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Abstract We consider a nonlinear Neumann logistic equation driven by the p-Laplacian
with a general Carathéodory superdiffusive reaction. We are looking for positive solutions
of such problems. Using minimax methods from critical point theory together with suitable
truncation techniques, we show that the equation exhibits a bifurcation phenomenon with
respect to the parameter λ > 0. Namely, we show that there is a λ∗ > 0 such that for λ < λ∗,
the problem has no positive solution; for λ = λ∗, it has at least one positive solution; and for
λ > λ∗, it has at least two positive solutions.
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1 Introduction

Let� ⊆ IRN be a bounded domain with a C2-boundary ∂�. In this paper, we study the exis-
tence and multiplicity of positive solutions for the following nonlinear Neumann problem:

(P)λ

{−�pu(z)+ β(z)|u(z)|p−2u(z) = λu(z)q−1 − f (z, u(z)) in �
∂u

∂n
= 0 on ∂�
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2 T. Cardinali et al.

with 1 < p < q < p∗ , β ∈ L∞(�)+ , β �= 0 , λ > 0; here �p denotes the p-Laplace
differential operator defined by

�pu(z) = div(‖Du(z)‖p−2 Du(z)) , for all u ∈ W 1,p(�) and all z ∈ �,
n(·) denotes the outward unit normal on ∂� and p∗ > 1 is the Sobolev critical exponent
defined by

p∗ =
{

N p
N−p , p < N
+∞ , N ≤ p

.

In (P)λ, f is a Carathéodory function (i.e., for all x ∈ IR, z → f (z, x) is measurable and,
for a.a. z ∈ �, x → f (z, x) is continuous), which exhibits a (p − 1)-superlinear growth
near +∞.

If p = 2 and f (z, x) = xr−1 with 2 < r < 2∗, then the resulting equation is known as
the logistic equation and models various population dynamics phenomena and reaction-dif-
fusion processes (see [12,16]). More recently, there have been papers dealing with logistic
equations driven by the p-Laplacian (p-logistic equation, for short). All of them consider
Dirichlet problems and have a reaction term (right hand side) of the form

g(z, x) = λxq−1 − xr−1, for all z ∈ � and all x ∈ IR

where q < r .
There are three different types of p-logistic equations depending on the relation between

q and p:

• q < p < r (subdiffusive case)
• q = p < r (equidiffusive case)
• p < q < r (superdiffusive case)

with r < p∗.
The first two cases are essentially similar and for the Dirichlet problem with large λ > 0

produce a unique solution u with flat core (i.e., U = {z ∈ � : u(z) = 1} is nonempty). In
contrast, the superdiffusive case differs and exhibits bifurcation phenomena.

The subdiffusive Dirichlet logistic equation was studied in [24] (for N = 1, ordinary
differential equations) and in [7] (for N ≥ 2, partial differential equations).

The equidiffusive Dirichlet equation was investigated in [14] (for N = 1) and in [7,9]
(for N ≥ 2).

Finally, the superdiffusive Dirichlet logistic equation is examined in the works of Dong
[5] and Takeuchi [22,23]. We should also mention the very recent work [4], where a general
form of the Dirichlet p-Laplacian equation is considered. More precisely, the authors deal
with the problem

−�pu(z) = λ f (z, u(z)) in �, u| ∂� = 0.

Indeed, their hypotheses restrict their work to (p−1)-sublinear reactions. Indeed, hypoth-
eses H4 and H5(i) are compatible within the context of a (p − 1)-sublinear nonlinearity.
Moreover, hypothesis H5(i) is needed to establish the bifurcation phenomenon (see the
proofs of Lemmata 3.1 and 3.2, where H5(i) is used in an essential way). So Theorem 1.1,
which is the main result in [4], covers a (p − 1)-sublinear reaction, a situation that precludes
superdiffusive logistic equations.

Another related Dirichlet work worth mentioning is that of Rabinowitz [21], where a
logistic-type semilinear (i.e., p = 2) Dirichlet equation was studied, with the parameter
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Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type 3

λ > 0 multiplying the whole reaction term. Rabinowitz established certain bifurcation phe-
nomena for the equation using variational and topological methods.

Finally, we also mention the Dirichlet works [6,10,11,18,19]. In [6,11], the authors con-
sider a somehow dual situation to the logistic equation, by studying problems where in the
reaction we have the combined effects of concave and convex terms, i.e., the reaction has the
form

g(z, x) = λxτ−1 + xr−1, for all z ∈ � and all x ≥ 0

with 1 < τ < p < r < p∗.
They establish bifurcation phenomena for small values of λ > 0. Their work also produces

results relating C1 and W 1,p local minimizers of a C1-functional. On the other hand, Guo [10]
studied nonlinear eigenvalue problems driven by the p-Laplacian and imposed more restric-
tive hypotheses on the reaction (namely, f (z, x) = f (x) belongs to C2(IR)). We should also
mention that in [10], as well as in [11,22] and [23], it is assumed that p > 2. Motreanu et al.
[17] also consider nonlinear eigenvalue problems with a Carathéodory reaction of arbitrary
polynomial growth near ±∞ and (p − 1)-linear near 0. They prove a multiplicity theorem
(three nontrivial smooth solutions) for all small λ > 0. Finally, Motreanu et al. [18] consider
p-Lapalacian parametric equations with a nonsmooth potential (hemivariational inequalities)
and examine the near resonant (from above and below the principal eigenvalue), the resonant
(with respect to the principal eigenvalue) and the nonresonant cases.

In the best of our knowledge, there are no works on the nonlinear Neumann logistic equa-
tion. Somewhat related are the works [3,19,26]. In [3] the authors deal with the equation

−�pu(z) = λa(z)|u(z)|p−2u(z)+ h(z)|u(z)|p∗−2u(z) in �,
∂u

∂n
= 0 on ∂�

with a ∈ L∞(�)+, h ∈ C(�), λ > 0. They prove the existence of one or two (for p ≥ 2)
solutions, when λ > 0 is in a certain bounded interval. In [19], the authors extend the work
of [18] to Neumann problems.

Finally, in [26], the authors assume that p > N (low dimensional problems), essinf β > 0
and f (z, x) satisfies certain technical restrictive conditions. They show that there is an open
interval I ⊂ [0,+∞) such that for all λ ∈ I the problem

−�pu(z) = λ f (z, u(z)) in �,
∂u

∂n
= 0 on ∂�

has three solutions. Their approach is completely different from the aforementioned works
and uses the KKM-principle.

In the next section, for the convenience of the reader, we briefly review the main mathe-
matical tools that we will use in this work.

