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Abstract We consider the problem ε2�u −uq +u p = 0 in�, u > 0 in�, ∂u
∂ν

= 0 on ∂�
where � is a smooth bounded domain in R

N , 1 < q < p < N+2
N−2 if N ≥ 2 and ε is a small

positive parameter. We determine the location and shape of the least energy solution when
ε → 0.
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1 Introduction

There has been considerable interest in understanding the behavior of positive solutions of
the elliptic problem {

ε2�u + f (u) = 0 in �

u > 0 in �, ∂u
∂ν

= 0 on ∂�
(1.1)

where ε > 0 is a parameter, f is a changing sign superlinear nonlinearity and� is a smooth
bounded domain in R

N . Let F(u) = ∫ u
0 f (t)dt. We consider the problems in the zero mass

case, that is, when f (0) = 0 and f ′(0) = 0. It is easy to check that the problem (1.1) admits
solutions on � if f ′(0) < 0, while there may be no nontrivial solutions for small ε > 0 if
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40 S. Santra, J. Wei

f ′(0) > 0. Thus, problem (1.1) can be viewed as borderline problems. Berestycki and Lions
in [2] proved the existence of ground state solutions if f (u) behaves like |u|p for large u
and |u|q for small u where p and q are, respectively, supercritical and subcritical. This type
of equations arise in the Yang-Mills theory, in various mathematical models derived from
population theory, chemical reactor theory, and are much harder to handle; see Gidas [6] and
Gidas et al. [7]. In this paper, we consider the following singular perturbed problem,

⎧⎪⎨
⎪⎩
ε2�u − uq + u p = 0 in �
u > 0 in �

∂u
∂ν

= 0 on ∂�,

(1.2)

where � is a bounded domain in R
N with a smooth boundary ∂� and ε > 0 is a small

number and ν denotes the unit normal to ∂�. Here, 1 < q < p < N+2
N−2 and N ≥ 2.

This problem with the Dirichlet boundary condition was first studied by Dancer and Santra
[3], and they have proved that there exists q� = N

N−2 called the zero mass exponent such

that when q ∈ ( N
N−2 ,

N+2
N−2 ), the least energy solution, concentrates at a harmonic center of

�. Moreover, q� is critical to (1.2) in the determination of concentration of the least energy
solution. Furthermore, Dancer et al. [4] proved that q ∈ (1, N

N−2 ), the least energy solution
concentrates at the global minimum of Rq (re-normalized energy) where

Rq(ξ) := lim
δ→0

×

⎧⎪⎨
⎪⎩

∫
�\Bδ(ξ)

1

2
|∇Gq(x, ξ)|2 + 1

q + 1
Gq+1

q (x, ξ)− (q − 1)

2(q + 1)(2 + 2α − N )
δ−2−2αω

q+1
q

⎫⎪⎬
⎪⎭

(1.3)

and Gq(·, ξ) is the unique positive weakly singular solution to the problem

⎧⎪⎨
⎪⎩
�xGq(x, ξ)− Gq(x, ξ)q = 0 in � \ {ξ},
Gq(x, ξ) ∼ ωq

|x−ξ |α for x ∼ ξ

Gq(x, ξ) = 0 on ∂�

(1.4)

and when q = q�, uε concentrates at the global minima of �q� , where �q� is defined by

�q� (ξ) :=
∫
�

∣∣∇Hq� (x, ξ)
∣∣2 dx

+ (N − 2)2
∫

RN \�

1

|x − ξ |2(N−1)| log |x − ξ ||N−2
dx

+ 1

2
(N − 2)2

∫
RN \�

1

|x − ξ |2(N−1)| log |x − ξ ||N−1
dx

+ (N − 1)(N − 2)

2

∫
RN \�

1

|x − ξ |2(N−1)| log |x − ξ ||N
dx
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Profile of the least energy solution 41

where Hq� (·, ξ) is the solution to the problem⎧⎪⎨
⎪⎩
�xHq� (x, ξ) = 0 in �,

Hq� (x, ξ) = 1

|x − ξ |N−2| log |x − ξ || N−2
2

on ∂�
(1.5)

and

ω
q−1
q =

⎧⎪⎨
⎪⎩

2
q−1

[
2

q−1 − (N − 2)
]

if q < q�(
N−2√

2

)N−2

if q = q�.
(1.6)

In this paper, we consider the analogue Neumann problem (1.2). As in the Dirichlet prob-
lem, there are zero mass exponents for the Neumann problem. We now derive the zero mass
exponent, which will be crucial in determining the points of concentration.

As in [12], we first define the least energy solution. Let the associated functional to the
problem (1.2) be

Iε(u) =
∫
�

(
ε2

2
|∇u|2 − 1

p + 1
(u+)p+1 + 1

q + 1
(u+)q+1

)
dx .

Easy to check that Iε(u) satisfies Palais-Smale condition and all the conditions of the
mountain pass theorem and hence there exists a mountain pass solution uε > 0 and a moun-
tain pass critical value characterized by

0 < cε = inf
γ∈�ε

max
t∈[0,1] Iε(γ (t))

where

�ε = {γ ∈ C([0, 1], H1(�)) : γ (0) = 0, γ (1) = e},
where Iε(e) < 0 and e(x) = k is a constant function on �, k chosen sufficiently large. Note
that as 0 is a strict local minima of Iε, cε > 0, ∀ε > 0. Let

Nε(�) =
{

u ∈ H1(�) : ε2
∫
�

|∇u|2 +
∫
�

(u+)q+1 =
∫
�

(u+)p+1
}
.

The problem is now to obtain the asymptotic behavior of cε as ε → 0. To this end, we
start with the entire problem⎧⎪⎪⎨

⎪⎪⎩
�U − U q + U p = 0 in R

N ,

U > 0 in R
N ,

U → 0 as |x | → ∞,

U ∈ C2
(
R

N
)
.

(1.7)

By Li and Ni [11] and Kwong and Zhang [10], (1.7) has a unique radial solution U such that
U ∈ D1,2

(
R

N
) ∩ Lq+1

(
R

N
)

where D1,2(RN ) = {u : |∇u| ∈ L2(RN ) and u ∈ L2� (RN )}
when N ≥ 3. Moreover, U behaves at infinity as

U (r) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

r
2

q−1
if 1 < q < N

N−2 ,

1
r N−2 if N

N−2 < q < N+2
N−2 .

1

r N−2(log r)
N−2

2
if q = N

N−2 .

(1.8)
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42 S. Santra, J. Wei

When q = 1, Ni and Takagi [12] showed that for sufficiently small ε, the least energy
solution is a single boundary spike and has only one local maximum Pε ∈ ∂�.Moreover, in
[13], they prove that H(Pε) → maxP∈∂� H(P) as ε → 0 where H(P) is the mean curvature
of ∂� at P. A simplified proof was given by Del Pino and Felmer in [5], for a wide class of
nonlinearities.

We first point out a useful lemma whose proof follows from the computations in Ni and
Takagi [12].

Lemma 1.1 Let A(x) be a radial function with A(x) ∼ C
|x |ν as |x | → +∞ and γ > N + 1.

Then, for P ∈ ∂�, we have the following asymptotic expansion∫
�

A

(
x − P

ε

)
dx = εN

[
c

2
− εK H(P)+ o(ε)

]
(1.9)

where H(P) is the mean curvature of the boundary at the point P

c =
∫

RN

A(x)dx

and

K = 1

2

∫
∂RN+

|y|2 A(y, 0)dy.

Now, we take

G(x) = 1

2
|∇U |2 + 1

q + 1
U q+1 − 1

p + 1
U p+1 (1.10)

We claim that K > 0. Note that from algebraic decay of U , we obtain

K = 1

4

∫
∂RN+

[(U ′)2 − F(U )]|y|2dy′ = N − 1

4

∫
R

N+

[(U ′)2 − F(U )]yN dy′

= N − 1

N + 1

∫
R

N+

(U ′(|y|))2 yN dy. (1.11)

This proves the claim.
Observe that the restriction γ > N + 1 is necessary otherwise K is not defined.
Then, the lowest decay rate in (1.10) is given by the gradient term since 2(α+1) ≤ α(q+1).

Note that the equality holds for α = 2
q−1 .

So, if 2(α+1) > N +1,we obtain an estimate depending only on the mean curvature. As
a result if 2(α+1) > N +1,we obtain an estimate on the least energy (as in [12]) depending
only on the mean curvature. So, if α > N−1

2 , we have

cε = εN
[

c

2
− εK H(Pε)+ o(ε)

]
(1.12)

where Pε is the unique local maximum point of uε and H(Pε) is the boundary mean curvature
function at Pε ∈ ∂�.

Following the same argument in Ni and Takagi [12], we can then prove that H(Pε) →
maxP∈∂� H(P) as ε → 0.
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Profile of the least energy solution 43

Observe that α > N−1
2 is satisfied if and only if either N ≥ 4, or N = 3, q < 3, or

N = 2, q < 5.
The most interesting cases are

1) N = 3, q ≥ 3, (α = 1). Note that when N = 3 and q = 3, we are in the situation of a
zero mass exponent.

