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Abstract We treat Zolésio’s velocity method of shape calculus using the formalism of
differential forms, in particular, the notion of Lie derivative. This provides a unified and
elegant approach to computing even higher-order shape derivatives of domain and boundary
integrals and avoids the tedious manipulations entailed by classical vector calculus. Hitherto
unknown expressions for shape Hessians can be derived with little effort. The perspective of
differential forms perfectly fits second-order boundary value problems (BVPs). We illustrate
its power by deriving the shape derivatives of solutions to second-order elliptic BVPs with
Dirichlet, Neumann and Robin boundary conditions. A new dual mixed variational approach
is employed in the case of Dirichlet boundary conditions.

Keywords Differential forms · Lie derivative · shape derivative ·
Hadamard structure theorems · dual formulation
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1 Introduction

Shape calculus, which is the differentiation of functionals and operators with respect to
variations of a spatial domain, is one of the mathematical foundations of shape sensitivity
analysis and shape optimization. Here, the control variable is no longer a set of parameters or
functions but the shape or structure of a geometric object. For a comprehensive presentation,
the reader is referred to the monograph [6]. In this work, shape calculus is approached via
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1078 R. Hiptmair, J. Li

the velocity method, that is, shape perturbations are governed by flows generated by spatial
vector fields. This paradigm of shape calculus will be adopted throughout the paper.

In this article, we derive shape derivatives using the calculus of differential forms as
opposed to classical vector calculus. One might object that no new insights can be expected,
because vector analysis offers a model “isomorphic” to the calculus of differential forms.
Nevertheless, in our opinion, adopting differential forms brings a significant reward, for the
following reasons:

– Differential forms facilitate the unified treatment of different spatial dimensions and
different classes of boundary value problems (BVPs) and functionals corresponding to
different orders of forms.

– The velocity method of shape calculus neatly fits the concept of Lie derivative, which is
natural for differential forms.

– The calculus of differential forms can often use simple formulas, where vector calculus
has to resort to complicated expressions.

– Differential forms offer a coordinate independent description of models, whereas vector
calculus will depend on coordinates, whose choice is often arbitrary.

– Differential forms clearly separate terms that are invariant with respect to homeomorphic
transformations and those that depend on metric.

– The exterior derivative of differential forms is the natural language for expressing conser-
vation principles underlying many PDE-based models. It is the key differential operator
occurring in second-order BVPs. Shape derivatives of their solutions play a central role
in shape optimization.

The aim of this first paper is twofold. Firstly, we use the exterior calculus of differential
forms and the Lie derivative to rederive the renowned Hadamard structure theorem [9], which
essentially states that shape derivatives depend only on the normal component of the defor-
mations on the boundary of the reference domain. We demonstrate how higher-order shape
derivatives can be derived recursively by repeating the argument in the proof of first-order
shape gradients.

Secondly, in the case of a second-order PDE with various boundary conditions, we illus-
trate how to determine the concrete shape derivatives of solutions of variational problems by
applying our abstract structure theorems. In particular, we find that via a dual formulation, the
boundary condition for the shape derivative of the solution of an elliptic PDE with Dirichlet
boundary condition can be obtained rigorously in the weak sense. This is one of the several
new results presented in this article.

The outline of the paper is as follows: Sect. 2 presents important notations and definitions
connected with differential forms. Section 3 is devoted to the proof of structure theorems
of shape derivatives by the exterior calculus of differential forms. In particular, the shape
Hessians of domain and boundary integrals are further investigated, with emphasis on the
asymmetry due to the Lie bracket of two velocity fields associated with the transformations.
In Sect. 4, we reinterpret the abstract theory in Sect. 3 in terms of vector proxies, namely scalar
functions and vector fields, with emphasis on the shape gradient and Hessian of domain and
boundary integrals, bilinear forms, and normal derivatives. In Sect. 5, by a model problem,
we illustrate the machinery for how to express the abstract structure theorems for second-
order elliptic BVPs with natural (Neumann and Robin) boundary conditions. In Sect. 6, we
derive, in particular via variational methods, the Dirichlet boundary conditions supplement-
ing with the PDE for the shape derivative of the solution to the Dirichlet problem in the dual
formulation.
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Shape derivatives in differential forms I 1079

2 Preliminaries

2.1 Notations

The interior and closure of a set A ⊂ R
n will be denoted, respectively, by int A and

A. Throughout the paper, the classical Euclidean space R
d (d ∈ N, d ≥ 2) of dimen-

sion d is equipped with the canonical orthonormal bases e j ’s, 1 ≤ j ≤ d , and norm

|x| :=
√

x2
1 + · · · + x2

d for x = (x1, . . . , xd)T ∈ R
d , and inner product 〈x, y〉. The canonical

orthonormal basis of R
d corresponds to a dual basis of (Rd)∗, i.e., dx1, dx2, . . . , dxd with

dxi (e j ) = 1 if i = j and zero otherwise.

2.2 Differential forms

In this subsection, we briefly review some important notions and results about the exterior cal-
culus of differential forms. Readers may refer to [4,8] for a detailed exposition of differential
forms.1

A differential form ω of degree l, l ∈ N0 = {0} ∪ N, and class Cm, m ∈ N0, in some
domain � ⊂ R

d , is a mapping with values in the space of alternating l-multilinear forms
∧l

on R
d :

ω =
∑

I

ωI dxI : x ∈ � ⊂ R
d 
→ ω(x) ∈

∧l
, (1)

where all the componentsωI (x) ∈ Cm(�), and summation is over all the increasing l-permu-
tations I = (i1, . . . , il), with 1 ≤ i1 < · · · < il ≤ d , and we denote dxI = dxi1∧ · · · ∧dxil .
Hereafter, we write ω ∈ DF l,m(�). In an analogous way, we can define DF l,∞(�) if all

ωI (x) ∈ C∞(�), and DF l,∞
0 (�) if all ωI (x) ∈ C∞

0 (�). Likewise, Hs
(
�;∧l

(Rd)
)

(s ∈
R

+
0 ) denotes the space consisting of all differential forms with each component in Hs(�),

which can be viewed as the Hilbert space obtained by means of the completion of DF l,∞(�)

with respect to the norm

‖ω‖2
Hs

(
�;∧l (Rd )

) :=
∑

I

‖ωI ‖2
Hs (�) . (2)

In particular, we use L2(�;∧l
(Rd)) instead of H0

(
�;∧l

(Rd)
)

.

