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Abstract We compare the distribution function and the maximum of solutions of nonlinear
elliptic equations defined in general domains with solutions of similar problems defined in a
ball using Schwarz symmetrization. As an application, we prove the existence and bound of
solutions for some nonlinear equation. Moreover, for some nonlinear problems, we show that
if the first p-eigenvalue of a domain is big, the supremum of a solution related to this domain
is close to zero. For that we obtain L∞ estimates for solutions of nonlinear and eigenvalue
problems in terms of other L p norms.
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1 Introduction

In this work, we study the L p-norm and the distribution function of solutions to the Dirichlet
problem {−div(a(u,∇u)) = f (u) in Ω

u = 0 on ∂Ω,

where Ω is an open-bounded set in R
n, f : R → R and a : R × R

n → R
n satisfy some

suitable conditions. First we assume the following hypotheses:

L. P. Bonorino (B)
Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS 91509-900, Brazil
e-mail: bonorino@mat.ufrgs.br

J. F. B. Montenegro
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, CE 60455-760, Brazil
e-mail: zefabio@uol.com.br

123



988 L. P. Bonorino, J. F. B. Montenegro

(H1) f is a nonnegative locally Lipschitz function;
(H2) f is nondecreasing;
(H3) a ∈ C0(R × R

n; R
n) ∩ C1(R × (Rn\{0}); R

n) is given by a(t, z) = e(t, |z|)z, where
e ∈ C1(R × (R\{0})) is positive on R × R\{0}, a(t, 0) = 0, a(t, z) · z is convex in
the variable z ∈ R

n and ∂s (|a(t, sz)|) > 0 for z �= 0 and s > 0.
(H4) There exist p ≥ q > 1, q0 > 1, and positive constants Cs,C∗ and C∗ s.t.

Cs |z|q0 ≤ 〈a(t, z), z〉 for |z| ≤ 1, t ∈ R

and

C∗|z|q ≤ 〈a(t, z), z〉 ≤ C∗(|z|p + |t |p + 1) for |z| ≥ 1, t ∈ R.

Hence, using that s 
→ a(t, sz) · sz is increasing and positive,

C∗(|z|q − 1) ≤ a(t, z) · z ≤ C∗(|z|p + |t |p + 1) for z ∈ R
n

and

C∗(λB‖w‖q
q −|Ω|)≤

∫
Ω

a(w,∇w) · ∇w dx ≤ C∗(‖∇w‖p
p+‖w‖p

p +|Ω|), (1.1)

for w ∈ W 1,p
0 (Ω), where λB is the first eigenvalue of −�q in a ball B, which has the

same measure as Ω .
(H5) There exist β ≥ 0 and α < C∗λB such that

0 < f (t) ≤ αtq−1 + β for t > 0.

(H6) |a(t2, z)− a(t1, z)| ≤ ω(|t2 − t1|)(1 + |z|p−1) for t1, t2 ∈ R and z ∈ R
n , where ω is

some nondecreasing modulus of continuity.

At first, our main concern is to compare the maximum and the distribution function of
a solution associated to Ω with one associated to B. We can obtain even a priori estimates
of solutions for some problems with nonlinear lower order terms and prove the existence of
solution. Later on we see also some applications for these estimates, including L∞ estimates
for some eigenvalue and nonlinear problems. So we show that if a domain is “far away” from
the ball (i.e., its first p-eigenvalue is big), then the maximum of a solution is small. Indeed,
the supremum of a solution is bounded by some negative power of the first p-eigenvalue.
This kind of question seems to be new, and the works in the literature normally are focused
in comparing solutions with a radial one, disregarding better estimates when the domain is
not close to a ball.

More precisely, let B be the open ball in R
n , centered at the origin, such that |B| = |Ω|,

where |C | denotes the Lebesgue’s measure in R
n of a measurable set C , and consider the

function UB given by

UB(x) = sup{U (x) | U ∈ W 1,p
0 (B) is a radial solution of (P̃B)}, (1.2)

where (P̃B) is the Dirichlet problem{−div(ã(U,∇U )) = f (U ) in B
U = 0 on ∂B.

(P̃B )

Let u be a weak solution of{−div(a(v,∇v)) = f (v) in Ω
v = 0 on ∂Ω.

(PΩ )
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Comparison results for nonlinear elliptic equations 989

in W 1,p
0 (Ω). Observe that u and UB are nonnegative. Define the distribution function of u

by

μu(t) = |{x ∈ Ω : u(x) > t}|.
For a, ã, and f satisfying hypotheses (H1)–(H5) (the constants and powers related to a and
ã can be different), a or ã satisfying (H6), and ã(t, z) · z ≤ a(t, z) · z, we prove that UB is a
solution of (P̃B) and, in Theorem 5.6,

μu(t) ≤ μB(t), ∀t ∈ [0,max UB], (1.3)

where μB is the distribution function of UB . If Ω is not a ball, a = a(z) and (a(z) · z)1/r is
convex for some r > 1, then this inequality is strict.

We also prove some sort of maximum principle with respect to the solutions in the ball
in the following sense: if u and U are solutions of (PΩ) and (P̃B), respectively, u	 ≤ U (not
necessarily maximal solution) and u	 �= U , then u	 < U provided f and a satisfy suitable
conditions.

These estimates can be applied, for example, to the following problems:

(1) u ∈ W 1,p
0 (Ω) is a weak solution of −c1�pv − c2�qv = f (v) and UB ∈ W 1,p

0 (B)
is the radially symmetric solution of −d1�pV − d2�q V = f (V ), as defined in (1.2),
where c1 ≥ d1 > 0, c2 ≥ d2 > 0, and p ≥ q > 1. The operator −c1�p −c2�q appears
in some general reaction diffusion equations, with applications in physics, biophysics,
and chemistry.

(2) u ∈ W 1,p
0 (Ω) and UB ∈ W 1,p

0 (B), p ≥ 18/17, are solutions of

−div

(
∇v

(1 + |∇v|2) 2−p
2

)
= f (v).

Such restriction on p is due to the convexity requirement on a(z) · z = z2(1 +|z|2) p−2
2 .

The operator on the left-hand side arises in the cracking of plates and the modeling of
blast furnaces (see [15,30]).

These comparisons results can be extended to the problem with lower order terms⎧⎨
⎩

−div(a(∇u))− h′(u)
h(u)

∇u · a(∇u) = g(u) in Ω

u = 0 on ∂Ω,
(1.4)

where h ∈ C1 is bigger than some positive constant, f = gh and a1(t, z) = h(t)a(z) satisfy
(H1)–(H5). This holds even if h has a bad growth and a1 does not satisfy the upper inequality
of (1.1). For the special case

−�p − h′(u)
h(u)

|∇u|p = g(u)

this priori estimate can be used to prove existence of solution.
We get also some result for (PΩ) even when f is not nondecreasing. Indeed, if f is

positive, f (t)/t p−1 is decreasing and a(t, z) = ã(t, z) = z|z|p−1, we show that

max UB ≥ max u.
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990 L. P. Bonorino, J. F. B. Montenegro

This L∞ estimate can be easily extended to the problem
{

−�pv + k(v) = f (v) in Ω

v = 0 on ∂Ω,
(1.5)

where k is positive and nondecreasing, f is positive, and f (t)/t p−1 is decreasing.
Then we apply these results to prove that if w ∈ W 1,p

0 (Ω) is a solution of div(a(x,∇w)) =
f (w) in Ω , where a satisfies some conditions and f ∈ C1(R) is bounded by c|t |q−1 + d ,
with 1 < q ≤ p and c, d ≥ 0, then

‖w‖∞ ≤ C1‖w‖
r p

n(p−q)+r p
r + C2‖w‖

r p
n(p−1)+r p
r ,

where C1 = C1(n, p, q, r, ρ, c) and C2 = C2(n, p, r, ρ, d) are positive constants. In the
special case |�pw| ≤ |λ||w|q−1, where λ ∈ R, we have

‖w‖s ≤
⎡
⎣ 2

(ωn)1/r

(
2(p − 1)

p

) n(p−1)
r p

( |λ|
n

)n/r p
⎤
⎦

s−r
κs

‖w‖
s−r
κs + r

s
r , (1.6)

where 0 < r < s and κ = 1 + n(p−q)
r p . These inequalities imply, according to Corollary

7.4, in a L∞-norm decay of the solutions of some sublinear equations, when the domain
becomes “far away” from a ball with the same volume. Since the ball is the domain of a
given measure that maximizes the L p norms in several problems, it would be interesting
to obtain better estimates for solutions that are not defined in a ball. Hence, we need to
measure in some way the difference between its domain and the corresponding ball. The
first eigenvalue is a possible form of distinction between these sets, which we use to estab-
lish some upper bound. Finally, as an application, we prove that u	 < U , where u is a
solution of (PΩ) and U a solution of (P̃B), even when f is not monotone, provided the
first eigenvalue associated to Ω,λp(Ω), is big enough and some conditions on a and f are
satisfied.