2) N = 2, q ≥ 5,
(
α = 2

q−1

)
.

The main objective of this paper is to locate the maximum point Pε in the remaining
cases. It turns out that as in the Dirichlet problem, the location of the spikes is determined in
a nonlocal way.

Let P ∈ ∂�. We define a diffeomorphism straightening of the boundary in a neighbor-
hood of P. After rotation and translation of the coordinate system, we may assume that the
inward normal to ∂� at P points in the direction of the positive xN axis and that P = 0.

Let x ′ = (x1, x2, . . . , xN−1) and B ′
δ = {x ′ ∈ R

N−1 : |x ′| < δ0} and�1 = �∩ B(P, δ0),

where B(P, δ0) = {x ∈ R
N : |x − P| < δ0}. Since ∂� is smooth, we can choose a

δ0 > 0 such that ∂� ∩ B(P, δ0) can be represented by the graph of a smooth function
f = fP : B(δ′0) → R where

fP (0) = 0,∇ fP (0) = 0 and ∂� ∩ B(P, δ0)

= {(x ′, xN ) ∈ B(P, δ) : xN − PN > fP (x
′ − P ′)}

fP (x
′ − P ′) = 1

2

N−1∑
i=1

ki (xi − Pi )
2 + O(|x ′ − P ′|3)

where ki (i = 1, . . . , N − 1) are the principal curvatures at P. Note that the first condition
implies that {xN = 0} is a tangent plane of ∂� at P.

We deform the boundary near P. For x ∈ �1 = � ∩ B(P, δ0), set

εy′ = x ′ − P ′, εyN = xN − PN − f (x ′ − P ′). (1.13)

This transformation we denote by y = Tε(x). Note that the Jacobian of Tε equals εN . Its
inverse is called x = T −1

ε (y). Moreover,

x ′ = P ′ + εy′, xN = PN + εyN + f (ε(y′ − P ′)). (1.14)

The Laplace operator and the boundary operator reduces to

ν(x) = 1√
1 + |∇x ′ f |2 (∇x ′ f,−1) (1.15)

∂

∂ν
= 1√

1 + |∇x ′ f |2
{ N−1∑

j=1

f j
∂

∂x j
− ∂

∂xN

}∣∣∣∣
xN −PN = f (x ′−P ′)

(1.16)

and the Laplace operator becomes

ε2�x = �y + |∇x ′ f |2 ∂2

∂2 yN
− 2

N−1∑
i=1

fi
∂2

∂yi∂yN
− ε�x ′ f

∂

∂yN
. (1.17)

Throughout this paper, we use the following notation:

y = (y′, yN ), y′ = (y1, y2, . . . , yN−1) and R
N−1+ = {y ∈ R

N : yN > 0}.
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44 S. Santra, J. Wei

When N = 2, we define a space

D = {u ∈ W 1,2
loc (R

2) : |∇u| ≤ C

|x |α+1 ; |u(x)| ≤ C

|x |α whenever |x | 
 1},

where C > 0 is independent of u. Then,

I∞(U ) =
∫

RN

(
1

2
|∇U |2 − 1

p + 1
U p+1 + 1

q + 1
U q+1

)
dx (1.18)

is well defined on D. Note that when N ≥ 3, I∞(U ) is well defined in D1,2(RN )∩Lq+1(RN ).

In this paper, we show that when α < 1
2 and N = 2, the asymptotic behavior of the least

energy solution of the Neumann problem (1.2) is not determined by the mean curvature of
∂�, instead it is determined by a nonlinear singular problem. For any P ∈ ∂�, we define
the renormalized energy in R

2 by

�q(P) := lim
δ→0

[
1

2

∫
�\�∩Bδ(P)

|∇Gq(x, P)|2dx + 1

q + 1

∫
�\�∩Bδ(P)

|Gq(x, P)|q+1dx

− q − 1

4(q + 1)α
δ−(2α+2)ω

q+1
q

]
. (1.19)

where Gq is the unique (up to a modulo constant) positive solution⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�x Gq(x, P)− Gq(x, P)q = 0 in � \ {P},
∂Gq(x, P)

∂ν
= 0 on ∂� \ {P}

Gq(x, P) ∼ ωq

|x − P|α when x ∼ P.

(1.20)

Now, we state the main results of the paper

Theorem 1.1 There exists ε0 > 0 such that for every ε ∈ (0, ε0), the least energy positive
solution of (1.2) uε ∈ H1(�) has a unique point of maximum Pε ∈ ∂�.
(a) When N = 2 and q > 5, uε concentrates at the global minimum of �q , where �q

satisfies (1.3) and

Iε(uε) = ε2

2
I∞ + ε2+2α�q(Pε)+ o(ε2+2α)

where �q satisfies (1.19).

(b) When N = 2 and q = 5, uε concentrates at a local maxima of H, where H is the
boundary curvature function and

Iε(uε) = ε2

2
I∞ − (1 − σ0)

8
ε3
(

log
1

ε

)
H(Pε)+ o

(
ε3
(

log
1

ε

))

for some σ0 < 1.

Theorem 1.2 There exists ε0 > 0 such that for every ε ∈ (0, ε0), the least energy positive
solution of (1.2) uε ∈ H1(�) has a unique point of maximum Pε ∈ ∂�.
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Profile of the least energy solution 45

(a) When N = 3 and q > 3, uε concentrates at a local maximum of H, where H is the
boundary curvature function and

Iε(uε) = ε3

2
I∞ − γ 2

3 ε
4
(

log
1

ε

)
H(Pε)+ o

(
ε4
(

log
1

ε

))
.

where γ3 = lim|x |→+∞ |x |U (x).
(b) When N = 3 and q = 3,(corresponds to the zero mass exponent) uε concentrates at a

local maximum of H, where H is the boundary curvature function

Iε(uε) = ε3

2
I∞ − ε4

(
log

(
log

1

ε

))
H(Pε)

4
+ o

(
ε4
(

log

(
log

1

ε

)))
.

By concentration, we mean uε converge uniformly to zero in compact subsets of � \ {P}
while there exists a c > 0 such that uε(Pε) ≥ c as ε → 0.

Renormalized energy is a well-known concept in theoretical physics for instance see Beth-
uel et al. [1] is independent of the core radius and is a function of the singularity position
which characterizes the energy content of a dislocated body. They established that a family
of global minimizers of

Kε(u) =
∫
�

1

2
|∇u|2 + 1

4ε2 (1 − |u|2)2; u ∈ H1(�,C) (1.21)

with Dirichlet constraint u = g on ∂�where g is a smooth function with values in S
1.When

n := deg(g; ∂�) > 0, it was found that uε has exactly n zeros (called vortices) of local
degree one, which approach, up to subsequence, n distinct points ξ j for which

uε(x) → eiϕ(x,ξ)
n∏

i=1

x − ξ

|x − ξ | = w(x, ξ).

Besides, ξ globally minimizes a re-normalized energy, W (ξ), characterized as the limit

W (ξ) = lim
ρ→0

⎡
⎢⎣ ∫
�\∪ j=1n Bρ(ξ j )

|∇xw|2 − nπ log
1

ρ

⎤
⎥⎦ . (1.22)

for which explicit expression in terms of Greens functions can be found in Bethuel et al.
[1]. The asymptotic expansion of W (ξ), of (1.22) shows that the renormalized energy is the
remaining energy after the removal of the singular core energy nπ log 1

ρ
has been removed,

see Kleman [9].

2 Preliminaries

We recall some well-known results to (1.2).

Lemma 2.1 (a) For all ε > 0

cε = inf
γ∈�ε

max
t∈[0,1] Iε(γ (t)) = inf

u∈Nε(�)
Iε(u) = inf

u∈H1(�),u �≡0
max
t≥0

Iε(tu).
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46 S. Santra, J. Wei

Proof For the sake of completeness, we prove this well-known lemma. Let ε > 0 be fixed.
First, note that

inf
γ∈�ε

max
t∈[0,1] Iε(γ (t)) ≤ inf

u∈H1(�)
max
t≥0

Iε(tu) (2.1)

We first claim that inf
u∈Nε(�)

Iε(u) = inf
u∈H1(�)

max
t≥0

Iε(tu). Define β(t) = Iε(tu). Due to the

nature of the nonlinearity, we have β(0) = 0, β(t) > 0 for small t > 0 and β(t) < 0 for
t > 0 sufficiently large. Hence, max

t∈[0,+∞)
β(t) is achieved. Also note that β ′(t) = 0 implies

ε2‖u‖2
H1(�)

= g(t) where

g(t) = t p−1
∫
�

(u+)p+1 − tq−1
∫
�

(u+)q+1.

