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Abstract For a general class of second-order elliptic boundary value problems in the
lower half-plane, we show that the existence and uniqueness of solutions in L p Sobolev
spaces is reduced to the invertibility of the ordinary differential operators obtained by Fou-
rier decomposition. This terminology refers to the partial Fourier series expansion in the case
of horizontally periodic solutions and to the partial Fourier transform otherwise. The problem
is straightforward when p = 2 and, in the periodic case, the same question on a strip with
finite width can also be quickly settled by indirect arguments irrespective of p ∈ (1,∞).
However, in the half-plane, the infinite depth raises serious difficulties when p �= 2. These
difficulties are overcome by writing the problem as a first-order system and using existing
abstract results about operator valued Fourier multipliers. In that approach, the randomized
boundedness of the resolvent becomes the central issue.

Keywords Elliptic boundary value problem · Half-plane · Sobolev space · Fourier series ·
Fourier transform · r-boundedness
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1 Introduction

The goal of this paper is to show that for a general class of second-order linear elliptic bound-
ary value problems on the lower half-plane R×R− with generic variable (x, y), the existence
and uniqueness of solutions in L p Sobolev spaces, p ∈ (1,∞), can be reduced to the same
question for the collection of ODEs obtained by Fourier decomposition (Fourier series for
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1116 P. J. Rabier

solutions periodic in x, Fourier transform otherwise). While mostly routine when p = 2,
the problem is delicate when p �= 2. For expository purposes, the main focus will be on the
2π-periodic case.

Consider the homogeneous boundary value problem
{

Pu := uxx + 2b(y)uxy + c(y)uyy + α(y)ux + β(y)uy + γ (y)u = g,
uy + θu = 0 on R × {0}, (1.1)

That the coefficient of uxx is 1 is just a convenient normalization, which can always be
achieved after factoring the coefficient of uxx . The other coefficients are complex valued and
θ ∈ C.

If g and u in (1.1) are 2π -periodic in x and if g ∈ L p((0, 2π) × R−) for some p ∈
(1,∞), the Fourier series approach consists in expanding g(x, y) = ∑

k∈Z
e−ikx gk(y) with

gk ∈ L p
− := L p(R−) and looking for solutions u(x, y) = ∑

k∈Z
e−ikx uk(y). Then, formally

at least, the problem amounts to solving Pkuk = gk where

Pkw := c(y)w′′ + (β(y)− 2ikb(y))w′ + (γ (y)− k2 − ikα(y))w, (1.2)

with boundary condition u′
k(0) + θuk(0) = 0. Here and throughout the paper, the “prime”

refers to y-differentiation.
For consistency, the solutions u should be sought in the space

W 2,p
(θ),per ((0, 2π)× R−) := {

u ∈ W 2,p((0, 2π)× R−) : uy + θu = 0

on (0, 2π)× {0}, u(0, ·) = u(2π, ·), ux (0, ·) = ux (2π, ·)} (1.3)

and the solutions uk of Pkuk = gk in the space

W 2,p
(θ)− := {w ∈ W 2,p

− : w′(0)+ θw(0) = 0}, (1.4)

where W m,p
− := W m,p(R−) for every m ∈ N. All these function spaces consist of complex-

valued functions.
The periodic boundary conditions incorporated in (1.3) ensure that the extension of u ∈

W 2,p
(θ),per ((0, 2π)×R−) by periodicity is in

⋂
n∈N

W 2,p((−n, n)×R−) and that the 2π-peri-

odic solutions u of (1.1) in the space
⋂

n∈N
W 2,p((−n, n)× R−) are exactly the solutions of

Pu = g in W 2,p
(θ),per ((0, 2π)× R−), extended by periodicity.

The question is whether the unique solvability of Pu = g in W 2,p
(θ),per ((0, 2π) × R−)

is equivalent to the unique solvability of Pkuk = gk in W 2,p
(θ)− for all k ∈ Z. This is quite

reminiscent of the question raised in the elementary treatment of evolution problems by sep-
aration of variables, but the functional setting raises the difficulty to a different level and it
seems that it can only be resolved with the help of fairly recent concepts and developments.

When p = 2, basic Hilbert space theory shows that the answer is positive provided
that the norm of P−1

k in L(L2−,W 2,2
− ) is uniformly bounded by a constant independent of

k ∈ Z. The existence of such a constant is not necessarily a trivial technical matter—it is not
known without assumptions about the behavior of the coefficients of P at infinity—but it is
conceptually straightforward.

The real challenge arises when p �= 2, for then the convergence of
∑

k∈Z
e−ikx uk(y) in

W 2,p((0, 2π)× R−) must depend upon more than the uniform boundedness of the norm of
P−1

k .This is true even when the coefficients are constant. Indeed, already in the much simpler
scalar case (when the uk are just complex numbers), the Fourier series of an L p function is
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Fourier decomposition of elliptic problems 1117

generally not unconditionally convergent in L p when p �= 2, that is, the control of the size
of the Fourier coefficients alone does not suffice to assess L p convergence.

The exact condition that should be required of P−1
k will be identified later on. For the time

being, we sketch a simple indirect procedure when the half-plane is replaced by a strip with
finite width: The domain is then a rectangle and the classical a priori estimates and the com-
pactness of the Sobolev embeddings show that P is semi-Fredholm with finite dimensional
null space (due to the periodicity in x of the solutions, the corners of the rectangle are not an
obstacle with the estimates). That its index is 0 can next be seen by using homotopy invari-
ance and a direct calculation in a simpler special case. In a different context, this procedure
is described in the appendix of Simpson and Spector [25]. Irrespective of p ∈ (1,∞), it is
easily seen that the null space of P is trivial if and only if the null space of Pk is trivial for
every k. Since Pk is also Fredholm of index 0 (ordinary differential operator on a bounded
interval), this proves that the invertibility of P is equivalent to the invertibility of all the Pk .

The above method does not work in a half-space because the domain remains unbounded
after attention is confined to an interval of length 2π in the x direction, so that the embeddings
are not compact. As a result, the a priori estimates do not imply the semi-Fredholmness of
P, let alone its Fredholmness of index 0. The same statement is even true for the Pk . Thus,

the unique solvability does not follow from the triviality of the null space and the argument
breaks down.

We now state our main result (Theorem 1.1 below) and explain our approach. We shall say
that the coefficients of P are asymptotically periodic if there are periodic functions b�, . . . , γ�
with the same period L such that limy→−∞ |b(y) − b�(y)| = · · · = limy→−∞ |γ (y) −
γ�(y)| = 0. If so and if the coefficients of P are continuous on R−, their uniform continuity
is equivalent to the continuity of b�, . . . , γ�.

Theorem 1.1 Suppose that P in (1.1) is uniformly and properly elliptic with bounded uni-
formly continuous and asymptotically periodic coefficients. Let p ∈ (1,∞) be given. Then,
P is an isomorphism of W 2,p

(θ),per ((0, 2π)× R−) onto L p((0, 2π)× R−) if and only if Pk is

an isomorphism of W 2,p
(θ)− onto L p

− for every k ∈ Z.

The subsequent comments help clarify the exact nature of the hypotheses made in Theo-
rem 1.1. First, since a bounded uniformly continuous function on R− has a unique bounded
uniformly continuous extension to R−, the boundedness and uniform continuity of the coef-
ficients hold in R− and R− simultaneously. Next, the uniform ellipticity condition means
that

|ξ2
1 + 2b(y)ξ1ξ2 + c(y)ξ2

2 | ≥ ν(ξ2
1 + ξ2

2 ),

for some constant ν > 0, every y ∈ R− (or, equivalently, y ∈ R−) and every ξ = (ξ1, ξ2) ∈
R

2. Note that the strong ellipticity of P is not assumed (variational arguments are nowhere
involved).

The usual formulation of the proper ellipticity of P is that it is elliptic and that, for every
y ∈ R− and every pair of linearly independent vectors ξ = (ξ1, ξ2) and ξ ′ = (ξ ′

1, ξ
′
2) in R

2,

the polynomial of the variable τ ∈ C

(ξ1 + τξ ′
1)

2 + 2b(y)(ξ1 + τξ ′
1)(ξ2 + τξ ′

2)+ c(y)(ξ2 + τξ ′
2)

2,

has exactly one root with (necessarily strictly) positive imaginary part, so that the other root
has strictly negative imaginary part.

Traditionally, proper ellipticity is only involved in connection with the boundary con-
ditions, which turns out to justify this rather convoluted definition. However, it is readily
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checked that, assuming ellipticity, the above root condition is equivalent to the requirement
that the polynomial of the variable λ ∈ C

c(y)λ2 + 2b(y)λ+ 1,

has exactly one root with strictly positive (negative) imaginary part. Since R− is connected
and ellipticity rules out real roots, it suffices to check this property at a single point y ∈ R.

This much simpler root condition is crucial to the arguments of this paper. In other words,
for once, proper ellipticity is not merely needed for the treatment of the boundary conditions.

Lastly, it should also be stressed that the periodicity (in y) of the limiting coefficients has
nothing to do with the periodicity (in x) of the solutions and that it is merely a coincidental
technical limitation. This will be explained further below.

A special case of Theorem 1.1 arises when the coefficients are real and asymptotically
constant, that is, b�, . . . , γ� are real constant functions b−∞, . . . , γ−∞. This is often relevant
in problems on unbounded domains. If so, Theorem 1.1 takes a simpler form (Theorem 6.1)
and an even simpler one when the coefficients are real and constant (Theorem 4.3). When
the coefficients and θ are real, unique solvability for complex valued u and g is equivalent
to unique solvability when they are real valued, so that Theorem 1.1 and its variants are
applicable to both settings.

Our strategy will be to view Pu = g as an evolution problem, with x playing the role of
the time variable. In this perspective, the new variable v := ux is introduced and Pu = g
becomes the first-order system (details in Sect. 2)

d

dx

(
u
v

)
+ A

(
u
v

)
=

(
0
g

)
, (1.5)

where

A :=
(

0 −I
P Q

)
(1.6)

and P and Q are the differential operators on R− given by

P := c(y)
d2

dy2 + β(y)
d

dy
+ γ (y), (1.7)

Q := 2b(y)
d

dy
+ α(y). (1.8)

For abstract first-order operators, the following theorem of Arendt and Bu [1, Theorem 2.3]
(rephrased) gives a necessary and sufficient condition for solvability in spaces of periodic
functions. It has already been used in various applications (integro-differential equations,
delayed equations, etc.) albeit with a more apparent evolutionary nature than the elliptic
problem of this paper.

Theorem 1.2 Let X be a (complex) UMD Banach space. If p ∈ (1,∞), set

W 1,p
per (0, 2π; X) := {w ∈ W 1,p(0, 2π; X) : w(0) = w(2π)} (1.9)

and let A be a closed unbounded linear operator on X with domain W, equipped with the
graph norm. Then, the operator d

dx +A is an isomorphism of L p(0, 2π; W )∩W 1,p
per (0, 2π; X)

onto L p(0, 2π; X) if and only if (A− ik I )−1 ∈ L(X) exists for every k ∈ Z and the sequence
(k(A − ik I )−1)k∈Z is r-bounded in L(X).

Several comments are in order. First, A need not generate a semigroup and indeed the
hypotheses are unchanged if A is replaced by −A. This (correctly) suggests that Theorem 1.2
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Fourier decomposition of elliptic problems 1119

does not implicitly contain any preferred direction of evolution, in sharp contrast with what
is well known for initial value problems.

Next, recall that X is a UMD Banach space if the Hilbert transform is a bounded operator
on Lq(R, X) for some (and then, as it turns out, every) q ∈ (1,∞). This is important, but
not an issue here since all the reflexive L p spaces, along with their closed subspaces (and
hence all the reflexive Sobolev spaces and their closed subspaces) are UMD [4,5,13].