We point out that we are not interested in establishing existence of solutions for (PΩ).
Our main concern is just to compare these solutions, and we obtain existence results only for
the radial case.

Results of this type have been obtained by several authors. In [44], Talenti proved that if
u is the weak solution of the Dirichlet problem

−
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂u

∂x j

)
+ c(x)u = f (x) in Ω and u = 0 on ∂Ω,

where c(x) ≥ 0,
∑

i j ai j (x)ξiξ j ≥ ξ2
1 + · · · + ξ2

n and v is the weak solution of

−�v = f 	 in B and v = 0 on ∂B,

where B is the ball centered at 0 such that |B| = |Ω| and f 	 is the decreasing spherical rear-
rangement of f , then ess supu ≤ ess supv andμu ≤ μv . As a consequence, ‖v‖L p/‖ f 	‖Lq ≥
‖u‖L p/‖ f ‖Lq . This estimate is an extension of the one previously obtained by Weinberger
[49] for the ratio ‖u‖L∞/‖ f ‖Lq . Further results have been proved for a larger class of linear
equations that either satisfy weaker ellipticity conditions (see [7,8]) or contain lower order
terms (see [3,5,6,9,19,28,47,48]). Similar problems were studied in [36–38].
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Comparison results for nonlinear elliptic equations 991

As in the linear case, estimates have been obtained for solutions u ∈ W 1,p
0 (Ω) to the

nonlinear problem

−
n∑

i=1
(ai (x, u,∇u))xi −

n∑
i=1
(bi (x)|u|p−2u)xi + h(x, u) = f (x, u) inΩ,

comparing the decreasing spherical rearrangement of u with the solution of some nonlin-
ear “symmetrized” problem. For instance, the case bi = h = 0 and

∑
ai (x, u, ξ)ξi ≥

A(|ξ |), where A is convex and limr→0 A(r)/r = 0, is considered in [45]. The problem
in a general form is studied in [14], assuming that the coefficients are in suitable spaces
and

∑
ai (x, u, ξ)ξi ≥ |ξ |p . Under similar hypotheses, the case bi = 0 is considered in

[26], and different comparison results are obtained. In [1], estimates are proved when the
coefficients satisfy bi = h = 0, ai = ai (Du) and

∑
ai (ξ)ξi ≥ (H(ξ))2, where H is

a nonnegative convex function, positively homogeneous of degree 1. Other related results
were established in [23,27,41]. Some results also extend to parabolic equations (see e.g.,
[1,5,10,12]), and some isoperimetric estimates are obtained for the Monge-Ampère equation
(see [16,46]).

Usually comparison results are obtained considering a “symmetrized equation” that is
different from the original one. In this work, we can keep the original equation and symme-
trize only the domain, obtaining sharper estimates. Results similar to ours are established
in [11,39] for the laplacian operator, where the authors apply the method of subsolution
and supersolution to prove that, for a given symmetric solution U in the ball, there exists
some solution in Ω for which the symmetrization is less than U . Indeed, applying the iter-
ation procedure used in those works and the main result of [45], the estimate (1.3) can
be obtained in the particular case −div(a(∇u)) = f (u), provided we have some a priori
estimate in the Lq norm for subsolutions and the existence of the maximal radial solu-
tion UB . Using different techniques, we prove in Sect. 5 that the symmetrization of any
solution of (PΩ ) is bounded by UB , even in the case a = a(t, z) and ã = ã(t, z), as
long as these functions satisfy (H1)–(H5) and one of them satisfies (H6). In Sect. 2, we
review some important concepts and results. Some estimates in this section are interesting
by itself. In Sect. 3, we get estimates assuming that a(z) = ã(z) = |z|p−2z and f (t)/t p−1

is decreasing. Indeed, we prove that max UB ≥ max u even when f is not nondecreas-
ing. Observe that the uniqueness of solution to the problems (PΩ ) and (P̃B) is proved in
[17] for the Laplacian operator when f (t)/t is decreasing. An extension of this is proved
to the p-Laplacian in [13]. Hence, some results in this section can be obtained directly
from the existence of a solution associated to B that is greater than some solution asso-
ciated to Ω . In Sect. 4, we study the behavior of solutions in the radial case. In Sect. 6,
we obtain a bound to solutions of (1.4), and in some special case, we use this compari-
son to show the existence of solution. In Sect. 7, we get some inequalities between the L p

norms of solutions of some “eigenvalue problems” and some lower bound for the distri-
bution function of these solutions. For eigenvalue problems, the L p estimates are estab-
lished in [2,20], and [21], where the authors obtain sharper estimates, since the constants
are optimal. We are not concerned with the best constant but only with the relations between
the L p norms and the real parameter λ. We get an explicit relation for a larger class of
equations, and, for the typical eigenvalue problem, the estimate hold not only for the first
eigenvalue of the operator but also for the others. Other authors make some similar esti-
mates on manifolds (see e.g., [31,33]) for the classical eigenvalue problem, but the constant
depends on the manifold and the boundary. It is also established some L p estimates for a
class of Dirichlet problems and a relation between the norms and the first eigenvalue of the
domain.

123



992 L. P. Bonorino, J. F. B. Montenegro

2 Preliminary results

In this section, we recall some important definitions and useful results. First, if Ω is an
open-bounded set in R

n and u : Ω → R is a measurable function, the distribution function
of u is given by

μu(t) = |{x ∈ Ω : |u(x)| > t}| for t ≥ 0.

The function μu is nonincreasing and right continuous. The decreasing rearrangement of u,
also called the generalized inverse of μu , is defined by

u∗(s) = sup{t ≥ 0 : μu(t) ≥ s}.
IfΩ	 is the open ball in R

n , centered at 0, with the same measure asΩ and ωn is the measure
of the unit ball in R

n , the function

u	(x) = u∗(ωn |x |n) for x ∈ Ω	

is the spherically symmetric decreasing rearrangement of u. It is also called the Schwarz sym-
metrization of u. For an exhaustive treatment of rearrangements, we refer to [4,11,22,32,35,
42]. The next remark reviews important properties of rearrangements and will be necessary
through this work.

Remark 2.1 Let v,w be integrable functions in Ω and let g : R → R be a nondecreasing
nonnegative function. Then

∫
Ω

g(|v(x)|) dx =
|Ω|∫
0

g(v∗(s)) ds =
∫

Ω	

g(v	(x)) dx .

Hence, if μv(t) ≥ μw(t) for all t > t1 > 0, it follows that

∫
t1<v

g(v(x)) dx =
μu (t1)∫
0

g(v∗(s)) ds ≥
μw(t1)∫

0

g(w∗(s)) ds =
∫

t1<w

g(w(x)) dx,

since v∗(s) ≥ w∗(s) for s ≤ μw(t1). Moreover, if |{v > t2}| ≤ |{w > t2}| < ∞, |{v >
t1}| = |{w > t1}| < ∞ and |{v > t}| ≥ |{w > t}| for all t1 < t < t2, then∫

t1<v≤t2

g(v(x)) dx ≥
∫

t1<w≤t2

g(w(x)) dx .

Finally, an extension of the Pólya-Szegö inequality (see [11,18,35,43]) states that, if B :
[0,∞) → [0,∞) is increasing and convex, then∫

Ω

B(|∇v(x)|) dx ≥
∫

Ω	

B(|∇v	(x)|) dx for v ≥ 0 in W 1,p
0 (Ω).