Differential forms can be represented by their coefficient functions, or vector proxies.
Please see Table 1 (cf. [13, Section 2.1] and [2, Sect. 2.1]) for vector proxies of differential
forms of different orders in three-dimensional Euclidean space and refer to Table 2 (cf. [8,
Chapter 3]) for the interpretation of integrals of differential forms in terms of integrals of
vector proxies.

The exterior product of differential forms ω ∈ DF l,m(�) and η ∈ DF k,m(�) (cf. [4, p.
19]),and contraction of ω ∈ DF l,m(�) with a vector field v ∈ R

d (cf. [8, Sect. 2.9.]) are
denoted, respectively, as

ω ∧ η ∈ DF l+k,m(�), ivω ∈ DF l−1,m(�). (3)

1 We adopt the convention that roman letters denote scalar quantities, functions, and their associated spaces
etc., while boldface letters represent vector-valued quantities, functions, and their associated spaces etc. In
particular, boldface Greek letters, ω, η, ν and ρ etc., are reserved for differential forms.
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1080 R. Hiptmair, J. Li

Table 1 Relationship between differential forms and vector proxies in three-dimensional Euclidean space
v, v1, v2, v3 ∈ R

3

Differential form Related function u/vector field u

l = 0 x 
→ ω(x) u(x) := ω(x)

l = 1 x 
→ {v 
→ ω(x)(v)} 〈u(x), v〉 := ω(x)(v)

l = 2 x 
→ {v1, v2 
→ ω(x)(v1, v2)} 〈u(x), v1 × v2〉 := ω(x)(v1, v2)

l = 3 x 
→ {v1, v2, v3 
→ ω(x)(v1, v2, v3)} u(x) det(v1, v2, v3) := ω(x)(v1, v2, v3)

Table 2 Relationship between integrals of differential forms and vector proxies in R
3

Integral of differential forms Integral of related function u/vector field u

l = 0
∫

P ω
∫

P u dx := u(P)

l = 1
∫

E ω
∫

E u · d
−→
l := ∫

E u · t dl

l = 2
∫

F ω
∫

F u · d
−→
S := ∫

F u · n dS

l = 3
∫

V ω
∫

V u dV

P , E, F, V denotes some point, oriented curve, oriented face and volume in R
3 with t and n being the unit

tangential vector along E and the unit normal vector on F , respectively, and u(P) means point evaluation of
u at P

Table 3 Relationship between contraction for differential forms and vector proxies in R
3

Contraction of differential forms Contraction of related function u/vector field u

l = 0 x 
→ ivω 0 := ivω(x)

l = 1 x 
→ ivω(x) (u · v) (x) := ivω(x)

l = 2 x 
→ {v 
→ ivω(x)(v)} (u × v) (x) := ivω(x)(v)

l = 3 x 
→ {v1, v2 
→ ivω(x)(v1, v2)} det(u(x)v, v1, v2) := ivω(x)(v1, v2)

Table 3 gives the operation of contraction for vector proxies in three-dimensional Euclidean
space.

If T : �̂ 
→ � is a diffeomorphism between two smooth manifolds in R
d , then the

pullback T ∗ : DF l,∞(�) 
→ DF l,∞(�̂) [4, p. 28] is given by

((T ∗ω)(̂x))(v1, . . . , vl) = (ω(T (̂x)))(DT (̂x)v1, . . . , DT (̂x)vl), (4)

where v1, . . . , vl ∈ R
d and the linear map DT (̂x) : R

d 
→ R
d is the derivative (Jacobian)

of T at x̂. The pullbacks satisfy the transformation rule
∫

T (�̂)

ω =
∫

�̂

T ∗ω. (5)

For a differential l-formω = ∑
I ωI dxI ∈ DF l,∞(�), its exterior derivative dω through

the exterior differential operator d [4, p. 20] is defined by

dω :=
d∑

i=1

∑

I

∂ωI

∂xi
dxi ∧ dxI ∈ DF l+1,∞(�), (6)
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Shape derivatives in differential forms I 1081

and if l ≥ d, dω = 0 by definition. In terms of vector proxies, the incarnation of d is
grad, curl and div when l = 0, 1 and 2, respectively, in R

3. We also recall Stokes’ theorem
∫

∂�

ω =
∫

�

dω, (7)

and the first Poincaré Lemma, namely

ddω = 0, (8)

for all ω (cf. [4]). We remind of the fact that the pullback commutes with the exterior deriv-
ative, i.e.,

T ∗(dω) = d(T ∗ω), ∀ ω ∈ DF l,∞(�), (9)

and with the exterior product

T ∗(ω ∧ η) = T ∗ω ∧ T ∗η, ∀ ω ∈ DF l,∞(�), η ∈ DF k,∞(�). (10)

Important Hilbert spaces of differential forms are [2, Sect. 2.2]

Hk
(

d,�,
∧l

(Rd)

)
:=

{
ω ∈ Hk

(
�;

∧l
(Rd)

)
| dω ∈ Hk

(
�;

∧l+1
(Rd)

)}

for k ∈ N0, with the natural graph norm

‖ω‖2
Hk

(
d,�,

∧l (Rd )
) := ‖ω‖2

Hk (�,
∧l (Rd ))

+ ‖dω‖2
Hk (�,

∧l+1(Rd ))
. (11)

Specifically, we simply put H(d,�,
∧l

(Rd)) when k = 0.

