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Abstract We present decay rates for the eigenvalues of positive integral operators with
smooth kernels on special metric spaces endowed with a strictly positive measure. The
smoothness is defined by either differentiability conditions or inequalities of Lipschitz type.
We use the decay rates to place the operators in some Schatten p-classes.
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1 Introduction

Integral operators acting on L2 spaces appear quite naturally in many branches of mathe-
matics. If the operator has countably many eigenvalues, the search for decay rates for them,
under a variety of assumptions, is a problem that has attracted attention for decades. Some
classical references on this topic are König [11], and Pietsch [15].

The present work has its primary motivation in some recent results described in the
papers Buescu [1], Buescu and Paixão [2–4] where the case in which the generating kernel
of the operator is a smooth and positive definite element of L2(I 2), I being an interval, was
detailed covered. The crucial difference between the results proved in these references and
others proved earlier (see Reade [16] for example) is that the compactness of the interval was
no longer used at the cost of an additional assumption of the generating kernel.

Before we describe what we intend to do, we would like to mention other relevant earlier
contributions. Reference Han [10] treated the very same problem replacing the interval with
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1026 J. C. Ferreira, V. A. Menegatto

a cube. In the papers [12,13], the interval was replaced with a special compact metric space;
the analysis was developed endowing the space with a finite and strictly positive measure.
Decay rates in the case when I is replaced with the unit sphere in Euclidean space were
obtained in Ferreira et al. [6] using the very same techniques introduced by Chang and Ha
[5], coupled with a sharp result on spherical quadrature. In Ferreira and Menegatto [7], we
adapted some of the techniques introduced in Buescu [1], Buescu and Paixão [2,3,16] to
study decay rates for the eigenvalues of operators generated by kernels defined on metric
spaces having a special structure, typical examples being convex open sets, usual spheres,
and tori.

Among the many tools used in the analysis of decay rates are extensions and general-
izations of the so-called Mercer’s theorem. Novitskiı̆’s paper [14] is an important reference
where a quite general version of Mercer’s theorem was proved. For recent applications, see
Sun [17] and references quoted there.

In Sect. 2 of the present paper, we will develop a basic Mercer’s theory in the case when
X is a general metric space endowed with a strictly positive measure and the restriction of
the generating kernel of the operator is integrable in the diagonal of X × X . As far as we
know, this is a new contribution along the lines of Mercer’s theory. In the rest of the paper, we
will refine some of the results in Ferreira and Menegatto [7] and generalize others. Precisely,
we will describe decay rates for the eigenvalues of the integral operator when the generating
kernel is positive definite on a certain metric space and satisfies smoothness conditions of
Lipschitz type. In Sect. 3, we define the category of metric spaces we will consider. At the end
of the section, we introduce the smoothness conditions we intend to use in the formulation of
the main results. Section 4 is entirely composed of preparatory technical results while Sect. 5
contains the description of the decay rates. They are used to identify a sharp real number q
so that the operator can be included in the Schatten p-class, p > q .

2 Background and Mercer-like results

Throughout the section, X will denote a metric space endowed with a measure ν. A kernel
K : X × X → C is L2(X, ν)-positive definite when the associated integral operator

K( f )(x) :=
∫

X

K (x, y) f (y) dν(y), f ∈ L2(X, ν), x ∈ X,

is positive, that is,

〈K( f ), f 〉2 :=
∫

X

⎛
⎝

∫

X

K (x, y) f (y) dν(y)

⎞
⎠ f (x) dν(x) ≥ 0, f ∈ L2(X, ν).

The set of all such kernels will be written as L2 P D(X, ν). If ν is strictly positive, that is, it is
a (complete) Borel measure such that every open nonempty subset of X has positive measure
and every x ∈ X belongs to an open subset of X of finite measure, then a continuous element
of L2 P D(X, ν) is necessarily positive definite in the usual sense:

n∑
i, j=1

ci c j K (xi , x j ) ≥ 0,

holds for all n ≥ 1, {x1, x2, . . . , xn} ⊂ X and any scalars c1, c2, . . . , cn [7, Theorem 2.3].
For use ahead, we inform the reader that the previous inequality implies that K is hermitian,
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Positive integral operators 1027

nonnegative in the diagonal of X and

|K (x, y)|2 ≤ K (x, x)K (y, y), x, y ∈ X.

We now introduce the smoothness notion we will use in our results. We will write A(X, ν)
to denote the subset of C(X × X) ∩ L2 P D(X, ν) formed by the kernels possessing an inte-
grable diagonal, that is, those kernels K for which x ∈ X → K (x, x) belongs to L1(X, ν).
Since the integral operator K generated by a kernel in L2 P D(X, ν) ∩ L2(X × X, ν × ν)

is compact and self-adjoint [9, p. 70] so is the integral operator generated by a kernel in
A(X, ν).

The following lemma settles the remaining doubts.

Lemma 2.1 Assume ν is strictly positive. If K ∈ A(X, ν) then K has a L2(X × X, ν × ν)-
convergent series representation in the form

K (x, y) =
∞∑

n=1

λn(K)φn(x)φn(y), x, y ∈ X,

in which {φn} is L2(X, ν)-orthonormal and {λn(K)} decreases to 0. The series is uniformly
convergent on compact subsets of X × X. If λn(K) > 0 then φn is a continuous eigenfunction
of K. In particular, K is compact.

