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Abstract In this paper, we generalize the concepts of level and sublevel of a composi-
tion algebra to algebras obtained by the Cayley–Dickson process and we will show that, in
the case of level for algebras obtained by the Cayley–Dickson process, the situation is the
same as for the integral domains, proving that for any positive integer n, there is an algebra
A obtained by the Cayley–Dickson process with the norm form anisotropic over a suitable
field, which has the level n ∈ N− {0}.
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0 Introduction

In this paper, we assume that K is a commutative field with charK �= 2 and all quadratic
forms are nondegenerate. For the basic terminology of quadratic and symmetric bilinear
spaces, the reader is referred to [16].

Definition 1 Let K be a field. The level of the field K , denoted by s(K ), is the smallest
natural number n such that −1 is a sum of n squares of K . If −1 is not a sum of squares of
K , then s(K ) = ∞.

Pfister, in [12], showed that if a field has a finite level, then this level is a power of 2
and any power of 2 could be realized as the level of a field. The level of division algebras
is defined in the same manner as for fields. In [9], Lewis constructed quaternion division
algebras of level 2k and 2k + 1 for all k ∈ N − {0} and he asked if there exist quaternion
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1100 C. Flaut

division algebras whose levels are not of this form. Using function field techniques, these
values were recovered for the quaternions by Laghribi and Mammone in [8]. Using the same
technique, in [13], Susanne Pumpl ün constructed octonion division algebras of level 2k and
2k + 1 for all k ∈ N − {0}. In [4], Hoffman showed that there are many other values, other
than 2k or 2k + 1, which could be realized as a level of quaternion division algebras. In fact,
he proved that for each k ∈ N, k ≥ 2, there exist quaternion division algebras D with level
s(D) bounded by the values 2k + 2 and 2k+1 − 1 (i.e., 2k + 2 ≤ s(D) ≤ 2k+1 − 1). In [10],
Theorem 3.6, O’Shea proved the existence of octonion division algebras of level 6 and 7.
These values, 6 and 7, are still the only known exact values for the level of octonion division
algebras, other than 2k or 2k + 1, k ∈ N − {0}. It is still not known which exact numbers
can be realized as levels and sublevels of quaternion and octonion division algebras, but, for
the integral domains, the level problem was solved in [2], when Dai et al. proved that any
positive integer could be realized as the level of an integral domain.

In this paper, we construct a division algebra, obtained by the Cayley–Dickson process, of
dimension 2t and prescribed level and sublevel 2k , k, t ∈ N− {0}, an algebra of dimension
2t , and prescribed level 2k + 1, k ∈ N − {0}, t ∈ N, t ≥ 2, and we will show that, in the
case of the level for the algebras obtained by the Cayley–Dickson process, the situation is the
same as for the integral domains, proving that for any positive integer n, there is an algebra
A obtained by the Cayley–Dickson process with the norm form anisotropic over a suitable
field, which has the level n ∈ N− {0}.

1 Preliminaries

A quadratic form q : V → K is called anisotropic if q(x) = 0 implies x = 0, otherwise q
is called isotropic.

Let ϕ be a n-dimensional quadratic irreducible form over K , n ∈ N , n > 1, which is
not isometric to the hyperbolic plane. We may consider ϕ as a homogeneous polynomial of
degree 2,

ϕ(X) = ϕ(X1, . . . , Xn) =
∑

ai j Xi X j , ai j ∈ K ∗.

The function field of ϕ, denoted by K (ϕ), is the quotient field of the integral domain

K [X1, . . . , Xn] / (ϕ(X1, . . . , Xn)).

For n ∈ N− {0}, an n-fold Pfister form over K is a quadratic form of the type

〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉, a1, . . . , an ∈ K ∗.

A Pfister form is denoted by 〈〈a1, a2, . . . , an〉〉. For n ∈ N , n > 1, a Pfister form ϕ can be
written as

〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 = 〈1, a1, a2, . . . , an, a1a2, . . . , a1a2a3, . . . , a1a2 . . . an〉.
If ϕ = 〈1〉 ⊥ ϕ′, then ϕ′ is called the pure subform of ϕ. A Pfister form is hyperbolic if and
only if is isotropic. Therefore a Pfister form is isotropic if and only if its pure subform is
isotropic. (See [16]).

For the field L , we define

L∞ = L ∪ {∞},
where x +∞ = x , for x ∈ K , x∞ =∞ for x ∈ K ∗,∞∞ =∞, 1

∞ = 0, 1
0 = ∞.
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Levels and sublevels of algebras 1101

An L-place of the field K is a map λ : K → L∞ with the properties:

λ(x + y) = λ(x)+ λ(y), λ(xy) = λ(x)λ(y),
whenever the right sides are defined.

A subset P of K is called an ordering of K if

P + P ⊂ P, P · P ⊂ P,−1 /∈ P,

{x ∈ K / x is a sum of squares in K } ⊂ P, P ∪ −P = K , P ∩ −P = 0.