2 Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉, we denote the duality brackets
for the pair (X∗, X).

Letϕ ∈ C1(X). We say thatϕ satisfies the “Palais-Smale condition” (the “PS-condition”,
for short) if every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ IR is bounded and ϕ′(xn)

→ 0 in X∗ as n → ∞ has a strongly convergent subsequence.
The topological notion of linking sets is crucial in the minimax characterization of the

critical values of a C1-functional.
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4 T. Cardinali et al.

Definition 2.1 Let Y be a Hausdorff topological space and E0, E, D nonempty subsets of
Y such that E0 ⊆ E . We say that the pair {E0, E} is linking with D in Y if

(a) E0 ∩ D = ∅;
(b) for any γ ∈ C(E, Y ) such that γ| E0 = id| E0 , we have γ (E) ∩ D �= ∅.

Using this notion, we have the following general minimax principle concerning the critical
values of a C1-functional (see, for example, [8], p. 644).

Theorem 2.1 If X is a Banach space, ϕ ∈ C1(X) and satisfies the PS-condition, E0, E,
and D are nonempty closed subsets of X such that the pair {E0, E} is linking with D in
X, sup

E0

ϕ < inf
D
ϕ and c = inf

γ∈
 sup
x∈E

ϕ(γ (x)), where 
 = {γ ∈ C(E, X) : γ| E0 = id| E0},
then c ≥ inf

D
ϕ and c is a critical value of ϕ.

By appropriate choices of the linking sets, from Theorem 2.1 we obtain, as corollaries,
the mountain pass, the saddle point and the generalized mountain pass theorems. For future
use, we recall the mountain pass theorem.

Theorem 2.2 If X is a Banach space, ϕ ∈ C1(X) and satisfies the PS-condition, there exist
x0, x1 ∈ X and r > 0 such that ‖x1 − x0‖ > r and max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) :
‖x − x0‖ = r} = ηr and c = inf

γ∈
 max
0≤t≤1

ϕ(γ (t)) , where 
 = {γ ∈ C([0, 1], X) : γ (0) =
x0, γ (1) = x1} , then c ≥ ηr and c is a critical value of ϕ.

In the analysis of problem (P)λ, we will use the following “natural” spaces:

C1
n (�̄) =

{
u ∈ C1(�̄) : ∂u

∂n
= 0 on ∂�

}

and its completion

W 1,p
n (�) = C1

n(�̄)
‖·‖
,

where ‖ · ‖ is the norm of the Sobolev space W 1,p
n (�), that is, ‖u‖ = ‖Du‖p + ‖u‖p for all

u ∈ W 1,p
n (�).

The Banach space C1
n (�̄) is an ordered Banach space with positive cone

C+ = {u ∈ C1
n(�̄) : u(z) ≥ 0 for all z ∈ �̄}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ �̄}.
Considered the nonlinear map A : W 1,p

n (�) → W 1,p
n (�)∗ defined by

〈A(u), y〉 =
∫
�

‖Du(z)‖p−2(Du(z), Dy(z))IRN dz, for all u, y ∈ W 1,p
n (�), (1)

the following result is well-known (see, for example, [2]).

Proposition 2.3 The map A : W 1,p
n (�) → W 1,p

n (�)∗ defined by (1) is continuous, bounded
and of type (S)+, that is, if un ⇀ u in W 1,p

n (�) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then

un → u in W 1,p
n (�).
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Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type 5

If X is a Banach space, it is well-known that a vector u0 ∈ X is a local X -minimizer for
a function ϕ : X → IR if there exists r0 > 0 such that ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ X
with ‖h‖X ≤ r0.

Next, we recall a result relating local minimizers in C1
n (�̄) and in W 1,p

n (�) proved in
[19]. (As we already mentioned analogous results for the “Dirichlet” Sobolev spaces can be
found in [6,11].)

So, let f0 : �× IR → IR be a Carathéodory function such that

| f0(z, x)| ≤ a0(z)+ c0|x |r−1, for a.a. z ∈ � and all x ∈ IR,

with a0 ∈ L∞(�)+, c0 > 0, p < r < p∗.
We set F0 : � × IR → IR, F0(z, x) = ∫ x

0 f0(z, s) ds and consider the functional ϕ0 :
W 1,p

n (�) → IR defined by

ϕ0(u) = 1

p
‖Du‖p

p −
∫
�

F0(z, u) dz , for all u ∈ W 1,p
n (�).

Evidently, ϕ0 ∈ C1(W 1,p
n (�)).

Proposition 2.4 ([19], Proposition 2.5) If u0 ∈ W 1,p
n (�) (1 < p < ∞) is a local C1

n(�̄)-

minimizer of ϕ0, then it is a local W 1,p
n (�)-minimizer of ϕ0.

In the analysis of problem (P)λ, we will also use the notions of upper and lower solutions,
which we recall next.

Definition 2.2 A function ū ∈ W 1,p(�) with
∂ ū

∂n
= 0 is said to be an upper solution for

problem (P)λ if∫
�

β|ū|p−2ū h dz +
∫
�

‖Dū‖p−2(Du, Dh)IRN dz

≥ λ

∫
�

ūq−1h dz −
∫
�

f (z, ū)h dz, for all h ∈ W 1,p
n (�) , h ≥ 0.

An upper solution is a strict upper solution for problem (P)λ if it is not a solution.

Definition 2.3 A function u ∈ W 1,p(�) with
∂u

∂n
= 0 is said to be a lower solution for

problem (P)λ if∫
�

β|u|p−2u h dz +
∫
�

‖Du‖p−2(Du, Dh)IRN dz

≤ λ

∫
�

uq−1h dz −
∫
�

f (z, u)h dz, for all h ∈ W 1,p
n (�) , h ≥ 0.

A lower solution is a strict lower solution for problem (P)λ if it is not a solution.

In what follows, we use the notation r± = max{±r, 0}, for all r ∈ IR. Also, by ‖ · ‖, we
denote either the norm of the Sobolev space W 1,p(�) and the one of IRN ; it will always be
clear from the context which one is in use. Finally, by ‖ · ‖s , we denote the norm of Ls(�)

or of Ls(�, IRN ) , 1 ≤ s ≤ ∞, and by | · |N the Lebesgue measure on IRN .
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6 T. Cardinali et al.

3 Bifurcation theorem

In this section, we show that problem (P)λ, governed by a superdiffusive nonlinear Neumann
p-logistic equation, exhibits a bifurcation phenomenon with respect to the parameter λ > 0.