In contrast, the r-boundedness, shorthand for “randomized boundedness” (or “Rademach-
er boundedness”) will be our main focus. It is a concept of boundedness for sets of bounded
linear operators on Banach spaces, more restrictive than norm-boundedness, except in the
Hilbert space case. It is typically much more difficult to check than norm-boundedness, but a
necessary condition in Theorem 1.2. For convenience, the main properties of r-boundedness
are collected in a short appendix.

There are related results in the literature that directly address the periodic solutions of

abstract second-order operators d2

dx2 + Q d
dx

+ P. See [1] when Q = 0 or [18] when both P
and Q are closed operators on the space X. In general, these results cannot be used with (1.1).
For example, Q in (1.8) with (natural) domain W 1,p

− is not a closed operator on X = L p
− if

b vanishes at some point of R−.
Theorem 1.1 will follow from Theorem 1.2 with the choice

X := W 1,p
− × L p

−, W := W 2,p
(θ)− × W 1,p

− , (1.10)

and A = A in (1.6). This is explained in the next section. The remainder of the paper is
devoted to the proof of Theorem 1.1 and some of its variants.

The case when the coefficients are constant is treated in Sect. 3 when θ = 0 (Neumann
boundary condition) and in Sect. 4 in general. In both these sections, we rely on explicit
formulas for solutions and estimates from harmonic analysis, in the spirit of Denk et al. [11],
where the r-boundedness of resolvents of elliptic systems is discussed. Since A is not (at all)
an elliptic system, the results of [11] are not applicable.

The next step is to prove Theorem 1.1 when the coefficients are periodic, which is done in
Sect. 5, by using the estimates when the coefficients are constant together with a partition of
unity on R−. In addition to the r-boundedness issues, there are technical difficulties related to
the partition of unity, because it is crucial that the cut-off functions have uniformly bounded
derivatives. The periodicity of the coefficients makes it possible to obtain such cut-off func-
tions from a partition of unity on the circle and this is in fact the only reason why their
periodicity is assumed. As a result, Theorem 1.1 is clearly true in a much broader setting, but
finding alternative conditions as easily verifiable as the periodicity of the coefficients seems
to be a rather tricky exercise.

The final step of the proof of Theorem 1.1, when the coefficients are asymptotically peri-
odic, is given in Sect. 6, based on the results when the coefficients are periodic and with
another, more standard, partition of unity.

As we shall see, the unique solvability of Pu = g is equivalent to the existence of an
inverse Rk (actually, Rθk to keep track of the θ -dependence) of Pk for every k ∈ Z, together
with the r-boundedness of the sequences (k2 Rk)k∈Z and (k Rk)k∈Z in various function spaces.
Thus, when p �= 2, r-boundedness rather than mere norm-boundedness is the correct and
necessary condition to verify. The two concepts coincide when (and only when) p = 2,
which explains why norm estimates suffice in this case.

Theorem 1.1 remains true for a Dirichlet boundary condition. It also has a direct im-
pact on the unique solvability property when the boundary conditions are not homogeneous
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1120 P. J. Rabier

(Sect. 6.3). By a simple change of variable, this can be extended to the more general boundary
operator ∇u · N + θu when N = (μ, 1) is nontangential (Remark 6.3).

The nonperiodic problem (1.1) is discussed in Sect. 7. The question now is to relate the
invertibility of P on a suitable space W 2,p

(θ) (R × R−) that does not incorporate periodicity

in x [see (7.1)] to the invertibility of Pξ on W 2,p
(θ)− for every ξ ∈ R, where Pξ is obtained

from (1.2) by replacing k by ξ.Naturally, Pξ arises, at least formally, from taking the Fourier
transform of (1.1) in the x direction. The arguments are almost exactly the same, provided that
Theorem 1.2 is replaced by an appropriate and already known substitute. Because the proof
of the otherwise simple Lemma 2.4 does not go through in that setting, a notable difference
is that the criterion obtained is only sufficient (Theorem 7.2). However, this is arguably the
more useful part in the applications.

Notation As is customary, if � is an open subset of R
n, the norm of the Sobolev space

W s,p(�) (s ∈ R, 1 ≤ p ≤ ∞) is denoted by || · ||s,p,�. In particular, for consistency,
|| · ||0,p,� is the norm of L p(�).

2 An equivalent first-order system

This section gives further details about the reformulation of the problem as a first-order
system and discusses related technical issues. The hypotheses of Theorem 1.1 are retained.

We begin with the remark that L p(0, 2π; L p
−) is isometrically isomorphic to L p((0, 2π)×

R−) in the natural way, that is, by identifying u ∈ L p(0, 2π; L p
−) with the complex-valued

function u(x, y) := u(x)(y).A proof1 can be found in Benedek and Panzone [3, pp. 318-319].
It follows from this identification and from the definitions of the derivatives of scalar- and vec-
tor-valued distributions [22] that if u ∈ W 1,p((0, 2π), L p

−), the function of L p((0, 2π)×R−)
corresponding to du

dx
∈ L p(0, 2π; L p

−) is just the partial derivative ux . Likewise, if u ∈
L p(0, 2π; W 1,p

− ), then uy corresponds to the derivative du
dy

∈ L p(0, 2π; L p
−). The repeti-

tion of these remarks makes it possible to give vector-valued characterizations of Sobolev
spaces over (0, 2π)× R−. For example,

W 2,p((0, 2π)× R−) = L p(0, 2π; W 2,p
− ) ∩ W 1,p(0, 2π; W 1,p

− ) ∩ W 2,p(0, 2π; L p
−).

The space W 2,p
(θ),per ((0, 2π) × R−) in (1.3) can also be characterized in terms of vector-

valued spaces. First, u ∈ W 2,p
(θ),per ((0, 2π) × R−) if and only if 2 u ∈ L p(0, 2π; W 2,p

(θ)−) ∩
W 1,p

per (0, 2π; W 1,p
− ) and du

dx
∈ W 1,p

per (0, 2π; L p
−) [see (1.4) and (1.9)]. Since du

dx
∈

L p(0, 2π; W 1,p
− ) (because u ∈ W 1,p

per ((0, 2π; W 1,p
− )), the latter condition is equivalent to

du
dx

∈ L p(0, 2π; W 1,p
− ) ∩ W 1,p

per (0, 2π; L p
−). This yields

u ∈ W 2,p
(θ),per ((0, 2π)× R−) ⇔(

u
du
dx

)
∈ L p(0, 2π; W 2,p

(θ)− × W 1,p
− ) ∩ W 1,p

per (0, 2π; W 1,p
− × L p

−). (2.1)

1 Although this is mostly Fubini’s theorem, measurability issues are not entirely trivial.
2 Minor technicalities are involved in checking the equivalence of the periodicity/boundary conditions. For
brevity, the verification is left to the reader.
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This makes it obvious that solving Pu = g for u ∈ W 2,p
(θ),per ((0, 2π) × R−) and g ∈

L p((0, 2π) × R−) is equivalent to solving (1.5) for (u, v) ∈ L p(0, 2π; W 2,p
(θ)− × W 1,p

− ) ∩
W 1,p

per (0, 2π; W 1,p
− × L p

−). More is true:

Lemma 2.1 If the operator d
dx +A with A from (1.6) is an isomorphism of L p(0, 2π; W 2,p

(θ)−×
W 1,p

− ) ∩ W 1,p
per (0, 2π; W 1,p

− × L p
−) onto L p(0, 2π; W 1,p

− × L p
−), then P is an isomorphism

of W 2,p
(θ),per ((0, 2π)× R−) onto L p((0, 2π)× R−).

Proof By (2.1), (u, v) ∈ ker
( d

dx + A
)

if and only if v = du
dx
, u ∈ W 2,p

(θ),per ((0, 2π)×R−) and

Pu =0, so that d
dx +A and P are simultaneously one to one. Also, P is onto L p((0, 2π)×R−)

as soon as d
dx + A is surjective, for then a solution u ∈ W 2,p

(θ),per ((0, 2π) × R−) to Pu =
g ∈ L p((0, 2π)× R−) = L p(0, 2π; L p

−) is obtained by solving (1.5) for (u, v). �

The converse of Lemma 2.1 is true, but not trivial, for the invertibility of P does not imply

that d
dx + A is onto L p(0, 2π; W 1,p

− × L p
−) in any obvious way: Only that its range contains

the dense subspace
(

L p(0, 2π; W 1,p
− ) ∩ W 1,p

per (0, 2π; L p
−)

)
× L p(0, 2π; L p

−). Actually, the

converse of Lemma 2.1 follows from the necessity of the criterion of Theorem 1.1—proved in
Lemma 2.4 below—because this criterion suffices to use Theorem 1.2 with A = A.However,
most of the proof of Theorem 1.1 consists precisely in justifying the latter claim.

In Theorem 1.2, the operator A must be closed. When A = A, this issue is resolved in:

Lemma 2.2 (i) The operator P in (1.7) is a closed operator on L p
− with domain W 2,p

(θ)−.
(ii) The operator A in (1.6) is a closed operator on W 1,p

− ×L p
− with domain W 2,p

(θ)−×W 1,p
− .

Proof First, (i) ⇒ (ii) by (1.6), (1.7) and (1.8). To prove (i), it suffices to find a constant
M > 0 such that ||w||2,p,R− ≤ M(||Pw||0,p,R− + ||w||0,p,R−) for every w ∈ W 2,p

− . Since
|c| is bounded away from 0 (by the uniform ellipticity of P in Theorem 1.1), this follows at
once fromw′′ = 1

c Pw+ Lw where L is a first-order differential operator with bounded con-
tinuous coefficients, together with the well-known inequality (see [14, p. 26] for comments
and references)

||w′||0,p,R− ≤ ε||w′′||0,p,R− + Kε||w||0,p,R− , ∀w ∈ W 2,p
− ,

where ε > 0 is arbitrary and Kε > 0 is a suitable constant. �

It follows from Theorem 1.2 and Lemmas 2.1 and 2.2 that P is invertible if the resolvent

(A− ik I )−1 ∈ L(W 1,p
− × L p

−) exists for every k ∈ Z and the sequence (k(A− ik I )−1)k∈Z is
r-bounded. Our next task will be to rephrase these two conditions. In this aim, we introduce
the sequence of differential operators Pk defined by

Pk := P − ik Q − k2, (2.2)

which are just the operators Pk of (1.2). We shall view Pk as an unbounded operator on L p
−

with domain W 2,p
(θ)− and set

Rθk := P−1
k ∈ L(L p

−), (2.3)

whenever Pk is invertible. By the argument of the proof of part (i) of Lemma 2.2, Pk is a
closed operator on L p

−. As a result, it is invertible if and only if it is a linear isomorphism of

W 2,p
(θ)− onto L p

− (since the graph norm on W 2,p
(θ)− is equivalent to the W 2,p

− norm).
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Lemma 2.3 For every k ∈ Z, the operator A− ik I is invertible if and only if Pk is invertible.
If so,

(A − ik I )−1 =
(

Rθk (Q − ik) Rθk−P Rθk + ik[Q, Rθk ] −ik Rθk

)
, (2.4)

where [Q, Rθk ] := Q Rθk − Rθk Q. Furthermore, (k(A− ik I )−1)k∈Z is r-bounded in L(W 1,p
− ×

L p
−) if and only if (k2 Rθk )k∈Z is r-bounded in L(L p

−) and in L(W 1,p
− ) and (k Rθk )k∈Z is r-

bounded in L(L p
−,W 1,p

− ) and in L(W 1,p
− ,W 2,p

− ).

Proof That A − ik I and Pk are simultaneously invertible is trivial and both (2.4) and the
sufficiency of the condition for the r-boundedness of k(A − ik I )−1 follow from a routine
verification [Pk Rθk = I must be used in the form k2 Rθk = P Rθk − I − ik Q Rθk to verify (2.4)].