A field K with an ordering is called an ordered field. For x, y ∈ K , K an ordered field,
we define x > y if (x − y) ∈ P .

A quadratic semi-ordering (or q-ordering) of a field K is a subset P with the following
properties:

P + P ⊂ P, K 2 · P ⊂ P, 1 ∈ P, P ∪ −P = K , P ∩ −P = 0.

Obviously, every ordering is a q-ordering [16]. Let P0 be a q-preordering, that is,

P0 + P0 ⊂ P0, K 2 · P0 ⊂ P0, P0 ∩ −P0 = 0.

Then, there is a q-ordering P such that P0 ⊂ P or −P0 ⊂ P . ([16], p. 133)
If ϕ ∼= 〈a1, . . . , an〉 is a quadratic form over a formally real field K and P is an ordering

on K , the signature of ϕ at P is

sgn(ϕ) = |{i | ai >P 0}| − |{{i | ai <P 0}}| .
The quadratic form q is indefinite at ordering P if dim ϕ > |sgnϕ|.

The Witt index of a quadratic form ϕ, denoted by iW (ϕ), is the dimension of a maximal
totally isotropic subform of ϕ. Indeed, if

ϕ ∼= ϕan⊥ϕh,

with ϕan anisotropic and ϕh hyperbolic, the Witt index of ϕ is 1
2 dim ϕh. The first Witt index

of a quadratic form ϕ is the Witt index of ϕ over its function field and is denoted by i1(ϕ).
The essential dimension of ϕ is

dimes(ϕ) = dim(ϕ)− i1(ϕ)+ 1.

The sublevel of the algebra A, denoted by s(A), is the least integer n such that 0 is a sum
of n + 1 nonzero squares of elements in A. The level of the algebra A, denoted by s(A), is
the least integer n such that −1 is a sum of n squares in A. If these numbers do not exist,
then the level and sublevel are infinite. Obviously, s(A) ≤ s(A).

Cassels–Pfister Theorem Let ϕ,ψ = 〈1〉⊥ψ ′ be two quadratic forms over a field
K , charK �= 2. If ϕ is anisotropic over K and ϕK (ψ) is hyperbolic, then αψ < ϕ for
any scalar represented by ϕ. In particular, dim ϕ ≥ dimψ . [8, p. 1823, Theorem 1.3.]

Springer’s Theorem Let ϕ1, ϕ2 be two quadratic forms over a field K and K (X) be the
rational function field over K . Then, the quadratic form ϕ1 ⊥ Xϕ2 is isotropic over K (X) if
and only if ϕ1 or ϕ2 is isotropic over K . [8, p. 1823, Theorem 1.1.]

In the following, we briefly present the Cayley–Dickson process and the properties of the
algebras obtained. For details about the Cayley–Dickson process, the reader is referred to
[14] and [15].
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1102 C. Flaut

Let A be a finite-dimensional unitary algebra over a field K with a scalar involution

: A→ A, a→ a,

that is, a linear map satisfying the following relations:

ab = ba, a = a,

and

a + a, aa ∈ K · 1 for all a, b ∈ A.

The element a is called the conjugate of the element a, the linear form

t : A→ K , t (a) = a + a

and the quadratic form

n : A→ K , n(a) = aa

are called the trace and the norm of the element a. Hence, an algebra A with a scalar involution
is quadratic.

Let γ ∈ K be a fixed nonzero element. We define the following algebra multiplication on
the vector space

A ⊕ A : (a1, a2)(b1, b2) =
(
a1b1 + γ b2a2, a2b1 + b2a1

)
.

We obtain an algebra structure over A ⊕ A, denoted by (A, γ ) and called the algebra
obtained from A by the Cayley–Dickson process. We have dim(A, γ ) = 2 dim A.

Let x ∈ (A, γ ), x = (a1, a2). The map

: (A, γ )→ (A, γ ), x → x̄ = (a1,−a2),

is a scalar involution of the algebra (A, γ ), extending the involution , of the algebra A. Let

t (x) = t (a1)

and

n(x) = n(a1)− γ n(a2)

be the trace and the norm of the element x ∈ (A, γ ), respectively.
If we take A = K and apply this process t times, t ≥ 1, we obtain an algebra over K ,

At =
(α1, . . . , αt

K

)
.

By induction, in this algebra, the set {1, f2, . . . , fq}, q = 2t generates a basis with the
properties:

f 2
i = αi 1, αi ∈ K , αi �= 0, i = 2, . . . , q

and

fi f j = − f j fi = βi j fk, βi j ∈ K , βi j �= 0, i �= j, i, j = 2, . . . , q,

βi j and fk being uniquely determined by fi and f j .
If

x ∈ At , x = x11+
q∑

i=2

xi fi ,
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Levels and sublevels of algebras 1103

the quadratic form TC : At → K ,

TC =
〈

1, α1, α2,−α1α2, α3, . . . , (−1)t
(

t∏

i=1

αi

)〉
= 〈1, β2, . . . , βq 〉

is called the trace form, and the quadratic form TP = TC |(At )0 : (At )0 → K ,

TP =
〈
α1, α2,−α1α2, α3, . . . , (−1)t

(
t∏

i=1

αi

)〉
= 〈β2, . . . , βq 〉

is called the pure trace form of the algebra At . We remark that TC = 〈1〉 ⊥ TP (the orthogonal
sum of two quadratic forms) and n = nC = 〈1〉 ⊥ −TP , therefore

nC =
〈

1,−α1,−α2, α1α2, α3, . . . , (−1)t+1

(
t∏

i=1

αi

)〉
= 〈1,−β2, . . . ,−βq 〉.