The hypotheses on the nonlinear perturbation f are:

H: f : �× IR → IR is a Carathéodory function such that f (z, 0) = 0 a.e. in � and

(i) there exist a ∈ L∞(�)+ , c > 0 , p < r < p∗ such that

| f (z, x)| ≤ a(z)+ c|x |r−1 , for a.a. z ∈ � and all x ∈ IR;
(ii) for a.a. z ∈ � and all x ≥ 0, f (z, x) ≥ 0 and there exist M, γ > 0 and θ > q

such that

f (z, x) ≥ γ xθ−1, for a.a. z ∈ � and all x ≥ M;
(iii) limx→0+ f (z,x)

x p−1 = 0 uniformly, for a.a. z ∈ �;
(iv) for every r > 0 and every bounded interval I ⊆ (0,+∞), there exists η =

η(r, I ) > 0 such that, for a.a. z ∈ �, x �→ λxq−1 − f (z, x) + ηxθ−1 is nonde-
creasing on [0, r ], for all λ ∈ I .

Remark 3.1 Since we are interested in positive solutions and hypotheses H(ii),(iii),(iv) con-
cern only the positive semiaxis [0,+∞), by truncating things if necessary, we may (and
will) assume that f (z, x) = 0 for a.a. z ∈ �, all x ≤ 0. Hypothesis H(iv) implies that near
+∞ f (z, ·) is (p − 1)-superlinear. Similarly, hypothesis H(iii) dictates a (p − 1)-sublinear
behavior near zero.

Remark 3.2 Note that the following functions satisfy hypotheses H:

f1(z, x) =
{

0 , x ≤ 0
b(z)xr−1 , x > 0

where b ∈ L∞(�)+ , essinf
�

b > 0 and q < r < p∗ ;

f2(z, x) =
⎧⎨
⎩

0 , x ≤ 0
xτ−1 , 0 < x < 1
xθ−1 − x p−1 ln x , 1 < x

where p < τ , q < θ < p∗.
The function f1 corresponds to the standard nonlinear logistic equation (superdiffusive

case) with a z-dependent coefficient in the extinction term.

By a positive solution of (P)λ, we mean a function u ∈ int C+ that solves (P)λ. Let

S = {λ > 0 : problem (P)λ has a positive solution}.
First, we will show that S �= ∅. To this end, we will need the following simple Lemma.

Lemma 3.1 If β ∈ L∞(�)+, β �= 0, then there exists ξ0 > 0 such that

ψ0(u) = ‖Du‖p
p +

∫
�

β|u|p dz ≥ ξ0‖u‖p, for all u ∈ W 1,p
n (�).

123



Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type 7

Proof Note that ψ0 ≥ 0. Suppose that the Lemma is not true. Exploiting the p-homogeneity
of ψ0, we can find {un}n≥1 ⊆ W 1,p

n (�) with ‖un‖ = 1 , n ≥ 1 , such that ψ0(un) → 0+ as
n → ∞. By passing to a suitable subsequence if necessary, we may assume that

un ⇀ u in W 1,p
n (�) and un → u in L p(�) as n → ∞ (2)

(recall that W 1,p
n (�) is embedded compactly in L p(�)). Then, since (see (2))

‖Du‖p
p ≤ lim inf

n→∞ ‖Dun‖p
p and

∫
�

β|un |p dz →
∫
�

β|u|p dz,

in the limit as n → ∞, we obtain ψ0(u) ≤ 0; so we have

‖Du‖p
p ≤ −

∫
�

β|u|p dz ≤ 0. (3)

Therefore, the limit function u is constant, that is, u ≡ ξ ∈ IR. If ξ = 0, then Dun → 0 in
L p(�, IRN ), hence un → 0 in W 1,p

n (�) as n → ∞ (see (2)), a contradiction to the fact that
‖un‖ = 1 for all n ≥ 1.

If ξ �= 0, then from (3), we have ‖Du‖p
p ≤ −|ξ |p

∫
�
β dz < 0, again a contradiction.

This proves the Lemma. ��
Proposition 3.2 If hypotheses H hold and β ∈ L∞(�)+, β �= 0, then S �= ∅.

Proof We consider the following auxiliary Neumann problem

(P̃)λ

{−�pu(z)+ β(z)|u(z)|p−2u(z) = λ|u(z)|q−2u(z) in �
∂u

∂n
= 0 on ∂�

with λ > 0 , p < q < p∗.
Claim: for every λ > 0, problem (P̃)λ has a solution ū ∈ int C+.

Let ψλ : W 1,p
n (�) → IR be the Euler functional for problem (P̃)λ defined by

ψλ(u) = 1

p
‖Du‖p

p + 1

p

∫
�

β|u|p dz − λ

q
‖u+‖q

q , for all u ∈ W 1,p
n (�).

Evidently, ψλ ∈ C1
(

W 1,p
n (�)

)
. We show that ψλ satisfies the P S-condition. So, let

{un}n≥1 ⊆ W 1,p
n (�) be a sequence such that

|ψλ(un)| ≤ M1, for some M1 > 0 and all n ≥ 1 (4)

and

ψ ′
λ(un) → 0 in W 1,p

n (�)∗ as n → ∞. (5)

From (5), we have∣∣∣∣∣∣〈A(un), h〉 +
∫
�

β|un |p−2unh dz − λ

∫
�

(u+
n )

q−1h dz

∣∣∣∣∣∣ ≤ εn‖h‖, for all h ∈ W 1,p
n (�)

(6)

where εn → 0+ and A is defined in (1).
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8 T. Cardinali et al.

In (6), we choose h = −u−
n ∈ W 1,p

n (�). Then,

‖Du−
n ‖p

p +
∫
�

β(u−
n )

p dz ≤ εn‖u−
n ‖

so, by using Lemma 3.1, we have

ξ0‖u−
n ‖p ≤ εn‖u−

n ‖, for all n ≥ 1

and, since p > 1,

u−
n → 0 in W 1,p

n (�) as n → ∞. (7)

From (4) and (7), we have

q

p
‖Du+

n ‖p
p + q

p

∫
�

β(u+
n )

p dz − λ

∫
�

(u+
n )

q dz ≤ M2, for all n ≥ 1, (8)

for some M2 > 0.
On the other hand, if in (6) we choose h = u+

n ∈ W 1,p
n (�), we obtain

− ‖Du+
n ‖p

p −
∫
�

β(u+
n )

p dz + λ

∫
�

(u+
n )

q dz ≤ εn‖u+
n ‖, for all n ≥ 1. (9)

We add (8) and (9) and have

(
q

p
− 1

) ⎡
⎣‖Du+

n ‖p
p +

∫
�

β(u+
n )

p dz

⎤
⎦ ≤ M3(‖u+

n ‖ + 1), for all n ≥ 1,

where M3 > 0.
Then, again by Lemma 3.1, we get(

q

p
− 1

)
ξ0‖u+

n ‖p ≤ M3(‖u+
n ‖ + 1), for all n ≥ 1 ,

therefore, since 1 < p < q , we have that

{u+
n }n≥1 ⊆ W 1,p

n (�) is bounded. (10)

From (7) and (10), it follows that {un}n≥1 ⊆ W 1,p
n (�) is bounded, and so we may assume

that

un ⇀ u in W 1,p
n (�) and un → u in Lq(�) as n → ∞ (recall q < p∗). (11)

In (6), we choose h = un − u ∈ W 1,p
n (�) and pass to the limit as n → ∞. Using (11),

we have

lim
n→∞ 〈A(un), un − u〉 = 0 ;

then (see Proposition 2.3)

un → u in W 1,p
n (�).