It is easy to see that g is an increasing function of t whenever g(t) > 0. Thus, there exists
a unique t such that ‖u‖H1(�) = g(t). Hence, there exists a unique point θ(u) such that
β ′(θ(u)u) = 0 and θ(u)u ∈ Nε(�). This implies that Nε(�) is radially homeomorphic to
H1(�) \ {0} if we prove that θ : H1(�) \ {0} → R

+ is continuous. In order to do so, let
un → u in H1(�) \ {0}. Then, un → u in H1(�) and un → u in Lr (�) for all r ≤ N+2

N−2
and ∫

�

ε2|∇un |2 = θ p−1(un)

∫
�

(u+
n )

p+1 − θq−1(un)

∫
�

(u+
n )

q+1 (2.2)

which proves there exist constants m > 0 and M > 0 independent of n such that m ≤
θ(un) ≤ M . By passing to the limit in (2.2), the whole sequence {θ(un)} converges as un is
convergent and hence θ(u) = θ0 where θ0u ∈ Nε which proves our claim.

Next, we claim that inf
γ∈�ε

max
t∈[0,1] Iε(γ (t)) = inf

u∈Nε(�)
Iε(u). It is easy to see that inf

γ∈�ε
max

t∈[0,1]
Iε(γ (t)) ≥ inf

u∈Nε(�)
Iε(u) by (2.1). It is enough to prove that any γ ∈ �ε intersects Nε. Note

that Iε(u) > 0 for ‖u‖H1(�) sufficiently small and Iε(γ (1)) < 0 which implies the required
result. ��

Lemma 2.2 When N = 2, then I∞ satisfies the Palais Smale condition on D and hence the
functional I∞ satisfies all the conditions of mountain pass theorem on D.

Proof Define a norm on D as

‖u‖D =
⎛
⎜⎝ ∫

R2

|∇u|2
⎞
⎟⎠

1/2

+
⎛
⎜⎝ ∫

R2

|u|q+1

⎞
⎟⎠

1/q+1

∀u ∈ D.

Note that (D, ‖u‖D) is a Banach space. We claim that D ↪→ L p+1(R2) is a continuous
embedding provided 1 < p < ∞. Define I∞ : D → R as

I∞(u) =
∫
R2

(
1

2
|∇u|2 − 1

p + 1
|u|p+1 + 1

q + 1
|u|q+1

)
.
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Now, we need to show that I∞ satisfies Palais Smale condition on D. Let un be a sequence
in D such that I∞(un) ≤ C and I ′∞(un)un = o(1)‖un‖D. Then, we obtain that un satisfies

(
1

2
− 1

p + 1

)∫
R2

|∇un |2 +
(

1

q + 1
− 1

p + 1

)∫
R2

|un |q+1 = C + o(1)‖un‖D

Hence, there exists C1 > 0 such that

C1

⎛
⎜⎝ ∫

R2

|∇un |2 +
∫
R2

|un |q+1

⎞
⎟⎠ = C + o(1)‖un‖D

which implies that

⎛
⎜⎝ ∫

R2

|∇un |2
⎞
⎟⎠ ≤ C + o(1)‖un‖D

⎛
⎜⎝ ∫

R2

|un |q+1

⎞
⎟⎠ ≤ C + o(1)‖un‖D.

Hence,

‖un‖D ≤ min
{
(C + o(1)‖un‖D)1/2, (C + o(1)‖un‖D)1/q+1}

which implies that un is bounded in D.
This implies

∫
R2

|∇un |2 ≤ C

and

∫
R2

|un |q+1 ≤ C.

Hence by reflexivity, we obtain ∇un ⇀ ∇u in L2 and un ⇀ u in Lq+1. Also by Rellich
Lemma un converges strongly in compact subset of L2 and Lq+1. Hence there exists a sub-
sequence of un such that un → u a.e. But |un | ≤ C

|x |α and |∇un | ≤ C
|x |α+1 for |x | 
 1. By

using the decay estimates, we can show that un converges strongly u in D.
Let Dr be the subspace of D consisting of radially symmetric functions. Then, Dr ↪→

L p+1(R2) is a compact embedding provided 2 < p + 1 < ∞.
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Suppose T is a bounded set in Dr . Then, |u(r)| ≤ ε if u ∈ T and r ≥ R. Hence

∞∫
R

|u(r)|p+1r =
∞∫

R

|u(r)|p−q |u(r)|q+1r ≤ ε

∞∫
R

|u|q+1r ≤ ε‖u‖Lq+1

Now, we know that bounded sets in Dr will converge strongly in L p+1(R2) on compact
subsets and hence we can use the usual diagonalization argument to obtain a strongly con-
vergent subsequence in L p+1(R2) from a sequence in T . As a matter of fact, I∞ satisfies all
the conditions of the mountain pass theorem in Dr . Hence there exists a c > 0 such that

c = inf
γ∈� max

t∈[0,1] I∞(γ (t)) = inf
u∈Dr

max
t≥0

I∞(tu)

where

� = {γ ∈ C([0, 1]; Dr ); γ (0) = 0, I∞(γ (1)) ≤ 0}
Hence there exists a positive radial solution of (1.7) obtained by the mountain pass theorem.
Hence by Lemma 2.1, U is a mountain pass solution of (1.7). ��

Since

cε = inf
u∈Nε(�)

Iε(u) = Iε(uε)

we have

cε = Iε(uε) = ε2
(

1

2
− 1

p + 1

)∫
�

|∇uε|2 +
(

1

q + 1
− 1

p + 1

)∫
�

uq+1
ε (2.3)

which implies that ε2
∫
�

|∇uε|2,
∫
�

u p+1
ε and

∫
�

uq+1
ε are uniformly bounded. Let Pε be a

local maxima of (1.2), then uε(Pε) ≥ 1.By Gidas and Spruck [8], we obtain ‖uε‖L∞(�) ≤ C.
Hence ‖uε‖C2,β

loc (�)
≤ C for some 0 < β < 1, as a result uε(Pε + εx) → U (x) uniformly in

�ε,P = {x/Pε + εx ∈ �} where U satisfies (1.7).
Moreover, if α := max{ 2

q−1 , N − 2}, by Dancer and Santra [3],

lim|x |→∞ |x |αU (x) = ωq > 0, if q �= q�. (2.4)

It is easy to check that if

q < q� (2.5)

then α > N − 2 and

U (x) = ωq

|x |α + O
(

1

|x |(p−q)α+α

)
as |x | → ∞, (2.6)

where α = − N−2
2 +

√
(N−2)2+4ω2

q

2 . Moreover,

lim
r→∞ rα(q+1)U 2

r (r) = ω
q+1
q .
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3 Linear theory in R
2

Consider the operator L = �+ f ′(U ).

Lemma 3.1 Let ψ be a bounded solution of

L(ψ) = 0.

Then, ψ ∈ span
{
∂U
∂x1
, ∂U
∂x2

}
.

Proof Let us write

ψ =
∞∑

k=1

φk(r)Sk(θ)

where r = |x |, θ = x
|x | ∈ S

1; and −�S1 Sk = λSk where λk = k2; k ∈ Z
+ ∪ {0} and whose

multiplicity is given by Mk − Mk−2 where Mk = (k+1)!
k! for k ≥ 2. Note that λ0 = 0 has

algebraic multiplicity one and λ1 = 1 has algebraic multiplicity 2.Then, φk satisfy an infinite
system of ODE given by,

φ′′
k + 1

r
φ′

k +
(

pU p−1 − qU q−1 − λk

r2

)
φk = 0, r ∈ (0,∞). (3.1)

Also note that (3.1) has two linearly independent solutions z1,k and z2,k . Let

Ak(φ) = φ′′ + 1

r
φ′ +

(
pU p−1 − qU q−1 − λk

r2

)
φ

Also recall that if one solution z1,k to (3.1) is known, a second linearly independent solution
can be found in any interval where z1,k does not vanish as

z2,k(r) = z1,k(r)
∫

z−2
1,kr−1dr

where
∫

denotes antiderivatives. One can obtain the asymptotic behavior of any solution z
as r → ∞ by examining the indicial roots of the associated Euler equation. The limiting
equation becomes

r2φ′′ + rφ′ − (qα2 + λk)φ = 0 (3.2)

whose indicial roots are given by

μ±
k =

⎧⎨
⎩
√
(qα2 + λk) if k �= 0

√
qα if k = 0

In this way, we see that the asymptotic behavior is ruled by z(r) ∼ r−μ as r → +∞; where
μ satisfies the problem

μ2 − (qωq−1
q + λk) = 0 if α = 2

q − 1
. (3.3)

��
Claim 1 If k = 0, Eq. (3.1) has no nontrivial solution in D.
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Since (3.1) is a second-order differential equation, it has two solutions g1 and g2. The
other solution g1 satisfies

(rg1,r )r = − f ′(U (r))rg1(r). (3.4)

Note that we can choose R > 0 such that for r ≥ R we obtain f ′(U (r)) ≤ 0. If we choose
g1(R) = 1 and g′

1(R) > 0, we obtain (3.4) that rg1,r is increasing for all r ≥ R and
hence there exist a constant c > 0 such that rg1,r ≥ c. Hence by integration, we can show
g1(r) → +∞ as r → ∞. As a result, g1 does not belong to D. We consider the solution
g2(0) = 1 we can show exactly as in [10] that g2 satisfies limr→+∞ g2(r) = K �= 0. Hence,
g2(r) �∈ D. Furthermore, note that the operator is not nondegenerate in the space of bounded
functions.