Proof If K ∈ A(X, ν) then the inequality |K (x, y)|2 ≤ K (x, x)K (y, y), x, y ∈ X implies
that K is in L2(X × X, ν × ν) so that K is compact. To complete the proof, it suffices to
adapt arguments from the proof of Theorem 2.4 in Ferreira and Menegatto [7]. ��

We now move to the main result in this section, first introducing some terminology and
notation. If T is a compact operator on a Hilbert space H then |T | := (T ∗T )1/2 is compact,
positive and self-adjoint. As so, denoting by {sn(T )} the sequence of eigenvalues of |T |, each
repeated as often as its multiplicity, we say that an operator T is in the Schatten p-class Sp

[9, p. 49, 87] when

∞∑
n=1

sn(T )
p < ∞.

Elements of S1 are usually called trace-class (or nuclear) operators while the class S2 is
called the Hilbert–Schmidt class. If T is trace-class then the sum

∑
f ∈B

〈T ( f ), f 〉H,

is independent of the choice of the orthonormal basis B of (H, 〈·, ·〉H) [9, p. 63]. This sum
is called the trace of T and denoted here by tr(T ). The trace acts linearly over the vector
subspace S1 of the space of all bounded linear operators on H. If, in addition, T is either
self-adjoint or normal then sn(T ) = |λn(T )|, where {λn(T )} is the sequence of eigenvalues
of T and

tr(T ) =
∞∑

n=1

λn(T ).
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An important family of trace-class operators is that containing all finite rank operators on H.
For p ≥ 1, the class Sp is a Banach space when one uses the norm given by the formula

‖T ‖p :=
( ∞∑

n=1

(sn(T ))
p

)1/p

.

In particular,

〈S, T 〉 := tr(ST ∗), S, T ∈ S2,

defines an inner product and (S2, 〈·, ·〉) is a Hilbert space [9, p. 66].
The last concept we need is that of support of a measure. If ν is also a Borel measure then

the support supp(ν) of ν is the set of all points x of X for which every open neighborhood
of x has positive measure. We record that the condition ν(X \ supp(ν)) = 0 mentioned in
the next result holds when ν is a Radon measure on X .

In Theorem 2.2 below, we write Y := supp(ν).

Theorem 2.2 Assume ν is a Borel measure, the restriction of ν to Y is strictly positive and
ν(X \ Y ) = 0. Let K be a kernel in C(X × X)∩ L2(X × X, ν× ν) possessing an integrable
diagonal. Finally, assume K possesses a L2(X, ν)-convergent spectral representation in the
form

K( f ) =
∞∑

n=1

λn(K)〈 f, φn〉2φn, f ∈ L2(X, ν), (2.1)

in which {φn} is an orthonormal subset of L2(X, ν) and the sequence {λn(K)} is a subset of
a circle sector from the origin of C with central angle less than π . Then, the restriction of K
to Y × Y has a L2(Y × Y, ν × ν)-convergent series representation in the form

K (x, y) =
∞∑

n=1

λn(K)φn(x)φn(y), x, y ∈ Y, (2.2)

with uniform convergence on compacts sets. In particular, K is compact andλn(K)φn ∈ C(X)
for all n.

Proof Let K1 be the integral operator generated by the restriction of K to Y × Y . Since the
functions in L2(X, ν) differ from those in L2(Y, ν) by a set of measure zero, it is quite clear
that K1 has the same series representation K has. Now, we define an operator T by choosing
two numbers α ∈ [0, 2π ] and l > 0, so that the set {eiαλn(K) : n = 1, 2, . . .} of eigenvalues
of the operator P := eiαK belongs to the circle sector from the origin with central angle
π − 2 arctan l, bounded by the rays t = ±ls, s ≥ 0. Next, we write αn = eiαλn(K), n =
1, 2, . . . and put T := (P + P∗)/2. Clearly, T is an integral operator generated by the kernel

L(x, y) = eiαK (x, y)+ e−iαK (x, y)

2
, x, y ∈ Y,

having a spectral representation in the form

T ( f ) =
∞∑

n=1

(Re αn)〈 f, φn〉2φn, f ∈ L2(Y, ν).
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Positive integral operators 1029

As so, L is an element of A(Y, ν). Lemma 2.1 is applicable, a consequence being the formula

∞∑
n=1

(Re αn)|φn(x)|2 = L(x, x), x ∈ Y, (2.3)

with uniform convergence on compact subsets of Y . The same lemma implies that each
function λn(K)φn is continuous. To finish the proof, we use the estimate

|λn(K)|2 = |αn |2 ≤ (Re αn)
2(1 + l2), n = 1, 2, . . . , (2.4)

and the Cauchy–Schwarz inequality to deduce that

∣∣∣∣∣
q∑

n=p

λn(K)φn(x)φn(y)

∣∣∣∣∣
2

≤ (1 + l2)

q∑
n=p

(Re αn)|φn(x)|2
q∑

n=p

(Re αn)|φn(y)|2,

for all x, y ∈ Y , whenever q ≥ p ≥ 1. The above inequalities guarantee both the uniform
convergence of the series (2.2) to a necessarily continuous kernel and the compactness of K.
Now, standard analysis arguments plus the use of (2.1) show that the series converges to K .

��

Additional information regarding the operator K1 appearing in the previous proof is the
content of our next result.