The necessity of the condition for r-boundedness can be seen as follows. First, if k(A −
ik I )−1 is r-bounded in L(W 1,p

− × L p
−), then its restrictions to {0} × L p

− and W 1,p
− × {0} are

r-bounded, which implies that k Rθk is r-bounded in L(L p
−,W 1,p

− ), that k2 Rθk is r-bounded in

L(L p
−) and that k Rθk (Q − ik) is r-bounded in L(W 1,p

− ). Since Q is a first-order differential

operator and we just saw that k Rθk is r-bounded in L(L p
−,W 1,p

− ), it follows that k2 Rθk is

r-bounded in L(W 1,p
− ).

It remains to show that k Rθk is r-bounded in L(W 1,p
− ,W 2,p

− ). The r-boundedness of k(A−
ik I )−1 in L(W 1,p

− × L p
−) is equivalent to the r-boundedness of (A − ik I )−1 in L(W 1,p

− ×
L p

−,W 2,p
(θ)− × W 1,p

− ), that is, in L(W 1,p
− × L p

−,W 2,p
− × W 1,p

− ) since W 2,p
(θ)− is equipped with

the W 2,p
− norm. To see this, use A(A − ik I )−1 = I + ik(A − ik I )−1 and notice that, since A

is closed, the graph norm and the product norm are equivalent on the domain W 2,p
(θ)− × W 1,p

− .

Thus, the restrictions of (A − ik I )−1 to {0} × L p
− and to W 1,p

− × {0} are r-bounded in

L(W 1,p
− × L p

−,W 2,p
− × W 1,p

− ). The former implies that Rθk is r-bounded in L(L p
−,W 2,p

− ) and

the latter that Rθk (Q − ik) is r-bounded in L(W 1,p
− ,W 2,p

− ). But then Rθk Q is r-bounded in

L(W 1,p
− ,W 2,p

− ), so that the same thing is true of k Rθk . �

Remark 2.1 It is obvious, but important for future purposes, that Lemma 2.3 is still true if
k ∈ Z is replaced by {k ∈ Z : |k| ≥ κ} where κ is any positive integer.

The necessity part of Theorem 1.1 is essentially trivial:

Lemma 2.4 In Theorem 1.1, assume that P is an isomorphism of W 2,p
(θ),per ((0, 2π) × R−)

onto L p((0, 2π)× R−). Then, Pk is an isomorphism of W 2,p
(θ)− onto L p

− for every k ∈ Z.

Proof If w ∈ ker Pk, then e−ikxw(y) is in ker P, so that w = 0. Next, if f ∈ L p
−, then

e−ikx f (y) is in L p((0, 2π) × R−), so that there is u ∈ W 2,p
(θ),per ((0, 2π) × R−) such that

Pu = e−ikx f (y). Upon multiplying both sides by eikx and integrating, it appears that
w(y) := 1

2π

∫ 2π
0 u(x, y)eikx dx is in W 2,p

(θ)− and that Pkw = f . �

Since the necessity was settled in Lemma 2.4, it follows from Lemmas 2.1 and 2.2 and

Theorem 1.2 that Theorem 1.1 is proved if, assuming that Pk is invertible (i.e., Rθk exists)
for every k ∈ Z, so that (A − ik I )−1 exists by Lemma 2.3, it can be shown that (k(A −
ik I )−1)k∈Z is r-bounded. In turn, since finite sets are r-bounded, this amounts to proving
that (k(A − ik I )−1)|k|≥κ is r-bounded if κ ∈ N is large enough.
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When the coefficients are constant, this will be done by showing that (k2 Rθk )|k|≥κ is r-

bounded in L(L p
−) and in L(W 1,p

− ) and that (k Rθk )|k|≥κ is r-bounded in L(L p
−,W 1,p

− ) and in

L(W 1,p
− ,W 2,p

− ) (see Lemma 2.3 and Remark 2.1).

3 Constant coefficients: Neumann boundary condition

We now assume that the coefficients b(y), c(y), . . . etc., are constant, and that θ = 0. Under
these conditions, following the strategy outlined at the end of the previous section, we prove
the r-boundedness of k2 R0

k and k R0
k for |k| large enough provided that P is properly elliptic.

In the Introduction, we pointed out that the proper ellipticity of P boils down to the
assumption that P is elliptic and that cλ2 +2bλ+1 has exactly one root in the upper (lower)

open half-plane. In particular, c �= 0 and c − b2 �= 0. If (c − b2)
1
2 denotes either square

root of c − b2, this means that the two numbers c−1(−b ± i(c − b2)
1
2 ) have imaginary parts

of opposite signs. In turn, this amounts to saying that c−1
(
±(c − b2)

1
2 + ib

)
have nonzero

real parts with opposite signs.
The operator Pk in (2.2) is

Pkw := cw′′ + (β − 2ikb)w′ + (γ − k2 − ikα)w (3.1)

and its characteristic polynomial cλ2 + (β − 2ikb)λ+ (γ − k2 − ikα) has roots

λ±(k) = −β + 2ikb ± [4k2(c − b2)− 4cγ + β2 + 4ik(cα − bβ)] 1
2

2c
, (3.2)

from which it follows that

lim|k|→∞ k−1λ±(k) = c−1
(
±(c − b2)

1
2 + ib

)
(3.3)

and

lim|k|→∞ |k|−1(λ+(k)− λ−(k)) = 2c−1(c − b2)
1
2 �= 0. (3.4)

From the above introductory remarks, the proper ellipticity implies that the two limits in
the right-hand side of (3.3) have nonzero real parts with opposite signs. As a result, when |k|
is large enough, one among λ+(k) and λ−(k) has positive real part and the other has negative
real part. In addition, which is which depends only upon the sign of k and the choice of

(c − b2)
1
2 (but not upon k). From now on, this choice is made so that λ+(k) (λ−(k)) is the

root with positive (negative) real part. This holds for |k| ≥ κ with κ ∈ N ∪ {0} large enough.
Unless stated otherwise, any future reference to λ±(k) comes with the understanding that
|k| ≥ κ.

Because Re λ−(k) < 0, the only solutions w ∈ W 2,p
− of Pkw = 0 are the constant

multiples of eλ+(k)y, so that Pk is one to one on W 2,p
(0)−. Its surjectivity is proved below.

The function c−1(λ−(k)− λ+(k))−1 Ek(y) with

Ek(y) :=
{

eλ+(k)y if y < 0,
eλ−(k)y if y > 0,

(3.5)

is a fundamental solution of Pk . As a result, the Green’s function Gk(y, z) of Pk

on R− with homogeneous Neumann boundary condition is Gk(y, z) = c−1(λ−(k) −
λ+(k))−1

(
Ek(y − z)+ ξzeλ+(k)y) , where ξz ∈ C is chosen such that ∂Gk

∂y (0, z) = 0. A
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simple calculation yields ξz = −λ+(k)−1λ−(k)e−λ−(k)z . As a result, if f ∈ L p
−, then

R0
k f ∈ W 2,p

(0)− is given by

(R0
k f )(y) =

1

c(λ−(k)− λ+(k))

⎛
⎝(Ek ∗ f̃ )(y)− λ−(k)

λ+(k)

0∫
−∞

eλ+(k)y−λ−(k)z f (z)dz

⎞
⎠ , (3.6)

where f̃ denotes the extension of f by 0.

3.1 r-boundedness of k2 R0
k in L(L p

−)

By (3.3), (3.4), and (3.6) and the Kahane contraction principle, it is enough to prove that the
sequences f ∈ L p

− �→ k Ek ∗ f̃ ∈ L p
− and f ∈ L p

− �→ k
∫ 0
−∞ eλ+(k)y−λ−(k)z f (z)dz ∈ L p

−
are r-bounded for |k| ≥ κ.

We begin with the first sequence. Since f ∈ L p
− �→ f̃ ∈ L p(R) is continuous, it suffices

to show that (k Ek∗)|k|≥κ is r-bounded on L p(R), that is, that there is a constant C > 0
independent of n ∈ N such that for every |k j | ≥ κ and g j ∈ L p(R), 1 ≤ j ≤ n (see the
Appendix), ∥∥∥∥∥∥∥

⎛
⎝ n∑

j=1

|k j Ek j ∗ g j |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
0,p,R

≤ C

∥∥∥∥∥∥∥

⎛
⎝ n∑

j=1

|g j |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
0,p,R

. (3.7)

Furthermore, since finite subsets are r-bounded, it actually suffices to prove (3.7) when
|k j | ≥ κ ′ with κ ′ ≥ κ arbitrarily large.

Choose 0 < ρ <

∣∣∣Re
(

c−1
(
±(c − b2)

1
2 + ib

))∣∣∣ . By (3.3), if |k| ≥ κ ′ and κ ′ is large

enough, then Re λ−(k) < −ρ|k| < ρ|k| < Re λ+(k). As a result, |k Ek(y)| ≤ H|k|(y)
for every y ∈ R, where H(y) := e−ρ|y| and Ht (y) := t H(t y) for t > 0. In particular,
|k Ek ∗ g| ≤ H|k| ∗ |g| and so

∑n
j=1 |k j Ek j ∗ g j |2 ≤ ∑n

j=1(H|k j | ∗ |g j |)2. Since H is even
and decreasing for y > 0, it is known (Stein [24, p. 57]) that

sup
t>0

|(Ht ∗ |g|)(y)| ≤ ||H ||0,1,RMg(y), (3.8)

where Mg is the Hardy–Littlewood maximal function of g. Thus,

n∑
j=1

|k j Ek j ∗ g j |2 ≤ 4ρ−2
n∑

j=1

|Mg j |2. (3.9)

On the other hand, since the maximal operator is bounded in L p(R, �2) ([24, p. 51]),

there is a constant C > 0 independent of n such that ||
(∑n

j=1 |Mg j |2
) 1

2 ||0,p,R ≤
C ||

(∑n
j=1 |g j |2

) 1
2 ||0,p,R. Thus, (3.7) follows from (3.9).

It remains to prove that f ∈ L p
− �→ k

∫ 0
−∞ eλ+(k)y−λ−(k)z f (z)dz ∈ L p

− is r-bounded
for |k| ≥ κ. This can be written as Tk f̃ where Tk is the operator on L p(R) given
by Tk g(y) := ∫ ∞

−∞ χR−(y)keλ+(k)y−λ−(k)zχR−(z)g(z)dz. It is useful to notice that if
y, z < 0, then Re λ+(k)y − Re λ−(k)z ≤ min{Re λ+(k)(y − z),Re λ−(k)(y − z)}. Thus,
if y, z < 0, then

∣∣keλ+(k)y−λ−(k)z
∣∣ ≤ |k Ek(y − z)| ≤ H|k|(y − z). It follows that
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∣∣χR−(y)keλ+(k)y−λ−(k)zχR−(z)
∣∣ ≤ H|k|(y − z) for every y, z ∈ R and large enough |k|.

This implies |Tk g| ≤ H|k| ∗ |g| for every g ∈ L p(R), so that the exact same procedure as
above proves the r-boundedness of Tk .

3.2 r-boundedness of k R0
k in L(L p

−,W 1,p
− )

From the definition of the W 1,p
− norm, k R0

k is r-bounded in L(L p
−,W 1,p

− ) (for |k| ≥ κ) if

and only if k R0
k is r-bounded in L(L p

−) (which follows from 3.1) and k
(
R0

k

)′
is r-bounded

in L(L p
−). From (3.6),

(
R0

k f
)′
(y) = 1

c(λ−(k)− λ+(k))

⎛
⎝(E ′

k ∗ f̃ )(y)− λ−(k)
0∫

−∞
eλ+(k)y−λ−(k)z f (z)dz

⎞
⎠ .