Generally, algebras At of dimension 2t obtained by the Cayley–Dickson process are not
division algebras for all t ≥ 1. But there are fields on which, if we apply the Cayley–Dick-
son process, the resulting algebras At are division algebras for all t ≥ 1. For example: the
power-series field K {X1, X2, . . . , Xt } or the rational function field K (X1, X2, . . . , Xt ),
where X1, X2, . . . , Xt are t algebraically independent indeterminates over the field K . This
construction was given by Brown in [1], in which for every t , he built a division algebra At

of dimension 2t over the power-series field K {X1, X2, . . . , Xt }.We will briefly demonstrate
this construction using polynomial rings over K and their rational function field instead of
power-series field over K (as it was done by Brown).

First of all, we remark that if an algebra A is finite-dimensional, then it is a division algebra
if and only if A does not contain zero divisors (See [14]). For every t , we construct a division
algebra At over a field Ft . Let X1, X2, . . . , Xt be t algebraically independent indeterminates
over the field K and Ft = K (X1, X2, . . . , Xt ) be the rational function field. For i = 1, . . . , t ,
we construct the algebra Ai over the rational function field K (X1, X2, . . . , Xi ), by setting
α j = X j for j = 1, 2, . . . , i . Let A0 = K . By induction over i , assuming that Ai−1 is a
division algebra over the field Fi−1 = K (X1, X2, . . . , Xi−1), we may prove that the algebra
Ai is a division algebra over the field Fi = K (X1, X2, . . . , Xi ).

Let Ai−1
Fi
= Fi ⊗Fi−1 Ai−1. For αi = Xi , we apply the Cayley–Dickson process to the

algebra Ai−1
Fi

. The resulting algebra, denoted by Ai , is an algebra over the field Fi with the

dimension 2i .
Let

x = a + bvi , y = c + dvi ,

be nonzero elements in Ai such that xy = 0, where v2
i = αi . Since

xy = ac + Xi d̄b + (bc̄ + da)vi = 0,

we obtain

ac + Xi d̄b = 0 (1.1)

and

bc̄ + da = 0. (1.2)

The elements a, b, c, d ∈ Ai−1
Fi

are nonzero elements. Indeed, we have:
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1104 C. Flaut

(i) If a = 0 and b �= 0, then c = d = 0⇒ y = 0, false;
(ii) If b = 0 and a �= 0, then d = c = 0⇒ y = 0, false;

(iii) If c = 0 and d �= 0, then a = b = 0⇒ x = 0, false;
(iv) If d = 0 and c �= 0, then a = b = 0⇒ x = 0, false.

This implies that b �= 0, a �= 0, d �= 0, c �= 0. If {1, f2, . . . , f2i−1} is a basis in Ai−1, then

a = ∑2i−1

j=1 g j (1 ⊗ f j ) = ∑2i−1

j=1 g j f j , g j ∈ Fi , g j = g′j
g′′j
, g′j , g′′j ∈ K [X1, . . . , Xi ], g′′j �=

0, j = 1, 2, . . . , 2i−1, where K [X1, . . . , Xt ] is the polynomial ring. Let a2 be the less
common multiple of g′′1 , . . . , g′′

2i−1 , then we can write a = a1
a2

, where a1 ∈ Ai−1
Fi
, a1 �= 0.

Analogously, b = b1

b2
, c = c1

c2
, d = d1

d2
, b1, c1, d1 ∈ Ai−1

Fi
− {0} and a2, b2, c2, d2 ∈

K [X1, . . . , Xt ] − {0}.
If we replace in relations (1.1) and (1.2), we obtain

a1c1d2b2 + Xi d̄1b1a2c2 = 0 (1.3)

and

b1c̄1d2a2 + d1a1b2c2 = 0. (1.4)

If we denote a3 = a1b2, b3 = b1a2, c3 = c1d2, d3 = d1c2, a3, b3, c3, d3 ∈ Ai−1
Fi
− {0},

relations (1.3) and (1.4) become

a3c3 + Xi d̄3b3 = 0 (1.5)

and

b3c̄3 + d3a3 = 0. (1.6)

Since the algebra Ai−1
Fi
= Fi ⊗Fi−1 Ai−1 is an algebra over Fi−1 with basis Xi ⊗ f j ,

i ∈ N, and j = 1, 2, . . . , 2i−1, we can write a3, b3, c3, d3 as a3 = ∑
j≥m x j X j

i , b3 =∑
j≥n y j X j

i , c3 =∑
j≥pz j X j

i , d3 =∑
j≥rw j X j

i , where x j , y j , z j , w j ∈ Ai−1, xm, yn, z p,

wr �= 0. Since Ai−1 is a division algebra, it follows that xm z p �= 0, wr yn �= 0, ynz p �=
0, wr xm �= 0. Using relations (1.5) and (1.6), we obtain that 2m+p+r = 2n+p+r+1, which
is false. Therefore, the algebra Ai is a division algebra over the field Fi = K (X1, X2, . . . , Xi )

of dimension 2i . (See [3]).