This inequality also holds if we consider {t1 < v < t2} and {t1 < v	 < t2} instead of Ω and
Ω	. Indeed, from the coarea formula,∫

{v=t}

B(|∇v(x)|)
|∇v(x)| dHn−1 ≥

∫

{v	=t}

B(|∇v	(x)|)
|∇v	(x)| dHn−1

for almost every t , where Hn−1 is the (n − 1)-dimensional Hausdorff measure.
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Comparison results for nonlinear elliptic equations 993

Remark 2.2 For any bounded open set Ω ′ satisfying |Ω ′| ≤ |Ω|, there exists a constant
C = C(n, q, α, β,C∗, |Ω|, |Ω ′|) such that sup u ≤ C for any weak solution u ∈ W 1,p

0 (Ω ′)
of (PΩ ′). Moreover, C = O(|Ω ′|ρ) as |Ω ′| → 0, where ρ > 0 depends only on n and q .
This result is a consequence of the following two lemmas.

Lemma 2.3 LetΩ ′ be a bounded open set s.t. |Ω ′| ≤ |Ω|. If u ∈ W 1,p
0 (Ω ′) is a nonnegative

subsolution of (PΩ ′) and conditions (H1),(H5), C∗(|z|q − 1) ≤ 〈a(t, z), z〉 for z ∈ R
n, t ∈ R

are satisfied, then

‖u‖Lq ≤ M(Ω ′) :=
(

2C∗|Ω ′|
C∗λB′ − α

)1/q

+
(

2β|Ω ′|1/q ′

C∗λB′ − α

)1/(q−1)

,

where 1/q ′ + 1/q = 1, B ′ is a ball that satisfies |B ′| = |Ω ′| and λB′ is the first eigenvalue
of −�q in B ′.

Proof Multiplying the equation by u and integrating, we get∫
Ω ′

∇u · a(u,∇u) dx ≤
∫
Ω ′

u f (u) dx ≤ α‖u‖q
q + β‖u‖q |Ω ′|1/q ′

.

Since C∗(|z|q − 1) ≤ 〈a(t, z), z〉, the first inequality of (1.1) holds. Hence

‖u‖q

[
(C∗λB′ − α)‖u‖q−1

q − β|Ω ′|1/q ′] ≤ C∗|Ω ′|.

Studying the cases (C∗λB′ −α)‖u‖q−1
q −β|Ω ′|1/q ′ ≤ (C∗λB′ −α)‖u‖q−1

q /2 and> (C∗λB′

− α)‖u‖q−1
q /2 individually, we get the result. ��

Next lemma is a particular result of Theorem 3.11 of [40] in the case n ≥ q . For n < q , the
estimate can be obtained following the computations of that theorem and Morrey’s inequality.
A sketch of the proof is done in the “Appendix”.

Lemma 2.4 Suppose that u satisfies the hypotheses of the preceding lemma. If n < q, then

sup
Ω ′

u ≤ C‖u‖q + D|Ω ′|1/q ,

where C = C(n, q, α, β,C∗) and D = D(n, q, α, β,C∗).
If n ≥ q, then

sup
Ω ′

u ≤ C(|Ω ′|1/n + 1)ρ
( ‖u‖q

|Ω ′|1/q + |Ω ′|1/n
)
,

where ρ = n/q and C = C(n, q, α, β,C∗) if n > q, and ρ = q̃
2q̃−n , q̃ ∈ (n/2, n), and

C = C(n, α, β,C∗, q̃) if n = q.

From these two lemmas we get, for n < q , that

sup
Ω ′

u ≤ C M(Ω ′)+ D|Ω ′|1/q , (2.1)

where C = C(n, q, α, β,C∗) and D = D(n, q, α, β,C∗). For n ≥ q , it follows that

sup
Ω ′

u ≤ C(|Ω ′|1/n + 1)ρ
(

M(Ω ′)
|Ω ′|1/q + |Ω ′|1/n

)
, (2.2)
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994 L. P. Bonorino, J. F. B. Montenegro

where C = C(n, q, α, β,C∗) if n > q and C = C(n, α, β,C∗, q̃) if n = q . Since λB′ =
λB1/|B ′|q/n , where B1 is the unit ball, we have

M(Ω ′) ≤ E |Ω ′| 1
q + 1

n if |Ω ′| ≤ |Ω|,
where E is a constant that depends only on n, q, α, β,C∗ and |Ω|. Using this and inequalities
(2.1) and (2.2), we obtain

sup u ≤ C |Ω ′|1/q for n < q and sup u ≤ C |Ω ′|1/n for n ≥ q, (2.3)

where C depends only on n, q, α, β,C∗, and |Ω|. Hence, if (Ωn) is a sequence of domains
such that |Ωn | → 0 and (un) a sequence of solutions of (PΩn ), then sup |un | ≤ C |Ωn |σ → 0,
where σ = 1/q or σ = 1/n.
Now we recall some well-known results that appear in many forms.

Lemma 2.5 Let u be a weak solution of (PΩ ) in W 1,p
0 . Then

∫
Ωt

−u f (u)+ ∇u · a(u,∇u) dx = −t
∫
Ωt

f (u) dx ∀ t ≥ 0

where Ωt = {x ∈ Ω : u(x) > t}.

Proof Let ψ : R → R be the function defined by ψ(s) = (s − t)χ{s>t}(s). Consider

ϕ : Ω → R given by ϕ(x) = ψ(u(x)). Sinceψ is a Lipschitz function and t > 0, ϕ ∈ W 1,p
0 .

Furthermore,

ϕ = (u − t)χ{u>t} and ∇ϕ = χ{u>t}∇u.

Then, since u is a weak solution of (PΩ ),∫
Ω

χ{u>t}∇u · a(u,∇u) dx =
∫
Ω

f (u)(u − t)χ{u>t} dx

proving the lemma. ��

Lemma 2.6 Assuming the same hypotheses as in the last lemma,
∫

{u=t}

∇u · a(u,∇u)

|∇u| dHn−1 =
∫
Ωt

f (u) dx

for almost every t ≥ 0. If u satisfies u = c on ∂Ω, c ∈ R, then this identity holds for almost
every t ≥ c.

Proof For t1 < t2, from Lemma 2.5, we get
∫

At1 t2

−u f (u)+ ∇u · a(u,∇u) dx = t2

∫
Ωt2

f (u) dx − t1

∫
Ωt1

f (u) dx

= (t2 − t1)
∫
Ωt2

f (u) dx − t1

∫
At1 t2

f (u) dx,
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Comparison results for nonlinear elliptic equations 995

where At1t2 = {t1 < u ≤ t2}. Then,∫
At1 t2

∇u · a dx = (t2 − t1)
∫
Ωt2

f (u) dx +
∫

At1 t2

(u − t1) f (u) dx . (2.4)

Hence, using the coarea formula, we obtain

t2∫
t1

∫
{u=t}

(∇u · a)|∇u|−1

t2 − t1
dHn−1dt =

∫
Ωt2

f (u) dx +

∫
At1 t2

(u − t1) f (u) dx

t2 − t1
.

Making t2 → t1, the integral in the left-hand side converges to the integrand for almost every
t1 and the integral over Ωt2 converges to a integral over Ωt1 . The last integral goes to zero,
since ∣∣∣∣∣∣∣

∫
At1 t2

(u − t1)

t2 − t1
f (u) dx

∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣
∫

At1 t2

f (u) dx

∣∣∣∣∣∣∣
≤ f (t2)|At1t2 | → 0,

completing the proof. For the case u = c on ∂Ω , note that u − c ∈ W 1,p
0 (Ω) is a weak

solution of −div ā(v,∇v) = f̃ (v), where ā(t, z) = a(t + c, z) and f̃ (t) = f (t + c). Then,
from the previous case, we get result. ��

The following statement is a direct consequence of Brothers and Ziemer’s result (see
Lemma 2.3 and Remark 4.5 of [18]).