By (3.3), (3.4) and (3.5), |E ′
k | ≤ C |k|Ek where C > 0 is a constant independent of

k ∈ Z. Thus, by (3.3), (3.4) and the Kahane contraction principle, the r-boundedness
of k

(
R0

k

)′
in L(L p

−) is proved if the sequences f ∈ L p
− �→ k Ek ∗ f̃ ∈ L p

− and

f ∈ L p
− �→ k

∫ 0
−∞ eλ+(k)y−λ−(k)z f (z)dz ∈ L p

− are r-bounded. Both issues were already
settled in 3.1.

3.3 r-boundedness of k2 R0
k in L(W 1,p

− )

Initially, the question is a bit more technical to formulate, so we return to first principles. We
must find a constant C > 0 independent of n such that for |k j | ≥ κ and f j ∈ W 1,p

− , 1 ≤ j ≤
n,

⎛
⎜⎝

1∫
0

∥∥∥∥∥∥
n∑

j=1

r j (t)k
2
j R0

k f j

∥∥∥∥∥∥
p

1,p,R−

dt

⎞
⎟⎠

1
p

≤ C

⎛
⎜⎝

1∫
0

∥∥∥∥∥∥
n∑

j=1

r j (t) f j

∥∥∥∥∥∥
p

1,p,R−

dt

⎞
⎟⎠

1
p

,

where (r j ) j∈N is the sequence of Rademacher functions. By definition of the W 1,p
− norm,

this amounts to∥∥∥∥∥∥
n∑

j=1

r j k
2
j R0

k f j

∥∥∥∥∥∥
L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j k
2
j (R

0
k f j )

′
∥∥∥∥∥∥

L p((0,1)×R−)

≤ C

⎛
⎜⎝

∥∥∥∥∥∥
n∑

j=1

r j f j

∥∥∥∥∥∥
L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)×R−)

⎞
⎟⎠ .

Therefore, it suffices to find a constant C > 0 such that∥∥∥∥∥∥
n∑

j=1

r j k
2
j R0

k f j

∥∥∥∥∥∥
L p((0,1)×R−)

≤ C

∥∥∥∥∥∥
n∑

j=1

r j f j

∥∥∥∥∥∥
L p((0,1)×R−)

(3.10)

and that ∥∥∥∥∥∥
n∑

j=1

r j k
2
j (R

0
k f j )

′
∥∥∥∥∥∥

L p((0,1)×R−)

≤ C

∥∥∥∥∥∥
n∑

j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)×R−)

. (3.11)
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The inequality (3.10) is just the r-boundedness of k2 R0
k in L(L p

−) proved in 3.1. A major

simplification in the proof of (3.11) arises from the remark that if f ∈ W 1,p
− and ifw ∈ W 2,p

(0)−
solves Pkw = f (so that w = R0

k f ), then w′ = (
R0

k f
)′ ∈ W 1,p

0− := W 1,p
0 (R−) solves the

homogeneous Dirichlet problem {
Pkw

′ = f ′,
w′(0) = 0,

because the coefficients of Pk are constant. Now, since sign Re λ±(k) = ±1 if |k| ≥ κ,

no nontrivial linear combination of eλ±(k)y is in W 1,p
0− , whence Pk is one to one on W 1,p

0− .
Therefore, Pk is an isomorphism from W 2,p

− ∩ W 1,p
0− to L p

−, with inverse Sk explicitly given
by

(Sk g)(y) = 1

c(λ−(k)− λ+(k))

⎛
⎝(Ek ∗ g̃)(y)−

0∫
−∞

eλ+(k)y−λ−(k)z g(z)dz

⎞
⎠ , (3.12)

for every g ∈ L p
−. This implies that if v ∈ W 1,p

0− and Pkv = g ∈ L p
−, then v ∈ W 2,p

− ∩ W 1,p
0−

(elliptic regularity) and v = Sk g. In particular, from the above,
(
R0

k f
)′ = Sk f ′ whenever

f ∈ W 1,p
− and so the desired inequality (3.11) may be rewritten as

∥∥∥∥∥∥
n∑

j=1

r j k
2
j Sk j f ′

j

∥∥∥∥∥∥
L p((0,1)×R−)

≤ C

∥∥∥∥∥∥
n∑

j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)×R−)

.

This is nothing but the r-boundedness of (k2Sk)|k|≥κ in L(L p
−), which can be proved by the

exact same arguments as in 3.1, just relying on the representation (3.12) instead of (3.6).

Remark 3.1 For use in 3.4 below, note that the result of 3.2 is also true—with the same
proof—when R0

k is replaced by Sk, that is, (kSk)|k|≥κ is r-bounded in L(L p
−,W 1,p

− ).

3.4 r-boundedness of k R0
k in L(W 1,p

− ,W 2,p
− )

With the notation of 3.3, the problem is now to find a constant C > 0 independent of n such
that for |k j | ≥ κ and f j ∈ W 1,p

− , 1 ≤ j ≤ n,

∥∥∥∥∥∥
n∑

j=1

r j k j R0
k f j

∥∥∥∥∥∥
L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j k j (R
0
k f j )

′
∥∥∥∥∥∥

L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j k j (R
0
k f j )

′′
∥∥∥∥∥∥

L p((0,1)×R−)

≤ C

⎛
⎜⎝

∥∥∥∥∥∥
n∑

j=1

r j f j

∥∥∥∥∥∥
L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)×R−)

⎞
⎟⎠ .

Since the r-boundedness of k2 R0
k in L(W 1,p

− ) proved in 3.3 implies that of k R0
k in L(W 1,p

− ),

the sum of the first two terms in the left-hand side above is majorized as required. The only
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remaining question is the existence of C > 0 such that
∥∥∥∥∥∥

n∑
j=1

r j k j (R
0
k f j )

′′
∥∥∥∥∥∥

L p((0,1)×R−)

≤

C

⎛
⎜⎝

∥∥∥∥∥∥
n∑

j=1

r j f j

∥∥∥∥∥∥
L p((0,1)×R−)

+
∥∥∥∥∥∥

n∑
j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)×R−)

⎞
⎟⎠ . (3.13)

In 3.3, we noticed that if f ∈ W 1,p
− , then (R0

k f )′ = Sk f ′ with Sk from (3.12). Thus,

(R0
k f j )

′′ =
(

Sk f ′
j

)′
and so

∥∥∥∥∥∥
n∑

j=1

r j k j (R
0
k f j )

′′
∥∥∥∥∥∥

L p((0,1)×R−)

=
∥∥∥∥∥∥

n∑
j=1

r j k j

(
Sk j f ′

j

)′
∥∥∥∥∥∥

L p((0,1)×R−)

≤

C

∥∥∥∥∥∥
n∑

j=1

r j f ′
j

∥∥∥∥∥∥
L p((0,1)× R−)

since (kSk)|k|≥κ is r-bounded in L(L p
−,W 1,p

− ) (Remark 3.1), which is actually stronger than
(3.13).

3.5 Dirichlet problem

As noted above, 3.1 and 3.2 are still true when R0
k is replaced by Sk from (3.12) (homoge-

neous Dirichlet problem), but 3.3 and 3.4 fail for Sk . For example, it is not difficult to see
that k2Sk is not even bounded in L(W 1,p

− ), let alone r-bounded.
However, for the Dirichlet problem, 3.3 and 3.4 are not quite the right properties: The

corresponding spaces X and W of Theorem 1.2 are W 1,p
0− × L p

− and (W 2,p ∩ W 1,p
0− )× W 1,p

− ,

respectively. Thus, the analog of Lemma 2.3 requires (k2Sk)k∈Z to be r-bounded in L(L p
−)

and in L(W 1,p
0− ,W 1,p) and (k R0

k )k∈Z to be r-bounded in L(L p
−,W 1,p

− ) and in L(W 1,p
0− ,W 2,p

− ).

In other words, in 3.3 and 3.4, the source space W 1,p
− should be replaced by the smaller W 1,p

0− .
With this modification, the desired r-boundedness properties continue to hold. For example,
if g ∈ W 1,p

0− in (3.12), then g(0) = 0, so that g̃′ = g̃′ (extensions by 0), while integration by
parts yields

0∫
−∞

eλ+(k)y−λ−(k)z g(z)dz = 1

λ−(k)

0∫
−∞

eλ+(k)y−λ−(k)z g′(z)dz.

Thus,

(Sk g)′(y) = 1

c(λ−(k)− λ+(k))

⎛
⎝(Ek ∗ g̃′)(y)− λ+(k)

λ−(k)

0∫
−∞

eλ+(k)y−λ−(k)z g′(z)dz

⎞
⎠

and hence k2(Sk)
′ is r-bounded in L(W 1,p

0− , L p
−) by the arguments of 3.1 while k(Sk)

′ is

r-bounded in L(W 1,p
0− ,W 1,p

− ) by the arguments of 3.2. Since it is already known that k2Sk
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and kSk are r-bounded in L(L p
−) and L(L p

−,W 1,p
− ), respectively, it follows that k2Sk and

kSk are r-bounded in L(W 1,p
0− ,W 1,p

− ) and L(W 1,p
0− ,W 2,p

− ), respectively.

4 Constant coefficients: general case

In this section, θ ∈ C is arbitrary but we continue to assume that the coefficients are constant
and that P is properly elliptic. As in the previous section, let κ ∈ N ∪ {0} be such that
sign Re λ±(k) = ±1 for |k| ≥ κ. If so, the operator Pk is one to one on W 2,p

(θ)− if and only

if the function w(y) = eλ+(k)y does not satisfy the condition w′(0)+ θw(0) = 0, that is, if
and only if θ �= −λ+(k). Then, the inverse Rθk of Pk exists and

Rθk f = 1

c(λ−(k)− λ+(k))

⎛
⎝(Ek ∗ f̃ )(y)− λ−(k)+ θ

λ+(k)+ θ

0∫
−∞

eλ+(k)y−λ−(k)z f (z)dz

⎞
⎠ , (4.1)

for every f ∈ L p
−, where Ek is given by (3.5) and f̃ is the extension of f by 0. This is a

minor modification of the formula (3.6) when θ = 0, and so the arguments of 3.1 and 3.2
can be repeated verbatim to show that (k2 Rθk )|k|≥κ is r-bounded in L(L p

−) and (k Rθk )|k|≥κ
is r-bounded in L(L p

−,W 1,p
− ) whenever θ �= −λ+(k) for every |k| ≥ κ. At any rate, since

θ �= −λ+(k) if |k| is large enough by (3.3), k2 Rθk and k Rθk are always r-bounded in L(L p
−)

and in L(L p
−,W 1,p

− ), respectively, provided that |k| is large enough. For that reason, it will
be convenient to increase κ, by requiring not only that sign Re λ±(k) = ±1, but also that
θ �= −λ+(k) for |k| ≥ κ. With this new definition of κ, (k2 Rθk )|k|≥κ is r-bounded in L(L p

−)
and (k Rθk )|k|≥κ is r-bounded in L(L p

−,W 1,p
− ) and all the r-boundedness results involving R0

k
when |k| ≥ κ in the previous section are of course unchanged.

Unlike in Sect. 3, if w ∈ W 2,p
(θ)− and Pkw = f, then w′ does not solve a simple boundary

value problem when θ �= 0, so that the procedure of 3.3 and 3.4 cannot be repeated to obtain
the r-boundedness of (k2 Rθk )|k|≥κ in L(W 1,p

− ) and that of (k Rθk )|k|≥κ in L(W 1,p
− ,W 2,p

− ).We
use another argument.