Theorem 2.3 Under the conditions in Theorem 2.2, the following statements hold:

(i) The range of K1 is a subset of C(Y ) ∩ L2(Y, ν);
(ii) The operator K1 is normal and compact, and the series (2.1) is uniformly convergent

on compact subsets of Y .

Proof The beginning of the proof of Theorem 2.2 implies that K1 is normal and compact.
Next, let Z be a compact subset of Y . Inequality (2.4) shows that

∣∣∣∣∣
p+q∑
n=p

λn(K)〈 f, φn〉2φn(x)

∣∣∣∣∣
2

≤
√

1 + l2 ‖K‖ sup
z∈Z

L(z, z)
p+q∑
n=p

|〈 f, φn〉2|2, x ∈ Z ,

whenever f ∈ L2(X, ν). So, Bessel’s inequality and the usual Cauchy’s criterion for con-
vergence imply the uniform convergence of the series in Z . ��

Remark 2.4 All three results above hold when X is a first countable topological space. In
order to see that it suffices to verify that Theorem 2.4 in Ferreira and Menegatto [7] still holds
with this new assumption on X . Indeed, continuity and sequential continuity are equivalent
in a first countable topological space.

Remark 2.5 There are other alternative settings for the previous results. Just to give an
example, we mention [17] where another version of Lemma 2.1 can be found. If X is a
locally compact topological space and ν is as before, a different setting can be obtained by
replacing the integrability of K in the diagonal with the following smoothness condition: we
write Kx , x ∈ X , to denote the function Kx : X → C defined by the formula Kx (y) :=
K (x, y), y ∈ X and similarly, we introduce the symbol K y := K (x, y), y ∈ X . The kernel
K is termed smooth whenever it is continuous and both functions x ∈ X → Kx ∈ L2(X, ν)
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and y ∈ X → K y ∈ L2(X, ν) belong to C(X, L2(X, ν)). For a smooth kernel K , the
formula

K(φ)(x) =
∫

X

K (x, y)φ(y) dν(y)

=
∫

X

φ(y)Kx (y) dν(y) = Hφ
(
Kx

)
, φ ∈ L2(X, ν)

in which Hφ(ψ) = 〈φ,ψ〉2, ψ ∈ L2(X, μ) shows that the range of K is a subset of C(X).
In addition, if K is compact, the proof of Lemma 2.1 can be adapted to hold in this context.
Also, K is trace-class if and only if x ∈ X → K (x, x) belongs to L1(X, ν).

Remark 2.6 The arguments in the proof of Lemma 2.1 show that the condition K ∈ A(X, ν)
implies the smoothness of K , as described above.

The following result, another consequence of Theorem 2.2, gives some information on
the decay rates for eigenvalues of the integral operator.

Theorem 2.7 Under the conditions in Theorem 2.2, the following additional statements
hold:

(i) There exist α ∈ [0, 2π ] and l > 0 such that

∞∑
n=1

|λn(K)| ≤ (1 + l2)1/2
∫

X

Re (eiαK (x, x))dν(x);

(ii) The operator K is trace-class. In particular, K is an element of ∩p≥1Sp;
(iii) If the eigenvalues of K are arranged so that |λn(K)| ≥ |λn+1(K)|, n = 1, 2, . . ., then

|λn(K)| ≤ (1 + l2)1/2

n

∫

X

Re (eiαK (x, x))dν(x), n = 1, 2, . . . .

(iv) Under the conditions in (i i i), λn(K) = o(n−1) as n → ∞.

Proof Choosing α and l as in the proof of Theorem 2.2 and integrating Formula (2.3), we
have

∞∑
n=1

Re αn ≤
∫

Y

L(x, x)dν(x) =
∫

X

L(x, x)dν(x), n = 1, 2, . . . .

Combining this with inequality (2.4), we conclude that

|λ1(K)| + · · · + |λn(K)|≤(1 + l2)1/2(Re α1 + · · · + Re αn)≤(1 + l2)1/2
∫

X

L(x, x)dν(x)

This implies the formula in (i). Statement (i i) is a consequence of the formula in (i). If an
arrangement as described in (i i i) holds, then the previous inequality can be refined to
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Positive integral operators 1031

n|λn(K)| ≤ (1 + l2)1/2
∫

X

L(x, x)dν(x),

which implies the inequality in (i i i). Statement (iv) follows from (i) and Lemma 5.1 ahead.
��

Remark 2.8 Under the conditions in the previous theorem, we immediately have that K1 is
trace-class and tr(K1) = tr(K).
Remark 2.9 The representation (2.1) holds automatically when eiαK is positive and com-
pact for some α ∈ [0, 2π ]. Indeed, since positive operators on complex Hilbert spaces are
self-adjoint, the representation follows from the usual spectral theorem.

3 Technical and Lipschitz conditions

This section is essentially preparatory for what comes in the forthcoming sections. Unless
stated otherwise, (X, d) will be a metric space and ν a measure on X . The following defi-
nition is very close to another introduced in Ferreira and Menegatto [7] and settles the class
of metric spaces we will be interested in. The symbol B[y, r ] will indicate the closed ball of
radius r centered at y.