Proposition 2.7 Let u ∈ W 1,p
0 (Ω) be a nonnegative function and suppose that a = a(z), a

satisfy (H3), a(z) · z ∈ C2(Rn\{0}), (a(z) · z)1/r is convex for some r > 1. If the symmetri-
zation u	 is equal to some radial solution of (PB) on Ω	

t1t2 = {x ∈ Ω	 : t1 < u	(x) < t2}
and ∫

t1<u<t2

∇u · a(∇u) dx =
∫

t1<u	<t2

∇u	 · a(∇u	) dx,

for some 0 ≤ t1 < t2 ≤ max u < +∞, then there is a translate of u	 which is almost
everywhere equal to u in {t1 < u < t2}. ((PB) is the problem (P̃B) with ã replaced by a).

Proof Let U1 be the radial solution of (PB) such that u	 = U1 on Ω	
t1t2 . From Lemma 2.6,

∫
∂Bt

a(∇U1) · n dS =
∫
Bt

f (U1) dx > 0 for any t ∈ [0,max U1),

where Bt = {x : U1(x) > t}. Hence, a(∇U1) �= 0 and, therefore, ∇U1(x) �= 0 for any
x �= 0. Then ∇u	(x) �= 0 on the closure of Ω	

t1t2 . Since |{∇U1 = 0}| = 0, according to a
result of Brothers and Ziemer (see Lemma 2.3 and Remark 4.5 of [18]), the equality between
the Dirichlet integrals holds only if u is equal to some translate of u	 almost everywhere on
{t1 < u < t2}. ��

Next we present some comparison results about solutions.
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Lemma 2.8 Consider the radial functions u1(x) = w1(|x |) ∈ C1(BR1) and u2(x) =
w2(|x |) ∈ H1(BR2), where BRi is the ball centered at 0 with radius Ri , w1 : [0, R1] → R

is decreasing, w′
1(r) < 0 for r > 0, w2 : [0, R2] → R is nonincreasing, and R1 > R2.

Suppose that m = w1(R1) = w2(R2) and∫
{u1=t}

a(u1,∇u1) · ∇u1

|∇u1| dHn−1 ≥
∫

{u2=t}

a(u2,∇u2) · ∇u2

|∇u2| dHn−1 (2.5)

for almost all t ∈ [m,+∞), where a = a(t, z) is a function that satisfies (H3). Then u1 > u2

in BR2\{0}.

Proof We prove by contradiction. So there exists some r0 ∈ (0, R2) such that w1(r0) ≤
w2(r0). The hypotheses imply that

w1(R2) > w1(R1) = w2(R2).

Hence, from the continuity of w1 and w2, we can assume that

w1(r0) = w2(r0) and w1(r) > w2(r) for r ∈ (r0, R2]. (2.6)

Now defining b(t, |z|) = |a(t, z)|, we have

b(ui , |∇ui |) = |a(ui ,∇ui )| = a(ui ,∇ui ) · ∇ui

|∇ui | for i = 1, 2.

Observe that b = b(t, s) ∈ C0(R × [0,+∞))∩ C1(R × (0,+∞)) is positive for s �= 0 and
increasing in s. Hence, using (2.5) and w′

i (|x |) = −|∇ui (x)|, we get

b(t,−w′
1(r1(t))) rn−1

1 (t) ≥ b(t,−w′
2(r2(t))) rn−1

2 (t)

a.e. on I = [m, t0], where t0 = w1(r0) = w2(r0) and ri is some kind of inverse of wi

given by ri (t) = inf{r | wi (r) ≤ t} = (μui (t)/ωn)
1/n . Notice that r1 is decreasing and r2

is nonincreasing and, therefore, they are differentiable a.e. on I with r ′
i (t) = (w′

i (ri (t))−1.
Then

b

(
t,− 1

r ′
1(t)

)
rn−1

1 (t) ≥ b

(
t,− 1

r ′
2(t)

)
rn−1

2 (t) a.e. on I.

Defining d : R × (−∞, 0) → R by d(t, y) = [b(t,−1/y)]1/(n−1), we obtain

d(t, r ′
1(t)) r1(t) ≥ d(t, r ′

2(t)) r2(t) a.e. on I

and, therefore,

d(t, r ′
1) (r1 − r2) ≥ (d(t, r ′

2)− d(t, r ′
1)) r2 a.e. on I.

Since r2 ≥ r0 > 0, d(t, r ′
1(t)) is continuous and positive in I , and r1 − r2 ≥ 0, there exist

c1 > 0 such that

c1 (r1 − r2) ≥ (d(t, r ′
2)− d(t, r ′

1)) r0 a.e. on I. (2.7)

We prove now that, for some suitable constant C > 0,

C(r1 − r2) ≥ r ′
2 − r ′

1 a.e. on I. (2.8)

123



Comparison results for nonlinear elliptic equations 997

For that note first that if t ∈ I satisfies r ′
2(t) ≤ r ′

1(t), the inequality is trivial for any C > 0
since r1 ≥ r2 on I . In the case r ′

2(t) > r ′
1(t),

d(t, r ′
2)− d(t, r ′

1) =
r ′

2∫

r ′
1

∂d

∂y
(t, y) dy ≥

r ′
2+r ′

1
2∫

r ′
1

[b
(

t,− 1
y

)
]

n − 1

2−n
n−1

·
bs

(
t,− 1

y

)
y2 dy

since the integrand is positive and (r ′
2 + r ′

1)/2 ≤ r ′
2. From the C1 regularity of w1 and

w′
1 < 0, it follows that the interval [r ′

1(t), r
′
1(t)/2] is contained in some interval [y1, y2],

where y2 < 0, for any t ∈ I . Then

[r ′
1, (r

′
1 + r ′

2)/2] ⊂ [r ′
1, r

′
1/2] ⊂ [y1, y2] ⊂ (−∞, 0) for any t ∈ I,

and, using that |a| and ∂s |a(t, sz)| are positive and continuous for s, z �= 0, we get

b

(
t,− 1

y

)
≥ min[y1,y2] b

(
t,− 1

y

)
≥ E1 := min

1
|y1 | ≤|z|≤ 1

|y2 |
|a(t, z)| > 0

and

bs

(
t,− 1

y

)
≥ min[y1,y2] bs

(
t,− 1

y

)
≥ E2 := min

1
|y1 | ≤|z|≤ 1

|y2 |
∂s |a(t, sz)|

∣∣∣
s=1

> 0

for y ∈ [r ′
1, (r

′
1 + r ′

2)/2]. Hence,

d(t, r ′
2)− d(t, r ′

1) ≥
(r ′

1+r ′
2)/2∫

r ′
1

E
2−n
n−1
1

n − 1
· E2

y2 dy ≥ E
2−n
n−1
1 E2

(n − 1) y2
1

· (r
′
2 − r ′

1)

2
.

From this and (2.7), we get (2.8) with C = 2c1(n − 1)y2
1/(r0 E

2−n
n−1
1 E2). Multiplying (2.8) by

eCt , it follows that

d

dt
(r1eCt ) ≥ d

dt
(r2eCt ) a.e. on I.

Observe that
∫ t0

m
(r2eCt )′dt ≥ r2eCt

∣∣t0
m , since r2 is decreasing and eCt is a C1 function. To

prove that we can split r2eCt into a singular function and an absolutely continuous function,
apply the Fundamental Theorem of Calculus, obtaining an identity for the second part and
using a sequence of increasing C1 functions that converges uniformly to r2, an inequality for
the first part.

Therefore,

r1eCt
∣∣t0
m =

t0∫
m

d

dt
(r1eCt ) dt ≥

t0∫
m

d

dt
(r2eCt ) dt ≥ r2eCt

∣∣t0
m .