Claim 2 If k = 1, then all solutions of Eq. (3.1) are constant multiples of U ′.

In this case, λ1 = 1, and hence we have z1,1(r) = −U ′(r) is a solution to the problem (3.1)
and is positive (0,+∞). Hence we define

z1,2(r) = z1,1(r)

r∫
1

z1,1(s)
−2s−1ds

Let us check how z1,2(r) behaves at infinity.
Again when α = 2

q−1 , then |Ur | ∼ r−αq+1 as r → ∞ and hence z1,2(r) ∼ rαq−1 and as
αq = 2 + α > 2, z1,2 �∈ D. Hence any family of solutions of (3.1) is given by φ1 = cU ′(r)
for some c ∈ R.

Claim 3 If k ≥ 2, Eq. (3.1) admits only trivial solution in D.We will show that if Ak(φk) = 0,
then φk = 0. Note that −U ′ is a positive solution of A1. Let us study the first eigenvalue of
the problem ⎧⎪⎪⎨

⎪⎪⎩
A1(φ) = λφ in R

2∫
R2

φ2 = 1 (3.5)

We know Urr ∼ 1
rαq as r → ∞. Note that if λ1 > 0, then

∫
R2 φ1U ′ = 0 and hence there

exists a point in R
2 such that φ1 changes sign. But φ1 is the first eigenfunction corresponding

to λ1 and hence it has a definite sign. Hence λ1 ≤ 0. Thus, A1 is an operator having no
positive eigenvalues. Hence for k ≥ 2, ck = k2 − 1 > 0. Now,

Ak = A1 − k2 − 1

r2 I

where I is the identity. Hence 0 = − ∫
R2 Ak(φk)φk ≥ ck

∫
RN

φ2
k

r2 and as φk ∈ C(R2), we
have φk ≡ 0.

Remark 3.1 Hence deduce that for any φ ∈ Ker(−�− pU p−1 +qU q−1), then φ = U ′(r)S1

where S1 satisfies

−�S1 S1 = λ1S1.
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Now, Ker(−�S1 −λ1 I ) is 2 dimensional and hence Ker(−�S1 −λ1 I ) = span{S1,1, S1,2} �
span R

2. Hence

Ker(�+ f ′(U )) = span{U ′(r)S1,1,U
′(r)S1,2} = span

{
∂U

∂x1
,
∂U

∂x2

}
.

This implies that Ker(�+ f ′(U )) = { ∂U
∂x1
, ∂U
∂x2

} in D.

Corollary 3.1 If we restrict Ker(� + f ′(U )) to D(R2+) = D ∩ { ∂u
∂y2

= 0 on ∂R
2+} then

Ker(�+ f ′(U )) ∩ D(R2+) =
{
∂U
∂y1

}
.

Remark 3.2 When N ≥ 3,Ker(� + f ′(U )) ∩ D1,2(RN+) = { ∂U
∂x1
, · · · ∂U

∂xN−1
} where

D1,2(RN+) = {u ∈ D1,2(RN+), ∂u
∂yN

= 0 on R
N+}.

For any P ∈ R
N and for any ε > 0 set

Uε,P (x) := U

(
x − P

ε

)
x ∈ R

N .

It is clear that Uε,P solves

ε2�Uε,P − U q
ε,P + U p

ε,P = 0 in R
N . (3.6)

4 Profile of spike N = 2 and q > 5.

Lemma 4.1 Then, (1.20) admits a solution. Furthermore,

Gq(x, P) = ωq

|x − P|α + O
(

1

|x − P|α−1

)
. (4.1)

Proof In order to prove existence of solution of (1.20), we consider⎧⎪⎨
⎪⎩
�φ0 − φ0 = 0 in �

∂φ0

∂ν
=
∣∣∣∣∂U0

∂ν

∣∣∣∣ on ∂�
(4.2)

where U0 = ωq |x − P|− 2
q−1 and P ∈ ∂�. Note that this problem has L∞ solution since it

is easy to check that | ∂U0
∂ν

| ≤ 1
|x−P|α and the solution |φ0| ≤ C1|x − P|1−α + C2. Secondly,

we use U0 ± Cφ0 as sub-super solution to the problem⎧⎨
⎩
�Gε − Gq

ε = 0 in �ε = � \ Bε(P)
∂νGε = 0 on ∂� ∩ ∂�ε
Gε = ωqε

−α in ∂Bε(P)
(4.3)

Then, we can show that

U0 − Cφ0 ≤ Gε ≤ U0 + Cφ0

for C large independent of ε. Taking ε → 0, we obtain

U0 − Cφ0 ≤ Gq ≤ U0 + Cφ0.

This proves the existence of Gq , as well as the asymptotic behavior. Note that this solution
is unique up to a constant. ��
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We define

fq(x, P) = Gq(x, P)− ωq

|x − P|α .

Lemma 4.2 Then, close to P ∈ ∂�, the following happens

|∇ fq(x, P)| = O(|x − P|−α) (4.4)

and

|� fq(x, P)| = O(|x − P|−(α+1)) (4.5)

near P.

Proof Without loss of generality, we consider P = 0. Then,

� f − qα2

|x |2 f = O(|x |−(α+1)). (4.6)

It is easy to check that there exists a R > 0 such that

| f (x)| ≤ C |x |ν in BR(0) ∩�.
Let x ∈ B( R

2 ) and r = |x |
2 . For any y ∈ B1, we define f̃ (y) = f (x + ry). Then, from (4.6),

we have

� f̃ = r2� f = qα2 f̃ + O(|x + ry|1−α).

Hence by elliptic estimates

|∇ f̃ (0)| ≤ C(‖ f̃ ‖L∞(B1(0)) + ‖� f̃ ‖L∞(B1(0)))

≤ C‖ f̃ ‖L∞(B1(0))

≤ C‖ f ‖L∞(B1(x)).

As a result, |∇ f (x)| ≤ C |x |−α. Similarly

|� f̃ (0)| ≤ C‖ f̃ ‖L∞(B1(0))

and hence we have

|� f (x)| ≤ C |x |−(α+1).

��

5 Construction of the projection

Consider the problem ⎧⎪⎪⎨
⎪⎪⎩
�ϕ − qα2

|x |2 ϕ = 0 in R
2+,

∂ϕ

∂y2
= 1

|x |α on ∂R
2+ \ {0}.

(5.1)
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Let ϕ = 1
|x |α y2 + ϕ̂ be a solution of (5.1). Then, ϕ̂ satisfies⎧⎨

⎩�ϕ̂ − qα2

|x |2 ϕ̂ +�
(

1
|x |α y2

)
− qα2

|x |2
y2

|x |α = 0 in R
2+,

∂ϕ̂
∂y2

= 0 on ∂R
2+.

(5.2)

Consider ϕ̂ = rβQ(θ) with β = 1 − α and Q(θ) = Q(−θ). Then, we have

�(rβQ(θ))− qα2

r2 rβQ(θ) = [(β2 − qα2)Q(θ)+ Qθθ ]rβ−2. (5.3)

As a result, we have

Qθθ + (β2 − qα2)Q(θ) = −[(sin θ)θθ + (β − qα2) sin θ ]
= (qα2 − β2 + 1) sin θ. (5.4)

Now, we need to solve{
Qθθ + (β2 − qα2)Q(θ) = | sin θ |(qα2 − β2 + 1) in (0, π),

Q′(0) = Q′(π) = 0 .
(5.5)

This problem can be uniquely solved as long as

β2 − qα2 �= n2

that is

(1 − α)2 − qα2 �= 1.

We denote this solution as q0(θ). Thus, we can write

ϕ1 = r1−α[sin θ + q0(θ)]. (5.6)

Next, we solve{
�ϕ0 − qU q−1ϕ0 + pU p−1ϕ0 = 0 in R

2+,
∂ϕ0
∂y2

= 1
|x |α on ∂R

2+ \ {0}. (5.7)

Let ϕ0 = ϕ1 + ϕ̂0 be a solution of (5.7). Then, ϕ̂0 satisfies⎧⎨
⎩�ϕ̂0 − qU q−1ϕ̂0 + pU p−1ϕ̂0 + O

(
1

|x |2+σ+α−1

)
= 0 in R

2+,
∂ϕ̂0
∂y2

= 0 on ∂R
2+.

(5.8)

which can be uniquely solved if ϕ̂0 is even in y1, and by super-solution method, we obtain
for |x | 
 1

ϕ̂0(x) = O
(

1

|x |α−1+σ

)
.

Choose a η = ηδ ∈ C∞
0 (R

2) such that 0 ≤ η ≤ 1

ηδ(x) =
{

1 in |x − P| ≤ δ,

0 in |x − P| > 2δ.
(5.9)

We define a nonlinear projection in the following way: PUε,P ∈ H1(�) is defined as

PUε,P = η(Uε,P + εϕ0(Tε(x)))+ (1 − η)εαGq(x, P). (5.10)
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Then, we have

PUε,P = (Uε,P + εϕ0(Tε(x)))+ (1 − η)[εαGq(x, P)− (Uε,P + εϕ0)].