2.3 Lie derivatives of differential forms

Our approach to shape calculus will be based on the velocity method (cf. [6,18]). We start
from a given bounded domain � of class Cm (cf. [1]), (with m sufficiently large and to be
specified in different contexts, say, e.g., m ≥ 2 in the sequel) and with boundary � = ∂�. We
fix D ⊂ R

d with sufficiently smooth boundary such that � � D. This D is known as hold-all
domain, and we may, without loss of generality, take D either as a ball with sufficiently large
radius containing �, or the whole space R

d .
Given a Lipschitz continuous velocity field

v : D → R
d

and an initial configuration x(0, X) = X ∈ R
d , the associated flow x(t, X) can be defined

through the differential equation

∂x
∂t

(t, X) = v(X), (12)

x(0, X) = X, X ∈ D. (13)

A unique solution of the problem (12), (13) exists when v ∈ Cm(D, R
d) and v · n = 0 on

∂ D. The flow spawns a family of Cm-diffeomorphism

Tt (v)X := x(t, X) t ≥ 0, X ∈ D. (14)

Thus, we can define a family of deformed domains

�t (v) := Tt (v)(�) = {Tt (v)(X) : ∀ X ∈ �} . (15)
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1082 R. Hiptmair, J. Li

Table 4 Lie derivatives for Euclidean vector proxies in R
3

Vector proxy in R
3 Vector proxy for Lie derivative

l = 0 ω ↔ u Lvω ↔ grad u
l = 1 ω ↔ u Lvω ↔ curl u × v + grad(v · u)

l = 2 ω ↔ u Lvω ↔ v(div u) + curl(u × v)

l = 3 ω ↔ u Lvω ↔ div(vu)(x)

The association of vector proxies with differential forms indicated by ↔ follows the rules laid out in Table 1

parametrized by the pseudo-time t . Since Tt (v) is a diffeomorphism of class Cm , we see
that the normal field nt (v) on the boundary �t (v) := ∂ (�t (v)) belongs to Cm−1(�t , R

d)

[18, p. 16].

Definition 1 (cf. [8]) If the following limit exists, the Lie derivative Lv of a l-form ω in the
direction of the vector field v is defined as:

Lvω := lim
t→0

Tt (v)∗ω − ω

t
. (16)

By Cartan’s formula [8, Theorem 4.23], we can represent the Lie derivative as

Lvω = (iv d + d iv)ω, (17)

from which it is immediate that the Lie derivative and exterior derivative commute

dLv = Lvd. (18)

Expressions for the Lie derivative in 3D Euclidean vector proxies can be found in Table 4.

3 Shape calculus in forms

In this section, we will investigate abstract shape calculus in differential forms and prove
Hadamard-style fundamental structure theorems from the perspective of differential forms
for shape derivatives of domain and boundary integrals. Our results can be applied for the
characterization of shape derivatives associated with a wide range of PDEs, in particular
via variational methods. New proofs in coordinate-free setting become available. Thanks to
Stokes’ theorem, the treatment of the shape derivatives of boundary integrals can be reduced
to the case of domain integrals. Moreover, higher-order shape derivatives can be derived in
a recursive way within the new framework.

Let us briefly review shape calculus, see [6,18] for more details. Consider the set P(D) =
{� is of class Cm : � � D} of the subsets of D. A shape functional is a map

J : A (D) → K, (19)

where A (D) is some admissible family of domains in P(D) and K stands for R or C. For
a domain � of class Cm transformed by any velocity field v ∈ Cm(D, R

d), A (D) can be
chosen as the set of all possible transformed domain �t (v) when t is small enough. For ease
of exposition, we set D to be R

d in the sequel.

Definition 2 (Shape derivative of shape functionals) (cf. [6,18]) Let v be a vector field
v ∈ Cm(Rd , R

d). The shape functional J is said to have a shape derivative at � in the
direction v if the following limit exists and it is finite
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Shape derivatives in differential forms I 1083

lim
t→0

J (Tt (v)(�)) − J (�)

t
. (20)

It is written as dJ (�; v), if it exists.

Next, we will elaborate on the shape derivatives of two special functionals: domain and
boundary integrals, which commonly occur as output functionals for solutions of BVPs for
PDEs.

Let � ⊂ R
d be a bounded d-dimensional manifold of class Cm . The domain functional

of a density form ω ∈ DF d,m(Rd) defined globally is

J (�) =
∫

�

ω. (21)

To define higher-order shape derivatives of domain and boundary integrals, we introduce
velocity fields v1, . . . , vk ∈ Cm(Rd , R

d). Then, the multiply transformed domain is

�t1,...,tk (v1, . . . , vk) = Tt1(v1)
(
. . .

(
Ttk (vk)(�)

))
. (22)

Thus, the deformed domain integral of the corresponding density form ω is

Jv1,...,vk (t1, . . . , tk) =
∫

�t1,...,tk (v1,...,vk )

ω. (23)

Definition 3 [6, p. 371] The shape derivatives of domain integrals of different orders are
under suitable smoothness conditions on the domain and velocity fields v, w, v1, . . . , vk ,
defined as follows:

〈dJ (�), v〉 = d

dt
Jv(t)

∣∣∣∣
t=0

,

〈
d2 J (�); v, w

〉 = ∂

∂s

{
∂

∂t
Jv,w(t, s)

∣∣∣∣
t=0

}∣∣∣∣
s=0

,

〈
dk J (�); v1, . . . , vk

〉
= ∂

∂tk

{
. . .

∂

∂t1
Jvt1 ,...,vk (t1, . . . , tk)

∣∣∣∣
t1=0

. . .

}∣∣∣∣∣
tk=0

.

3.1 Domain integral

We are now in a position to present the first main result on the shape derivatives of domain
integrals.

Theorem 1 (First fundamental structure theorem) The domain functional J (�) from (21) is
shape differentiable, with shape gradient

〈dJ (�), v〉 =
∫

�

Lvω =
∫

�

divω =
∫

∂�

ivω, (24)

and shape Hessian

〈
d2 J (�); v, w

〉 =
∫

�

LwLvω =
∫

�

d iw (d ivω) =
∫

∂�

iw (d ivω) , (25)
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1084 R. Hiptmair, J. Li

and kth order shape derivatives (k > 2)
〈
dk J (�); v1, . . . , vk

〉
=

∫

�

(
Lvk . . . Lv1

)
ω =

∫

�

d ivk

(
d ivk−1

(· · · (d iv1ω
)))

=
∫

∂�

ivk

(
d ivk−1 · · · (d iv1ω

))
. (26)

Proof We first use the pullback to transform from �t to � and make use of the definition of
the Lie derivative of a density form ω. Then, we obtain

〈dJ (�), v〉 = d

dt
Jv(t)

∣∣∣∣
t=0

=
⎛
⎜⎝ d

dt

∫

�t (v)

ω

⎞
⎟⎠

∣∣∣∣∣∣∣
t=0

=
⎛
⎜⎝ d

dt

∫

Tt (v)(�)

ω

⎞
⎟⎠

∣∣∣∣∣∣∣
t=0

=
⎛
⎝ d

dt

∫

�

Tt (v)∗ω

⎞
⎠
∣∣∣∣∣∣
t=0

〈∗〉=
∫

�

Lvω
(17)=

∫

�

(d iv + ivd)ω

(8)=
∫

�

d ivω
(7)=

∫

∂�

ivω,

where the definition of the Lie derivative is used in step 〈∗〉. We have also used the fact
dω = 0 since dω is a (d + 1)-form on a d-dimensional manifold.