Hence, using r1(t0) = r2(t0) = r0, we get r1(m) ≤ r2(m). But this contradicts r1(m) =
R1 > R2 = r2(m). ��
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3 Comparison results to the p-laplacian

We treat in this section the special case where the differential part of (PΩ ) and (P̃B) is the
p-laplacian operator, and, in addition to the hypotheses (H1) and (H5), we suppose that
f (t)/t p−1 is decreasing. Then, we can obtain a solution to the problem (P̃B)minimizing the
functional

JB(v) =
∫
B

1

p
|∇v|p − F(v) dx, (3.1)

where F(t) = ∫ t
0 f (s) ds. Let ŨB be a minimum of JB . Since f (t)/t p−1 is decreasing, ŨB

is zero or is the unique nontrivial solution to (P̃B) (see [17] and [13]). Then ŨB = UB , where
UB is defined in (1.2). This uniqueness result is applied only in Theorem 3.7.

Definition 3.1 Given a measurable set E ⊂ B, define JE : W 1,p(B) → R by

JE (v) =
∫
E

1

p
|∇v|p − F(v) dx .

Lemma 3.2 Let f be a function, possibly non-monotone, that satisfies (H1) and (H5). For
any ball BR(0) ⊂ B and h ∈ R, there is a radial minimizer V of the functional JBR over
the space Ah = {w ∈ W 1,p(BR) : w is radial and w = h on ∂BR}. Moreover, if U and V
minimizes JBR over Ah1 and Ah2 , respectively, with h1 > h2 ≥ 0, then U > V in BR and
JBR (U ) < JBR (V ).

Proof The existence of minimizer in Ah can be obtained taking a minimizing sequence,
observing that it has a weakly convergent subsequence, and using that JBR is weakly lower
semicontinuous since (H5) holds.

To prove that U > V , suppose first that the set A = {x ∈ BR : U (x) < V (x)} is
nonempty. Since U and V are radial functions in W 1,p(BR), they are continuous and A is
an open set. Note that w1 := max{U, V } ∈ Ah1 and w2 := min{U, V } ∈ Ah2 . Hence,
JBR (U ) ≤ JBR (w1) and, therefore, JA(U )+ JBR\A(U ) ≤ JA(w1)+ JBR\A(w1). Using that
U = w1 and ∇U = ∇w1 a.e. on BR\A, it follows that JA(U ) ≤ JA(w1). Moreover, using
that w1 = V in A, we get

JA(U ) ≤ JA(w1) = JA(V ).

We have also that JBR (V ) ≤ JBR (w2). Then, using the same argument as before,

JA(V ) ≤ JA(U ).

Hence JA(U ) = JA(V ) = JA(w1) and then U = w1 in BR\A implies that JBR (U ) =
JBR (w1). Therefore, w1 is also a minimizer of JBR and, hence a weak solution of −�pv =
f (v) in BR .

Notice that for any ring R = {x : r1 < |x | < R}, r1 > 0, taking the radial test function

ϕr,h(|x |) = χ[0,r−h](|x |) +
(

r+h
2h − |x |

2h

)
χ(r−h,r+h](|x |) with h > 0 and r ∈ (r1, R), and

using that U is a weak solution, we get

nωn

r+h∫
r−h

|∇U |p−1

2h
sn−1 ds =

∫
Br

∇ϕr,h · ∇U |∇U |p−2 dx =
∫
Br

f (U )ϕr,h dx,
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where ωn is the volume of the unit ball. Taking the limit as h → 0, the Lebesgue Differenti-
ation Theorem implies that

nωn |∇U (r)|n−1rn−1 =
∫
Br

f (U ) dx ≥ ωn Rn min
t≥h1

f (t) > 0 (3.2)

for almost every r ∈ (r1, R). The last inequality is a consequence of U ≥ h1, which is a
result of maximum principle and −�pU = f (U ) ≥ 0. Therefore, |∇U | ≥ c a.e. in R,
where c is some positive constant that depends on R and mint≥h1 f (t). Thus, U is a solu-
tion of a uniformly elliptic equation in this ring and, therefore, a C2,α function in R for
any α ∈ (0, 1). Since r1 < R is arbitrary, U is a classical solution of −�pU = f (U ) in
BR(0)\{0}, with ∇U (x) �= 0 for x �= 0. By the same argument, w1 is a classical solution of
the same problem. Therefore, U and w1 are classical solutions of the ordinary differential
equation v′′ +(n −1)v′/r = − f (v) for 0 < r < R. Observe now that Ā ⊂ BR since U > V
on ∂BR and, then, there exists x0 ∈ ∂A ∩ BR\{0}. Hence U (x0) = w1(x0) and, using that
U ≤ w1 in BR and x0 ∈ BR , we have ∂r U (|x0|) = ∂rw1(|x0|). Then, from the uniqueness
result for ODE, U = w1 in some neighborhood of x0, contradicting that x0 ∈ ∂A. Therefore,
A is empty and U ≥ V .

If U (x0) = V (x0) at some x0 ∈ BR\{0}, using the same argument as before and U ≥ V,U
and V are classical solutions of some ODE and ∂r U (|x0|) = ∂rw1(|x0|). Then U = V
in BR , which contradicts U > V on ∂BR . Eventually, U (0) = V (0) since we cannot
apply the uniqueness result at r = 0 for v′′ + (n − 1)v′/r = − f (v). However, 0 is the
maximum point of U and V , and these functions are differentiable at the origin since the
first equality of (3.2) implies that ∇U (x) and ∇V (x) converge to zero as x → 0. Hence,
U (0) = V (0), ∂r U (0) = ∂r V (0) = 0 and, from the uniqueness result of Proposition A4 of
[29], U = V in BR . Thus, U > V in BR .

To prove that JBR (U ) < JBR (V ), note that for some positive constant c, the translation
V + c ∈ Ah1 . Since U is a minimizer of JBR over Ah1 , JBR (U ) ≤ JBR (V + c). Moreover,
as F is strictly increasing on (0,+∞) and V + c > V, JBR (V + c) < JBR (V ). Hence we
conclude the result. ��

Theorem 3.3 LetΩ ⊂ R
n be a bounded domain, B be a ball such that |B| = |Ω|, and u be

a weak solution of (PΩ ), where div(a(∇u)) = �pu and f is a function that satisfies (H1)
and (H5), possibly non-monotone, such that f (t)/t p−1 is decreasing on (0,+∞). Then,

max u ≤ max UB ,

where UB is the minimizer of the functional given by (3.1).

Proof Let u	 be the Schwarz symmetrization of u. Defining Ω	
t = {u	 > t}, we have that

|Ω	
t | = |Ωt |. Therefore, Remark 2.1 implies that

∫
Ωt

F(u) dx =
∫

Ω
	
t

F(u	) dx for t ≥ 0.

We also know that ∫
Ωt

|∇u|p dx ≥
∫

Ω
	
t

|∇u	|p dx . (3.3)
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Then,
∫
Ωt

|∇u|p

p
− F(u) dx ≥

∫

Ω
	
t

|∇u	|p

p
− F(u	) dx . (3.4)

Now suppose that for some t ≥ 0, we have |Ωt | = |Bt |, where Bt = {UB > t}. In this case,
Bt = Ω

	
t and

∫

Ω
	
t

|∇u	|p

p
− F(u	) dx ≥

∫
Bt

|∇UB |p

p
− F(UB) dx, (3.5)

otherwise the function ũ : B → R given by ũ = u	χBt
+ UBχBc

t
satisfies JB(ũ) < JB(UB),

contradicting that UB is a minimizer. Then, from (3.4) and (3.5), it follows that
∫
Ωt

|∇u|p

p
− F(u) dx ≥

∫
Bt

|∇UB |p

p
− F(UB) dx .

Hence, using Lemma 2.5 and the fact that u and UB are solutions, we get
∫
Ωt

u f (u)− t f (u)

p
− F(u) dx ≥

∫
Bt

UB f (UB)− t f (UB)

p
− F(UB) dx . (3.6)

Define ht : [t,+∞) → R by

ht (s) = (s − t) f (s)

p
− F(s). (3.7)

Note that ht (s) is decreasing for s ≥ t , since

h′
t (s) = (s − t) f ′(s)

p
− (p − 1) f (s)

p
= (s − t)p

p

(
f (s)

(s − t)p−1

)′
< 0.