Lemma 5.1 For any P ∈ ∂�, the following expansion holds

Iε
(
PUε,P

) = ε2

2
I∞(U )+ ε2α+2�q(P)+ o

(
ε(2α+2)

)
(5.11)

where

I∞(U ) :=
∫
R2

[
p − 1

2(p + 1)
U p+1(x)− q − 1

2(q + 1)
U q+1(x)

]
dx . (5.12)

Proof Set F(s) := 1
p+1 (s

+)p+1 − 1
q+1 (s

+)q+1. Here α = 2
q−1 . We compute the energy as

follows.

Jε
(
PUε,P

) = ε2

2

∫
�

|∇ (PUε,P (x)
) |2dx + 1

q + 1

∫
�

(
PUε,P (x)

)q+1 dx

− 1

p + 1

∫
�

(
PUε,P (x)

)p+1 dx .

Using the definition of

∫
�

(
PUε,P (x)

)q+1 dx =
∫

Bδ(P)∩�
(Uε,P +εϕ0(Tε(x)))

q+1+εα(q+1)
∫

�\(B2δ(P)∩�)
Gq+1

q (x, P)

+
∫

�∩{δ<|x−P|<2δ}
(εαGq + (Uε,P + εϕ0 − εαGq)η)

q+1

=
∫

�∩Bδ(P)

Uε,P (x)
q+1 + εα(q+1)

∫
�\(Bδ(P)∩�)

Gq+1(x, P)

+
∫

δ<|x−P|<2δ

[(εαGq +(Uε,P +εϕ0−εαGq)η)
q+1−(εαGq)

q+1]dx

= I1 + I2 + I3
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We have

I1 =
∫

Bδ(P)∩�
(Uε,P + εϕ0(Tε(x)))

q+1

=
∫

Bδ(P)∩�
U q+1
ε,P + εO

( ∫
Bδ(P)∩�

U q
ε,Pϕ0(Tε(x))

)

=
∫

B+
δ (P)

U q+1
ε,P −

∫
B+
δ (P)\�

U q+1
ε,P + O(ε3)

= ε2
∫

R
2+

U q+1dx −
∫

R
2+\B+

δ (P)

U q+1
ε,P dx −

∫
B+
δ (P)\�

U q+1
ε,P + O(ε3)

= ε2
∫

R
2+

U q+1dx − ω
q+1
q

2α
ε2α+2δ−2α−2 −

∫
B+
δ (P)\�

U q+1
ε,P + O(ε3)

= ε2
∫

R
2+

U q+1dx − ω
q+1
q

2α
ε2α+2δ−2α−2 − ε2

∫
B+
δ
ε

(P)\�ε

U q+1 + O(ε3).

Now, we estimate

ε2
∫

B+
δ
ε

(P)\�ε

U q+1 = ε2

δ
ε∫

0

f (εy1)
ε∫

0

U q+1(y1, y2)dy2dy1

= ε2

δ
ε∫

0

f (εy1)
ε∫

0

[U q+1(y1, 0)+ O(|y2|U q+1(y′, 0))]dy2dy1

= ε3 H(P)

2

δ
ε∫

0

[U q+1(y1, 0)y2
1 dy1 + O(ε2)] = o(ε2α+2) (5.13)

by choosing δ sufficiently close to ε.
Using the fact that α(q + 1) = α + 2, we have

I3 =
∫

�∩{δ<|x−P|<2δ}
[(εαGq + (Uε,P + εϕ0 − εαGq)η)

q+1 − (εαGq)
q+1]dx

= O(1)ε2+α
∫

�∩{δ<|x−ξ |<2δ}
Gq

q(x, ξ)(Uε,P + εϕ0 − εαGq)dx

= O(1)ε2+2α
∫

�∩{δ<|x−ξ |<2δ}
Gq

q(x, ξ)

{
εα(p−q)

|x − ξ |α(p−q)+α + |x − ξ |1−α
}

dx

= o(ε2+2α).
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First, note that

∇ PUε,P (x) =
{

∇Uε,P + ε∇ϕ0 in |x − P| ≤ δ,

εα∇Gq in |x − P| > 2δ.
(5.14)

and in the annulus δ < |x − P| < 2δ, we have

∇ PUε,P (x) = εα∇Gq(x, P)+ ∇η(εαGq(x, P)− Uε,P − εϕ0)

+η∇(εαGq(x, P)− Uε,P − εϕ0).

Hence we obtain∫
�

|∇ PUε,P |2 =
∫

�∩Bδ(P)

|∇Uε,P + ε∇ϕ0|2 + ε2α
∫

�\�∩Bδ(P)

|∇Gq(x, P)|2

+
∫

�∩{δ<|x−P|<2δ}
|∇η|2|εαGq(x, P)− Uε,P − εϕ0|2

+2
∫

�∩{δ<|x−P|<2δ}
|η|2|∇(εαGq(x, P)− Uε,P − εϕ0)|2

+2εα
∫

�∩{δ<|x−P|<2δ}
η∇Gq∇(εαGq(x, P)− Uε,P − εϕ0)

+2εα
∫

�∩{δ<|x−P|<2δ}
∇η∇Gq(ε

αGq(x, P)− Uε,P − εϕ0)

+2
∫

�∩{δ<|x−P|<2δ}
η∇η∇(εαGq − Uε,P − εϕ0)(ε

αGq − Uε,P − εϕ0).

Thus, we obtain

ε2
∫
�

|∇ (PUε,P (x)
) |2dx

= ε2
∫

R
2+

|∇U |2 + ε2+2α
[ ∫
�\�∩Bδ(P)

|∇Gq(x, P)|2 − ω
q+1
q δ−2α−2

]
+ o(ε2α+2)

and similarly we have∫
�

(
PUε,P (x)

)p+1 dx = εN
∫

R
2+

U p+1 + o(ε2α+2).

Hence we have

Iε
(
PUε,P

) = ε2

2
I∞ + ε2α+2�q(P)+ o(1)ε2α+2. (5.15)

��
Let

Eε[u] = ε2�u + f (u).

Now, we estimate the error due to PUε,P (x).
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Lemma 5.2 For δ > 0, sufficiently small, there exists σ ′ > 0 such that

Eε[PUε,P (x)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2O( f ′′(Uε,P )ϕ2
0(Tε(x))) in |x − P| < δ,

O
(
ε2+αδ1−α 1

|x − P|2
)

in δ < |x − P| < 2δ

εαpG p
q in |x − P| > 2δ.

(5.16)

Proof First, it is easy check that

Eε[PUε,P (x)] = εαpG p
q in |x − P| > 2δ (5.17)

First, we estimate the error in the |x − P| < δ. As q > 5 we have

Eε[PUε,P (x)] =
{
ε2�Uε,P + f (Uε,P )

}

+ε
{
ε2�ϕ0 + f ′(Uε,P )ϕ0

}

+
{

f (Uε,P + εϕ0)− f (Uε,P )− ε f ′(Uε,P )ϕ0

}
= ε2O( f ′′(Uε,P )ϕ2

0(Tε(x))).

So, we need to calculate the error when δ < |x − P| < 2δ. We write

PUε,P (x) = Uε,P (x)+ (1 − η)(εαGq(x, P)− Uε,P (x)− εϕ0).

Hence we have

�PUε,P (x) = �Uε,P (x)+�(1 − η)(εαGq(x, P)− Uε,P (x)− εϕ0)

= �Uε,P (x)+ (1 − η)�(εαGq(x, P)− Uε,P (x)− εϕ0)

−2∇η∇(εαGq(x, P)− Uε,P (x)−εϕ0)+�η(εαGq(x, P)−Uε,P (x)−εϕ0).

As a result, we have

ε2�PUε,P (x) = ε2�Uε,P (x)+ O
(
ε2+α|x − P|−(α+1) + εα(p−q)+α+2

|x − P|α(p−q)+α+2

+ε2+α|x − P|−α + εα(p−q)+α+2

|x − P|α(p−q)+α+1

+ε2+α|x − P|1−α + εα(p−q)+α+2

|x − P|α(p−q)+α

)
;

(PUε,P (x))
q = (Uε,P (x))

q + O(U q−1
ε,P (ε

αGq − Uε,P − εϕ0))

= U q
ε,P + O

(
εα(p−q)+α+2

|x − P|αp
+ ε2+α|x − P|−(α+1)

)
;

and

(PUε,P (x))
p = (Uε,P (x))

p + O(U p−1
ε,P (εαGq − Uε,P − εϕ0))

= U p
ε,P + O

(
εα(p−q)+α+2

|x − P|αp
+ ε2+α|x − P|−(α+1)

)
.
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Summing up all the terms and using the fact (3.6), we obtain

Eε[PUε,P (x)] = O
(
ε2+α|x − P|−(α+1) + εα(p−q)+α+2

|x − P|α(p−q)+α+2

+ε2+α|x − P|−α + εα(p−q)+α+2

|x − P|α(p−q)+α+1

+ε2+α|x − P|1−α + εα(p−q)+α+2

|x − P|α(p−q)+α

)

+O
(
εα(p−q)+α+2

|x − P|αp
+ ε2+α|x − P|−α−1

)
.