Let q be a positive integer and t a positive real. We call the triple (X, d, ν) a (q, t)-compact
space when there exist x0 ∈ X and positive real numbers a, b, c, e, and r0 fulfilling the fol-
lowing condition: if N ∈ Z+ and r ≥ r0 then there exists a family {Cr

n : n = 1, 2, . . . , k(N )}
of subsets of X such that:

(i) ν(Cr
n ∩ Cr

l ) = 0, n �= l;
(ii) d(x, y) ≤ ar t N−t , x, y ∈ Cr

n , and ν(Cr
n) ≤ erq N−q , 1 ≤ n ≤ k(N );

(iii) k(N ) ≤ bN q ;
(iv) B[x0, r c] := {x ∈ X : d(x, x0) ≤ r c} = ∪k(N )

n=1 Cr
n .

Remark 3.1 A comparison with the setting presented in Ferreira and Menegatto [7] reveals
that the actual condition (i i) is more stringent. The reader is advised that this additional
requirement will be not needed in all the arguments ahead (see Theorem 4.4 for instance).
The alert reader may also observe that the definition can be put into the language of covering
numbers of large balls in (X, d). The gain would be the reduction of the number of parameters
and the drawback would be the use of a concept not too familiar to many readers. Examples
fitting the description covered by the definition can be found in Ferreira and Menegatto [7].

Lemma 3.2 below describes a basic property of the context we are adopting.

Lemma 3.2 Write X as a finite union of subspaces, say, X = ∪m
j=1 X j . Let q be a positive

integer and t a positive real number. Then, (X, d, ν) is (q, t)-compact if and only if every
(X j , d, ν) is (q, t)-compact.

Proof Assume (X, d, ν) is (q, t)-compact and fix j ∈ {1, 2, . . . ,m}. Let x0 ∈ X and the
constants a, b, c, e, and r0 as described in the previous definition. Set

α = max{d(x0, X j ) : j = 1, 2, . . . ,m}
and choose, as we can, x j

0 ∈ B[x0, α + 1] ∩ X j . Next, define B j [x j
0 , r ] := B[x j

0 , r ] ∩ X j .

If r ≥ α + 1 and x ∈ B j [x j
0 , r ] then

d(x, x0) ≤ d(x, x j
0 )+ d(x j

0 , x0) ≤ r + α ≤ 2r,
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that is, B j [x j
0 , r ] ⊂ B[x0, 2r ]. If r ≥ max{r0, α + 1} then we may take the family of sets

{C2r
n : n = 1, 2, . . . , k(N )}, k(N ) ≤ bN q , from the (q, t)-compactness applied to (X, d, ν)

and define

Cr
n( j) := C2r

n ∩ B j [x j
0 , rc], n = 1, 2, . . . , k(N ).

Clearly, ν(Cr
n( j) ∩ Cr

i ( j)) = 0, n �= i . Also

d(x, y) ≤ a(2r)t N−t = (a2t )r t N−t , x, y ∈ Cr
n( j), n = 1, 2, . . . , k(N ),

and

ν(Cr
n( j)) ≤ ν(C2r

n ) ≤ (e2q)rq N−q , n = 1, 2, . . . , k(N ).

Finally, the equality

∪k(N )
n=1 Cr

n( j) =
(
∪k(N )

n=1 C2r
n

)
∩ B j [x j

0 , rc] = B[x0, 2r c] ∩ B j [x j
0 , rc] = B j [x j

0 , rc]
completes the proof of the (q, t)-compactness of (X j , d, ν).

Conversely, assume each (X j , d, ν) is (q, t)-compact. Let x j
0 ∈ X j and a j , b j , c j , e j , and

r j
0 obtained from the (q, t)-compactness in each case. We will ratify the (q, t)-compactness

of (X, d, ν) via the following constants: a = max{a j : j = 1, 2, . . . ,m}, b = max{b j :
j = 1, 2, . . . ,m}, c = min{c j : j = 1, 2, . . . ,m}, and e = max{e j : j = 1, 2, . . . ,m}.
To do that, first define β = max{d(x1

0 , x j
0 ) : j = 1, 2, . . . ,m} and r0 = max{r j

0 : j =
1, 2, . . . ,m}. If both r and rc are at least β + r0 and x ∈ B[x1

0 , rc] ∩ X j , for some j , then

d(x, x j
0 ) ≤ d(x, x1

0 )+ d(x1
0 , x j

0 ) ≤ rc + β ≤ 2rc, that is, x ∈ B j [x j
0 , 2rc] ⊂ B j [x j

0 , 2rc j ].
Hence,

B[x1
0 , rc] ⊂ ∪m

j=1 B j [x j
0 , 2rc] ⊂ ∪m

j=1 B j [x j
0 , 2rc j ].

Fix a positive integer N and define x0 := x1
0 . Keeping r subject to the choice above, select

families {C2r
n ( j) : n = 1, 2, . . . , k j (N )} fulfilling the requirements in the (q, t)-compactness

of the (X j , d, , ν). Define

Ĉr
n(1) := C2r

n ( j) ∩ B[x0, rc], n = 1, 2, . . . , k1(N ),

and, inductively,

Ĉr
n( j) := (

C2r
n ( j) ∩ B[x0, rc]) \ ∪ j−1

l=1 ∪kl (N )
i=1 Ĉr

i (l),

for j = 2, 3, . . . ,m and n = 1, 2, . . . k j (N ). We now consider the family F of all the Ĉr
n( j)

which are nonempty. Clearly, F can be indexed by a set of cardinality at most mbN q . Any
two distinct sets from F are disjoint. If Ĉr

n( j) ∈ F then d(x, y) ≤ 2t ar t N−t , x, y ∈ Ĉr
n( j).