Proposition 1.1 [3] Let A be an algebra obtained by the Cayley–Dickson process. With the
above notations, we have:

(i) If s(A) ≤ n, then −1 is represented by the quadratic form n × TC .
(ii) −1 is a sum of n squares of pure elements in A if and only if the quadratic form n× TP

represents −1.
(iii) For n ∈ N−{0}, if the quadratic form 〈1〉 ⊥ n×TP is isotropic over K , then s(A) ≤ n.

Proposition 1.2 [3] Let A be an algebra obtained by the Cayley–Dickson process. The fol-
lowing statements are true:

(a) If n ∈ N−{0}, such that n = 2k−1, for k > 1, then s(A) ≤ n if and only if 〈1〉 ⊥ n×TP

is isotropic.
(b) If −1 is a square in K , then s(A) = s(A) = 1.
(c) If −1 /∈ K ∗2, then s(A) = 1 if and only if TC is isotropic.
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Levels and sublevels of algebras 1105

Remark 1.3 (i) If an algebra A, obtained by the Cayley–Dickson process, is a division
algebra, then its norm form, n A

C , is anisotropic. But there are algebras A obtained by the
Cayley–Dickson process with the norm form n A

C anisotropic, which are not division
algebras. For example, if K = R and t = 4, the real sedenion algebra

(−1,−1,−1,−1

R

)

with the basis {1, f1, . . . , f15} has the norm form anisotropic and is not a division
algebra. For example, ( f3 + f10)( f6 − f15) = 0.

(ii) Using Proposition 1.2, if the algebra A is an algebra obtained by the Cayley–Dickson
process of dimension greater than 2 and if n A

C is isotropic, then s(A) = s(A) = 1.
Indeed, if−1 is a square in K , the statement follows from the above. If−1 /∈ K ∗2, since
nC = 〈1〉 ⊥ −TP and nC is a Pfister form, we obtain that −TP is isotropic, therefore
TC is isotropic, and, from the above proposition, it results that s(A) = s(A) = 1.

2 Levels and sublevels of algebras obtained by the Cayley–Dickson process

Let A be an algebra over a field K obtained by the Cayley–Dickson process of dimension
q = 2t and let TC , TP , nC be its trace, pure trace, and norm forms, respectively.

Theorem 2.1 Let A be an algebra of dimension 2t obtained by the Cayley–Dickson process
of finite level over a field K . Then,

s(A) ≤ s(A) ≤ s(A)+ 1.

Proof Denoting n = s(A), we find the nonzero elements

ui = xi1+xi2 f2 + · · · + xiq fq ∈ A,

with

u′′i = xi2 f2 + · · · + xiq fq ∈ A

the pure part of ui , where xi j ∈ K , i ∈ {1, 2, . . . , n + 1}, j ∈ {1, 2, . . . , q}, q = 2t , such
that 0 = u2

1 + · · · + u2
n+1. We obtain

n+1∑

i=1

(
x2

i1 +
(
u′′i

)2 + 2x2
i1u′′i

)
= 0,

therefore

n+1∑

i=1

x2
i1 +

n+1∑

i=1

(u′′i )2 = 0

and

n+1∑

i=1

xi1u′′i = 0.
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1106 C. Flaut

Case 1. If xi1 = 0, ∀i ∈ {1, 2, . . . , n + 1}. It results that

n+1∑

i=1

(u′′i )2 = 0,

hence, it follows that (n + 1) × TP is isotropic; therefore, it contains 〈1,−1〉 as a
subform. We obtain that −1 is represented by the form (n + 1) × TP . Therefore,
−1 is a sum of square of (n + 1) pure elements from A, hence s(A) ≤ n + 1.

Case 2. There are at least two elements xi1 �= 0 such that

n+1∑

i=1

x2
i1 = 0.

Since the elements (u′′i )2 ∈ K for all i ∈ {1, 2, . . . , n+ 1}, it results that s(A) ≤
s (K ). But s(K ) = s (K ) ≤ n, hence s(A) ≤ n.

Case 3. If

n+1∑

i=1

x2
i1 �= 0,

we denote di = xi1

D
∈ K , where

D =
n+1∑

i=1

x2
i1.