As a result, we can choose σ ′ ∈ (0, 1) sufficiently small such that

Eε[PUε,P (x)] = O
(
ε2+αδ1−α

|x − P|2
)
. (5.18)

��

6 Refinement of the projection

Now, we refine the projection PUε,P . We define a projection of the form

Vε,P = PUε,P + εαδ1−αv1 (6.1)

where ⎧⎨
⎩
�v1 + qU q−1v1 = 0 in �,

∂v1

∂ν
= − 1

εαδ1−α
∂PUε,Pε
∂ν

on ∂�.
(6.2)

Note that v1 is bounded and is chosen in such a way that ∂Vε,P
∂ν

= 0 on ∂�.

Lemma 6.1 For any P ∈ ∂�, the following expansion holds

Iε
(
Vε,P

) = Iε
(
PUε,P

)+ o
(
ε(2α+2)

)
. (6.3)

Proof By definition, we have

Iε
(
Vε,P

) = Iε
(
PUε,P

)+ ε2+2αδ2(1−α)

2

∫
�

|∇v1|2

+ε2+αδ(1−α)
∫
�

∇ PUε,P∇v1

−
∫
�

{F(PUε,P + εαδ1−αv1)− F(PUε,P )}

= Iε
(
PUε,P

)+ ε2+2αδ2(1−α)

2

∫
�

|∇v1|2
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+εαδ(1−α)
∫
�

{ε2∇ PUε,P∇v1 + f (PUε,P )v1}

−
∫
�

{F(PUε,P + εαδ1−αv1)− F(PUε,P )− εαδ1−α f (PUε,P )v1}

= Iε
(
PUε,P

)+ ε2+2αδ2(1−α)

2

∫
�

|∇v1|2

−εαδ(1−α)
∫
�

{ε2�PUε,P + f (PUε,P )}v1 + ε2+αδ(1−α)
∫
∂�

∂PUε,P
∂ν

v1

−
∫
�

{F(PUε,P + εαδ1−αv1)− F(PUε,P )− εαδ1−α f (PUε,P )v1}

= Iε
(
PUε,P

)+ ε2+2αδ2(1−α)

2

∫
�

|∇v1|2

−εαδ(1−α)
∫
�

Eε(PUε,P )v1 + ε2+αδ(1−α)
∫
∂�

∂PUε,P
∂ν

v1

−
∫
�

{F(PUε,P + εαδ1−αv1)− F(PUε,P )− εαδ1−α f (PUε,P )v1}

It is easy to check that

ε2+2αδ2(1−α)

2

∫
�

|∇v1|2 = o(ε2+2α)

ε2+αδ(1−α)
∫
∂�

∂PUε,P
∂ν

v1 = o(ε2+2α).

Now, we estimate∫
�

Eε(PUε,P )v1dx =
∫

�∩Bδ(P)

Eε(PUε,P )v1 +
∫

�∩(B2δ(P)\Bδ(P))

Eε(PUε,P )v1

+
∫

�\B2δ(P)

Eε(PUε,P )v1dx

= I1 + I2 + I3.

Now, we estimate I1. Then, we have∫
�∩Bδ(P)

Eε(PUε,P )v1 =
∫

�∩BεR(P)

Eε(PUε,P )v1 +
∫

�∩(Bδ\BεR(P))

Eε(PUε,P )v1 = O(ε4)

+O(ε2+αδ2−α)

From I2 we have

I2 = O(ε2+αδ1−α log δ).
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Furthermore, we obtain

I3 = o(ε2+α).

As q > 5, we obtain∫
�

{F(PUε,P + εαδ1−αv1)− F(PUε,P )− εαδ1−α f (PUε,P )v1}

= ε2αδ2−2αO
⎛
⎝∫
�

f ′(PUε,P )v
2
1

⎞
⎠ = O(ε2+2αδ2−2α).

Using the above facts, we obtain

Iε
(
Vε,P

) = Iε
(
PUε,P

)+ o(ε2+2α).

��

Lemma 6.2 The error due to the refined projection is given by

Eε[Vε,P (x)] = Eε[PUε,P (x)] + ε2+αδ1−α�v1 + εαδ1−αO( f ′(PUε,P )v1). (6.4)

Proof We have

Eε[Vε,P (x)] = Eε[PUε,P (x)] + ε2+αδ1−α�v1

+{ f (PUε,P (x)+ εαδ1−αv1)− f (PUε,P (x))}.
When |x − P| < δ we have

Eε[Vε,P (x)] = ε2O( f ′′(Uε,P + εϕ0)ϕ
2
0)+ ε2+αδ1−α�v1

+εαδ1−αO( f ′(Uε,P + εϕ0)v1).

In the neck region, δ < |x − P| < 2δ we have

Eε[Vε,P (x)] = ε2+αδ1−αO( 1

|x − P|2 )+ ε2+αδ1−α�v1

+εαδ1−αO( f ′(Uε,P + εϕ0)v1).

��

Lemma 6.3 Moreover, if P ∈ ∂�, then

cε ≤ ε2

2
I∞ + ε2α+2�q(P)+ o(ε2α+2).

Proof For t > 0 let β(t) = Iε(tVε,P ), then by Lemma 2.1 we have

cε ≤ max
t>0

β(t)

and hence there exists a unique tε > 0 such that

β(tε) = max
t>0

β(t) and β ′(tε) = 0.
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We claim that tε = 1 + O(εα+σ ′
) for some σ ′ > 0 sufficiently small. We have

〈I ′
ε(Vε,P ), Vε,P 〉 =

∫
�

(
ε2|∇Vε,P |2 − (Vε,P )

p+1
+ + (Vε,P )

q+1
+

)

=
∫
�

Eε[Vε,P ]Vε,P = O(ε2α+2+σ ′
). (6.5)

Since 〈I ′
ε(tεVε,P ), Vε,P 〉 = 0 and 〈I ′

ε(Vε,P ), Vε,P 〉 = O(1)ε2+2α , we have

〈I ′
ε(tεVε,P )− I ′

ε(Vε,P ), Vε,P 〉 = O(1)ε2(α+1)+σ ′

which implies

(t2
ε − 1)

∫
�

ε2|∇Vε,P |2 − (t p+1
ε − 1)

∫
�

(Vε,P )
p+1
+ + (tq+1

ε − 1)

×
∫
�

(Vε,P )
q+1
+ = O(1)ε2+2α+σ ′

and letting Ṽε,P (x) = Vε,P (εx + P) in �ε we have

(t2
ε − 1)

∫
�ε

|∇ Ṽε,P |2 − (t p+1
ε − 1)

∫
�ε

(Ṽε,P )
p+1
+ + (tq+1

ε − 1)
∫
�ε

(Ṽε,P )
q+1
+ = O(1)εσ ′+α

which implies that tε − 1 = O(1)εα+σ ′
. Furthermore,

J ′′
ε (Vε,P )〈Vε,P , Vε,P 〉 =

∫
�ε

(
ε2|∇Vε,P |2 − p(Vε,P )

p+1
+ + q(Vε,P )

q+1
+

)

= εN
∫

RN

(
− (p − 1)U p+1 + (q − 1)U q+1

)
+ O(1)εα(q+1)

= ε2
(

− (p − q)
∫
R2

U p+1 − (q − 1)
∫
R2

|∇U |2 + o(1)

)

= O(ε2). (6.6)

As a result, we obtain

Iε(uε) ≤ max
t>0

Iε(tVε,P ) = Jε(tεVε,P )

= Iε(Vε,P )+ (tε − 1)〈I ′
ε(Vε,P ), Vε,P 〉 + (tε − 1)2O(ε2)

≤ Jε(Vε,P )+ o(1)ε2+2α

= ε2

2
I∞ + ε2+2α�q(P)+ o

(
ε2+2α) .

��
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Lemma 6.4 For sufficiently small ε > 0, uε has a unique maximum Pε ∈ ∂�.