Also, ν(Ĉr
n( j)) ≤ 2qerq N−q . Finally,

∪m
j=1 ∪k j (N )

n=1 Ĉr
n( j) = ∪m

j=1 ∪k j (N )
n=1

[
(C2r

n ( j) ∩ B[x0, rc]) \ ∪ j−1
l=1 ∪kl (N )

i=1 Ĉr
i (l)

]

= ∪m
j=1

[
∪k j (N )

n=1 C2r
n ( j)

]
∩ B[x0, rc]

=
(
∪m

j=1 B j [x j
0 , 2rc j ]

)
∩ B

[
x1

0 , rc
] = B

[
x1

0 , r c
] = B[x0, r c].

This shows (X, d, ν) is (q, t)-compact. ��
Next, we introduce a Lipschitz condition we will adopt.
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Definition 3.3 Let α > 0 and s ≥ 0 be constants. A kernel K belongs to the Lipschitz class
Lipα,s(X, ν) when the following conditions hold:

(i) There exist δ > 0 and a locally integrable function A : X → [0,+∞] such that

|K (x, x)− K (x, y)| ≤ A(x)d(x, y)α, x, y ∈ X, d(x, y) < δ;
(ii) There exists B ≥ 0 such that

lim sup
r→∞

r−s
∫

B[y,r ]
A(x) dν(x) < B, y ∈ X.

Definitions very close to this one can be found in other sources in the literature (see Buescu
and Paixão [2], and Ferreira and Menegatto [7] for example).

Next, we introduce an adapted to our purposes notion of uniform continuity [2]. Let V be
a normed linear space. A hermitian kernel G : X × X → V is said to be uniformly continuous
in the diagonal of X × X if for every real number ε > 0, there exists δ = δ(ε) > 0 such that
‖G(x, y) − G(x, x)‖ < ε whenever x, y ∈ X and d(x, y) < δ. Clearly, an uniformly con-
tinuous hermitian function is uniformly continuous in the diagonal. The previous definition
implies that ∥∥∥∥G(x, x)+ G(y, y)

2
− G(y, x)

∥∥∥∥ < ε,

as long as x, y ∈ X and d(x, y) < δ. With this in mind, we have the following definition.

Definition 3.4 Let α > 0 and G a hermitian kernel on X × X . We will say that G has
the α-average property whenever we can find a constant M > 0 fulfilling the following
requirement: for every ε > 0, there exists δ = δ(ε) > 0 such that∣∣∣∣G(x, x)+ G(y, y)

2
− G(y, x)

∣∣∣∣ < Md(x, y)αε,

whenever x, y ∈ X and d(x, y) < δ.

Example 3.5 Let U be an open and connected subset of R
m and G a real hermitian kernel

on U × U for which ∂G/∂x is uniformly continuous in the diagonal of S × S, in which S is
both a subset of U and a connected C1 surface in R

m endowed with its geodesic distance d .
If ε > 0 has been fixed, there exists a δ = δ(ε) > 0 such that∥∥∥∥∂G

∂x
(x, y)− ∂G

∂x
(x, x)

∥∥∥∥ < ε, x, y ∈ S, d(x, y) < δ. (3.1)

Since G is real and hermitian,

∂G

∂y
(x, y) = ∂G

∂x
(y, x), x, y ∈ U. (3.2)

Next, we intend to apply the mean value inequality to the kernel H : U × U → C given by

H(x, y) = G(x, x)+ G(y, y)

2
− G(y, x), x, y ∈ U.

Clearly, H is differentiable and H(x, x) = 0, x ∈ U . As so, we deduce that

|H(x, x)− H(x, y)| =
∣∣∣∣G(x, x)+ G(y, y)

2
− G(y, x)

∣∣∣∣ ≤ d(x, y) sup
z∈xy

‖H ′(x, z)‖,
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1034 J. C. Ferreira, V. A. Menegatto

for all x, y ∈ S, in which xy is a geodesic line connecting x and y and H ′ is the total
derivative of H . Due to (3.2), it can be easily seen that

H ′(x, y) =
(
∂G

∂x
(x, x)− ∂G

∂x
(x, y)

)
+

(
∂G

∂x
(y, y)− ∂G

∂x
(y, x)

)
.

Recalling (3.1), we can see that |H(x, x) − H(x, y)| ≤ 2d(x, y)ε, when x, y ∈ S and
d(x, y) < δ. In particular, the restriction of G to S × S has the 1-average property. The
same conclusion can be reached for the restriction of G to a subset of S × S. Also, if we
assume that S∩U = ∪n

i=1Si (disjoint) then the same arguments may be used to conclude that
the restriction of G to Si × Si has the 1-average property. These facts motivate the context
described in Theorem 4.2 ahead.

A weak version of the previous definition is as follows.

Definition 3.6 Let α > 0 and s ≥ 0 be constants and G a kernel on X × X . We will say that
G has the Lipα,s(X, ν)-average property when:

(i) There exist δ > 0 and a locally integrable function A : X → [0,+∞] such that
∣∣∣∣G(x, x)+ G(y, y)

2
− G(y, x)

∣∣∣∣ ≤ A(x)d(x, y)α, x, y ∈ X, d(x, y) < δ;

(ii) There exists B ≥ 0 such that

lim sup
r→∞

r−s
∫

B[y,r ]
A(x) dν(x) < B, y ∈ X.