This proves that the functional ψλ satisfies the P S-condition.
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Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type 9

Also, we have (see Lemma 3.1)

ψλ(u) ≥ ξ0

p
‖u‖p − λ

q
‖u‖q , for all u ∈ W 1,p

n (�). (12)

Since q > p, from (12), it follows that there exists ρ ∈ (0, 1) sufficiently small so that

inf [ψλ(u) : ‖u‖ = ρ] = ηρ > 0 = ψλ(0). (13)

Finally, for ξ ∈ (0,+∞), we have

ψλ(ξ) = ξ p

p
‖β‖1 − λξq

q
|�|N .

Since q > p, it follows that

ψλ(ξ) → −∞ as ξ → +∞. (14)

Then (13), (14) and the fact proven earlier that ψλ satisfies the P S-condition permit the use
of Theorem 2.2. So (see (13)) we obtain ū ∈ W 1,p

n (�) such that

ψλ(0) = 0 < ηρ ≤ ψλ(ū) (15)

and

ψ ′
λ(ū) = 0. (16)

From (15), we infer that ū �= 0. From (16), we have

A(ū)+ β|ū|p−2ū = λ(ū+)q−1. (17)

On (17), we act with −ū− ∈ W 1,p
n (�) and obtain

‖Dū−‖p
p +

∫
�

β(ū−)p dz = 0 ;

so, from Lemma 3.1, we get

ξ0‖ū−‖p ≤ 0

and then

ū− = 0 , i.e. ū ≥ 0 , ū �= 0.

Then, from (17), we have

A(ū)+ βū p−1 = λūq−1

and so (see [20])

−�pū(z)+ β(z)ū(z)p−1 = λū(z)q−1 a.e. in �,
∂ ū

∂n
= 0 on ∂�. (18)

Nonlinear regularity theory (see, for example, [8]), implies that ū ∈ C+ \ {0}. From (18), we
have

�pū(z) ≤ β(z)ū(z)p−1 ≤ ‖β‖∞ū(z)p−1 a.e. in �

so (see [25])

ū ∈ int C+.
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10 T. Cardinali et al.

By virtue of hypothesis H(ii), we have f (z, ū(z)) ≥ 0 a.e. in � and so

−�pū(z)+ β(z)ū(z)p−1 = λū(z)q−1 ≥ λū(z)q−1 − f (z, ū(z)) a.e. in � (19)

that is, ū ∈ int C+ is an upper solution for (P)λ (see Definition 2.2).
We consider the following truncation of the reaction term in (P)λ:

gλ(z, x) =
⎧⎨
⎩

0 , x ≤ 0
λxq−1 − f (z, x) , 0 < x < ū(z)
λū(z)q−1 − f (z, ū(z)) , ū(z) ≤ x .

(20)

This is a Carathéodory function. We set Gλ(z, x) = ∫ x
0 gλ(z, s) ds and consider the C1-func-

tional ϕ̂λ : W 1,p
n (�) → IR defined by

ϕ̂λ(u) = 1

p
‖Du‖p

p + 1

p

∫
�

β|u|p dz −
∫
�

Gλ(z, u) dz, for all u ∈ W 1,p
n (�).

From (20) and Lemma 3.1, we see that there exist c0, c1 > 0 such that

ϕ̂λ(u) ≥ ξ0

p
‖u‖p − c0‖u‖ − c1, for all u ∈ W 1,p

n (�)

and then ϕ̂λ is coercive.
Also, exploiting the compact embedding of W 1,p

n (�) into L p(�), we can easily check
that ϕ̂λ is sequentially weakly lower semicontinuous. Therefore, by the Weierstrass theorem,
we can find u0 ∈ W 1,p

n (�) such that

ϕ̂λ(u0) = inf
[
ϕ̂λ(u) : u ∈ W 1,p

n (�)
]

= m̂λ. (21)

By hypothesis H(iii), there exists δ(1) > 0 such that for every x ∈]0, δ(1)[ we have f (z, x) <
x p−1.

Let us fix ξ ∈ (0,min�̄ ū) (recall that ū ∈ int C+) and ξ < δ(1). Then, since f (z, x) ≥ 0
for a.a. z ∈ � and all x ≥ 0 (see H(ii)), we have

ϕ̂λ(ξ) = ξ p

p
‖β‖1 − λξq

q
|�|N +

∫
�

ξ∫
0

f (z, s)ds dz

≤ ξ p

p
‖β‖1 − λξq

q
|�|N + λξ p

p
|�|N .

We observe that ξ = ξ(λ); anyway, we can assume ξ not depending on λ. Indeed, fix λ̃ > 0;
for every λ > λ̃ the minimal solution ūλ of problem (P̃)λ is an upper solution for the prob-
lem (P̃)λ̃; therefore ūλ̃ ∈ [0, ūλ] ∩ int C+. So we have ξ ∈ (0,min�̄ ūλ̃) ⊂ (0,min�̄ ūλ)
for every λ ≥ λ̃ and we assume ξ < min�̄ ūλ̃. Hence, we can choose λ > 0 such that
q
p

‖β‖1+|�|N|�|N
< λξq−p. Then,

ϕ̂λ(ξ) < 0

so, by (21), we have

ϕ̂λ(u0) = m̂λ < 0 = ϕ̂λ(0)

and then

u0 �= 0. (22)
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Also for such a λ > 0, from (21) we have

A(u0)+ β|u0|p−2u0 = Nλ(u0), (23)

where Nλ(u)(·) = gλ(·, u(·)) , for all u ∈ W 1,p
n (�).

On (23), first we act with −u−
0 ∈ W 1,p

n (�) and obtain (see (20))

‖Du−
0 ‖p

p +
∫
�

β(u−
0 )

p dz = 0 ;

hence, by Lemma 3.1, we deduce

ξ0‖u−
0 ‖p ≤ 0 ;

therefore, by (22),

u−
0 = 0 , i.e. u0 ≥ 0 , u0 �= 0.