Similar manipulations yield the shape Hessian,

〈
d2 J (�), v, w

〉 = ∂

∂s

{
∂

∂t
Jv,w(t, s)

∣∣∣∣
t=0

}∣∣∣∣
s=0

= ∂

∂s

⎛
⎜⎝

⎛
⎜⎝ ∂

∂t

∫

�t,s (v,w)

ω

⎞
⎟⎠

∣∣∣∣∣∣∣
t=0

⎞
⎟⎠

∣∣∣∣∣∣∣
s=0

= ∂

∂s

⎛
⎝

⎛
⎝ ∂

∂t

∫

�

Ts(w)∗Tt (v)∗ω

⎞
⎠
∣∣∣∣∣∣
t=0

⎞
⎠
∣∣∣∣∣∣
s=0

〈∗〉=
∫

�

Lw (Lvω)
(17)=

∫

�

(d iw + iwd)(d iv + ivd)ω

(8)=
∫

�

d iw (d ivω)
(7)=

∫

∂�

iw (d ivω) .

Furthermore, for higher-order shape derivatives, we arrive at the last conclusion (26) by
recursively repeating the previous arguments. ��

In particular, regarding the structure of the shape Hessian, due to the composition of con-
secutive transformations of � along velocity fields v and w, the Lie bracket comes into play.
Observing (25), we have

〈
d2 J (�), v, w

〉 =
∫

�

LwLvω and
〈
d2 J (�), w, v

〉 =
∫

�

LvLwω, (27)
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Shape derivatives in differential forms I 1085

and in light of the Lie derivative identity [4,7,15]

LwLvω − LvLwω = L[w,v]ω, (28)

where for two differentiable velocity fields, the Lie bracket is defined by [8, Sect. 4]

[w, v] = (Dv) w − (Dw) v, (29)

with Dv, Dw being the Jacobians of the vector fields v and w, respectively. Thus, we arrive
at the following symmetry condition, which was also found in [3,5,6] via vector calculus.

Corollary 1 A sufficient condition for the symmetry of the shape Hessian of the domain
integral (21), namely

〈
d2 J (�), v, w

〉 = 〈
d2 J (�), w, v

〉
, (30)

is
∫

�

L[w,v]ω = 0. (31)

3.2 Boundary integrals

The boundary functional of a surface density form η ∈ DF d−1,m(D) (initially globally
defined on D) is

I (�) =
∫

∂�

η. (32)

Thanks to the Stokes theorem, we see that I (�) = ∫
�

dη. Thus, the structure theorem for
boundary integrals immediately follows from Theorem 1 via the Stokes theorem and the fact
that the exterior derivative and Lie derivative commute.

Corollary 2 (Second fundamental structure theorem) The boundary functional I (�) is shape
differentiable under suitable smoothness conditions on the domain and the velocity fields
v1, . . . , vk , with shape derivatives for k ≥ 1

〈
dk I (�), v1, . . . , vk

〉
=

∫

�

ivk d
(
ivk−1 d . . .

(
iv1 d (η)

))
. (33)

Obviously, only the values of η on � matter for the shape derivatives. As regards the
structure of the shape Hessian of the boundary integral (32), a result similar to Corollary 1
involving the Lie bracket holds. Observe

〈
d2 I (�), v, w

〉 =
∫

�

LwLvdη and
〈
d2 I (�), w, v

〉 =
∫

�

LvLwdη. (34)

Therefore, the symmetry condition for the shape Hessian of boundary integrals is
∫

�

L[w,v]η = 0, (35)

which is the same as in Corollary 1 except for the domain of integration �.
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1086 R. Hiptmair, J. Li

3.3 Shape derivative for bilinear forms

For PDE-constrained shape optimization problems, bilinear forms often arise in the varia-
tional formulation of the PDE constraints, which have to be differentiated with respect to
small domain variations. This is the reason why we single out this particular functional.

Lemma 1 For two l-forms, ω, η ∈ DF l,m(�) (0 ≤ l ≤ d − 1), the bilinear form given by

J (�) =
∫

�

∗dω ∧ dη, (36)

where ∗ is the Hodge star operator (cf. [4,7,8]), has the following shape derivative:

〈dJ (�), v〉 =
∫

�

Lv (∗dω ∧ dη) =
∫

�

iv (∗dω ∧ dη) . (37)

Proof Understanding ∗dω ∧ dη as a density form, the assertion follows directly from
Theorem 1. ��

4 Shape calculus in vector proxies

In this section, we will express the abstract theory in Sect. 3 in terms of vector proxies in
d-dimensional Euclidean space (cf. Table 1).

For later use, we introduce surface differential operators as follows: Let ũ (resp. ṽ) be the
classical extension of some scalar function u (resp. vector fields v) on the surface � to the
whole space R

d by means of the signed smooth distance function within some neighborhood
of � [6,16,19]. Then, two key surface differential operators can be defined,

Surface gradient : grad� u = grad ũ|� − (grad ũ · n) n|�,

Surface divergence : div�v = div ṽ − Dṽn · n,

with n being the outward unit normal vector on �. They are linked by the tangential Stokes
and Green Formulae on the hypersurface � of codimension one without boundary in R

d [6,

Eqs. (5.26) and (5.27) on p. 367]: For a function f ∈ C1(�) and a vector v ∈ (
C1(�)

)d
, we

have the tangential Stokes formula
∫

�

div�v ds =
∫

�

Hv · n ds, (38)

and the tangential Green formula
∫

�

f div�v + grad� f · v ds =
∫

�

H f v · n ds, (39)

where

H := (d − 1)H (40)

is the additive curvature and H is the mean curvature of the surface � (cf. [6]).
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4.1 Domain integrals

Given a sufficiently smooth function f and a smooth domain � of class Cm with boundary
�, the domain integral functional is

J (�) =
∫

�

f dx . (41)

In terms of vector proxies in Euclidean space, see Table 1, and understanding f as vector
proxy for a d-dimensional volume form ω ∈ DF d,m(�), the formulae in Theorem 1 can be
recast as follows:

Lemma 2 Under suitable smoothness conditions on f,� and the velocity fields v and w,
the shape gradient of J from (41) exists and can be written as:

〈dJ (�), v〉 =
∫

�

( f v) · n ds.