Given k ∈ Z with |k| ≥ κ and v ∈ W 1,p
− , set

�kv := v(0)

λ+(k)
eλ+(k)y . (4.2)

Clearly, �k ∈ L(W 1,p
− ,W 2,p

− ) ⊂ L(W 1,p
− ) and Pk�k = 0. Thus, if f ∈ L p

− and v := Rθk f,
then w := v + θ�kv solves Pkw = f and wy(0) = 0. Since R0

k exists for |k| ≥ κ, this
means

Rθk = R0
k − θ�k Rθk if |k| ≥ κ. (4.3)

Lemma 4.1 The sequence (�k)|k|≥κ is r-bounded in L(W 1,p
− ) and the r-bound of (�k)|k|≥�

in L(W 1,p
− ) tends to 0 as � → ∞.

Proof Of course, the former property follows from the latter. Since �k is the composite
of the evaluation v ∈ W 1,p

− �→ v(0) ∈ C and of the mapping �k : C → W 1,p
− defined

by �k(ζ ) := ζ
λ+(k)e

λ+(k)y ∈ W 1,p
− , it suffices to prove that the r-bound of (�k)|k|≥� in

L(C,W 1,p
− ) tends to 0 as � → ∞. In turn, this amounts to the similar question for �k and
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(�k)
′ in L(C, L p

−). But since (�k)
′ = λ+(k)�k, it follows from (3.3) and the Kahane con-

traction principle that it suffices to show that the r-bound of (λ+(k)�k)|k|≥� in L(C, L p
−)

tends to 0 as � → ∞.

Given n ∈ N, let k j ∈ Z be such that |k j | ≥ � and let ζ j ∈ C, 1 ≤ j ≤ n. Then,∑n
j=1 |ζ j eλ+(k j )y |2 = ∑n

j=1 |ζ j |2e2 Re λ+(k j )y . Since lim|k|→∞ Re λ+(k) = ∞ by (3.3), it
follows that Re λ+(k j ) above is larger than any prescribed λ > 0 if � is large enough. As
a result,

∑n
j=1 |ζ j |2e2 Re λ+(k j )y = e2λy ∑n

j=1 |ζ j |2e2(Re λ+(k j )−λ)y ≤ e2λy ∑n
j=1 |ζ j |2 since

y < 0. This yields∥∥∥∥∥∥∥

⎛
⎝ n∑

j=1

|λ+(k j )�k j (ζ j )|2
⎞
⎠

1
2

∥∥∥∥∥∥∥
0,p,R−

≤ (pλ)−
1
p

⎛
⎝ n∑

j=1

|ζ j |2
⎞
⎠

1
2

.

In other words, the r-bound of (λ+(k)�k)|k|≥� is (proportional to) (pλ)−
1
p , so that it can be

made arbitrarily small if λ (and hence �) is large enough. �

The next lemma proves the remaining two properties needed to establish the validity of

Theorem 1.1 when the coefficients are constant.

Lemma 4.2 The sequences (k2 Rθk )|k|≥κ and (k Rθk )|k|≥κ are r-bounded in L(W 1,p
− ) and in

L(W 1,p
− ,W 2,p

− ), respectively.

Proof We already know that Rθk exists if |k| ≥ κ, so that, as usual, the r-boundedness needs
to be establish only for |k| ≥ � with � arbitrarily large. By Lemma 4.1, there is � ≥ κ such
that the r-bound M� of (�k)|k|≥� satisfies |θ |M� ≤ 1

2 .

Let C� > 0 denote the r-bound of (k2 R0
k )|k|≥� in L(W 1,p

− ),which is finite by 3.3. Let now
F be any finite subset of {k ∈ Z : |k| ≥ �}. Since finite subsets are r-bounded, (k2 Rθk )k∈F is

r-bounded in L(W 1,p
− ). Call CF > 0 its r-bound.

By (4.3) and the properties of r-bounds, CF ≤ C� + |θ |M�CF ≤ C� + 1
2 CF , so that

CF ≤ 2C�. From the definition of r-boundedness, supF CF ≤ 2C� is the (finite) r-bound of
(k2 Rθk )|k|≥�. in L(W 1,p

− ).

Next, the r-boundedness of (k Rθk )|k|≥κ in L(W 1,p
− ,W 2,p

− ) is equivalent to its r-bounded-

ness in L(W 1,p
− ) plus the r-boundedness of

(
k

(
Rθk

)′)
|k|≥κ in L(W 1,p

− ). The former follows

from the stronger result above that (k2 Rθk )|k|≥κ is r-bounded in L(W 1,p
− ). To prove the latter,

note that (�kv)
′ = λ+(k)�kv = v(0)eλ+(k)y by (4.2), so that the differentiation of (4.3)

yields

k
(
Rθk

)′ = k
(
R0

k

)′ − k−1λ+(k)�k
(
k2 Rθk

)
. (4.4)

Since k R0
k is r-bounded in L(W 1,p

− ,W 2,p
− ) by 3.4, then k

(
R0

k

)′
is r-bounded in L(W 1,p

− ).

Also, since it was just shown above that k2 Rθk is r-bounded in L(W 1,p
− ) and since �k is

r-bounded in L(W 1,p
− ) (Lemma 4.1), it follows from (3.3) and the Kahane contraction prin-

ciple that k−1λ+(k)�k(k2 Rθk ) is r-bounded in L(W 1,p
− ). Thus, by (4.4), k

(
Rθk

)′
is indeed

r-bounded in L(W 1,p
− ). �


From the discussion at the end of Sect. 2, Lemma 4.2 completes the proof of Theorem 1.1
when the coefficients are constant. If they are also real (so that ellipticity and proper ellipticity
coincide), there is a simpler equivalent statement.
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Theorem 4.3 If P is elliptic with constant real coefficients, then P is an isomorphism of
W 2,p
(θ),per ((0, 2π) × R−) onto L p((0, 2π) × R−) if and only if γ < 0 and θ �= −λ+(k) for

every k ∈ Z, where λ+(k) is the unique root with positive real part of the characteristic
polynomial of Pk .

Proof Note that c > 0 by ellipticity and that, if β �= 0 and γ > 0, it follows from (3.2)
that the real parts of both roots λ±(0) have the same nonzero sign. This implies at once that
either ker P0 �= {0} (if β < 0) or that cw′′∗ − βw′∗ + γw∗ = 0, with boundary condition
w′∗(0)− (

β
c − θ)w∗(0) = 0, has a nonzero exponentially decaying (as y → −∞) solution

w∗ ∈ W 1,∞
− (if β > 0). Since

∫ 0
−∞ fw∗ = 0 whenever f ∈ P0

(
W 2,p
(θ)−

)
(use integration

by parts), this shows that w∗ ∈ L p
− and that w∗ /∈ P0

(
W 2,p
(θ)−

)
. Thus, P0 is not invertible if

β �= 0 and γ > 0, and then it is not invertible either when γ ≥ 0 and β ∈ R is arbitrary. That
θ �= −λ+(k) is also needed for Pk to be invertible was already noted at the beginning of this
section. Thus, by Theorem 1.1, both γ < 0 and θ �= −λ+(k) for every k are necessary for
P to be invertible.

Conversely, if γ < 0, an examination of (3.2) reveals that λ±(k) have real parts of oppo-
site signs for every k ∈ Z. (To see this, observe that if ζ ∈ C, then (Re ζ )2 ≥ Re ζ 2 and let
ζ be the square root of 4k2(c − b2)− 4cγ + β2 + 4ik(cα− bβ) with nonnegative real part.)
This means that κ = 0 in Sect. 3. If, in addition, θ �= −λ+(k) for every k ∈ Z, then obviously
κ need not be increased to ensure the extra condition θ �= −λ+(k) for |k| ≥ κ, so that once
again κ = 0. Since the existence of Rθk was obtained earlier when |k| ≥ κ, it follows that Pk

is invertible for every k ∈ Z and then the invertibility of P follows from Theorem 1.1. �


The results of this section show that the sequence (k(A − ik I )−1)|k|≥κ is defined and

r-bounded in L(W 1,p
− × L p

−) when the coefficients are constant, provided that κ ∈ N is
large enough. This will be instrumental in the next step, which consists in proving the same
property when the coefficients are periodic.

5 Periodic coefficients

In this section, we retain the hypotheses of Theorem 1.1 and also assume that the coefficients
b(y), . . . , γ (y) of P are periodic. In particular, they are defined for every y ∈ R. With no
loss of generality, we confine attention to the case when the period is 2π.We shall prove that,
once again, the sequence (k(A − ik I )−1)|k|≥κ is defined and r-bounded in L(W 1,p

− × L p
−)

provided that κ ∈ N is large enough.
In what follows, v(y) := (b(y), . . . , γ (y)) ∈ C

5 denotes the vector of coefficients of P

in (1.1). For future use, note that v(R) = v([0, 2π ]) is compact.
With y0 ∈ R being fixed, call Ay0 the operator (1.6) when the coefficients v(y) of P are

replaced by the constant coefficients v(y0). From the ellipticity of P and the results of the
previous section,

(
k(Ay0 − ik I )−1

)
|k|≥κ is defined and r-bounded in L(W 1,p

− × L p
−) if κ is

large enough.
The r-boundedness of resolvents is unaffected by small enough relatively bounded pertur-

bations of the operator. Since the spectrum of Ay0 is not the entire complex plane, such per-

turbations include operators A0 ∈ L(W 2,p
(θ)− × W 1,p

− ,W 1,p
− × L p

−) such that ||A0 −Ay0 || < ε,

where ε > 0 is small enough and the norm is that of L(W 2,p
(θ)− × W 1,p

− ,W 1,p
− × L p

−). More
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precisely, from [21, Lemma 3.4] (with A = Ay0 and K = A0 − Ay0 in that lemma), the

sequence
(
k(A0 − ik I )−1

)
|k|≥κ is r-bounded in L(W 1,p

− ×L p
−) after increasing κ if necessary.

The condition ||A0 − Ay0 || < ε is satisfied when A0 is an operator having the same struc-
ture as A in (1.6), (1.7) and (1.8) and continuous coefficients v0(y) := (b0(y), . . . , γ0(y))
such that |v0(y) − v(y0)| ≤ δ0 for every y ∈ R, where δ0 > 0 is small enough. We now
construct such an operator A0, with a useful extra feature. With B(v(y0), δ0) denoting the
open ball in C

5 with center v(y0) and radius δ0, set

U0 := v−1(B(v(y0), δ0)) = {y ∈ R : v(y) ∈ B(v(y0), δ0)},
an open subset of R. For y ∈ U 0, define v0(y) := v(y). Since U 0 is closed in R and v0 is
continuous on U 0, the classical Dugundji extension theorem [10,12] ensures that v0 can be
continuously extended to the entire line, in such way that the values of v0 remain in the convex
hull of v0

(
U 0

)
. Since v0

(
U 0

) ⊂ B(v(y0), δ0) and balls are convex, |v0(y) − v(y0)| ≤ δ0

for every y ∈ R. As a result,
(
k(A0 − ik I )−1

)
|k|≥κ is r-bounded if κ is large enough. In

addition, A0 and A coincide on U0.

Cover v(R) by finitely many balls B(v(y j ), δ j ), 1 ≤ j ≤ N , as above. This produces
N open subsets U j := v−1(B(v(y j ), δ j )) and N operators A j of the form (1.6) such that(
k(A j − ik I )−1

)
|k|≥κ is r-bounded for κ large enough and that A j and A coincide on U j .