Also on (23), we act with (u0 − ū)+ ∈ W 1,p
n (�). Then, (see (20) and (19))〈

A(u0), (u0 − ū)+
〉 + ∫

�

βu p−1
0 (u0 − ū)+ dz

=
∫
�

gλ(z, u0)(u0 − ū)+ dz

= λ

∫
�

ūq−1(u0 − ū)+ dz −
∫
�

f (z, ū)(u0 − ū)+ dz

≤ 〈
A(ū), (u0 − ū)+

〉 + ∫
�

βū p−1(u0 − ū)+ dz ;

then

0 ≤
∫

{u0>ū}

(‖Dū‖p−2 Dū − ‖Du0‖p−2 Du0, Du0 − Dū
)

IRN dz

+
∫

{u0>ū}
β(ū p−1 − u p−1

0 )(u0 − ū) dz, (24)

where {u0 > ū} ≡ {z ∈ � : u0(z) > ū(z)} (for the sake of simplicity, in the sequel, we will
use this kind of notation).

Recall that the map ζ → ‖ζ‖p−2ζ , for ζ ∈ IRN , is strictly monotone. Hence, from (24),
we have |{u0 > ū}|N = 0 and so u0 ≤ ū, i.e. u0 ∈ [0, ū] = {u ∈ W 1,p

n (�) : 0 ≤ u(z) ≤
ū(z) a.e. in �}. So, by using (20), (23) becomes

A(u0)+ βu p−1
0 = λuq−1

0 − N (u0),

where

N (u)(·) = f (·, u(·)), for all u ∈ W 1,p
n (�) (25)

so (see [20])

−�pu0(z)+ β(z)u0(z)
p−1 = λu0(z)

q−1 − f (z, u0(z)) a.e. in �,
∂u0

∂n
= 0 on ∂�.
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12 T. Cardinali et al.

Therefore, by H(iv), there exists ηλ such that

�pu0(z) ≤ β(z)u0(z)
p−1 + ηλu0(z)

θ−1, for a.a. z ∈ �.
Hence (recall θ > q > p), we can write

�pu0(z) ≤
(
‖β‖∞ + ηλ‖ū‖θ−p∞

)
u0(z)

p−1

so (see [25])

u0 ∈ int C+.

Therefore, we see that at least for λ > q
p

‖β‖1+|�|N|�|N

1
ξq−p , problem (P)λ has a solution

u0 ∈ int C+, hence S �= ∅. ��
Let λ∗ = inf S. Evidently λ∗ ≥ 0.

Proposition 3.3 If hypotheses H hold and β ∈ L∞(�)+, β �= 0, then λ∗ > 0.

Proof Suppose that λ∗ = 0. Then, we can find {λn}n≥1 ⊆ S decreasing, λn > 0 for all
n ≥ 1, and un ∈ int C+ for all n ≥ 1, such that (see (25))

A(un)+ βu p−1
n = λnuq−1

n − N (un), for all n ≥ 1 (26)

so, by considering the constant M postulated by H(ii), we have

‖Dun‖p
p +

∫
�

βu p
n dz ≤ λ1‖un‖q

q −
∫

{un≥M}
f (z, un)un dz −

∫
{0<un<M}

f (z, un)un dz ;

therefore, put Cn = {z ∈ � : un(z) ≥ M}, by Lemma 3.1 and H(ii), we obtain that there
exists c2 > 0 such that

ξ0‖un‖p + γ ‖χCn
un‖θθ ≤ λ1‖χCn

un‖q
q + c2, for all n ≥ 1. (27)

It is easy to see that {χCn
un}n≥1 is bounded in Lθ (�)+. Recalling that θ > q (see H(ii)), we

get that the sequence {χCn
un}n≥1 is bounded in Lq(�)+. Then, by (27), we deduce that

{un}n≥1 is bounded in W 1,p
n (�). (28)

So, by passing to a suitable subsequence if necessary, we may assume that un ⇀ u in
W 1,p

n (�).
Because of (28) and Theorem 1.2 of [15] (see also [13], Proposition 5), we can find

μ ∈ (0, 1) and M4 > 0 such that

un ∈ C1,μ
n (�̄) and ‖un‖

C1,μ
n (�̄)

≤ M4, for all n ≥ 1. (29)

Exploiting the compact embedding of C1,μ
n (�̄) into C1

n (�̄) and recalling that un ⇀ u in

W 1,p
n (�), we have

un → u in C1
n(�̄) as n → ∞. (30)

Suppose u = 0 and set yn = un

‖un‖ , n ≥ 1. Then, ‖yn‖ = 1 for all n ≥ 1, so we may assume

that

yn ⇀ y in W 1,p
n (�) and so yn → y in Lq(�) (recall q < p∗). (31)
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From (26), we have

A(yn)+ βy p−1
n = λn y p−1

n uq−p
n − N (un)

‖un‖p−1 . (32)

From (30) and hypothesis H(iii), we can easily check that

N (un)

‖un‖p−1 ⇀ 0 in L p′
(�) as n → ∞ (1/p + 1/p′ = 1). (33)

Also, acting on (32) with yn − y ∈ W 1,p
n (�), passing to the limit as n → ∞ and using (31)

and (33), we obtain

lim
n→∞ 〈A(yn), yn − y〉 = 0 ;

so, by Proposition 2.3, we deduce

yn → y in W 1,p
n (�) as n → ∞

hence

‖y‖ = 1. (34)

Passing to the limit as n → ∞ in (32) and using (30), (31) and (34), we have

A(y)+ βy p−1 = 0

then, by Lemma 3.1, we can write

ξ0‖y‖p ≤ 0

so that y = 0, which contradicts (34).
Therefore, u �= 0.

So, recalling that un ∈ int C+, n ≥ 1, we have

u ∈ C+ \ {0}. (35)

From (26), if we pass to the limit as n → ∞ and use the fact that λn → 0+, we obtain

A(u)+ βu p−1 = −N (u)

so, by Lemma 3.1, (35) and H(ii), ξ0‖u‖p ≤ 0 and then u = 0, which contradicts (35).
Therefore, we can conclude that λ∗ > 0. ��
Proposition 3.4 If hypotheses H hold and β ∈ L∞(�)+, β �= 0 and λ > λ∗, then problem
(P)λ has at least two distinct positive solutions u0, û ∈ int C+.