Proof First, note by an application of mountain pass theorem, ε2
∫
�

|∇uε|2 ≤ C and hence
by Moser iteration, uε(x) is uniformly bounded. Thus, applying Schauder estimates, we
obtain a C > 0 such that ‖εDuε‖L∞ ≤ C. Let Pε ∈ � be a local maxima of uε. If
Pε ∈ �, then uε(Pε) ≥ 1. If Pε ∈ ∂�, then there exists a point Sε such that uε(Sε) ≥ 1,
otherwise by the boundary Hopf lemma, we must have ∂uε(Pε)

ε
> 0, a contradiction. Suppose

d(Pε,∂�)
ε

→ +∞, as ε → 0, then by the change of variable vε(x) = uε(Pε + εx) and vε
satisfies ⎧⎨

⎩
�vε − v

q
ε + v

p
ε = 0 in �ε,Pε

vε(x) > 0 in �ε,Pε
∂vε
∂ν

= 0 on ∂�ε,Pε

(6.7)

where �ε,Pε = 1
ε
(�− Pε) and vε → v in C2

loc where⎧⎨
⎩
�v − vq + v p = 0 in R

2

v(x) > 0 in R
2

u(x) → 0 as |x | → ∞
(6.8)

Using this, we can show that cε = ε2(I∞ +o(1)), a contradiction to Lemma 6.3. As a result,
d(Pε,∂�)

ε
is uniformly bounded. If possible, let Pε,1 and Pε,2 are two distinct local maxima

of uε. Then, uε(Pε,1) ≥ 1 and uε(Pε,2) ≥ 1. Suppose Qε = Pε,1−Pε,2
ε

. Suppose along a

subsequence |Qε| → δ0 ∈ [0,+∞). Let Q = limε→0
Pε,1−Pε,2

ε
. Then, if δ0 > 0, then define

vε(y) = uε(εy + Pε,2) then it follows that, vε → U in C2
loc(R

N ) and satisfies⎧⎨
⎩

−�U = U p − U q in R
2

U ′(0) = U ′(δ0) = 0
U → 0 as |x | → ∞

which is a contradiction as U ′(r) < 0 for r ∈ (0,+∞). Now, suppose δ0 = 0.Then, vε → U
in C2

loc(R
2), and U has a unique critical point at 0 (since U (0) > 1 and U is a radial). Thus,

vε has a critical point in a neighborhood of zero which is a contradiction. Hence |Qε| → +∞
as ε → 0.
We claim that uε has exactly one maximum for sufficiently small ε > 0. First, note that as
uε is a mountain pass solution and hence it has Morse index at most one. By the above result
|P1,ε−P2,ε |

ε
→ +∞ as ε → 0. Now by Sect. 2, the principal eigenvalue λ1 > 0 such that

�ψ+ f ′(U )ψ = −λ1ψ and is easy to check thatψ1 ∈ D(R2)hence
∫

R2 |∇ψ |2− f ′(U )ψ2 <

0. Now, using an appropriate cut-off function, we can obtain the same property for ψ with

compact support. Now, define a two-dimensional subspace spanned by ψ1(x) = ψ
(

x−P1,ε
ε

)
and ψ2(x) = ψ(

x−P2,ε
ε

) where x ∈ �. Note that the support supp ψ1 ∩ supp ψ2 = ∅ as
|P1,ε−P2,ε |

ε
→ +∞. Hence we obtain a two-dimensional space on which ε2

∫
�

|∇ψi |2 −
f ′(uε)ψ2

i = ∫
RN |∇ψi |2 − f ′(U )ψ2

i < 0 for i = 1, 2. As uε → U in C2
loc(R

2), ψi has
compact support. Hence uε has Morse index at least two, a contradiction.

The proof of Pε ∈ ∂� follows exactly as Ni and Takagi [12]. ��

7 Lower bound

First, we prove that
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Lemma 7.1 There exists constants C1 > 0 and C2 > 0 such that

C1ε
αGq(x, Pε) ≤ uε(x) ≤ C2ε

αGq(x, Pε) in � \� ∩ BεR(Pε) (7.1)

for some R > 0 sufficiently large.

Proof In � \ BεR(xε), uε and εαGq(·, Pε) are bounded. We have ε2�uε − uq
ε = −u p

ε ≤ 0
and �Gq − Gq

q = 0. Note uε(Pε) = ‖uε‖∞ ≥ 1. Since by Hopf maximum principle, we
can choose 0 < η < 1 such that

∂uε
∂ν

≤ εαη
∂Gq(x, Pε)

∂ν
on ∂(� \� ∩ BεR(Pε)).

Then, we have

�(ηGq)− (ηGq)
q = η�Gq − ηq Gq

q = (η − ηq)Gq
q ≥ 0. (7.2)

Hence

ε2�(uε − ηεαGq)− uq
ε + (ηεαGq)

q ≤ 0

which implies that

ε2�(uε − ηεαGq)− uq
ε − (ηεαGq)

q

uε − ηεαGq
(uε − ηεαGq) ≤ 0.

Hence by the maximum principle, we have uε ≥ ηεαGq in � \ BεR(Pε).
For the upper bound, let 0 < θ < 1 such that uε < θ in � \ BεR(Pε) and η1 
 1 such

that

∂uε
∂ν

≥ εαη1
∂Gq(x, Pε)

∂ν
on ∂(� \� ∩ BεR(Pε)).

then we have

�(η1Gq)− (η1Gq)
q = η1�Gq − η

q
1 Gq

q = (η1 − η
q
1 )G

q
q . (7.3)

Then, uε satisfies

ε2�uε − uq
ε ≥ −θ p in � \ BεR(Pε).

As a result, we obtain

ε2�(uε − η1ε
αGq)− uq

ε − (η1ε
αGq)

q

uε − η1εαGq
(uε − η1ε

αGq) ≥ −θ p − (η1 − η
q
1 )G

q
q ≥ 0.

Hence we obtain by the maximum principle in � \ BεR(Pε)

uε(x) ≤ C2ε
αGq(x, Pε).

��
In order to obtain the lower bound, we define

uε = Vε,Pε + εαψε (7.4)

If we plug this in Eq. (1.2), then ψε ∈ H1(�) satisfies{
ε2�ψε + f ′(Vε,Pε )ψε = −ε−αEε[Vε,Pε ] + Nε[ψε] in �,

∂ψε
∂ν

= 0 on ∂�.
(7.5)
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where

Nε[ψε] = ε−α{ f (Vε,Pε + εαψε)− f (Vε,Pε )− εα f ′(Vε,Pε )ψε}.

Lemma 7.2 For sufficiently small ε > 0, there exists C > 0 such that

‖ψε‖L∞(�) ≤ C. (7.6)

Proof We claim thatψε is uniformly bounded. If possible, let there exists a sequence εk such
that ‖ψε,k‖∞ → ∞. Let |ψε| have its maximum at a point kε ∈ �. As ∂ψε

∂ν
= 0 by Hopf’s

lemma kε ∈ int(�).
We claim that |kε−Pε |

ε
< C.

Suppose this is not true then |kε−Pε |
ε

→ +∞. Then, we have three cases; |Pε − kε| ≤ δ, δ <

|Pε − kε| ≤ 2δ or |Pε − kε| ≥ 2δ.

Case 1 When |Pε − kε| ≥ 2δ, and as a result −�ψε(kε) ≥ 0 and there exists a c > 0 such
that ψε(kε) ≥ c. We have from (7.5)

0 ≤ −ε2+α�ψε(kε) = { f (Vε,Pε (kε)+ εαψε(kε))− f (Vε,Pε )} − Eε[Vε,xε ]

which reduces to

(Gq(kε, Pε)+ δ1−αv1(kε)+ c)q ≤ Gq
q(kε, Pε)+ o(1)

and hence a contradiction.
Case 2 When |Pε − kε| < δ. Then, εR < |Pε − kε| < δ

{ f (Vε,Pε (kε)+ εαψε(kε))− f (Vε,Pε )} − Eε[Vε,Pε ] ≥ 0.

This implies that

(
1

|kε − Pε|α + c + o(1)

)
≤
(

1

|kε − Pε|α
)

which is a contradiction. The other case is much easier to handle.
Thus, we consider ψε(x) = ψε(kε + εx)

�ε = ψε

‖ψε‖∞
.

By the Schauder estimates, we obtain ‖�ε‖C1,θ
loc

is bounded for some θ ∈ (0, 1] and hence by

the Arzela-Ascoli’s theorem there exists �0 ∈ C1 such that ‖�ε −�0‖C1
loc

→ 0 as ε → 0.

Using the fact that d(kε,∂�)
ε

≤ C, ψ0 satisfies
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⎧⎪⎪⎨
⎪⎪⎩
��0 + f ′(U )�0 = 0 in R

2+
|�0| ≤ 1
∂�0

∂y2
= 0 in ∂R

2+
(7.7)

Now, we show that �0 ∈ D.
We obtain a contradiction by showing that ∇�0(0) = 0. Using the fact that ∇uε(Pε) = 0

and

∇�ε(0) = ∇uε(Pε)− ∇Vε,Pε (Pε)

εα‖ψε‖∞

we obtain ∇�ε(0) → 0 as ε → 0. This implies that ∇�0(0) = 0 by pointwise convergence
and hence ∇(a1

∂U
∂x1
)(0) = 0 and this implies that a1 = 0. ��

Lemma 7.3 We have,

cε = ε2

2
I∞(U )+ ε2α+2�q(Pε)+ o(ε2(α+1)). (7.8)

Proof We want to write uε = Vε,Pε + εαψε. So, we have

Jε(uε) = Jε(Vε,Pε )

+εα
∫
�

(ε2∇Vε,Pε∇ψε − f (Vε,Pε )ψε)dx

+ε
2α

2

(∫
�

ε2|∇ψε|2dx − f ′(Vε,xε )ψ2
ε

)

−
∫
�

[
F(Vε,Pε + εαψε)− F(Vε,Pε )− εα f (Vε,Pε )ψε − ε2α

2
f ′(Vε,Pε )ψ2

ε

]
.

which can be expressed as

Jε(uε) = Jε(Vε,Pε )

+εα
∫
�

Eε[Vε,Pε ]ψεdx

+ε
2α

2

(
ε2
∫
�

|∇ψε|2dx − f ′(Vε,Pε )ψ2
ε

)

−
∫
�

[
F(Vε,Pε + εαψε)− F(Vε,Pε )− εα f (Vε,Pε )ψε − ε2α

2
f ′(Vε,Pε )ψ2

ε

]
.
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Now, we estimate the following terms∫
�

Eε[Vε,Pε ]ψεdx =
∫

|x−Pε |<εR

Eε[Vε,Pε ]ψε +
∫

εR<|x−Pε |<2δ

Eε[Vε,Pε ]ψε

+
∫

δ<|x−Pε |<2δ

Eε[Vε,Pε ]ψε +
∫

|x−Pε |>2δ

Eε[Vε,Pε ]ψε

≤ Cε4 + Cε2+αδ1−α| log δ|
+Cε2+α+σ ′

∫
δ<|x−Pε |<2δ

1

|x − Pε|2 + εαp
∫

|x−Pε |>2δ

G p
qψε

≤ o(1)εα+2.