The shape Hessian is

〈
d2 J (�), v, w

〉 =
∫

�

(
∂ f

∂n
+ κ f

)
(v · n) (w · n) ds

−
∫

�

f
(〈Sv�, w�〉 − w� · grad� (v · n) − v� · grad� (w · n)

)
ds

+
∫

�

f (Dvw) · n ds, (42)

where S = Dn is the second fundamental form (or Weingarten map or shape operator [8,17])
of the surface � and n is the outward unit normal field on �.

Proof The scalar smooth function f can be viewed as a vector proxy of a density form. Since
the contraction with a velocity field amounts to a simple product of a scalar function f and a
vector field (see Table 3), and the exterior derivative d is nothing but the div operator in this
case, following (24) in Theorem 1, the shape gradient of (41) reads:

〈dJ (�), v〉 =
∫

�

div( f v) dx =
∫

�

( f v) · n ds.

This formula agrees with [18, Proposition 2.4.6 on p. 77] or [6, Theorem 4.2, p. 353].
The shape Hessian can be derived from (25) in a similar way, we obtain

〈
d2 J (�), v, w

〉 =
∫

�

div (w div( f v)) dx =
∫

�

div( f v) (w · n) dx

=
∫

�

(grad f · v + f div v) (w · n) ds

〈4〉=
∫

�

(
grad� f · v� + ∂ f

∂n
v · n + f (Dvn · n + div�v)

)
(w · n) ds
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〈5〉=
∫

�

(
grad� f · v� +

(
∂ f

∂n
+ H f

)
v · n + f Dvn · n + f div� v�

)

× (w · n) ds

〈6〉=
∫

�

((
∂ f

∂n
+ H f

)
v · n + f Dvn · n

)
(w · n) − f v� · grad� (w · n) ds

(43)

Note that H is the additive mean curvature defined in (40). Here we have used the decompo-
sition

v = (v · n)n + v�, (44)

where (·)� denotes the tangential component of a vector field on �, and the definition of
surface divergence

div v = Dvn · n + div�v, (45)

cf. [18, Def. 2.52, p. 82] or [6, Eq. (5.19), p. 366], in the fourth equality 〈4〉. The fifth equality
〈5〉 follows from the identity

div�v = div�v� + Hv · n, (46)

(cf. [18, Prop. 2.57, p. 86] or [6, Eq. (5.22), p. 366]). And the last equality 〈6〉 is a consequence
of the tangential Green formula (39) applied to v� and (w · n) f :

∫

�

grad� ((w · n) f ) · v� + (w · n) f div� v� ds = 0. (47)

Note that the formula (43) is exactly the same as [6, Eq.(6.3) on p. 373]. However, we avoid
a lot of complicated intermediate steps and need not introduce some auxiliary distance func-
tions and surface calculus. Moreover, in light of [6, Eq. (5.23) on p. 366], one may further
symmetrize the shape Hessian in (43) as [6, Eq. (6.4) on p. 373] to derive a symmetric prin-
cipal part plus the first half of the Lie bracket of two velocity fields to obtain (42). This
completes the proof. ��

In terms of a vector proxy f of a density form, the sufficient condition from Corollary 1
for the symmetry of the shape Hessian is equivalent to

∫

�

div ( f [w, v]) dx =
∫

∂�

( f [w, v]) · n ds =
∫

∂�

f ((Dv) w − (Dw) v) · n ds = 0,

which agrees with the observation in [6, Eq. (6.5) on p. 373]. Related investigations of the
structure of the shape Hessian of domain integrals can be found in [3,5].

Remark 1 In particular for shape optimization problems, only normal variations (still pertur-
bations of infinite dimension) are taken into account, namely v and w are chosen to be along
the normal direction of the surface �. In such a case, the symmetry of the shape Hessian
is still not guaranteed from the velocity method, which is quite opposite to our intuition of
finite dimensional calculus. So one should be very cautious about assuming the symmetry of
the shape Hessian in shape optimization problems.
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Remark 2 A detailed theoretical analysis of higher-order shape derivatives for domain inte-
grals (k > 2) is still possible but extremely tedious. Structure of higher-order shape deriva-
tives can be derived from Theorem 1. Yet, they are seldom used in theoretical analysis and
numerical methods due to their rather low regularity. One can formally derive higher-order
shape derivatives given the necessary regularity of the functions and domain, but the inter-
pretation of the resulting expressions is very difficult and their numerical approximation is
even harder.

4.2 Boundary integrals

Given a scalar smooth function f globally defined in R
d , the boundary integral on � := ∂�

is

I (�) =
∫

�

f ds. (48)

Observe that

I (�) =
∫

�

f ds =
∫

�

f n · n ds (49)

where f n can be understood as inω, with f being the vector proxy of some volume density
form ω ∈ DF d,m(�). It must be pointed out that once � is given, we can extend the outward
unit normal n to be a globally defined velocity field such that inω is a (d − 1)-form which
does not depend on �t .

Lemma 3 Under suitable smoothness conditions on f,� and the velocity fields v and w,
the shape gradient of the boundary integral (48) reads:

〈dI (�), v〉 =
∫

�

(v · n)

(
∂ f

∂n
+ H f

)
ds.

The shape Hessian is

〈
d2 I (�), v, w

〉 =
∫

�

((
D2 f n · n + 2H

∂ f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂ f

∂n
+ H f

) (
S(v�, w�) − w� · grad� (v · n) − v� · grad� (w · n)

)

+
(

∂ f

∂n
+ H f

)
((Dv) w) · n

)
ds.