Furthermore, as ht (t) ≤ 0, ht (s) < 0 for s > t . Therefore, from (3.6), we have∫
Ωt

ht (u) dx ≥
∫
Bt

ht (UB) dx, (3.8)

where ht is decreasing and negative. Suppose that max u > max UB . Since |Ω| = |B|, the
function μB(t) = |{UB > t}| is continuous and μu(t) is right continuous, there is t0 ≥ 0
such that μu(t0) = μB(t0) and μu(t) > μB(t) for t > t0. Then,

|{−ht0 ◦ u > s}| > |{−ht0 ◦ UB > s}| for s > −ht0(t0),

since −ht0 is a increasing function. Thus, by Fubini’s Theorem,

−
∫
Ωt0

ht0(u) dx > −
∫

Bt0

ht0(UB) dx,

contradicting (3.8). ��
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Remark 3.4 This result can be extended to the problem (1.5) observing first that q(t) :=
( f (t) − k(t))/t is decreasing. If q(t) > 0 for any t > 0, it is immediate from the theorem
that max u ≤ max U , where u solves (1.5) and U ∈ W 1,p

0 (B) is the solution of the symme-
trized problem −�pV + k(V ) = f (V ) in B. If q(t0) = 0 for some t0 ≥ 0, the maximum
principle implies that u,U ≤ t0. Hence taking um and Um , the sequence of solutions of
−�pv = max{ f (v)−k(v), 0}+1/m inΩ and B, respectively, we have um ≤ Um, um → u
and Um → U monotonically, proving the inequality. A related result with this one is stated
in [25]. For instance, if f is a positive constant, Theorem 2 of that work give more relations
between u and U .

Corollary 3.5 Assuming the same hypotheses as in Theorem 3.3, if Ω is not a ball and UB

is positive, then

max u < max UB .

Proof If Ω is not a ball, Proposition 2.7 implies that inequalities (3.3) is strict for t = 0.
Following the same computation as in Theorem 3.3, we have also a strict inequality in (3.8)
for t = 0, that is ∫

Ω

−h0(u) dx <

∫
B

−h0(UB) dx . (3.9)

As a consequence, we can prove that there is t > 0 such that

|Ωt | < |Bt |.
Indeed, if μu(t) = |Ωt | ≥ |Bt | = μUB (t) for any t > 0, then, using Remark 2.1 and that
−h0 is increasing with −h(0) = 0, we obtain the reverse inequality of (3.9), which it is a
contradiction.

Now note that the function v = u − t satisfies{−�pv = f̃ (v) in Ωt

v = 0 on ∂Ωt ,
(3.10)

where f̃ is given by f̃ (s) = f (s + t). If B ′ and B are concentric balls and |B ′| = |Ωt |, then
|B ′| < |Bt | and B ′ ⊂ Bt . Since UB = t on ∂Bt , we get from the maximum principle that
UB > t on ∂B ′. Hence, using Lemma 3.2, there is a functionw : B ′ → R that minimizes JB′
under the condition w ≡ t on ∂B ′, and, therefore, the function VB′ = w − t is the solution
of (3.10) with Ωt replaced by B ′. Furthermore, w < UB . Since f̃ satisfies all hypotheses
required in Theorem 3.3,

max v ≤ max VB′ .

Hence,

max
Ω

u = max
Ωt
(v + t) ≤ max

B′ (VB′ + t) = max
B′ w < max

Ω
UB

proving the result. ��
Remark 3.6 Suppose that u ∈ W 1,p

0 (Ω) is a solution of

− div(M Du|Du|p−2) = f (u), (3.11)

where M(x) = (ai j (x)) is a matrix with measurable bounded entries such that,∑
i j ai j (x)ξiξ j ≥ |ξ |2. Observing that
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J̃ (v) :=
∫
Ω

〈M Dv, Dv〉 1

p
|∇v|p−2 − F(v) dx ≥

∫
Ω

1

p
|∇v|p − F(v) dx,

and repeating the arguments of Theorem 3.3, we get max u ≤ max UB . Notice that M can
be nonsymmetric.

Next theorem, in the case p = 2 and f (0) > 0, is a consequence of a result, which
establishes that the symmetrization of the minimal solution associated to Ω is smaller or
equal than the one associated to the corresponding ball (see [11,39]), and the uniqueness of
solution when f (t)/t is decreasing (see [17]). For general p, we can apply a similar argument
to compare the minimal solutions (see [34]) and the uniqueness result obtained for the case
that f (t)/t p−1 is decreasing (see [13]).

Also it can be proved in a independent way using the main result of Sect. 5 and the
uniqueness of solution to this problem.

Theorem 3.7 Let Ω ⊂ R
n be a bounded domain, B be a ball such that |B| = |Ω|, and u

be a weak solution of (PΩ ), where div(a(∇u)) = �pu and f is a nonnegative increasing
locally Lipschitz function, such that f (t)/t p−1 is decreasing on (0,+∞). Then,

|{u > t}| < |{UB > t}| ∀t ∈ (0,max UB],
unless Ω is a ball.

4 Study of the radial solutions

We study now a Dirichlet problem, where the domain is a ball, and we need some additional
hypothesis:

(H7) there is some μ ∈ [0, 2) such that d
ds |a(t, sw)| ≥ |a(t, sw)|μ for s > 0 small and w

unit vector of R
n .

The following theorem is the main result of this section.

Theorem 4.1 Let B ′ = BR0 be a open ball in R
n satisfying |B ′| ≤ |Ω| and suppose that ã

and f satisfy conditions (H1)–(H5) and (H7). If f (0) > 0 and m ≥ 0, then there exists a
solution UB′ to the problem (P̃B′) with UB′ = m on ∂B ′ such that, for any radial solution U
of (P̃B′′) with 0 ≤ U ≤ m on ∂B ′′,

UB′ > U in B ′′,

where B ′′
� B ′ are concentric open balls. The same holds in the case B ′′ = B ′ if U and UB′

are different.

First we have to observe some basic properties of weak solutions and obtain some existence
result.

Lemma 4.2 Assuming the same hypotheses as in the main theorem, if U is a radial weak
solution of (P̃B′′ ), then U ∈ C2,α(B ′′\{0}) ∩ C1(B ′′) for any α < 1 and U is a classical
solution in B ′′\{0}.
Proof First using the ACL characterization of Sobolev functions (see e.g., [50]) and a local
diffeomorphism between the Cartesian and the polar system of coordinates, it follows that U
is absolutely continuous on closed radial segments that does not contain the origin. Hence,
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the set {U < t} is open in B ′ for any t ∈ R. Indeed, these sets are rings of the form
{x ∈ B ′ : rt < |x | < R0}, otherwise there is a ring R = {r1 < |x | < r2} contained in
{U < t}, such that U = t on ∂R, for which the test functionϕ(x) = (t−U (x))χR(x) ∈ W 1,p

0
satisfies

0 ≥ −
∫
R

∇U · ã(U,∇U ) dx =
∫
R

∇ϕ · ã(U,∇U ) dx =
∫
R

f (U )ϕ dx > 0,

that is a contradiction. Hence, U is a nonincreasing radially symmetric function. Observe
also that if U is constant in some ring, then taking a nonnegative function with a compact
support in this ring, we get a contradiction as before. Then U is strictly decreasing in the radial
direction. This conclusion can be obtained more easily for operators where the maximum
principle holds.

Notice now that for a given ring R = {r1 < |x | < r2}, taking the radial test function

ϕR,h(|x |) = χ[0,R−h](|x |) +
(

R+h
2h − |x |

2h

)
χ(R−h,R+h](|x |), for h > 0 and R ∈ (r1, r2), we

get

nωn

R+h∫
R−h

b(U,−∂r U )

2h
rn−1dr =

∫
B′

∇ϕR,h · ã(U,∇U ) dx =
∫
B′

f (U )ϕR,h dx,

where b(t, |z|) = |ã(t, z)| and ωn is the volume of the unit ball. Making h → 0, from the
Lebesgue Differentiation Theorem, it follows that

nωnb(U (R),−∂r U (R))Rn−1 =
∫
BR

f (U ) dx ≥
∫

Br1

f (0) dx > 0 (4.1)

for almost every R ∈ (r1, r2) and then, using (H3), we get that |∇U | ≥ c a.e. in R, where
c is some positive constant that depends on R. Thus, U is a solution of a uniformly elliptic
equation in this ring and, therefore, a C2,α function in R for any α ∈ (0, 1). Moreover,
from (2.3), U is bounded and, from its monotonicity in the radial direction, it can be defined
continuously on 0. In fact, using (4.1), we can prove that U is differentiable at the origin and
its derivative is zero. ��

Lemma 4.3 Under the same hypotheses as in the main theorem, for any h > 0, there exist
Rh > 0 and a function Uh ∈ C2,α(BRh (0)\{0}) ∩ C1(BRh )), which is a radial weak solu-
tion of (P̃BRh

) and a classical solution in BRh (0)\{0}, such that Uh(0) = h. Moreover, such
function is unique.