It follows that

n+1∑

i=1

di ui = 1

A

n+1∑

i=1

(
x2

i1 + xi1u′′i
) = 1,

since
n+1∑
i=1

xi1u′′i = 0. We obtain

n+1∑

i=1

((
D−1 + 1

2

)
ui − di

)2

=
(

D−1 + 1

2

)2 n+1∑

i=1

ui
2 −

(
D−1 + 1

) n+1∑

i=1

ui di +
n+1∑

i=1

d2
i

= −(D−1 + 1)+ D−1 = −1,

therefore s(A) ≤ n + 1.

��
If A is a division algebra of dimension≤ 8, the above result is a consequence of the main

Theorem from [5].

Theorem 2.2 Let K be a field, X be an algebraically independent indeterminate over K , A
be a finite-dimensional K -algebra with finite level n and the scalar involution . Let k(A) be
the least number such that the form k × n A

C is isotropic over K , where n A
C is the norm form

of the algebra A, and let A1 = K (X)⊗K A and B = (A1, X). Then:
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Levels and sublevels of algebras 1107

(i) If A is a division algebra, then B is a division algebra.
(ii) s(B) = min{s(A), k(A)}.

(iii) If k(A) > 1, s(B) = min{s(A), k(A)− 1}.

Proof (i) It results by straightforward calculations, using the same arguments as in
Brown’s construction at step i , described above.

(ii) We have s(B) ≤ s(A). Let k = k(A). If k × n A
C is isotropic, it results that k × n A1

C is
isotropic and therefore universal and it represents −X−1. Hence, there are elements
z1, . . . , zk ∈ A1 such that

k∑

i=1

n A1
C (zi ) = −X−1.

Let wi ∈ B, wi = zi u, u ∈ B, u2 = X . Since t (wi ) = 0, it follows that

w2
i = −nB

C (wi ) = Xn A1
C (zi )

and

k∑

i=1

w2
i =

k∑

i=1

Xn A1
C (zi ) = −1.

It results that s(B) ≤ k, therefore s(B) ≤ min{s(A), k(A)}.
Conversely, assuming that s(B) = n, we have −1 = y2

1 + · · · + y2
n , where yi ∈ B,

yi = ai1 + ai2u, u2 = X , ai1, ai2 ∈ A1 and we obtain

y2
i = a2

i1 + Xai2ai2 + (ai2ai1 + ai2ai1)u,

for i ∈ {1, 2, . . . , n − 1}. It follows that

−1 =
n∑

i=1

a2
i1 + X

n∑

i=1

ai2ai2,

where ψ = 1 ⊗ is involution in A1, ψ(x) = x̄ . We remark that ai2ai2 ∈ K (X), i ∈
{1, . . . , n}. Let {1, f2, . . . , fq}, q = 2t , be a basis in A, therefore

ai1 =
m∑

j=1

p ji1(X)

q ji1(X)
(1⊗ f j ),

with
p ji1(X)
q ji1(X)

∈ K (X), and

ai2 =
m∑

j=1

r ji2(X)

w j i2(X)
(1⊗ f j ),

with
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1108 C. Flaut

r ji2(X)
w j i2(X)

∈ K (X), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}. It results that

−1 =
n∑

i=1

⎛

⎝
m∑

j=1

p ji1(X)

q ji1(X)
(1⊗ f j )

⎞

⎠
2

+ X
n∑

i=1

⎛

⎝
m∑

j=1

r ji2(X)

w j i2(X)
(1⊗ f j )

⎞

⎠

×
⎛

⎝
m∑

j=1

r ji2(X)

w j i2(X)
(1⊗ f j )

⎞

⎠ .

After clearing denominators, we obtain

− v2(X) =
n∑

i=1

⎛

⎝
m∑

j=1

p′j i1(X)(1⊗ f j )

⎞

⎠
2

+ X
n∑

i=1

⎛

⎝
m∑

j=1

r ′j i2(X)(1⊗ f j )

⎞

⎠

×
⎛

⎝
m∑

j=1

r ′j i2(1⊗ f j )

⎞

⎠ , (2.1)

where

v(X) = lcm{q ji1(X), w j i2(X)}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}
and

p′j i1(X) = v(X)p ji1(X), r
′
j i2(X) = v(X)r ji2(X), i ∈ {1, . . . , n}, j ∈ {1, 2, . . . ,m}.

Case 1. If p′j i1(X) are not divisible by X , for some i and j , taking residues modulo X in
(2.1), denoted with two-sided arrow, we obtain

←−−−→−v2(X) =
n∑

i=1

←−−−−−−−−−−−−−−−→⎛

⎝
m∑

j=1

p′j i1(X)(1⊗ f j )

⎞

⎠
2

.

In this relation, if v(X) is not divisible by X , it results that s(A) ≤ n. If v(X) is
divisible by X , we have s(A) ≤ n−1 and, from Theorem 2.1, we obtain s(A) ≤ n.

Case 2. If p′j i1(X) are divisible by X , for all i and j , it results that v(X) is divisible by X ,
then dividing relation (2.1) by X and taking residues modulo X , we obtain

←→
0 =

n∑

i=1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⎛

⎝
m∑

j=1

r ′j i2(X)(1⊗ f j )

⎞

⎠

⎛

⎝
m∑

j=1

r ′j i2(1⊗ f j )

⎞

⎠.