Proof Let λ̃ ∈ (λ∗, λ) ∩ S. Then, we can find ũ ∈ int C+ such that

A(ũ)+ βũ p−1 = λ̃ũq−1 − N (ũ) < λũq−1 − N (ũ) in W 1,p
n (�)∗

so ũ ∈ int C+ is a strict lower solution for problem (P)λ (see Definition 2.3).
Let σ(ξ) = λξq−1 − γ ξθ−1 for ξ ≥ 0 and with γ > 0 and θ > q as postulated by

hypothesis H(ii). Since θ > q , we see that σ(ξ) → −∞ as ξ → +∞. So, for ξ ≥ M
(M > 0 as in H(ii)) large, we have σ(ξ) < 0; hence

λξq−1 − γ ξθ−1 < 0
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14 T. Cardinali et al.

so, by H(ii), we get

λξq−1 − f (z, ξ) < 0, for a.a. z ∈ �.
Therefore, ū ≡ ξ is a strict upper solution for problem (P)λ.

By taking ξ ≥ M even bigger if necessary, we may also assume that ū ≡ ξ > ‖ũ‖∞.
Consider ϕλ : W 1,p

n (�) → IR the Euler functional for problem (P)λ defined by

ϕλ(u) = 1

p
‖Du‖p

p + 1

p

∫
�

β|u|p dz − λ

q
‖u+‖q

q +
∫
�

F(z, u) dz, for all u ∈ W 1,p
n (�).

Evidently, ϕλ ∈ C1(W 1,p
n (�)), it is sequentially weakly lower semicontinuous and clearly

coercive on the order interval [ũ, ū] = {u ∈ W 1,p
n (�) : ũ(z) ≤ u(z) ≤ ū(z) a.e. in �}. So,

by the Weierstrass theorem, we can find u0 ∈ W 1,p
n (�) such that

ϕλ(u0) = inf{ϕλ(u) : u ∈ [ũ, ū]}. (36)

For any y ∈ [ũ, ū], let s(t) = ϕλ(t y + (1 − t)u0), t ∈ [0, 1]. From (36), we have 0 ≤ s′(0),
from which

0 ≤ 〈A(u0), y − u0〉 +
∫
�

βu p−1
0 (y − u0) dz − λ

∫
�

uq−1
0 (y − u0) dz

+
∫
�

f (z, u0)(y − u0) dz. (37)

Let h ∈ W 1,p
n (�) and δ > 0. We define

y(z) =
⎧⎨
⎩

ũ(z) , z ∈ {u0 + δh ≤ ũ}
u0(z)+ δh(z) , z ∈ {ũ < u0 + δh < ū}
ū(z) , z ∈ {ū ≤ u0 + δh}.

Then, y ∈ [ũ, ū] and so it can be used as a test function in (37). We obtain

0 ≤ δ

∫
�

‖Du0‖p−2(Du0, Dh)IRN dz + δ

∫
�

βu p−1
0 h dz − λδ

∫
�

uq−1
0 h dz

+ δ

∫
�

f (z, u0)h dz +
∫

{u0+δh≤ũ}
‖Dũ‖p−2(Dũ, D(ũ − u0 − δh))IRN dz

+
∫

{u0+δh≤ũ}
βũ p−1(ũ − u0 − δh) dz − λ

∫
{u0+δh≤ũ}

ũq−1(ũ − u0 − δh) dz

+
∫

{u0+δh≤ũ}
f (z, ũ)(ũ − u0 − δh) dz −

∫
{ū≤u0+δh}

βū p−1(u0 + δh − ū) dz

+ λ

∫
{ū≤u0+δh}

ūq−1(u0 + δh − ū) dz −
∫

{ū≤u0+δh}
f (z, ū)(u0 + δh − ū) dz

+ λ

∫
{u0+δh≤ũ}

(ũq−1 − uq−1
0 )(ũ − u0 − δh) dz
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−
∫

{u0+δh≤ũ}
( f (z, ũ)− f (z, u0))(ũ − u0 − δh) dz

− λ

∫
{ū≤u0+δh}

(ūq−1 − uq−1
0 )(u0 + δh − ū) dz

+
∫

{ū≤u0+δh}
( f (z, ū)− f (z, u0))(u0 + δh − ū) dz

−
∫

{u0+δh≤ũ}
(‖Du0‖p−2 Du0 − ‖Dũ‖p−2 Dũ, Du0 − Dũ)IRN dz

−
∫

{u0+δh≤ũ}
β(u p−1

0 − ũ p−1)(u0 − ũ) dz

− δ

∫
{u0+δh≤ũ}

(‖Du0‖p−2 Du0 − ‖Dũ‖p−2 Dũ, Dh)IRN dz

− δ

∫
{u0+δh≤ũ}

β(u p−1
0 − ũ p−1)h dz −

∫
{ū≤u0+δh}

‖Du0‖p dz

+
∫

{ū≤u0+δh}
β(ū p−1 − u p−1

0 )(u0 − ū) dz

− δ

∫
{ū≤u0+δh}

‖Du0‖p−2(Du0, Dh)IRN dz + δ

∫
{ū≤u0+δh}

β(ū p−1 − u p−1
0 )h dz.

(38)

Since ũ ∈ int C+ is a (strict) lower solution for problem (P)λ, we have

∫
{u0+δh≤ũ}

‖Dũ‖p−2(Dũ, D(ũ − u0 − δh))IRN dz +
∫

{u0+δh≤ũ}
βũ p−1(ũ − u0 − δh) dz

−λ
∫

{u0+δh≤ũ}
ũq−1(ũ − u0 − δh) dz +

∫
{u0+δh≤ũ}

f (z, ũ)(ũ − u0 − δh) dz ≤ 0. (39)

Similarly, since ū = ξ ∈ int C+ is a (strict) upper solution for problem (P)λ, we have

−
∫

{ū≤u0+δh}
βū p−1(u0 + δh − ū) dz + λ

∫
{ū≤u0+δh}

ūq−1(u0 + δh − ū) dz

−
∫

{ū≤u0+δh}
f (z, ū)(u0 + δh − ū) dz ≤ 0. (40)
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16 T. Cardinali et al.