Proof In light of the observation (49), the integrand f nt (v) after deformation can be under-
stood as a surface density form depending on the boundary since nt (v), being the normal
field on ∂�t (v) transformed along the velocity field v, depends on the pseudo-time t.
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Now interpreting d as div and contraction as simple multiplication, we have

〈dI (�), v〉 =
∫

�

div( f n)(v · n) ds

︸ ︷︷ ︸
I

+ 2
∫

�

f (n
′
t (v)|t=0) · n ds

︸ ︷︷ ︸
I I

=
∫

�

(grad f · n + f div(n)) (v · n) ds

=
∫

�

(v · n)

(
∂ f

∂n
+ H f

)
ds. (50)

where we have to apply the product rule of differentiation to the boundary integral (49).
The first term (I ) follows from Corollary 2 through freezing n = nt (v)|t=0 and extending it
unitarily to the global domain by the signed distance technique, while the second one (I I )
is a temporal derivative of the integrand f nt (v) · nt (v) evaluating at t = 0. Notice that

n
′
t (v)|t=0 = − grad�(v · n), (51)

which is a tangential vector on the surface � (please refer to details in [6, Eq. (4.38) on p.
360 and p. 370]. Therefore, we see immediately that (I I ) vanishes.

In the derivation of the previous formula (50), we have used the identities

div( f n) = grad( f ) · n + f div(n)

and div(n) = Trace(Dn) = H. This formula agrees with [6, Theorem 4.3 on p. 355], but we
could arrive at it much more easily.

As for the shape Hessian, we may repeat the argument in the derivation of the shape
gradient recursively and thus obtain from Corollary 2

〈
d2 I (�), v, w

〉 =
∫

�

div (v div( f n)) (w · n) ds

=
∫

�

div (v (grad( f ) · n + f div(n))) (w · n) ds

=
∫

�

(
div v (grad( f ) · n + f div(n))

+ grad (grad( f ) · n + H f ) · v
)
(w · n) ds.

We point out that we have used the product rule of differentiation and the orthogonality
(51) twice in pseudo-time s and t consecutively in deriving the shape Hessian for boundary
integrals. To the best knowledge of the authors, this is a new result.
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We can further symmetrize the formula into a symmetric principal part plus the first half
of the Lie bracket:

〈
d2 I (�), v, w

〉 =
∫

�

(
div v

(
∂ f

∂n
+ H f

)
+ v · grad

(
∂ f

∂n
+ H f

))
(w · n) ds

〈2〉=
∫

�

(
(div�v� + Hv · n + Dvn · n)

(
∂ f

∂n
+ H f

)

+v� · grad�

(
∂ f

∂n
+ H f

)
+ (v · n) · ∂

∂n

(
∂ f

∂n
+ H f

))
(w · n) ds

〈3〉=
∫

�

((
D2 f n · n + 2H

∂ f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+ (div�v� + Dvn · n)

(
∂ f

∂n
+ H f

)
(w · n)

+v� · grad�

(
∂ f

∂n
+ H f

)
(w · n)

)
ds

〈4〉=
∫

�

((
D2 f n · n + 2H

∂ f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂ f

∂n
+ H f

)
(Dvn · n) (w · n)

−
(

∂ f

∂n
+ H f

)
v� · grad�(w · n)

)
ds

〈5〉=
∫

�

((
D2 f n · n + 2H

∂ f

∂n
+

(
H2 − 1

2
trace(S2)

)
f

)
(v · n) (w · n)

+
(

∂ f

∂n
+ H f

) (
S(v�, w�) − w� · grad� (v · n) − v� · grad� (w · n)

)

+
(

∂ f

∂n
+ H f

)
(Dvw) · n

)
ds

Here we have used the decomposition identities [6, Eqs. (5.19) and (5.22), p. 366] in the
second equality 〈2〉, [16, Eq. (2.5.155)] in the third equality 〈3〉, the surface Green formula
in the fourth equality 〈4〉. In the last equality 〈5〉, we decompose ((Dv) n · n) (w · n) as in
the discussion of the shape Hessian of the domain integral by using [6, Eqs. (5.23) p. 366
and (6.3) on p. 373]. Apparently, this formula is new. ��

In terms of a scalar function f , the sufficient condition for the symmetry of the shape
Hessian of the boundary integral is equivalent to

∫

�

(
∂ f

∂n
+ H f

)
[w, v] · n ds =

∫

�

(
∂ f

∂n
+ H f

)
((Dv) w − (Dw) v) · n ds = 0.

Again, in terms of normal variations, this term will not necessarily drop out. This sufficient
condition is also new to the shape optimization community.
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4.3 Shape derivative for bilinear forms

The formula in (37) holds true for grad, curl and div, respectively, in three dimensions.
These special cases can be summarized in the following version of Lemma 1.

Lemma 4 Under suitable smoothness conditions on � and the velocity field v, the shape
derivatives of the bilinear form on H(D,�)

J (�) =
∫

�

κDu · Dv dx, (52)

is

〈dJ (�), v〉 =
∫

�

(κDu · Dv) v · n ds, (53)

with D being replaced with grad, curl and div, respectively, u and v vector fields for the
latter two cases, and κ some coefficient, which could be any constant, smooth function or
tensor field.

Note that those formulae for curl and div operators are new and of particular importance
in deriving shape derivatives for Maxwell solutions arising in electromagnetics, and for the
Stokes system arising in fluid dynamics, respectively.

4.4 Normal derivative

Since normal derivatives are often encountered, we would like to discuss this special case
with an auxiliary lemma. Let � be the boundary of a bounded domain � of class Cm and
f ∈ H2

loc(R
m) be given. Consider the shape functional

I (�) =
∫

�

∂ f

∂n
ds =

∫

�

grad f · n ds. (54)

In this case, f is understood as a 0-form ω and grad is the incarnation of d : DF 0,m(�) 
→
DF 1,m(�), thus

∫
�

grad f ·n ds may be expressed by
∫
�

∗dω, where dω is a 1-form, which
is mapped by the Euclidean Hodge to ∗dω, a (d − 1)-form (or grad f in the vector proxy).
Now Corollary 2 is applicable for this case.