It follows that the form n × n A
C is isotropic, therefore k(A) ≤ n.

It results that s(B) = min{s(A), k(A)}.
(iii) Since s(B) ≤ s(B) ≤ s(A), then s(B) ≤ s(A). Let k = k(A). We have that

k × n A
C is isotropic, therefore k × n A1

C is isotropic. Hence, there are the elements

z1, . . . , zk ∈ A1 such that
∑k

i=1n A1
C (zi ) = 0. Let wi ∈ B, wi = zi u, u ∈
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B, u2 = X . Since t (wi ) = 0, we obtain w2
i = −nB

C (wi ) = Xn A1
C (zi ) and∑k

i=1w
2
i =

∑k
i=1 Xn A1

C (zi ) = 0. It results that s(B) ≤ k − 1, therefore

s(B) ≤ min{s(A), k(A)− 1}.
Conversely, assuming that s(B) = n, there are y1, . . . , yn+1 ∈ B, nonzero elements, such

that 0 = y2
1 +· · ·+ y2

n+1, yi = ai1+ ai2u, u2 = X , ai1, ai2 ∈ A1. Using the same notations
as in (ii), after straightforward calculations, we obtain

n+1∑

i=1

⎛

⎝
m∑

j=1

p′j i1(X)(1⊗ f j )

⎞

⎠
2

+ X
n+1∑

i=1

⎛

⎝
m∑

j=1

r ′j i2(X)(1⊗ f j )

⎞

⎠

×
⎛

⎝
m∑

j=1

r ′j i2(1⊗ f j )

⎞

⎠ = 0. (2.2)

Case 1. If p′j i1(X) are not divisible by X , for some i and j , taking residues modulo X in
relation (2.2), we obtain

←→
0 =

n+1∑

i=1

←−−−−−−−−−−−−−−−→⎛

⎝
m∑

j=1

p′j i1(X)(1⊗ f j )

⎞

⎠
2

,

therefore s(A) ≤ n.
Case 2. If p′j i1(X) are divisible by X , for all i and j , then dividing relation (2.2) by X and

taking residues modulo X , we obtain

←→
0 =

n+1∑

i=1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⎛

⎝
m∑

j=1

r ′j i2(X)(1⊗ f j )

⎞

⎠

⎛

⎝
m∑

j=1

r ′j i2(1⊗ f j )

⎞

⎠,

therefore k(A) ≤ n + 1. It results that s(B) = min{s(A), k(A)− 1}.
��

Since s(B) ≤ s(B) ≤ s(A), in the above Theorem, we remark that if k(A) = 1, then
s(B) = s(B) = s(A) = 1. Results analogous to those in Theorem 2.2 are obtained for
composition algebras in [17] and [11].

Let At be a division algebra over the field K = K0(X1, . . . , Xt ) obtained by the Cayley–
Dickson process and Brown’s construction of dimension q = 2t , where K0 is a formally real
field, X1, . . . , Xt are algebraically independent indeterminates over the field K0, and TC and
TP are its trace and pure trace forms. Let

ϕn = 〈1〉⊥n × TP , ψm = 〈1〉⊥m × TC , n ≥ 1,

At (n) = At ⊗K K (〈1〉⊥n × TP ), n ∈ N− {0}. (2.3)

We denote Kn = K (〈1〉⊥n × TP ), and let n At
C be the norm form of the algebra At .

Proposition 2.3 (i) The norm form n At (n)
C is anisotropic over Kn.

(ii) With the above notations, for t ≥ 2, if n = 2k + 1 then 2k × n At (n)
C is anisotropic over

K0(X1, X2, . . . , Xt )(ϕ2k+1).
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1110 C. Flaut

Proof (i) First, we consider n > 1. Since n At (n)
C is a Pfister form and a Pfister form

is isotropic if and only if it is hyperbolic, if n At (n)
C is isotropic over Kn , then it is

hyperbolic. Since At is a division algebra, it follows that n At
C is anisotropic. From

Cassels–Pfister Theorem, for some α ∈ K ∗, we obtain that αϕn is a subform of the
norm form n At (n)

C . Since dim ϕn = 1 + n(2t − 1) and dim n At (n)
C = 2t , therefore

dim ϕn > dim n At (n)
C , false.

If n = 1, using the Cassels–Pfister Theorem, for some α ∈ K ∗, it results that αϕ1 is
a subform of the norm form n At (1)

C . Since dim ϕ1 = dim n At (1)
C = 2t and the forms

ϕ1 and n At (1)
C are not similar, we obtain a contradiction.

(ii) We denote

αk = (2k + 1)× 〈1,−X1〉.
It results that X2αk is a subform of ϕ2k+1, then

K0(X1, X2, . . . , Xt )(αk) � K0(X1, X2, . . . , Xt )(X2αk).