Obviously, κ may be chosen independent of j.
The open subsets U j have two elementary but crucial properties: By the periodicity of v,

each U j is invariant by 2π -translation and ∪N
j=1U j = R. Since U j is open, O j := eiU j =

{(cos y, sin y) : y ∈ U j } is open in the unit circle S
1. Furthermore, by the translation invari-

ance of U j ,

U j = {y ∈ R : (cos y, sin y) ∈ O j }. (5.1)

Since ∪N
j=1U j = R, then ∪N

j=1 O j = S
1 and so there is a smooth partition of unity

(ψ j ) of S
1 subordinate to this covering. Define ϕ j (y) := ψ j (cos y, sin y). Then, 0 ≤ ϕ j ≤

1,Suppϕ j ⊂ U j by (5.1) and
∑N

j=1 ϕ j = 1 on R. In addition, all the derivatives of ϕ j are
uniformly bounded on R. Also, since Suppψ j is a compact subset of O j , there is a smooth
function ψ̃ j on S

1 such that Supp ψ̃ j ⊂ O j and ψ̃ j = 1 on Suppψ j . Clearly, it may (and
will) also be assumed that ψ̃ j = 0 on a neighborhood of (1, 0) in S

1 for every index j such
that (1, 0) /∈ Suppψ j . Then, with ϕ̃ j (y) := ψ̃ j (cos y, sin y), it follows that Supp ϕ̃ j ⊂ U j

(once again, by (5.1)), that ϕ̃ j = 1 on Suppϕ j , and that all the derivatives of ϕ̃ j are uni-
formly bounded on R. In addition, ϕ̃′

j (0) = 0 for 1 ≤ j ≤ N since 0 ∈ Suppϕ j if and only
if (1, 0) ∈ Suppψ j , so that ϕ̃′

j (0) = 0 irrespective of whether 0 ∈ Suppϕ j by the assumed

properties of ψ̃ j . (This uses the elementary remark that the support of a continuous function
is the closure of its interior.)

We now proceed to proving that, after increasing κ if necessary, A − ik I is one to one on
W 2,p
(θ)− × W 1,p

− and onto W 1,p
− × L p

− if |k| ≥ κ—so that (A − ik I )−1 exists for every such

k—and that the sequence (k(A − ik I )−1)|k|≥κ is r-bounded in L(W 1,p
− × L p

−). From this
point on, the arguments parallel those in [11], with appropriate modifications.

5.1 Surjectivity

Let ( f, g) ∈ W 1,p
− ×L p

− be given. Assuming that |k| ≥ κ, the existence of (A j −ik I )−1 yields

a solution (u j , v j ) ∈ W 2,p
(θ)−×W 1,p

− of (A j −ik I )(u j , v j ) = (ϕ j f, ϕ j g) ∈ W 1,p
− ×L p

−.Then,
ϕ̃ j (A j − ik I )(u j , v j ) = (ϕ j f, ϕ j g) since ϕ̃ j = 1 on Suppϕ j . Moreover, ϕ̃ j (A j − ik I ) =
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ϕ̃ j (A − ik I ) since A and A j coincide on Supp ϕ̃ j ⊂ U j . Therefore, ϕ̃ j (A − ik I )(u j , v j ) =
(ϕ j f, ϕ j g).

Now, ϕ̃ j (A − ik I )(u j , v j ) = (A − ik I )(ϕ̃ j u j , ϕ̃ jv j ) + (0,E j (u j , v j )), where E j is a
k-independent scalar differential operator of first order in u j and zeroth order in v j , with
bounded continuous coefficients (because the first and second derivatives of ϕ̃ j are bounded).

In particular, E j ∈ L(W 1,p
− × L p

−, L p
−).

Altogether, (A − ik I )(ϕ̃ j u j , ϕ̃ jv j ) = (ϕ j f, ϕ j g)− (0,E j (u j , v j )), so that, if (u, v) :=∑N
j=1(ϕ̃ j u j , ϕ̃ jv j ), then (u, v) ∈ W 2,p

(θ)− × W 1,p
− and

(A − ik I )(u, v) = ( f, g)−
N∑

j=1

(0,E j (u j , v j ))

=
⎛
⎝I −

N∑
j=1

(0,E j (A j − ik I )−1ϕ j )

⎞
⎠ ( f, g). (5.2)

Indeed, that (u, v) ∈ W 2,p
− × W 1,p

− follows once again from the fact that the first and sec-

ond derivatives of ϕ̃ j are bounded. To see that u = ∑N
j=1 ϕ̃ j u j ∈ W 2,p

(θ)−, that is, that

u′(0)+ θu(0) = 0, just use u j ∈ W 2,p
(θ)− and ϕ̃′

j (0) = 0 for 1 ≤ j ≤ N .

Since E j maps into L p
−, the operator

∑N
j=1(0,E j (A j − ik I )−1ϕ j ) maps W 1,p

− × L p
−

into itself and its norm is majorized by
∑N

j=1 ||E j || ||(A j − ik I )−1|| ||ϕ j || where ||E j || is

the norm in L(W 1,p
− × L p

−, L p
−), ||(A j − ik I )−1|| the norm in L(W 1,p

− × L p
−) and ||ϕ j ||

the norm of the multiplication by ϕ j in L(W 1,p
− × L p

−) (well defined since the first deriv-

atives of ϕ j are bounded). Since (k(A − ik I )−1)|k|≥κ is r-bounded in L(W 1,p
− × L p

−), it
is bounded and so lim|k|→∞ ||(A j − ik I )−1|| = 0. Therefore, for large |k|, the operator

Sk := I −∑N
j=1(0,E j (A j − ik I )−1ϕ j ) is invertible on W 1,p

− × L p
−. Since A − ik I and Sk

have the same range by (5.2), A − ik I is onto W 1,p
− × L p

− for large |k|.
5.2 Injectivity

Let (u, v) ∈ W 2,p
(θ)− ×W 1,p

− be such that (A− ik I )(u, v) = 0, so that ϕ j (A j − ik I )(u, v) = 0
since A and A j coincide on U j and Suppϕ j ⊂ U j . Now, ϕ j (A j − ik I )(u, v) = (A j −
ik I )(ϕ j u, ϕ jv) + (0,F j (u, v)) where F j is a k-independent scalar differential operator of
first order in u and zeroth order in v with bounded continuous coefficients (because the first
and second derivatives of ϕ j are bounded). Thus, (A j − ik I )(ϕ j u, ϕ jv) = −(0,F j (u, v)).
For |k| large enough, this means that (ϕ j u, ϕ jv) = −(A j − ik I )−1(0,F j (u, v)), whence

(
u
v

)
= −

N∑
j=1

(A j − ik I )−1 (
0 × F j

) (
u
v

)
.

From the above, ||(u, v)||1,p,R− ≤
(∑N

j=1 ||(A j − ik I )−1|| ||F j ||
)

||(u, v)||1,p,R− where

||(A j − ik I )−1|| is the norm in L(W 1,p
− × L p

−) and ||F j || is the norm in L(W 1,p
− × L p

−, L p
−).

Since (k(A − ik I )−1)|k|≥κ is (r-)bounded in L(W 1,p
− × L p

−), the constant
∑N

j=1 ||(A j −
ik I )−1|| ||F j || is less than 1 if |k| ≥ κ after increasing κ if necessary, so that (u, v) = (0, 0).
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5.3 r-boundedness

Now that we know from 5.1 and 5.2 that (A − ik I )−1 exists when |k| ≥ κ, we may rewrite
(5.2) as

(
u
v

)
= (A − ik I )−1Sk

(
f
g

)
, (5.3)

where Sk ∈ L(W 1,p
− × L p

−) is invertible (see 5.1). In 5.1, (u, v) was obtained in
the form (u, v) = ∑N

j=1(ϕ̃ j u j , ϕ̃ jv j ) with (A j − ik I )(u j , v j ) = (ϕ j f, ϕ j g). If

|k| ≥ κ, the latter also reads (u j , v j ) = (A j − ik I )−1(ϕ j f, ϕ j g), so that (u, v) =(∑N
j=1 ϕ̃ j (A j − ik I )−1ϕ j

)
( f, g). Since this holds for every ( f, g) ∈ W 1,p

− × L p
−, (5.3)

becomes
(∑N

j=1 ϕ̃ j (A j − ik I )−1ϕ j

)
= (A − ik I )−1Sk, that is,

(A − ik I )−1 =
⎛
⎝ N∑

j=1

ϕ̃ j (A j − ik I )−1ϕ j

⎞
⎠ S−1

k .

For |k| large enough, k
∑N

j=1 ϕ̃ j (A j − ik I )−1ϕ j ∈ L(W 1,p
− × L p

−) is r-bounded (finite sum

of r-bounded sequences). Thus, the r-boundedness of (k(A− ik I )−1)|k|≥κ in L(W 1,p
− × L p

−)
for large κ will follow from the same property for (S−1

k )|k|≥κ .
Recall that Sk = I −∑N

j=1(0,E j (A j −ik I )−1ϕ j ). Since k(A j −ik I )−1 is r-bounded for
large |k| and 1 ≤ j ≤ N , it follows from the Kahane contraction principle that the r-bound
of

∑N
j=1(0,E j (A j − ik I )−1ϕ j ) is O

(
κ−1

)
when |k| ≥ κ and κ is large. Now, if X is any

Banach space and T ⊂ L(X) is r-bounded with r-bound r(T ) < 1, then (I − T )−1 is also
r-bounded in L(X) ( [27, Lemma 2.4]). Thus, as claimed, (S−1

k )|k|≥κ is r-bounded if κ is
large enough.

6 Proof, variants, and implications of Theorem 1.1

We now complete the proof of Theorem 1.1 when the coefficients are asymptotically periodic.
We also discuss the special case of real asymptotically constant coefficients, the Dirichlet
problem, and nonhomogeneous boundary conditions.

6.1 Proof of Theorem 1.1

From the discussion at the end of Sect. 2, it suffices to show that the sequence (k(A −
ik I )−1)|k|≥κ is defined and r-bounded in L(W 1,p

− × L p
−) provided that κ ∈ N is large enough.

Call P� the operator with periodic coefficients b�(y), . . . , γ�(y) such that limy→−∞ |b(y)−
b�(y)| = · · · = limy→−∞ |γ (y) − γ�(y)| = 0. As observed just before Theorem 1.1, the
uniform continuity of the coefficients of P implies the (uniform) continuity of the coefficients
of P�. It is equally clear that it implies the (uniform) ellipticity of P�.

The proper ellipticity is also inherited by P�. Indeed, by periodicity and continuity, the
ellipticity of P� shows that the imaginary parts of the roots of c�(y)λ2 +2b�(y)λ+1 are uni-
formly bounded away from 0 when y → −∞.Meanwhile, the roots of c(y)λ2 +2b(y)λ+1
tend to those of c�(y)λ2 +2b�(y)λ+1 as y → −∞.By the proper ellipticity of P, it follows
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(by contradiction) that the roots of c�(y)λ2 + 2b�(y)λ+ 1 have imaginary parts of opposite
signs when −y > 0 is large enough, and hence for every y ∈ R−.

Therefore, the results of the previous section are applicable to P� : If A� denotes the oper-
ator A in (1.6) with P replaced by P�, then (k(A�− ik I )−1)|k|≥κ is defined and r-bounded if
κ is large enough. By using once more the stability of r-boundedness under small perturba-
tions, there is ε > 0 such that if B ∈ L(W 2,p

(θ)− ×W 1,p
− ,W 1,p

− × L p
−) and ||B−A�|| < ε, then

after increasing κ if necessary, the sequence (k(B − ik I )−1)|k|≥κ is defined and r-bounded.
In particular, this is true if B has the same form (1.6) as A� with continuous coefficients
uniformly δ-close to the coefficients of A� for some δ > 0 depending only upon ε.

A convenient choice of B above is as follows: Due to the “asymptotic periodicity” assump-
tion, there is ρ > 1 such that the coefficients of A are δ-close to those of A� on the interval
(−∞,−ρ + 1] ⊂ R−. Pick a continuous function η on R− such that Supp η ⊂ (−∞,−ρ +
1), 0 ≤ η ≤ 1 and η = 1 on (−∞,−ρ]. Then the coefficients of B := ηA + (1 − η)A� are
continuous and uniformly δ-close to the coefficients of A� on R−. Thus, (k(B− ik I )−1)|k|≥κ
is defined and r-bounded if κ is large enough.