Recall that the map ζ �→ ‖ζ‖p−2ζ , ζ ∈ IRN , is monotone. Hence,∫
{u0+δh≤ũ}

(‖Du0‖p−2 Du0 − ‖Dũ‖p−2 Dũ, Du0 − Dũ)IRN dz

+
∫

{u0+δh≤ũ}
β(u p−1

0 − ũ p−1)(u0 − ũ) dz ≥ 0. (41)

Since u0 ∈ [ũ, ū], we have∫
{ū≤u0+δh}

β(ū p−1 − u p−1
0 )(ū − u0) dz ≥ 0 ; (42)

moreover, also using hypothesis H(i), we get

λ

∫
{u0+δh≤ũ}

(ũq−1 − uq−1
0 )(ũ − u0 − δh) dz

−
∫

{u0+δh≤ũ}
( f (z, ũ)− f (z, u0))(ũ − u0 − δh) dz ≤ −c3 δ

∫
{u0+δh≤ũ<u0}

h dz (43)

for some c3 > 0 (recall that h(z) ≤ 0 a.e. on {u0 + δh ≤ ũ}), and

λ

∫
{ū≤u0+δh}

(ūq−1 − uq−1
0 )(u0 + δh − ū) dz

−
∫

{ū≤u0+δh}
( f (z, ū)− f (z, u0))(u0 + δh − ū) dz ≤ c4 δ

∫
{u0<ū≤u0+δh}

h dz (44)

for some c4 > 0 (recall that h(z) ≥ 0 a.e. on {ū ≤ u0 + δh}).
We return to (38), use (39)–(44) and divide with δ > 0. Then,

0 ≤
∫
�

‖Du0‖p−2(Du0, Dh)IRN dz +
∫
�

βu p−1
0 h dz − λ

∫
�

uq−1
0 h dz +

∫
�

f (z, u0)h dz

− c3

∫
{u0+δh≤ũ<u0}

h dz + c4

∫
{u0<ū≤u0+δh}

h dz

−
∫

{u0+δh≤ũ}
(‖Du0‖p−2 Du0 − ‖Dũ‖p−2 Dũ, Dh)IRN dz

−
∫

{u0+δh≤ũ}
β(u p−1

0 − ũ p−1)h dz

−
∫

{ū≤u0+δh}
‖Du0‖p−2(Du0, Dh)IRN dz +

∫
{ū≤u0+δh}

β(ū p−1 − u p−1
0 )h dz. (45)

Note that

|{u0 + δh ≤ ũ < u0}|N → 0 and |{u0 < ū ≤ u0 + δh}|N → 0 as δ → 0+.
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Also from Stampacchia’s theorem (see, for example, [8] pp. 195–196), we know that

Du0(z) = Dũ(z) a.e. on {u0 = ũ} and Du0(z) = 0 a.e. on {u0 = ū}
(recall that ū ≡ ξ > 0).

So, if in (45) we pass to the limit as δ → 0+ and recall that u0 ∈ [ũ, ū], we obtain

0 ≤ 〈A(u0), h〉 +
∫
�

βu p−1
0 h dz − λ

∫
�

uq−1
0 h dz +

∫
�

f (z, u0)h dz. (46)

Since h ∈ W 1,p
n (�) is arbitrary, from (46), we infer that

A(u0)+ βu p−1
0 = λuq−1

0 − N (u0)

then (see [20])

−�pu0(z)+ β(z)u0(z)
p−1 = λu0(z)

q−1 − f (z, u0(z)) a.e. in �,
∂u0

∂n
= 0 on ∂�.

Therefore, u0 ∈ int C+ (nonlinear regularity theory) is a solution of (P)λ.
Let μ ∈ (

0,min�̄ ũ
)

(recall that ũ ∈ int C+). Also, let r = ‖ū‖∞ + 1, I = [λ∗, λ + 1]
and η = η(r, I ) > 0 is the constant postulated by hypothesis H(iv). For δ ∈ (0, μ) we set
uδ = u0 − δ. Evidently, uδ ∈ int C+. For a.a. z ∈ �, we have

−�puδ(z)+ β(z)uδ(z)
p−1 + ηuδ(z)

θ−1 = −�pu0(z)+ β(z)u0(z)
p−1

+ηu0(z)
θ−1 − ρ(δ)

with ρ(δ) → 0+ as δ → 0+. Since u0 ∈ int C+ is a solution of (P)λ, the previous becomes

−�puδ(z)+ β(z)uδ(z)
p−1 + ηuδ(z)

θ−1 = λu0(z)
q−1 − f (z, u0(z))+ ηu0(z)

θ−1 − ρ(δ);
now, by H(iv) and since ũ ∈ int C+ solves (P)λ̃, we have

−�puδ(z) + β(z)uδ(z)
p−1 + ηuδ(z)

θ−1 ≥ λũ(z)q−1 − f (z, ũ(z))+ ηũ(z)θ−1 − ρ(δ)

≥ (λ− λ̃)μq−1 − ρ(δ)+ λ̃ũ(z)q−1 − f (z, ũ(z))+ ηũ(z)θ−1

= (λ− λ̃)μq−1 − ρ(δ)−�pũ(z)+ β(z)ũ(z)p−1 + ηũ(z)θ−1 (47)

(recall λ̃ < λ).
We choose δ̂ ∈ (0, 1) small such that for δ ∈ (0, δ̂], we have

ρ(δ) ≤ (λ− λ̃)μq−1.

Using this in (47), for δ ∈ (0, δ̂], we obtain

A(uδ)+ βu p−1
δ + ηuθ−1

δ ≥ A(ũ)+ βũ p−1 + ηũθ−1 in W 1,p
n (�)∗. (48)

Fixed δ ∈ (0, δ̂], acting on (48) with (ũ − uδ)+ ∈ W 1,p
n (�), we obtain∫

{ũ>uδ}
(‖Duδ‖p−2 Duδ − ‖Dũ‖p−2 Dũ, Dũ − Duδ)IRN dz

+
∫

{ũ>uδ}
β(u p−1

δ − ũ p−1)(ũ − uδ) dz + η

∫
{ũ>uδ}

(uθ−1
δ − ũθ−1)(ũ − uδ) dz ≥ 0.

(49)
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18 T. Cardinali et al.

The strict monotonicity of ζ �→ ‖ζ‖σ−2ζ , ζ ∈ IRN , for all σ > 1 and (49) imply
|{ũ > uδ}|N = 0, from which

ũ ≤ uδ, i.e. u0 − ũ ∈ int C+. (50)

Next let uδ = u0 + δ , δ ∈ (0, r ]. Then, for a.a. z ∈ �, we have

−�puδ(z)+β(z)uδ(z)p−1 + ηuδ(z)
θ−1 =−�pu0(z)+β(z)u0(z)

p−1 + ηu0(z)
θ−1 + ρ̂(δ)

with ρ̂(δ) → 0+ as δ → 0+. Since u0 ∈ int C+ is a solution of (P)λ and by recalling that
ū ≡ ξ ≥ M , u0 ≤ ū and H(iv), we can deduce the following estimate

−�puδ(z)+ β(z)uδ(z)
p−1 + ηuδ(z)

θ−1 = λu0(z)
q−1 − f (z, u0(z))+ ηu0(z)

θ−1 + ρ̂(δ)

≤ λξq−1 − f (z, ξ)+ ηξθ−1 + ρ̂(δ).