If 2k × nC is isotropic over K0(X1, X2, . . . , Xt )(ϕ2k+1) there is a map

K0(X1, X2,. . ., Xt )-place: K0(X1, X2,. . ., Xt )(ϕ2k+1)→K0(X1, X2,. . ., Xt )(αk),

and 2k × nC is isotropic over K0(X1, X2, . . . , Xt )(αk) from [7, Theorem 3.3.]. By
repeatedly applying of Springer’s Theorem, it results that the quadratic form 2k ×
〈1,−X1〉 is isotropic over K0(X1)(αk), in contradiction with Proposition 2.2 from
[8]. ��

Remark 2.4 (i) The algebra At (n) has dimension 2t and is not necessarily a division
algebra, but, using Remark 1.3, this algebra is of level greater than 1.

(ii) From Proposition 1.1(i) and (iii), ifψm is anisotropic and ϕn is isotropic over Kn , then
s(At (n)) ∈ [m + 1, n].

Example 2.5 Using the same notations as those in Theorem 2.2, let F be a field of level 2k .
If A = A0 = F, K = F, A1 = K (X1)⊗K A0, since k(A) ≥ 2k + 1, we obtain the division
K (X1)-algebra B of dimension 2 and level and sublevel 2k . Using the same Theorem, we can
continue the induction steps. Assuming that A = At−1 is a division algebra of dimension 2t−1

and level 2k over the field K = F(X1, . . . , Xt−1), then, from Springer’s Theorem, it results
that k(At−1) ≥ 2k + 1. If A = At−1, A1 = K (Xt ) ⊗K At−1, and B is the K (Xt )-algebra
obtained by application of the Cayley–Dickson process with α = Xt to the K (Xt )-algebra
A1, then B is a division algebra of dimension 2t and level and sublevel 2k . This is an example
of a division algebra of level and sublevel 2k and dimension 2t , t, k ∈ N− {0}.

Proposition 2.6 i1(〈1〉⊥n × TP ) = 1 for all n ∈ N− {0}, where TP is the pure trace form
for the algebra At , t ≥ 2.

Proof Let P be an arbitrary ordering over K such that β2, . . . , βq <P 0. We remark that such
an ordering always exists. Indeed, since ϕn is anisotropic over K (from Springer’s Theorem),
it follows that P0 = {a | a = 0 or a is represented by ϕn} is a q−preordering, therefore
there is a q-ordering P containing P0 or −P0. We have

|sgnϕn | = |sgn (〈1〉⊥n × TP )| =
(
2t − 1

)
n − 1 < (2t − 1)n + 1 = dim ϕn .
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It results that ϕn is indefinite at P over K , then P extends to Kn , from [4], Lemma 2.5. Since
ϕn is isotropic over Kn , we obtain that

dim((ϕn)Kn )an ≤ (2t − 1)n − 1.

Since

dim((ϕn)Kn )an ≥ |sgnϕn | = (2t − 1)n − 1,

then

dim((ϕn)Kn )an = (2t − 1)n − 1 = dim ϕn − 2

and therefore i1(ϕn) = 1
2 2 = 1. ��

Theorem 2.7 With the above notations, we have

s(At (n)) ∈ [n − [ n

2t
], n],

for t ≥ 2.

Proof From Proposition 2.6, we have that

dim ϕn − i1(ϕn) = (2t − 1)n + 1− i1(ϕn) = (2t − 1)n.

For the quadratic form ψm , the relation

dimψm − i1(ψm) = 2t n + 1− i1(ψm)

holds. The forms ϕn and ψm are anisotropic over K = K0(X1, . . . , Xt ), by Springer’s
Theorem. From [6], Theorem 4.1, if

dimψm − i1(ψm) < dim ϕn − i1(ϕn) (2.4)

it results that ψm is anisotropic over Kn . From Proposition 2.6, we have i1(ϕn) = 1 for all
n ∈ N− {0}; therefore, since i1(ψm) ≥ 1, if dimψm < dim ϕn , we obtain relation (2.4). By
straightforward calculations in relation (2.4), we obtain

2t m + 1− i1(ψm) < (2t − 1)n

and we remark that n − [ n
2t ] − 1 is the highest value of m ∈ N such that the relation

dimψm < dim ϕn holds. Hence, ψm is anisotropic over Kn for m = n − [ n
2t ] − 1. From

Remark 2.4, it results s(At (n)) ≥ n − [ n
2t ]. ��

Theorem 2.8 With the above notations, we have

s(At (n)) ∈ [n −
[

n + 2t − 1

2t

]
, n

]
,

where n ∈ N− {0}, t ≥ 2.

Proof Using Proposition 1.1(i), if the quadratic form φm = (m + 1) × TC is anisotropic,
then s(At (n)) ≥ m + 1 and if ϕn is isotropic, then s(At (n)) ≤ n. Using the same arguments
as in the proof of Theorem 2.7, if

2t (m + 1)− i1(φm) < (2t − 1)n, (2.5)
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we have φm is anisotropic over Kn ; therefore

s(At (n)) ∈ [m + 1, n].
Since i1(φm) ≥ 1, the highest value of m such that relation (2.5) holds is n − [ n+2t−1

2t ] − 1.
Indeed, relation (2.5) implies

2t (m + 1)− 1 < (2t − 1)n,

therefore

m < n
2t − 1

2t
+ 1

2t
− 1 = n − n + 2t − 1

2t

and we obtain

m ≤ n −
[

n + 2t − 1

2t

]
− 1.