Lemma 5 Under suitable smoothness conditions on � and the velocity fields v, the shape
derivative of (54) exists and it holds that

〈
d
∫

�

grad f · n, v

〉
(55)

=
∫

�

(
div� grad� f + D2 f n · n + H grad f · n

)
(v · n) ds. (56)
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Proof By Corollary 2, we have
〈

d
∫

�

grad f · n, v

〉
=

∫

�

div(grad f ) (v · n) ds

=
∫

�

(
div� grad� f + D2 f n · n + H grad f · n

)
(v · n) ds.

where we have used the decomposition of the div operator as in (45) and (46) in the second
equality. ��

5 Application: shape derivative of solutions of second-order BVPs

In this section, we will study a model elliptic BVP and express the shape derivatives of weak
solutions of BVPs via shape calculus of domain and boundary integrals.

Given a bounded domain � ⊂ R
d of class Cm , consider an elliptic BVP for an l-form ω,

see [12, Sect. 2],

(−1)d−l d ∗α dω + ∗γω = ψ in �, (57)

Tr (∗αdω) = (−1)d−lTr
(∗βω + φ

)
on �, (58)

where ∗α, ∗γ and ∗β are fixed Hodge operators in � and on �, respectively, Tr is the trace
operator on the boundary [2], andψ ((d − l)-form) and φ ((d − l − 1)-form) are two smooth
differential forms defined globally. Equation (58) corresponds to the Robin boundary condi-
tion, which reduces to the Neumann case when ∗β = 0.

The weak form of (57), (58) is obtained through the integration by parts formula [13, Eq.
(2.23)] and reads: Seek ω ∈ {η ∈ H(d,�,

∧l
(Rd)), Tr(η) ∈ L2(�,

∧l
(Rd))} such that for

all smooth test forms η
∫

�

(∗αdω ∧ dη + ∗γω ∧ η) +
∫

�

Tr
(∗βω ∧ η) =

∫

�

ψ ∧ η −
∫

�

Tr (φ ∧ η) . (59)

Definition 4 (Shape derivatives of forms) Given a velocity field v ∈ Cm(Rd , R
d) and the

corresponding perturbed domains �t := Tt (v)(�), the shape derivatives of a solution ω of
(57), (58), which depends on the domain �t , in the direction of v, denoted by δω, is defined
by (cf. [6,18])

δω := d

dt
ω(�t )

∣∣∣∣
t=0

. (60)

In an abstract way, we can characterize the corresponding shape derivative of the solution
to (57), (58) by differentiating (59) with respect to t , but with � and ω(�) replaced by �t

and ω(�t ) in (59), respectively. Straightforward application of Theorem 1, Corollary 2 and
Definition 4 yields:

Lemma 6 The shape derivative, δω ∈ {η ∈ H(d,�,
∧l

(Rd)) : Tr(η) ∈ L2(�,
∧l

(Rd))},
of the solution ω ∈ H1

(
d,�,

∧l
(Rd)

)
of (59) is the unique solution to the following

variational problem:
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∫

�

(∗αd(δω) ∧ dη + ∗γ δω ∧ η) +
∫

�

Tr
(∗βδω

) ∧ η.

=
∫

�

iv (ψ ∧ η) −
∫

�

iv
(∗αdω ∧ dη + ∗γω ∧ η)

−
∫

�

ivdTr
((∗βω + φ

) ∧ η) , (61)

for all smooth test forms η ∈ DF l,∞(Rd).

The weak form (59) corresponds to H1(�)-, H(curl;�)- and H(div;�)-elliptic varia-
tional problems when d = 3, l = 0, 1 and 2, respectively. In terms of vector proxies, we can
incarnate the Hodge operators as multiplication with coefficient functions denoted by α, β

and γ .
We give details for 0-forms (l = 0, for l > 0, please refer to [14]), and use scalar functions

f ∈ L2(�) and g ∈ H2(�) as vector proxies of the forms ψ and φ in (59). Related studies
have been conducted in [10,11,18].

Corollary 3 The shape derivative, δu ∈ {
w ∈ H1(�) : w|∂� ∈ H1(�)

}
, of the solution

u ∈ H2(�) of (59) for l = 0 is the unique solution of the following variational problem:
∫

�

(α grad δu · grad v + γ δuv) +
∫

�

βδu

=
∫

�

f vv · n −
∫

�

(
α grad� u · grad� v + γ uv

)
v · n

−
∫

�

v · n
(

∂

∂n
(βu + g) + H(βu + g)

)
v, (62)

for all v ∈ C∞(Rd).

Proof A simple translation from differential forms to scalar functions (0-forms) with Lemmas
2 and 3 yields the right-hand side of (61) in terms of vector proxies
∫

�

f vv · n−
∫

�

(α grad u · grad v+γ uv) v · n−
∫

�

v · n
(

∂

∂n
((βu + g)v)+H(βu + g)v

)
.

Notice that

∂

∂n
((βu + g)v) = ∂

∂n
(βu + g) v + (βu + g)

∂v

∂n
,

and

α grad u · grad v = α grad� u · grad� v + α
∂u

∂n
· ∂v

∂n
.

In view of the Robin boundary condition α ∂u
∂n + (βu + g) = 0, the last terms in the previous

two equations cancel each other and the proof is done. ��
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Once we arrive at the variational characterization of the shape derivative, we can reformu-
late the strong form of the PDE for the shape derivative δu under suitable regularity conditions
by testing (62) first with smooth functions v with vanishing trace, and, subsequently, with
smooth functions v with non-zero trace. The strong form of (62) follows from (39):

− div (α grad δu) + γ δu = 0 in �, (63)

α
∂ (δu)

∂n
+ βδu = div�

(
(v · n)α grad� u

)

−v · n
(

∂(βu + g)

∂n
+ H(βu + g)

)
+ ( f − γ u)v · n on �. (64)

Thus, we obtain the elliptic BVP for the shape derivative δu and its associated Robin boundary
condition (or its Neumann counterpart when β = 0).