Recall that λξq−1 − f (z, ξ) ≤ λξq−1 − γ ξθ−1 < 0 for a.a. z ∈ � (see the first part of the
proof). Since ρ̂(δ) → 0+ as δ → 0+, we can find δ̂0 > 0 such that λξq−1−γ ξθ−1+ρ̂(δ) ≤ 0
for all δ ∈ (0, δ̂0], so

λξq−1 − f (z, ξ)+ ρ̂(δ) ≤ 0 , for a.a. z ∈ � and all δ ∈ (0, δ̂0].
Therefore,

−�puδ(z)+β(z)uδ(z)p−1+ηuδ(z)
θ−1 ≤β(z)ξ p−1+ηξθ−1, for a.a. z ∈� and all δ∈(0, δ̂0],

hence

A(uδ)+ βu p−1
δ + ηuθ−1

δ ≤ A(ξ)+ βξ p−1 + ηξθ−1 in W 1,p
n (�), for all δ ∈ (0, δ̂0]. (51)

Acting on (51) with (uδ − ξ)+ ∈ W 1,p
n (�) as before, we obtain

uδ ≤ ξ, i.e. ū − u0 ∈ int C+. (52)

From (50) and (52), it follows that u0 is a local C1
n (�)-minimizer of ϕλ. Invoking Propo-

sition 2.4 it follows that u0 is a local W 1,p
n (�)-minimizer of ϕλ.

By virtue of hypothesis H(ii), we have F(z, x) ≥ 0 for a.a. z ∈ � and all x ≥ 0. So, for
all u ∈ W 1,p

n (�), we have that there exist ξ0 > 0 and c5 > 0 such that (see Lemma 3.1)

ϕλ(u) ≥ ξ0

p
‖u‖p − λ

q
‖u‖q

q ≥ ξ0

p
‖u‖p − λ

q
c5‖u‖q .

Since q > p, we can find δ̄ ∈ (0, 1) small such that

ϕλ(u) > 0 = ϕλ(0), for all 0 < ‖u‖ ≤ δ̄,

then u = 0 is a strict local minimizer of ϕλ.
Without any loss of generality, we may assume that

ϕλ(0) = 0 ≤ ϕλ(u0) (53)

(the reasoning is similar if ϕλ(u0) < 0 = ϕλ(0)). We may assume that u0 is an isolated crit-
ical point of ϕλ. Indeed, otherwise we have a whole sequence of distinct positive solutions
of (P)λ and so we have done. Then, as in the proof of Proposition 29 of [1], we can find
ρ ∈ (0, 1) small such that ‖u0‖ > ρ and

ϕλ(u0) < inf [ϕλ(u) : ‖u − u0‖ = ρ] = η
ρ
λ . (54)
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Let E0 = {0, u0}, E = [0, u0] and D = ∂Bρ(u0) = {u ∈ W 1,p
n (�) : ‖u − u0‖ = ρ}.

Clearly the pair {E0, E} is linking with D in W 1,p
n (�) (see Definition 2.1). Moreover, since

θ > q (see H(ii)), we see that ϕλ is coercive. Therefore, it satisfies the P S-condition. Hence,
we can apply Theorem 2.1 and obtain û ∈ W 1,p

n (�) such that (see (53) and (54))

ϕλ(0) = 0 ≤ ϕλ(u0) < η
ρ
λ ≤ ϕλ(û) (55)

and

ϕ′
λ(û) = 0. (56)

From (55), we see that û /∈ {0, u0} and from (56)

A(û)+ β|û|p−2û = λ(û+)q−1 − N (û). (57)

As before acting on (57) with −û− ∈ W 1,p
n (�), we obtain û ≥ 0 , û �= 0. So

A(û)+ βû p−1 = λ(û)q−1 − N (û)

which implies

−�pû(z)+ β(z)û(z)p−1 = λû(z)q−1 − f (z, û(z)) a.e. in �,
∂ û

∂n
= 0 on ∂� ,

therefore û ∈ C+ \ {0} (nonlinear regularity) solves (P)λ.
Moreover, as before using hypothesis H(iv) and the nonlinear maximum principle of [25],

we conclude that û ∈ int C+. ��
Next, we examine the critical case λ = λ∗.

Proposition 3.5 If hypotheses H hold and β ∈ L∞(�)+, β �= 0, then problem (P)λ∗ has at
least one positive solution.

Proof Let {λn}n≥1 ⊆ (λ∗,+∞) be a decreasing sequence such that λn → λ∗ as n → ∞.
From the proof of Proposition 3.4, we know that for every λn , we can find a solution un ∈
int C+ of (P)λn such that {un}n≥1 ⊆ W 1,p

n (�) is bounded (in fact we have un ≤ ū where
ū ≡ ξ with ξ ≥ M large such that λ1ξ

q−1 − γ ξθ−1 < 0, recall θ > q). Then, by virtue of
Theorem 2 of [15] (see also [13], Proposition 5), we can find μ ∈ (0, 1) and M4 > 0 such
that

un ∈ C1,μ
n (�) and ‖un‖

C1,μ
n (�)

≤ M4 , for all n ≥ 1.

Exploiting the compact embedding of C1,μ
n (�) into C1

n (�), we may assume that

un → u∗ in C1
n(�).

Evidently, u∗ ∈ C+. If u∗ = 0, then introducing yn = un

‖un‖ , n ≥ 1 and reasoning as in the

proof of Proposition 3.3, via hypothesis H(iii), we reach a contradiction. So, u∗ �= 0 and

A(u∗)+ βu p−1∗ = λ∗uq−1∗ − N (u∗),

which implies

−�pu∗(z)+ β(z)u∗(z)p−1 = λ∗u∗(z)q−1 − f (z, u∗(z)) a.e. in �,
∂u∗
∂n

= 0 on ∂�.

As before, via H(iv) and [25] we have u∗ ∈ int C+ and of course solves (P)λ∗ . ��
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Summarizing we have the following bifurcation-type result for our superdiffusive nonlin-
ear p-logistic equation.

Theorem 3.1 If hypotheses H hold and β ∈ L∞(�)+, β �= 0, then there exists λ∗ > 0 such
that

(a) for λ ∈ (0, λ∗) problem (P)λ has no positive solution;
(b) for λ = λ∗ problem (P)λ has at least one positive solution;
(c) for λ > λ∗ problem (P)λ has at least two positive solutions.
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