The following result establishes two connection among the concepts introduced above.
The proof is left to the readers.

Theorem 3.7 Let (X, d, ν) be (q, t)-compact.

(i) If a kernel K has the α-average property for some α > 0 then it has the Lipα,q(X, ν)-
average property.

(ii) If K is a hermitian element from Lipα,s(X, ν) and the associated function A is a
constant then K has the Lipα,s(X, ν)-average property.

4 Estimates on the sums of the eigenvalues

The setting adopted in this section needs to be so that the main results listed in Sect. 2 hold.
As so, we will assume (X, d) is a metric space endowed with a strictly positive measure ν
and K is an element of A(X, ν). However, the reader may decide either to use a different
setting or to alter the one just described. The sequence of eigenvalues of K will be written as
λ1(K) ≥ λ2(K) ≥ · · ·, taking into account multiplicities.

The following result is the key technical step in the deduction of all the results to come.

Theorem 4.1 Let H be the kernel defined by the formula

H(x, y) := K (x, x)+ K (y, y)

2
− K (y, x), x, y ∈ X.
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Then

∞∑
n=�+1

λn(K) ≤
�∑

n=1

1

ν(Cn)

∫

Cn

∫

Cn

Re H(x, y) dν(x) dν(y)+
∫

X\∪�n=1Cn

K (x, x) dν(x),

whenever {Cn : n = 1, 2, . . . , �} is a family of measurable subsets of X such that 0 <

ν(Cn) < ∞, n = 1, 2, . . . , �, and ν(Cn ∩ Cl) = 0, n �= l.

Proof It can be adapted from the proof of Theorem 4.6 in Ferreira and Menegatto [7]. The
crucial step in the proof is to observe that

∫

Cn

∫

Cn

H(y, x) dν(x) dν(y) =
∫

Cn

∫

Cn

Re H(y, x) dν(x) dν(y)

under the conditions in the statement of the theorem. ��

Theorem 4.2 Assume (X, d, ν) is (q, t)-compact. In addition, assume X has a decompo-
sition X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the α-average
property, for some α > 0 fixed. Further, assume there exist β > 0 and C ≥ 0 such that

lim sup
r→∞

rβ
∫

X\B[y,r ]
K (x, x) dν(x) ≤ C, y ∈ X.

Define γ := βtα(β + q + tα)−1. If n is large enough then there exist b > 0, a positive
integer k(n) ∈ {0, 1, . . . ,mbnq} and a constant C1 > 0 such that

∞∑
j=k(n)+1

nγ λ j (K) ≤ C1.

Proof Using Definition 3.4 with ε = 1, we can select δ > 0 and M > 0 so that
∣∣∣∣Re

[
K (x, x)+ K (y, y)

2
− K (y, x)

]∣∣∣∣ < Md(x, y)α, x, y ∈ X j ,

for j = 1, 2, . . . , m, as long as d(x, y) ≤ δ. Recalling the proof of Lemma 3.2, we can select
x j

0 ∈ X j and positive real numbers a, b, c, e, and r0 for which the following statement holds: if
N ∈ Z+, r ≥ r0, and j ∈ {1, 2, . . . , m}, there exists a family {Cr

n( j) : n = 1, 2, . . . , k j (N )}
of subsets of X j such that

– ν(Cr
n( j) ∩ Cr

l ( j)) = 0, n �= l;
– d(x, y) ≤ ar t N−t , x, y ∈ Cr

n( j) and ν(Cr
n( j)) ≤ erq N−q , n = 1, 2, . . . , k j (N );

– k j (N ) ≤ bN q ;

– B j [x j
0 , r c] = ∪k j (N )

n=1 Cr
n( j).

We intend to apply the preceding argument with a specific choice for r . Precisely, after N
has been fixed, we intend to use the conclusion above with r = r(N ) := N tα/(β+q+tα).

This choice has the following features: r(N ) → ∞ and N−1r(N ) → 0, as N → ∞, while
r(N ) > r0 and aN−t r(N )t < δ,when N is large enough. Applying Theorem 4.1, we deduce

123



1036 J. C. Ferreira, V. A. Menegatto

that

∞∑
j=�+1

λ j (K) =
m∑

j=1

k j (N )∑
n=1

1

ν(Cr
n( j))

∫

Cr
n( j)

∫

Cr
n( j)

Re H(x, y) dν(x) dν(y)

+
∫

X\∪m
j=1 B j [x j

0 ,rc]

K (x, x) dν(x),

where � := ∑m
j=1 k j (N ) ≤ mbN q and

H(x, y) := K (x, x)+ K (y, y)

2
− K (y, x), x, y ∈ X.

Note that we may assume ν(Cr
n( j)) > 0 for all n = 1, 2, . . . , k j (N ) in the equality above.