Proof If such Uh exists, then due to its regularity and (H3), we have ã(Uh,∇Uh) =
ẽ(Uh, |∇Uh |)∇Uh for some function ẽ : R × [0,+∞) → R and Uh(x) = w(|x |) for
some function w : [0, Rh] → R that satisfies, in the classical sense,

⎧⎪⎨
⎪⎩
(ẽw′)′ + n − 1

r
ẽw′ = − f (w) for r ∈ [0, Rh]

w′(0) = 0
w(Rh) = 0,

(4.2)

where ′ denotes d/dr . To prove the existence of solution to this problem, we consider the
following one:
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⎧⎪⎨
⎪⎩
(ẽ(w(r), |w′(r)|)w′(r))′ + n − 1

r
ẽw′(r) = − f (w(r))

w′(0) = 0
w(0) = h.

(4.3)

If ẽ depends only on z, according to Proposition A1 of [29], there exists δ > 0 and a positive
local solution wh : [0, δ) → R to (4.3). In the general case, consider first the problem (4.3)
with ẽ replaced by e0(|z|) = ẽ(h, |z|), which has a local solution w0 defined on [0, δ0) as in
the previous case. Then, for k ∈ N, take δk ≤ δ0 such that w0(r) ≥ h − h/k on [0, δk] and
define ek such that ãk(t, z) := ek(t, |z|)z satisfies (H3),(H4),(H7) and

ek(t, |z|) =
{

e0(|z|) = ẽ(h, |z|) for t ∈ [h − h/k,+∞)

ẽ(t, |z|) for t ∈ (−∞, h − 2h/k].
Hence,w0 is a solution to (4.3) on [0, δk] with ẽ replaced by ek and, from (4.1),w0 is decreas-
ing and dw0

dr (δk) �= 0. Since (H3) implies that s → |ãk(t, sw)| is increasing for any w, the
classical ODE theory implies that we can extendw0 for a larger interval. Indeed, while some
extension is positive, it can be continued to a bigger interval. Since f (0) > 0 and ãk satisfies
(H4), integrating (rn−1ek(w(r), |w′(r)|)w′(r))′ = −rn−1 f (w(r)), we conclude that for any
positive continuation w̄k : [0, δ̄) → R of w0, the right end point satisfies

δ̄ ≤ C := nC∗

f (0)

⎡
⎣1 +

(
p

p − 1
· h f (0)

nC∗

) p−1
p

⎤
⎦ . (4.4)

Hence, there exists a continuation wk : [0, Rk] → R such that wk(Rk) = 0 and is positive
on [0, Rk). Observe now that, using the same idea as in the estimate (4.1), we get that |w′

k | is
uniformly bounded by above. Hence, some subsequence converge uniformly for some non-
decreasing function wh : [0, Rh] → R that is positive in [0, Rh) and vanishes at Rh . Indeed,
applying again a similar computation as in (4.1) and using the positivity of |∂s ãk(t, sz)| for
s, t �= 0 from (H3), it follows that w′

k are equicontinuous in compacts sets of [0, Rh) for k
large. (More precisely, the Lipschitz norm of w′

k are uniformly bounded in compacts sets of
(0, Rh) and w′

k(r) are uniformly close to 0 for r small.) Hence, some subsequence converge
uniformly for wh in the C1 norm for compact sets of [0, Rh). Hence, due to the regularity of
ã and the definition of ãk,Uh(x) := wh(|x |) is the weak solution of −div ã(v,∇v) = f (v)
in BRh . Then, as we observed previously, Uh is a classical solution and satisfies Uh(0) = h
since wk(0) = h. Moreover, following the same argument of Proposition A4 of [29] for ã
that depends also on t , for each h > 0, such solution Uh and radius Rh are unique. At this
point, we have to use (H7). ��

Let us represent the correspondence of this lemma by� = (�1, �2), where�1(h) = Rh

and �2(h) = Uh . Observe that Rh ≤ C , where C is given by (4.4). Using this, the equicon-
tinuity of the first derivative of solutions, Arzelà-Ascoli Theorem, and uniqueness for (4.3),
we get the following result.

Lemma 4.4 The function�1 is continuous on (0,+∞). Furthermore, for any h0 > 0, ε > 0
and K compact subset of BRh0

, there exists δ > 0 such that ‖�2(h) − �2(h0)‖C1(K ) ≤
ε i f |h − h0| < δ.

We can also improve estimate (4.4) in the following sense.

Lemma 4.5 Given M > 0, there exists some continuous increasing function�M : [0,M] →
R s.t. �M (0) = 0 and Rh ≤ �M (h) for h ≤ M, where Rh = �1(h), i.e., Rh is the point s.t.
the nonnegative solution w of (4.3) vanishes.
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Proof Integrating (rn−1e(w(r), |w′(r)|)w′(r))′ = −rn−1 f (w(r)) from 0 to R ≤ Rh , we
get

∣∣ã (w(R), |w′(R)|z)∣∣ = −e(w(R), |w′(R)|)w′(R) ≥ f (0)R

n

for any |z| = 1. Since s 
→ |ã(t, sz)| is continuous, strictly increasing in [0,+∞) and
vanishes at s = 0, where t ∈ [0,M], the function ρ(s) := supt∈[0,M] |ã(t, sz)| also satisfies
these hypotheses. Using that w(R) ≤ h ≤ M ,

ρ(−w′(R)) ≥ f (0)R

n
.

Taking the inverse of ρ and integrating from 0 to Rh ,

h = w(0)− w(Rh) =
Rh∫

0

−w′(R) dR ≥
Rh∫

0

ρ−1
(

f (0)R

n

)
dR.

Observe that

Rh 
→
Rh∫

0

ρ−1
(

f (0)R

n

)
dR

is invertible, since is increasing and continuous. It is also positive and vanishes at 0. Hence,
we get the result defining �M as the inverse of this application. ��
Lemma 4.6 Assuming the same hypotheses as in Theorem 4.1, there exists a solution UB′
to the problem (PB′) with UB′ = 0 on ∂B ′, such that

max UB′ ≥ max U,

for any radial solution U of (PB′′) satisfying U = 0 on ∂B ′′, where B ′′ ⊂ B ′ = BR0 are
concentric balls. As a matter of fact, UB′ = �2(h0), where h0 = max{h | �1(h) = R0}.
Furthermore, the inequality is strict if U �= UB′ .