��

Theorems 2.7 and 2.8. generalize Theorem 3.8 from [10].

Theorem 2.9 With the above notation, for each n ∈ N−{0}, there is an algebra At (n) such
that s(At (n)) = n and s(At (n)) ∈ {n − 1, n}.

Proof Let n ∈ N − {0} and m be the least positive integer such that n ≤ 2m . For n = 2m ,
there are quaternion (A2(n)) and octonion (A3(n)) division algebras of level n = 2m , (see
[8] and [13]). We assume that n < 2m . With the above notations, for t = m, let At (n) be the
algebra of dimension q = 2t . From Theorem 2.7, this algebra is of level

s(At (n)) ∈
[
n −

[ n

2t

]
, n

]

and sublevel

s(At (n)) ∈
[

n −
[

n + 2t − 1

2t

]
, n

]
, n ∈ N− {0}.

Since n < 2t , it results that [ n
2t ] = 0 and [ n+2t−1

2t ] = 1, therefore s(At (n)) = n and
s(At (n)) ∈ {n − 1, n}. ��

Remark 2.10 Theorem 2.9 gives a positive partial answer to the question whether any num-
ber n ∈ N − {0} can be realized as a level of composition algebras. The answer becomes
positive if we replace “composition algebras” with “algebras obtained by the Cayley–Dick-
son process.” Therefore, we can say that any number n ∈ N− {0} can be realized as a level
of an algebra obtained by the Cayley–Dickson process with the norm form anisotropic over
a suitable field.

Example 2.11 If n ∈ {6, 7}, for t ≥ 3, from Theorems 2.7 and 2.8, it follows that the algebra
At (n) has level 6 and 7, respectively. This remark generalizes the results obtained by O’Shea
in [10] for the octonion division algebras.

Theorem 2.12 With the above notations, we have that s(At (n)) = n, for n = 2k + 1.
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Proof First, we prove that the form

	n = n × 〈1〉⊥(n − 1)× T At
P

is anisotropic over Kn . If the form 	n is isotropic over Kn , since the form

ϕ′n = 〈1〉⊥n × T At−1
P

is a subform of the form ϕn and the norm ϕ′n is isotropic over its function field K (ϕ′n), then
ϕn is isotropic over K (ϕ′n). From [7, Theorem 3.3.], we have that there is a K -place from Kn

to K (ϕ′n). Let

	 ′n = n × 〈1〉⊥(n − 1)× T At−1
P .

Then, over K , we can write

	n = 	 ′n⊥Xt (n − 1)n At−1
C .

If 	n is isotropic over Kn , then 	n is isotropic over K (ϕ′n). We obtain that 	 ′n or (n− 1)n At−1
C

are isotropic over K (ϕ′n). Using the induction steps and the same arguments as in [8], Prop-
osition 2.3, for At−1 = A2, we have that 	 ′n is anisotropic over K (ϕ′n) and from Proposition

2.3., (ii), we obtain that (n− 1)n At−1
C is anisotropic over K (ϕ′n). Therefore, 	n is anisotropic

over Kn .
Now, from Remark 2.4(ii), we have s(At (n)) ≤ n. If s(At (n)) < n, then the form 	n is

isotropic over Kn , false. ��
The above result generalizes Theorem 3.1 from [13].

3 Conclusions

In this paper, we generalized the concepts of level and sublevel of a composition algebra to
algebras obtained by the Cayley–Dickson process. The main result of this paper is obtained in
Theorem 2.9, where we proved that for any positive integer n, there is an algebra A, obtained
by the Cayley–Dickson process with the norm form anisotropic over a suitable field, which
has level n ∈ N− {0}. Since it is still unknown what exact numbers can be realized as levels
and sublevels of quaternion and octonion division algebras, as further research, I intend to
improve the bounds for the level and sublevel of division quaternion and octonion algebras
and to provide some new examples of values for the level and sublevel of division quaternion
algebras or of division octonion algebras. It remains unknown whether there exist quaternion
division algebras of sublevel 5, or quaternion division algebras of level 6. The result obtained
in Theorem 2.9 seems to indicate that one of the problems in finding a given value for the level
of division quaternion and octonion algebras can be the dimension of these algebras and it is
easier to work with algebras obtained by the Cayley–Dickson process with higher dimension.
This remark allows us to consider this problem in the reverse sense: for any positive integer
n, how can the existence of an octonion division algebra of level n influence the existence
of a quaternion division algebra of level n? Or, more generally, for any positive integer n,
how can the existence of an algebra obtained by the Cayley–Dickson process, of dimension
2t , t ≥ 4 and level n, influence the existence of a quaternion or an octonion division algebra
of level n?

The remarks above can constitute the starting point for further research.
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