6 Dual formulation

For PDEs with Neumann or Robin boundary conditions, it is natural to derive the correspond-
ing Neumann or Robin boundary conditions of the shape gradient of solutions to the PDEs
from its primal variational formulation. In this section, we will rigorously derive the shape
derivative for BVPs with Dirichlet boundary condition from the dual variational formulation.
The aforementioned elliptic BVP (57) for general l-forms will be further discussed from the
dual perspective, but equipped with some Dirichlet boundary condition

ω = φ on �. (65)

To derive the dual formulation, we introduce a (d − l − 1)-form

ρ = ∗αdω, (66)

or

∗α−1 ρ = (−1)(l+1)(d−l−1)dω. (67)

where ∗α−1 , up to sign, is the inverse of the Hodge operator ∗α with ∗α−1 ◦ ∗α =
(−1)(l+1)(d−l−1) Id . Then, the PDE (57) can be rewritten as (67) plus

(−1)d−l dρ + ∗γω = ψ in �. (68)

Now the dual mixed formulation of (67) and (68) is as follows:
∫

�

∗α−1ρ ∧ τ + (−1)(l+1)(d−l)ω ∧ dτ + (−1)(l+1)(d−l−1)

∫

�

Trφ ∧ Trτ = 0, (69)

∫

�

(−1)(d−l)dρ ∧ ν +
∫

�

∗γω ∧ ν =
∫

�

ψ ∧ ν, (70)

for all smooth τ ∈ DF d−l−1,∞(Rd) and ν ∈ DF d−l,∞(Rd). Taking the shape derivative of
the mixed formulation, namely differentiating the above formulation in the perturbed domain
�t with respect to the pseudo-time t , we conclude from Theorem 1 and Corollary 2,
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∫

�

∗α−1δρ ∧ τ + (−1)(l+1)(d−l)δω ∧ dτ

+(−1)(l+1)(d−l−1)

∫

�

ivd (Trφ ∧ Trτ )

∫

�

ivTr
(
∗α−1ρ ∧ τ + (−1)(l+1)(d−l)ω ∧ dτ

)
= 0, (71)

∫

�

(−1)(d−l)dδρ ∧ ν +
∫

�

∗γ δω ∧ ν

+
∫

�

ivTr
(
(−1)(d−l)dρ ∧ ν + ∗γω ∧ ν − ψ ∧ ν

)
= 0. (72)

Up to here, we have characterized the shape derivatives δω and δρ of the primal form ω

and dual form ρ in the variational sense, which is now amenable to further investigation for
concrete settings.

Here, we discuss the special case l = 0 and, for the sake of simplicity, assume α = 1 and
∗γ = 0. The scalar functions f ∈ L2(Rd) and g ∈ H2(Rd) will serve as vector proxies for
the differential forms ψ and φ (57) and (59). Thus, we arrive at the Dirichlet problem

−�u = f on �, u = g in �, (73)

whose dual weak form emerges from setting

q = grad u, (74)

and reads: Seek u ∈ L2(�) and q ∈ H(div;�) such that
⎧
⎪⎨
⎪⎩

∫
�

q · p dx + ∫
�

u div p dx = ∫
�

gp · n, ∀ p ∈ H(div;�),

∫
�

div qv dx = ∫
�

f v dx, ∀ v ∈ L2(�).
(75)

For smooth domains and data, we can expect u ∈ H2(�) and q ∈ H1(div;�). Write δq and
δu as the shape derivatives of q and u, respectively, in the direction of some given velocity
field v. Understanding q and u as a (d − 1)-form and a 0-form, respectively, in R

d , and
reinterpreting (71) and (72) in terms of vector proxies, we have the variational equation for
shape derivatives:

Seek δq ∈ H(div;�) and δu ∈ L2(�) such that for all p ∈ (C∞(�))d and v ∈ C∞(�)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

δq · p dx + ∫
�

δu div p dx

+ ∫
�

v · n (q · p + u div p) ds = ∫
�

v · n
(

∂(gp·n)
∂n + Hgp · n

)
ds,

∫
�

div δqv dx + ∫
�

v · n (div q − f ) v dx = 0.

(76)

The loss of regularity in δq and δu compared with q and u follows from differentiation with
respect to the domain, in particular due to the weaker regularity of the boundary data.

To determine the boundary condition satisfied by the shape derivative δu, we first test the
first equation of (76) with p ∈ (

C∞
0 (�)

)d and v ∈ C∞
0 (�) and learn

δq = grad δu. (77)
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Therefore, δu ∈ L2(�) and δq ∈ L2(�) implies δu ∈ H1(�). Next, testing the first equa-

tion of (76) with p ∈ (
C∞(�)

)d
and splitting the third term there in normal and tangential

directions, we see, in light of [6, Eqs. (5.19) and (5.22), p. 366], that

q · p + u div p = (q · n) (p · n) + q� · p�

+u(Dp)n · n + udiv�p� + Hup · n. (78)

Noticing by the chain rule that

∂(gp · n)

∂n
= ∂g

∂n
p · n + g(Dp)n · n + g(Dn)p · n. (79)

The last term in (79) vanishes since Dnp = Sp is a tangential vector due to orthogonality of
the Weingarten map S (cf. [17]). Now straightforward calculation combined with u = g on
�, (74) and (39) for q� · p� and udiv�p� yields

∫

�

(
δu + v · n

(
∂u

∂n
− ∂g

∂n

))
p · n ds = 0. (80)

As p is arbitrary, we immediately have

δu = −
(

∂u

∂n
− ∂g

∂n

)
v · n on � (81)

in the trace space H
1
2 (�), since u and g ∈ H2(�).

7 Conclusion

In the present paper, we have presented shape derivatives from the perspective of differential
forms and shape calculus via exterior calculus of differential forms. This approach is in par-
ticular convenient for deriving shape derivatives of solutions of second-order BVPs in both
primal and dual variational formulation. It reveals the essential structure of shape derivatives
in terms of recursive composition of Lie derivatives. Moreover, a sufficient condition for the
symmetry of the second-order shape Hessian is stated in terms of a vanishing Lie bracket.
We have demonstrated the power of our approach by illustrating some typical examples like
boundary and domain integrals, bilinear forms and normal derivatives, etc. We have also
treated a concrete example, a model second-order BVP that covers all kinds of boundary
conditions. For the first time, we show how to derive the boundary condition to the shape
derivative of the solution to the PDE with a non-homogeneous Dirichlet boundary condition
via the dual mixed formulation.
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