From (7.5)∫
�

{ε2|∇ψε|2dx − f ′(Vε,Pε )ψ2
ε } = ε−α

∫
�

Eε[Vε,Pε ]ψε −
∫
�

Nε[ψε]ψε.

As a result, we only estimate∫
�

Nε[ψε]ψε =
∫

|x−Pε |≤εR

Nε[ψε]ψε +
∫

εR<|x−Pε |≤δ
Nε[ψε]ψε

+
∫

δ<|x−Pε |<2δ

Nε[ψε]ψε +
∫

|x−Pε |≥2δ

Nε[ψε]ψε

= I1 + I2 +
∫

δ<|x−Pε |<2δ

Nε[ψε]ψε +
∫

|x−Pε |≥2δ

Nε[ψε]ψε.

We compute I1. As q > 5, we obtain

I1 = εαO

⎛
⎜⎝ ∫

BεR(Pε)

(Uε,Pε + εϕ0)
q−2ψ3

ε

⎞
⎟⎠ = O(εα+2).

We calculate I2.

I2 = εαO

⎛
⎜⎝ ∫

Bδ(Pε)\BεR(Pε)

(Uε,Pε + εϕ0)
q−2ψ3

ε

⎞
⎟⎠

= εαO

⎛
⎜⎝ ∫

Bδ(Pε)\BεR(Pε)

ε2−α

|x − Pε|2−α

⎞
⎟⎠ = O(ε2δα).

Estimating in the neck region∫
δ<|x−Pε |<2δ

Nε[ψε]ψε = O
(
εα

∫
δ<|x−Pε |<2δ

V q−2
ε,Pε

ψ3
ε

)
.
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In the neck region we have

Vε,Pε = Uε,Pε + (1 − η)(εαGq − Uε,Pε − εϕ0).

In order to estimate

εα
∫

δ<|x−Pε |<2δ

V q−2
ε,Pε

ψ3
ε = ε2

∫
δ<|x−Pε |<2δ

1

|x − Pε|α(q−2)
ψ3
ε

≤ Cε2
∫

δ<|x−Pε |<2δ

1

|x − Pε|2−α

= O(ε2δα).

Whenever |x − Pε| > 2δ, we have∫
|x−Pε |≥2δ

Nε[ψε]ψε = o(εαq).

Similarly, we show that

∫
�

[
F(Vε,Pε + εαψε)− F(Vε,Pε )− εα f (Vε,Pε )ψε − ε2α

2
f ′(Vε,Pε )ψ2

ε

]

= o(ε2+2α).

The estimate follows exactly as the previous estimate. This completes the proof. ��

Remark 7.1 As a result of Lemmas 6.3 and 7.3, we obtain �q(Pε) → min
P∈∂��q(P). Hence

Theorem 1.1 is proved.

8 Profile of spikes N = 2 and q = 5

In this case, α = 1
2 . The proof of Theorem 1.1 remains almost the same. So, we calculate

only estimate (8.1) as K is not integrable. So, we have

ε2
∫

B+
δ
ε

(P)\�ε

U 6 = ε2

δ
ε∫

0

f (εy1)
ε∫

0

U 6(y1, y2)dy2dy1

= ε2

δ
ε∫

0

f (εy1)
ε∫

0

[
U 6(y1, 0)+ O(|y2|U 6(y′, 0))

]
dy2dy1

= ε3 H(P)

2

δ
ε∫

0

[
U 6(y1, 0)y2

1 dy1 + O(ε2)U 6(y1, 0)y3
1

]
dy1. (8.1)
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As U 6(y1, 0) ∼ ω6
q

y3
1
, we estimate the first term in (8.2) in the following way,

ε3 H(P)

2

δ
ε∫

0

U 6(y1, 0)y2
1 dy1 = ε3 H(P)

2

R∫
0

U 6(y1, 0)y2
1 dy1 + ε3 H(P)

2

δ
ε∫

R

U 6(y1, 0)y2
1 dy1

= O(ε3)+ ω6
q H(P)

2
ε3

δ
ε∫

R

1

y1
dy1

= ω6
q H(P)ε3

2
log

δ

ε
+ O(ε3). (8.2)

Moreover, it is also easy to check that

ε2
∫
�

|∇Uε,P |2 = −ω
4
q H(P)ε3

2
log

δ

ε
+ O(ε3) (8.3)

As δ = εσ0 , we have from (8.2) and (8.3)

Iε(uε) = ε2

2
I∞ − 1 − σ0

8
ε3
(

log
1

ε

)
H(Pε)+ o

(
ε4
(

log
1

ε

))
. (8.4)

as ωq = 1√
2
.

9 Profile of spikes N = 3 and q > 3

When q > 3,U (r) ∼ γ3
r as r → +∞. The projection PUε,P = ηUε,P where η is the same

cut-off function defined in (5.9). In this case, we perform the reduction in D1,2(R3+).Note that
in this case, K is not integrable. Therefore, from Lemma 1.1, we estimate the terms involved
in K . Note that in this case, ε2|∇Uε,P |2 is the lowest order term in the energy expansion and
hence

ε2
∫
�

|∇Uε,P |2 = ε2
∫
∂�

Uε,P
∂Uε,P
∂ν

+
∫
�

Uε,P f (Uε,P )

= ε2
∫

∂�∩Bδ(P)

Uε,P
∂Uε,P
∂ν

+ O(ε4) (9.1)

Now, from (1.16), we have

∂Uε
∂ν

= 1

ε
(1 + |∇x ′ f |2)− 1

2

[
2∑

i=1

∂ f

∂yi

∂Uε,P
∂zi

− ∂Uε,P
∂zN

]
.
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Thus, we have

ε2
∫

∂�∩Bδ(P)

Uε,P
∂Uε,P
∂ν

= ε

∫
B2
δ (P)

[ 2∑
i=1

∂ f

∂yi

∂Uε,P
∂zi

− ∂Uε,P
∂zN

]
dy′

= ε3
∫

B2
δ
ε

(0)

U

(
y′, f (εy′)

ε

)[ 2∑
i=1

(εki yi + (ε2|y′|2))

×∂U (y′, f (εy′)
ε
)

∂yi
− ∂U (y′, f (εy′)

ε
)

∂yN

]

= ε3
[ ∫

B2
δ
ε

(0)

U (y′, 0)
∂U (y′, 0)

∂r

2∑
i=1

ki y2
i |y′|−1ε

−
∫

B2
δ
ε

(0)

U (y′, 0)
∂2U (y′, 0)

∂y2
N

2∑
i=1

ki y2
i ε + O(ε2)

]

= ε4 H(P)

2

∫
B2
δ
ε

(0)

U (y′, 0)
∂U (y′, 0)

∂r
|y′|dy′

+o

(
ε4
(

log
1

ε

))

= −ε4
(

log
1

ε

)
H(P)

2
γ 2

3 + o

(
ε4
(

log
1

ε

))

using the fact that

∂U (y′, 0)

∂r
|y′|−1 = ∂2U (y′, 0)

∂y2
N

.

10 Profile of spikes N = 3 and q = 3

When q = 3, by Lemma 1.1 of [4], we have U (r) ∼ 1√
2

1
r
√

log r
as r → ∞ and |Ur |2 ∼

1
4

1
r4 log r

. Note that in this, ε2|∇Uε,P |2 and U 4
ε,P are of the same order and are the lowest

order term in the energy expansion and hence we have from (9.1) and R 
 1

ε2
∫
�

|∇Uε,P |2 = ε4 H(P)

2

∫
B2
δ
ε

(0)

U (y′, 0)
∂U (y′, 0)

∂r
|y′|dy′ + o

(
ε4
(

log(log
1

ε
)

))

= ε4 H(P)

4

δ/ε∫
R

1

r(log r)
dr + o

(
ε4
(

log

(
log

1

ε

)))

= −ε4 H(P)

4

(
log

(
log

1

ε

))
+ o

(
ε4
(

log

(
log

1

ε

))
.
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