U U
8—7(1+|v oy 2[235- ef ”’]
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Thus, we have

2
aU af aU AU
2 e, P &P &P /
U = > - d
¢ / “P 7y 8/[ dy: 0z ]y

—' 0y aznN
9QNBs(P) BX(P) T
fey)
= | U(y, Z(ek,y,+(e 1)
B3 (0)

y BU(y’, f(iy)) . aU(y/’ f(iy))]
dyi dyNn

2
UK, 0) -
3 2 -1
=¢ |: / U(y/,O)TZ]:kiyi Y1 e
in

B3 (0)
&

92U
— / U(y’,O)a(ikaly,pkO(s )}

N
BZQ(O) i=1
&

H(P AU, 0
=847(2) / U(y’,O)i(ay )Iy’ldy’
r

B3 (0)
&

+o(84(log 1))
= —.94(10g 7)H(P) }/32 +0(8 (log 1))
& 2 e

WO ot _ U, 0)
ar Y N 8y]2v '

using the fact that

10 Profile of spikes N =3 and ¢ = 3

as r — oo and |U,|* ~

When q = 3, by Lemma 1.1 of [4], we have U(r) ~ ﬁrJ@

4 Toar 10g . Note that in this, & |VU€ p|2 and U4P are of the same order and are the lowest

order term in the energy expansion and hence we have from (9.1) and R > 1

H(P AU, 0 1

&2 / VU, 2 = 6+ ) / vy, 02009 )|y’|dy/+o(s4(1og(logf>))
2 or e

Q

B3 (0)

8/e
. 4H(P)/ 1 4 1
=¢ 4 r(logr)dr—i—o(s (log(logg)))
R
= —84@(10g(10g l)) +0(84(log (log 1))
4 £ 3
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