On the other hand, let y0 ∈ R− be given along with δ0 > 0. If A0 of the form (1.6)
has continuous coefficients that coincide with those of A on some open interval J0 :=
(y0 − δ0, y0 + δ0) ∩ R− of R− and are constant outside this interval, then an obvious sim-
plification of the argument at the beginning of Sect. 5 shows that, if δ0 is small enough,
(k(A0 − ik I )−1)|k|≥κ is defined and r-bounded for some κ. Cover the compact interval
[−ρ − 1, 0] with finitely many such open intervals, say J j , 1 ≤ j ≤ N − 1. This yields
N − 1 operators A j such that A j = A on J j and that (k(A j − ik I )−1)|k|≥κ is defined and
r-bounded if κ is large enough. This remains true for j = N by defining JN := (−∞,−ρ)
and AN := B with ρ and B as above.

Since the (relatively) open intervals J j , 1 ≤ j ≤ N cover R−, there is a smooth partition
of unity ϕ j subordinate to this covering and there is a smooth function ϕ̃ j with Supp ϕ̃ j ⊂ J j

and ϕ̃ j = 1 on Suppϕ j (support relative R−). Furthermore, it may be assumed that ϕ̃ j = 0
on a neighborhood of 0 in R− for every index j such that 0 /∈ Suppϕ j . This ensures that
ϕ̃′

j (0) = 0 for 1 ≤ j ≤ N .
Necessarily, ϕN = ϕ̃N = 1 on an unbounded interval, so that all the derivatives of ϕ j and

ϕ̃ j are uniformly bounded on R. Thus, the arguments of 5.1, 5.2, and 5.3 can be repeated

verbatim to find that (k(A − ik I )−1)|k|≥κ is defined and r-bounded in L(W 1,p
− × L p

−) if κ is
large enough. The proof of Theorem 1.1 is finally complete.

6.2 Asymptotically constant coefficients

When the coefficients are real and the “limiting” coefficients b�, . . . , γ� are not only periodic
but constant, Theorem 1.1 can be simplified further:

Theorem 6.1 Suppose that the coefficients of P in (1.1) are real, continuous on R− and
asymptotically constant with limits b−∞, . . . , γ−∞ and that P is uniformly elliptic. Let
p ∈ (1,∞) be given. If γ−∞ < 0, then, P is an isomorphism of W 2,p

(θ),per ((0, 2π) × R−)
onto L p((0, 2π)× R−) if and only if Pk is one to one on W 2,p

(θ)− for every k ∈ Z.

Ifγ−∞ ≥ 0, it can be shown that P0 is not Fredholm (by a variant of the proof of Lemma 6.2
below), so that γ−∞ < 0 is necessary in Theorem 6.1. Since the hypotheses of Theorem 6.1
imply that the coefficients of P are uniformly continuous and since proper ellipticity is not
an extra assumption when the coefficients are real, it is a rephrasing of Theorem 1.1 due to
the following lemma:
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Fourier decomposition of elliptic problems 1135

Lemma 6.2 Under the hypotheses of Theorem 6.1, the operator Pk is Fredholm of index 0
from W 2,p

(θ)− to L p
− for every k ∈ Z.

Proof Recall that the uniform ellipticity of P implies the ellipticity of the limiting operator,
whence c−∞ > 0 and b2−∞ − c−∞ < 0.

Extend the coefficients of P and Q by symmetry, that is, set c̃(y) = c(−y), β̃(y) =
β(−y), etc., for y ≥ 0. This yields a second-order elliptic differential operator P̃k on the
line with continuous coefficients having (equal) limits as y → ±∞. The Fredholmness of
P̃k : W 2,p(R) → L p(R) is known to be equivalent to the symbol

σ̃k(y, τ ) := −c̃(y)τ 2 + 2b̃(y)kτ + γ̃ (y)− k2 + i(β̃(y)τ − α̃(y)k), (6.1)

satisfying the inequality

|̃σk(y, τ )| ≥ εk(τ
2 + 1), (6.2)

for some εk > 0 and all pairs (y, τ ) ∈ R
2 such that y2 + τ 2 is large enough. (More details

about this criterion and an alternate option are given after the proof.) This amounts to the
existence of εk, ρk > 0 such that (6.2) holds (i) for every y ∈ R and |τ | ≥ ρk and (ii) for
every τ ∈ R and |y| ≥ ρk .

Naturally, it suffices to check (6.2) with |̃σk(y, τ )| replaced by − Re σ̃k(y, τ ), that is,

c̃(y)τ 2 − 2b̃(y)kτ − γ̃ (y)+ k2 ≥ εk(τ
2 + 1),

for every y ∈ R and |τ | ≥ ρk and for every τ ∈ R and |y| ≥ ρk .Case (i) follows from c̃(y) > 0
being uniformly bounded away from 0 (since lim|y|→∞ c̃(y) = c−∞ > 0) while the other
coefficients are bounded. Case (ii) is due to the similar inequality when the coefficients are
replaced by their limits as |y| → ∞. Indeed, c−∞τ 2 − 2b−∞kτ − γ−∞ + k2 ≥ εk(τ

2 + 1)
for some εk > 0 and every τ ∈ R by the ellipticity condition b2−∞ − c−∞ < 0 and the
hypothesis γ−∞ < 0 (if γ−∞ ≥ 0, the property fails for k = 0).

This shows that P̃k is Fredholm from W 2,p(R) to L p(R).Thus, there is a finite dimensional
subspace G̃ of L p(R) such that, for every f̃ ∈ L p(R), there is g̃ ∈ G̃ such that P̃kw̃ = f̃ − g̃
has a solution w̃ ∈ W 2,p(R). In particular, let f ∈ L p

− be given and let f̃ be the extension of f

by 0.With g̃ and w̃ as above, the restrictionw of w̃ to R− is in W 2,p
− and solves Pkw = f −g,

where g := g̃|R− ∈ L p
−.Of course,w /∈ W 2,p

(θ)− in general. Choose ϕ ∈ C∞
0 (R−) once and for

all such that ϕ(0) = 0 and ϕ′(0) = 1 and set v := w− (w′(0)+ θw(0))ϕ. Then, v ∈ W 2,p
(θ)−

and Pkv = f − g − (w′(0)+ θw(0))Pkϕ.

By definition, g belongs to the space G of restrictions to R− of functions of G̃. Since G̃
is finite dimensional, the same thing is true of G. Thus, G + CPkϕ ⊂ L p

− is finite dimen-
sional and the above shows that given any f ∈ L p

−, there is h ∈ G + CPkϕ (namely,

h = g + (w′(0)+ θw(0))Pkϕ) such that Pkv = f − h has a solution in W 2,p
(θ)−. This proves

that the range of Pk : W 2,p
(θ)− → L p

− has finite codimension. Therefore, Pk is Fredholm since
dim ker Pk ≤ 2 by the existence and uniqueness for ODE initial value problems.

It remains to show that the index of Pk is 0. The arguments proving the Fredholmness
above can be repeated verbatim when Pk is replaced by t Pk + (1− t)P−∞,k,where t ∈ [0, 1]
and P−∞,k is the limiting operator with constant coefficients

P−∞,kw := c−∞w′′ + (β−∞ − 2ikb−∞)w′ + (γ−∞ − k2 − ikα−∞)w.

Thus, P−∞,k is Fredholm and, by homotopy, Pk and P−∞,k have the same index. A further
simplification can be introduced by noticing that the ellipticity condition b2−∞ − c−∞ < 0
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is unaffected by changing b−∞ into tb−∞ for t ∈ [0, 1] and that α−∞ and β−∞ can also be
replaced by tα−∞ and tβ−∞, respectively. Thus, by another homotopy, it suffices to show
that the operator c−∞w′′ + (γ−∞ − k2)w has index 0 from W 2,p

(θ)− to L p
−. A third homotopy

shows that it is not restrictive to assume c−∞ = 1 and γ−∞−k2 = −1.Therefore, everything
boils down to the fact that w′′ − w has index 0 from W 2,p

(θ)− to L p
−.

If θ �= −1, it is an isomorphism, for its null space is clearly {0} and if f ∈ L p
−, it is

a special case of (4.1) that the solution w ∈ W 2,p
(θ)− of w′′ − w = f is given by w(y) :=

− 1
2

(
(E ∗ f̃ )(y)− θ−1

(θ+1)e
y
∫ 0
−∞ ez f (z)dz

)
, where f̃ denotes the extension of f by 0 and

E(y) := e−|y|.
If θ = −1, the null space ofw′′−w in W 2,p

(−1)− is Cey (one-dimensional) whilew′′−w = f

withw′(0)−w(0) = 0 is solvable only if
∫ 0
−∞ ez f (z)dz = 0, and thenw = (E∗ f̃ ) ∈ W 2,p

(−1)−
is a solution. Thus, the range has codimension 1. �


The symbol criterion for the Fredholmness of P̃k used at the beginning of the proof of
Lemma 2.4 has a rather long history and various ramifications. The variant we used is due
to Cordes [8,9] and Illner [15]. It is valid for elliptic equations on R

n when the coefficients
are continuous with “vanishing oscillation” at infinity (in particular, when they have lim-
its). Many other proofs limited to p = 2 exist under (much) more restrictive smoothness
conditions about the coefficients.

The Fredholmness of P̃k can also be obtained by more elementary ODE arguments:
Rewrite P̃k as a first-order system d

dy
+ B̃k(y), where B̃k(y) is a 2 × 2 matrix with con-

tinuous coefficients having limits when |y| → ∞. The uniform ellipticity condition for P

and the assumption γ−∞ < 0 imply that if |y| is large enough, then B̃k(y) has exactly one
eigenvalue with positive (negative) real part and that both real parts are bounded away from
0 as |y| → ∞. By Coppel [7, Proposition 1, p. 50], d

dy
+ Bk(y) has an exponential dichot-

omy3 on R± and then a straightforward variant of Palmer’s method [20] (where a different
functional setting is used) shows that d

dy
+ B̃k(y) is Fredholm from W 2,p(R)× W 1,p(R) to

W 1,p(R)× L p(R), which in turn readily implies the Fredholmness of P̃k .

Remark 6.1 If the coefficients of P are asymptotically constant but not real, the method of
proof of Lemma 6.2 can be adapted to check whether the Pk are Fredholm of index 0 and
hence whether Theorem 6.1 is still valid. This cannot be summarized by a simple condition
about the limiting coefficients, but γ−∞ �= 0 is always necessary for P0 to be Fredholm (and
hence for P to be invertible).

6.3 Other boundary conditions

The method of proof of Theorem 1.1 also works in the case of a homogeneous Dirichlet
condition, based on 3.5 when the coefficients are constant. Thus, Theorem 1.1 is still true
in this case, upon replacing W 2,p

(θ),per ((0, 2π) × R−) and W 2,p
(θ)− by W 2,p((0, 2π) × R−) ∩

W 1,p
0 ((0, 2π)× R−) and W 2,p

− ∩ W 1,p
0− , respectively.

Remark 6.2 Theorem 1.1 is also true in the whole plane. Since there are no boundary condi-
tions, the treatment of constant coefficients is significantly shorter, but the basic ingredients

3 The result is phrased in a rather ambiguous way, which could erroneously suggest that the uniform conti-
nuity of B̃k suffices for an exponential dichotomy. The correct reading of Coppel’s condition is essentially the
“vanishing oscillation” of Cordes and Illner.
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Fourier decomposition of elliptic problems 1137

(i.e., (3.4), (3.8) and the boundedness of the maximal function in L p(R, �2)) remain the
same. Note that proper ellipticity is still essential, even though boundary conditions are not
involved.