We bound the double sum, which we call S1, as follows:

|S1| ≤
m∑

j=1

k j (N )∑
n=1

1

ν(Cr
n( j))

∫

Cr
n( j)

∫

Cr
n( j)

Md(x, y)α dν(x) dν(y)

≤
m∑

j=1

k j (N )∑
n=1

1

ν(Cr
n( j))

∫

Cr
n( j)

∫

Cr
n( j)

Maαr tαN−tα dν(x) dν(y)

≤
m∑

j=1

k j (N )∑
n=1

Maαr tαN−tαν(Cr
n( j))

≤ mbeMaαrq+tαN−tα

Using the limsup assumption to bound the remaining integral, we deduce that
∫

X\∪m
j=1 B j [x j

0 ,rc]

K (x, x) dν(x) ≤
∫

X\B[x1
0 ,rc/2]

K (x, x) dν(x) ≤ 2βCc−β

rβ
.

Introducing our choice for r , we finally obtain

∞∑
j=k(N )+1

λ j (K) ≤ mbeaαM
(N tα/(β+q+tα))q+tα

N tα
+ 2βCc−β

(N tα/(β+q+tα))β

= mbeaαM

N tαβ/(β+q+tα)
+ 2βCc−β

N tαβ/(β+q+tα)
,

as long as N is large enough. In particular,

∞∑
j=k(N )+1

λ j (K) ≤ C1

N γ
,

in which C1 = mbeaαM + 2βCc−β and k(N ) ≤ mbN q . ��
The previous theorem becomes simpler when stronger conditions on either X or K are

assumed. In that case, the limsup assumption is no longer needed.
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Theorem 4.3 Assume (X, d, ν) is (q, t)-compact. Further, assume X has a decomposition
X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the α-average property,
for some α > 0. If either X or the support of K is bounded then there exist a constant b > 0
and an integer k(n) ∈ {0, 1, . . . ,mbnq} such that

lim
n→∞

∞∑
j=k(n)+1

ntαλ j (K) = 0.

Proof If the additional assumption on either X or K holds then there exists r > 0 such that∫

X\B[y,rc]
K (x, x) dν(x) = 0.

Since K is nonnegative in the diagonal of X , the same equality holds if we increase r . To
proceed, we repeat the arguments from the proof of Theorem 4.2, but applying the α-average
property with a general ε. The estimation for S1 becomes |S1| ≤ εmbeMaαrq+tαN−tα .
Adjusting r so that both the estimation on S1 and the equality above hold for the same values
of r , we can find a number k(N ) in {0, 1, . . . ,mbN q} such that

∞∑
j=k(N )+1

N tαλ j (K) ≤ mbeaαMrq+tαε,

as long as N is large enough. ��
The next result is a version of Theorem 4.2, replacing the α-average property assumption

with a Lipschitz condition.

Theorem 4.4 Assume (X, d, ν) is (q, t)-compact. In addition, assume X has a decomposi-
tion X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the Lipα,s(X j , ν)-
average property, for some α > 0 and s ≥ 0. Further, assume there exist β > 0 and C ≥ 0
so that

lim sup
r→∞

rβ
∫

X\B[y,r ]
K (x, x) dν(x) ≤ C, y ∈ X.

Define γ := βtα(β + s + tα)−1. If n is large enough then there exist a constant b > 0, a
positive integer k(n) ∈ {0, 1, . . . ,mbnq} and a constant C1 > 0 such that

∞∑
j=k(n)+1

nγ λ j (K) ≤ C1.

Proof The proof requires an elementary adaptation of the proof of Theorem 4.2. The details
will be omitted. ��
Remark 4.5 The proof of Theorem 4.4 does not use the condition ν(Cr

n( j)) ≤ erq N−q pro-
vided by the definition of (q, t)-compactness. However, the ν-finiteness of such sets cannot
be discarded.

Theorem 4.6 Assume (X, d, ν) is (q, t)-compact. Further, assume X has a decomposition
X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the Lipα,s(X j , ν)-average
property, for some α > 0 and s ≥ 0. If either X or the support of K is bounded and n is large
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enough then there exist positive constants b and C1 and an integer k(n) ∈ {0, 1, . . . ,mbnq}
such that

∞∑
j=k(n)+1

ntαλ j (K) ≤ C1.

Proof It suffices to adapt the proof of Theorem 4.3. ��

5 The main results

In this section, we use the results proved in Sect. 4 to express decay rates for the eigenvalues
of the integral operator K. As so, the basic assumptions on (X, d), ν and K continue here.

The results in this section depend upon the two technical known results listed below,
updated versions of Lemma 6.1 in Ferreira et al. [6].

Lemma 5.1 Let {an} be a nonincreasing sequence of nonnegative real numbers. Let l, q,
and n0 be nonnegative integers, p a positive integer at least 1 and γ ∈ R. Suppose there
exists a constant C > 0 satisfying the following property: if n ≥ n0, there exists k(n) ≤ pnq

such that
∞∑

j=k(n)+l+1

nγ a j ≤ C.

Then, the set {n1+γ /qan : n = 1, 2, . . .} is bounded. In particular, we conclude that an =
O(n−1−γ /q) as n → ∞.

Lemma 5.2 Let {an} be a nonincreasing sequence of nonnegative real numbers. If there exist
positive integers p, l, and q, and a real number γ such that

lim
n→∞

∞∑
j=k(n)+l+1

nγ a j = 0,

for some k(n) ∈ {0, 1, . . . , pnq}, then an = o(n−1−γ /q) as n → ∞.

As far as we can see, the results we obtain below can be interpreted as generalizations of
others found in Buescu and Paixão [2], and Ferreira and Menegatto [7]. The setting in which
they are presented has two virtues: it is more general and the assumptions used provide other
paths one could follow.