More generally, the invertibility criterion of Theorem 1.1 implies the unique solvability

for 2π-periodic boundary data. Specifically, define W
1− 1

p ,p
per (0, 2π) to be the space of restric-

tions to (0, 2π) of the periodic functions of ∩n∈NW 1− 1
p ,p(−n, n). Then, W

1− 1
p ,p

per (0, 2π) ⊂
W 1− 1

p ,p(0, 2π) and, if p �= 2,

W
1− 1

p ,p
per (0, 2π) =

{
{h ∈ W 1− 1

p ,p(0, 2π) : h(0) = h(2π)} if p > 2,

W 1− 1
p ,p(0, 2π) if p ∈ (1, 2).

(6.3)

When p ∈ (1, 2), this is due to the fact that the extension by 0 outside (0, 2π) is continuous
from W s,p(0, 2π) to W s,p(R) if s ∈ [0, 1

p ) [16]. The justification of (6.3) when p > 2 is
easy.

Even though C∞
0 (0, 2π) is dense in W

1
2 ,2(0, 2π) (so that h(0) or h(2π) are not defined

when h ∈ W
1
2 ,2(0, 2π)), the extension by 0 does not map into W

1
2 ,2(R) [17]. As a result,

oddly enough, when p = 2, the space W
1
2 ,2
per (0, 2π) does not afford the simpler character-

ization (6.3).

If h ∈ W
1− 1

p ,p
per (0, 2π) is extended by periodicity, the classical method to prove the sur-

jectivity of the trace produces some v ∈ ∩n∈NW 2,p((−n, n) × R−), also 2π -periodic in
x, such that (v, vy) = (0, h) on R × {0}. The 2π -periodicity of v in x can be verified on
the formulas giving v in terms of h through an integral operator [19,26]. This operator is of
convolution type and thus produces a periodic v when h is periodic.

If v is chosen as above, then vy + θv = h, so that if g ∈ L p((0, 2π) × R−) and

h ∈ W
1− 1

p ,p
per (0, 2π), the question of solving

{
uxx + 2b(y)uxy + c(y)uyy + α(y)ux + β(y)uy + γ (y)u = g,
uy + θu = h,

(6.4)

for u ∈ W 2,p((0, 2π) × R−) such that u(0, ·) = u(2π, ·) and ux (0, ·) = ux (2π, ·), say
u ∈ W 2,p

per ((0, 2π) × R−) for short, amounts to solving the same equation for u − v ∈
W 2,p
(θ),per ((0, 2π)× R−) after replacing g by g − Pv. This problem is uniquely solvable for

every g if and only if the criterion of Theorem 1.1 is satisfied, so that the same thing is true
of (6.4).

Remark 6.3 The more general nontangential boundary condition ∇u · N + θu = 0 where
N := (μ, 1) is constant and μ ∈ R can be reduced to vy + θv = 0 by the change of
variable u(x, y) = v(x + φ(y), y) where φ is a smooth real-valued function with compact
support in (−∞, 0] such that φ(0) = 0 and φ′(0) = −μ. This changes the coefficients
b(y), . . . , γ (y), but does not affect their asymptotic periodicity or the uniform ellipticity
condition, or proper ellipticity4. In fact, initially, the coefficient of vxx is no longer 1, but
1 + 2b(y)φ′(y) + c(y)φ′(y)2. This coefficient is bounded and bounded away from 0 (by
uniform ellipticity), so that it can be factored to return to the case when the coefficient of vxx

is 1, and all the previous results are applicable.

4 Since it need only hold at one point to hold at every point and it does hold outside the support of φ.
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7 The nonperiodic problem

The boundary value problem (1.1) makes sense when g ∈ L p(R × R−) and the solutions u
are sought in the space

W 2,p
(θ) (R × R−) := {u ∈ W 2,p(R × R−) : uy + θu = 0 on R × {0}}. (7.1)

This may also be rewritten in the first-order form (1.5), with the system now acting from
L p(R; W ) ∩ W 1,p(R; X) to L p(R; X), where X and W are still given by (1.10). Thus, the
only difference is that (0, 2π) is replaced by R and the periodicity is dropped. For such a
problem, we can use the following variant of Theorem 1.2:

Theorem 7.1 Let X be a (complex) UMD Banach space and let A be a closed unbounded
linear operator on X with domain W, equipped with the graph norm. Then, the opera-
tor d

dx + A is an isomorphism of L p(R; W ) ∩ W 1,p(R; X) onto L p(R; X) if and only if
(A − iξ I )−1 ∈ L(X) exists for every ξ ∈ R and (ξ(A − iξ I )−1)ξ∈R is r-bounded in L(X).

The sufficiency was proved independently by the author [21, Theorem 4.1] and Schwe-
iker [23]. The necessity is due to Arendt and Duelli [2]. In [21], the r-boundedness of
(ξ(A − iξ I )−1)ξ∈R is replaced by a seemingly weaker, but more technical, condition. The
necessity makes this refinement immaterial.

The proofs given in Sects. 3–6 reveal that the r-boundedness of (k(A − ik I )−1)|k|≥κ
never relies on k being an integer. Thus, what was actually proved there is that (ξ(A −
iξ I )−1)ξ∈R,|ξ |≥κ is r-bounded if κ ≥ 0 is large enough.

Of course, the set {ξ(A − iξ I )−1 : |ξ | < κ} is no longer finite but, if defined for every
ξ ∈ R, (ξ(A − iξ I )−1)ξ∈R,|ξ |≤κ is still r-bounded due to the compactness of [−κ, κ] and the
analyticity of ξ(A− iξ I )−1 ([11, p. 31]). If so, (ξ(A− iξ I )−1)ξ∈R is r-bounded. Lemma 2.1
is still true when (0, 2π) is replaced by R and the periodicity is dropped and so is Lemma 2.3
if k ∈ Z is replaced by ξ ∈ R and

Pξw := c(y)w′′ + (β(y)− 2iξb(y))w′ + (γ (y)− ξ2 − iξα(y))w.

Thus, the sufficiency part of Theorem 7.1 yields:

Theorem 7.2 Suppose that P in (1.1) is uniformly and properly elliptic, with bounded uni-
formly continuous and asymptotically periodic coefficients. Let p ∈ (1,∞) be given. If
Pξ is an isomorphism of W 2,p

(θ)− onto L p
− for every ξ ∈ R, then P is an isomorphism of

W 2,p
(θ) (R × R−) onto L p(R × R−).

If (and only if) p = 2, Theorem 7.2 can be proved by partial Fourier transform arguments
and norm estimates for P−1

ξ . We do not know whether the converse of Theorem 7.2 is true,
which does not follow from Theorem 7.1. In that regard, see the comments after Lemma 2.1
and note that there is no obvious analog of Lemma 2.4 here.

As in Theorem 6.1, if the coefficients are real and asymptotically constant with γ−∞ < 0,
the invertibility of Pξ amounts to Pξ being one to one on W 2,p

(θ)− (Lemma 6.2 does not depend
on k being an integer). If the coefficients are real and constant and γ < 0, this boils down
to θ �= −λ+(ξ) for every ξ ∈ R, where λ+(ξ) is the unique root with positive real part of
cλ2 + (β − 2iξb)λ+ (γ − ξ2 − iξα) (see Theorem 4.3).

As in the periodic case, the condition of Theorem 7.2 yields an existence and uniqueness
result when the boundary condition is not homogeneous and the expected variant of the
theorem for a Dirichlet boundary condition is true as well.
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In Theorem 7.2, the half-plane can be replaced either by the whole plane or by the horizon-
tal strip R × (0, 1) (say). In the case of the strip, the coefficients need only be continuous on
[0, 1]. The simpler indirect approach for periodic problems on a strip, mentioned in the Intro-
duction and based on the Fredholmness of the operator, is no longer an option. Actually, it is
not hard to prove (by using a suitable sequence) that the Laplace operator with homogeneous
Neumann condition on the boundary of the strip is not semi-Fredholm5. For this example,
the corresponding operators Pξ are simplyw′′ − ξ2w with conditionw′(0) = w′(1) = 0 and
P0 is not invertible.

Appendix: r-boundedness

This appendix gives a very brief summary of the basic properties of r-boundedness used in this
paper. Further details and various complements can be found in [1,6,21,27], among others.

If X and Y are Banach spaces and T ⊂ L(X, Y ), then T is said to be r-bounded if there
is p ∈ [1,∞) and a constant C p ≥ 0 such that, for every n ∈ N and every x1, . . . , xn ∈ X,
every T1, . . . , Tn ∈ T ,

⎛
⎝

1∫
0

∥∥∥∥∥∥
n∑

j=1

r j (t)Tj x j

∥∥∥∥∥∥
p

Y

dt

⎞
⎠

1
p

≤ C p

⎛
⎝

1∫
0

∥∥∥∥∥∥
n∑

j=1

r j (t)x j

∥∥∥∥∥∥
p

X

dt

⎞
⎠

1
p

,

where r j (t) := sign sin(2 jπ t) is the sequence of Rademacher functions. (Some authors
replace the Rademacher functions by more general random variables, but the definitions are
equivalent.) Although the constant C p depends upon p, the concept of r-boundedness does
not. For that reason, the value of p has little genuine importance in practice, but some choices
may be more convenient than others in the applications. If T is r-bounded, the smallest con-
stant C p above is called the r-bound r(T ) of T . Since this r-bound (but not its finiteness)
depends upon p, it is implicitly assumed that p is chosen once and for all when referring to
r-bounds without specifying p.

It is trivial that r-boundedness implies norm-boundedness (just choose n = 1 ). The con-
verse is true only in special cases, most notably when both X and Y are Hilbert. Other proper-
ties of r-boundedness are that if S and T are r-bounded, then, S ∪T and S +T are r-bounded
with r(S ∪ T ) ≤ r(S) + r(T ) and r(S + T ) ≤ r(S) + r(T ). It should be observed that,
in contrast to norm-boundedness, it is false that r(S ∪ T ) is majorized by max{r(S), r(T )}.
However, if T is r-bounded and S ⊂ T , then S is r-bounded and r(S) ≤ r(T ).

Every singleton T = {T } is r-bounded (and r(T ) = ||T || ), hence every finite T is
r-bounded. Also, if Z is another Banach space and U ⊂ L(Y, Z) is r-bounded, then UT is
r-bounded and r(UT ) ≤ r(U)r(T ).

The so-called “Kahane contraction principle” refers to the fact that, if T is r-bounded and
K ⊂ C satisfies sup |K | ≤ M < ∞, then KT is r-bounded and r(KT ) ≤ 2Mr(T ) (Mr(T )
if K ⊂ R).

Lastly, there is an important and somewhat simpler equivalent definition of r-boundedness
when p1, p2 ∈ [1,∞) and X = L p1(�1), Y = L p2(�2) where �1 and �2 are (say) open
subsets of euclidian space. The subset T ⊂ L(L p1(�1), L p2(�2)) is r-bounded if and only
if there is a constant C p1 p2 ≥ 0 such that, for every n ∈ N and every f1, . . . , fn ∈ L p1(�1),

every T1, . . . , Tn ∈ T ,

5 It is an isomorphism if a homogeneous Dirichlet condition is used instead.

123



1140 P. J. Rabier

∥∥∥∥∥∥∥

⎛
⎝ n∑

j=1

|Tj f j |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
0,p2,�2

≤ C p1 p2

∥∥∥∥∥∥∥

⎛
⎝ n∑

j=1

| f j |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
0,p1,�1

.

In addition, the best constant C p1 p2 is equivalent to the r-bound r(T ) (so that, if convenient,
it may also be referred to as being the r-bound).
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