Theorem 5.3 Assume (X, d, ν) is (q, t)-compact. In addition, assume X has a decomposi-
tion X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the Lipα,s(X j , ν)-
average property, for some α and s. Further, assume there exist β > 0 and C ≥ 0 so
that

lim sup
r→∞

rβ
∫

X\B[y,r ]
K (x, x) dν(x) ≤ C, y ∈ X. (5.1)

Define γ := βtα(β + s + tα)−1. Then, λn(K) = O(n−1−γ /q) as n → ∞ and K ∈ Sp,
whenever p > (1 + γ /q)−1.
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Proof The first assertion follows from Theorem 4.4 and Lemma 5.1. Now, if C > 0 is a
constant such that λn(K) ≤ Cn−1−γ /q then

∞∑
n=1

(λn(K))p ≤ C p
∞∑

n=1

n−(1+γ /q)p < ∞,

as long as p > (1 + γ /q)−1. ��
Remark 5.4 If X = [−1, 1] is endowed with the usual Lebesgue measure, it is easy to see
that

K (x, y) :=
∞∑

n=1

1

(n + 1) log(n + 1)
cos(nπx) cos(nπy), x, y ∈ X,

generates an operator K in Sp, p > 1, but not in S1. Also, λn(K) = o(n−1) as n → ∞. This
implies that both conditions λn(K) = o(n−p) as n → ∞ and λn(K) = O(n−p) as n → ∞
are weaker than the condition K ∈ Sp . Conditions to place an integral operator K in S1 were
discussed in Ferreira et al. [8] in the case when X is a subset of the Euclidian space.

Theorem 5.5 Assume (X, d, ν) is (q, t)-compact. Further, assume X has a decomposition
X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the Lipα,s(X j , ν)-average
property, for some α and s. If for each β > 0, there exists C = C(β) ≥ 0 such that

lim sup
r→∞

rβ
∫

X\B[y,r ]
K (x, x) dν(x) ≤ C, y ∈ X, (5.2)

thenλn(K) = o(n−1−θ/q), θ ∈ [0, tα), as n → ∞ and K ∈ Sp, whenever p > (1+tα/q)−1.

Proof The function

ψ(β) := tαβ

β + s + tα
, β ∈ [0,∞),

is continuous with range [0, tα). As so, Theorem 5.3 implies that λn(K) = O(n−1−θ/q) as
n → ∞, whenever θ ∈ [0, tα). If λn(K) �= o(n−1−γ0/q) as n → ∞, for some γ0 ∈ [0, tα),
then there would exist C > 0 such that lim supn→∞ n−1−γ0/qλn(K) ≥ C . But this would
lead to a unbounded sequence {n1+θ/qλn(K)} when θ ∈ (γ0, tα), a contradiction. ��

Theorem 4.6 and Lemma 5.1 yield the following result.

Theorem 5.6 Assume (X, d, ν) is (q, t)-compact. Further, assume X has a decomposition
X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the Lipα,s(X j , ν)-aver-
age property, for some α and s. If either X or the support of K is bounded then λn(K) =
O(n−1−tα/q) as n → ∞ and K ∈ Sp, whenever p > (1 + tα/q)−1.

Remark 5.7 The previous three theorems still hold when the Lipα,s(X j , ν)-average prop-
erty on K is replaced with Lipα,s(X j , ν). Details are left to the reader and a help of results
described in Ferreira and Menegatto [7] is needed.

Recalling Theorem 3.7, we point that the previous theorems yield estimates on the eigen-
values for integral operators generated by kernels in A(X, ν)when they possess theα-average
property. The next results provides sharper estimates in this very same setting. As a matter
of fact, they were the real motivation for the introduction of the α-average property the way
we did.
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Theorem 5.8 Assume (X, d, ν) is (q, t)-compact. Assume X has a decomposition X =
∪m

j=1 X j so that the restriction of Re K to every X j × X j has the α-average property, for
some α > 0. If

lim
r→∞ rβ

∫

X\B[y,r ]
K (x, x) dν(x) = 0, β > 0, y ∈ X, (5.3)

then λn(K) = o(n−1−γ /q) as n → ∞, in which γ := βtα(β + q + tα)−1.

Proof The proof of Theorem 4.2 implies that for every ε > 0 there exist N (ε) and k(N ) ≤
mbN q so that

∞∑
j=k(N )+1

N γ λ j (K) ≤ mbeaαMε + ε, N ≥ N (ε), (5.4)

where the constants a, b, and e comes from the (q, t)-compactness. Hence, the result follows
from Lemma 5.2. ��

The use of Theorem 4.3 and Lemma 5.2 produces the following consequence of the
previous result.

Theorem 5.9 Assume (X, d, ν) is (q, t)-compact. Further, assume X has a decomposition
X = ∪m

j=1 X j so that the restriction of Re K to every X j × X j has the α-average property,

for some α > 0. If either X or the support of K is bounded then λn(K) = o(n−1−tα/q) as
n → ∞.

Depending on the context, the limsup condition (5.1) can be obtained from the existence
of a constant β > m such that

lim sup
|x |→∞

x∈X

|x |βK (x, x) < ∞.

Similarly, if the same limsup is zero then (5.3) holds. Also, if this inequality holds for all
β > m then (5.2) holds.
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