Proof First we note that Lemma 4.5 implies that

�1(h1) = Rh1 ≤ �1(h1) < R0 for small h1,

since �1(h) → 0 as h → 0. We can also prove that �1(h2) > R0 for a large h2. Indeed,
from (2.3), any solution of (PB′′) is bounded by C |B ′|1/q if n < q or by C |B ′|1/n if n ≥ q .
Hence,

�1(h) > R0 for h > M = max{C |B ′|1/q ,C |B ′|1/n}, (4.5)

otherwise a ball of radius�1(h) ≤ R0 posses a solution of height h > M contradicting (2.3).
Thus, from the continuity of �1, the set A = {h | �1(h) = R0} is not empty and is

bounded by M . Then, we can define h0 = max A and UB′ = �2(h0). Let U be a radial
solution of (PB′′) satisfying U = 0 on ∂B ′′, where B ′′ = BR̃ with R̃ ≤ R0. Note that
R̃ = �1(U (0)) and, thus, inequality (4.5) implies that U (0) ≤ M . To prove the lemma, we
have to show that U (0) ≤ h0. Suppose that U (0) > h0. For h = M +1, we have�1(h) > R0

from (4.5). Summarizing,

�1(U (0)) = R̃ ≤ R0 < �1(h) and U (0) < h.
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Therefore, from the continuity of�1, there exists h1 ∈ [U (0), h) such that�1(h1) = R0. But
this contradicts h1 ≥ U (0) > h0 and the definition of h0. Hence, U (0) ≤ h0. Furthermore,
the equality happens only if U = UB′ , since the solution of (4.3) is unique. ��
Proof of Theorem 4.1 Possibility 1: m = 0
Let UB′ be the function defined in the previous lemma and U a solution of (PB′′)with U = 0
on ∂B ′′, where B ′′ ⊂ B ′ are concentric balls. The set

C = {h > 0 | wh := �2(h) ≥ UB′ in B ′ and wh ≥ U in B ′′}
is not empty. To prove that, let h > max UB′ such that h �∈ C . For instance, suppose that wh

does not satisfy wh ≥ UB′ in B ′. Using that wh and UB′ are continuous radial functions and
wh(0) = h > UB′(0), we conclude that there exists B ′′ ⊂ B ′ such that wh > UB′ in B ′′ and
wh = UB′ in ∂B ′′. Denoting t0 = UB′(∂B ′′), we have t0 ≤ max UB′ ≤ M , where M is given
by (4.5). Hence, the function f̃ (t) = f (t + t0) satisfies

f̃ (t) ≤ f (t + M) ≤ α(t + M)q−1 + β ≤ α′tq−1 + β ′,

where α′ is any real in (α,C∗λB) and β ′ is a constant that depends on α′, β, and M . Note
that v = wh − t0 satisfies

−div(ā(v,∇v)) = f̃ (v),

where ā(t, z) = ã(t + t0, z), with the boundary data v = 0 on B ′′. Since ā and f̃ satisfy
(H1)–(H5), it follows from (2.3) that sup v ≤ M̃ , where M̃ is a constant that depends on
n, q, α′, β ′,C∗, and |Ω|. Thus wh ≤ M̃ + M . This inequality also holds, by the same argu-
ment, when condition wh ≥ U in B ′ is not satisfied. Therefore, h ∈ C for h > M̃ + M ,
proving that C is not empty.

Let α1 = inf C . From the continuity of �1 and the C1 estimate of Lemma 4.4, R1 =
�1(α1) ≥ R0, wα1 = �2(α1) ≥ UB′ in B ′, and wα1 ≥ U in B ′′. Hence, α1 = wα1(0) ≥
UB′(0). If α0 := UB′(0) = α1, then wα1 = UB′ , and, therefore, UB′ ≥ U proving the the-
orem. Suppose that α1 > α0. Then, R1 > R0, otherwise R0 = R1 = �1(α1) contradicting
α1 > α0 = max{α | �1(α) = R0}. Let

d1 = inf
x∈B′(wα1(x)− UB′(x)) ≥ 0 and d2 = inf

x∈B′′(wα1(x)− U (x)) ≥ 0.

If d1 = 0, consider x1 ∈ B̄ ′\{0} such that wα1(x1) = UB′(x1). Since R1 > R0, we have
wα1 > 0 in ∂B ′ and, from UB′ = 0 in ∂B ′, it follows that x1 ∈ B ′\{0}. Observe also that
∇wα1(x1) = ∇UB′(x1), since wα1 ≥ UB′ . Then, using that wα1 and UB′ are radial, we infer
from the uniqueness of solution for ODE that wα1 = UB′ , contradicting wα1(0) = α1 >

α0 = UB′(0). Hence d1 > 0 and, by the same argument, d2 > 0. These contradict Lemma
4.4 and the definition of α1, proving that UB′ ≥ U .

Possibility 2: m > 0
Consider the equation

−div ā(V,∇V ) = f̃ (V ),

where ā(t, z) = ã(t + m, z) and f̃ (t) = f (t + m). Notice that ā and f̃ satisfy (H1)–(H5)
and (H7) with the constants n, p, q, q0, α

′, β ′,C∗,C∗,Cs and |Ω|, where α′ and β ′ can be
chosen, as in Possibility 1, s.t. α′ ∈ (α,C∗λB) and β ′ = β ′(α′, β,m). Then, from Possibility
1, let Ũ ∈ W 1,p

0 (B ′) be the maximal solution associated to this equation. If U is a solution
of (P̃B′′) with U ≤ m on ∂B ′′, then U − m ≤ 0 or U − m is also a solution of this equation
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in some ball contained in B ′′. In both situations, since Ũ is maximal, Ũ ≥ U − m. So we
conclude Possibility 2, taking UB′ = Ũ + m.

To prove the strict inequality in case U �≡ UB′ , we must observe that if U (x0) = UB′(x0)

at some x0 ∈ B ′′, then ∇U (x0) = ∇UB′(x0) since U ≤ UB′ . This contradicts the classi-
cal results of uniqueness of solution for ODE if x0 �= 0 and the uniqueness established by
Proposition A4 of [29] if x0 = 0. Observe that we need (H7) to apply Proposition A4. ��
Theorem 4.7 Let B ′ = BR0 be a open ball in R

n satisfying |B ′| ≤ |Ω| and suppose that ã
and f satisfy conditions (H1)–(H5) and (H7). If f (0) = 0 and m ≥ 0, then there exists a
nonnegative solution UB′ of (P̃B′) with UB′ = m on ∂B ′′, possibly null, s.t. for any radial
solution U of (P̃B′′) with U ≤ m on ∂B ′′,

UB′ ≥ U in B ′′,

where B ′′ ⊂ B ′ are concentric open balls. If UB′ is not trivial, then UB′ is positive and the
inequality is strict unless U and UB′ are equal.

Proof Let (tk) be a sequence of positive reals s.t. tk ↓ 0, fk(t) := f (t + tk + m) and
ak(t, z) := ã(t + tk + m, z). Since ak and fk satisfy (H1)–(H7) and fk(0) = f (tk + m) > 0,
we can apply Theorem 4.1 to obtain the maximal solution Uk ∈ W 1,p

0 (B ′) of

− div ak(v,∇v) = fk(v) (4.6)

in B ′. Observe that if U is a radial solution of (P̃B′′) satisfying 0 ≤ U ≤ m, then U −tk −m ≤
0 or U − tk − m is also a solution of (4.6) in a ball contained in B ′′ vanishing on the
boundary of this ball. Then, Uk > U − tk − m. Furthermore, since the important constants
(n, q, α′, β ′,C∗, |Ω|) associated ak and fk can be chosen not depending k,Uk is bounded
in the L∞ norm by the same argument as in Theorem 4.1. Therefore, using (4.1), we get
that ∇Uk is a family of equicontinuous functions. Hence, for some subsequence that we
denote by Uk , it follows that Uk converges to some function U0 in the C1 norm. Therefore,
UB′ := U0 + m is a solution of (P̃B′), with UB′ = m on ∂B ′, and UB′ ≥ U , proving the first
part.

Suppose now that UB′ is not trivial. According to the proof of Lemma 4.3, UB′ = w0(|x |)
for some nonnegative nonincreasing function w0 : [0, R0] → R. If w0(r∗) = 0 for some
r∗ ∈ [0, R0), then w′(r∗) = 0 since w is differentiable. But, this contradicts Lemma 2.6
and the fact that f (UB′) is positive in some nontrivial set. Then UB′ is positive in B ′. If U
is a radial solution in B ′′ different from UB′ , then these functions are different at any point,
otherwise U (x̄) = UB′(x̄) and ∇U (x̄) = ∇UB′(x̄) for some x̄ ∈ B ′′ (since U ≤ UB′ )
contradicting the uniqueness of solution for ODE. In the case x̄ = 0, the uniqueness is a
consequence of Proposition A4 of [29] that requires (H7). ��
Remark 4.8 If (H7) is not satisfied in Theorem 4.1 or 4.7, we still have the existence of UB

such that UB ≥ U , as we will see in the next section as a particular case of the main theorem.
However, we cannot guarantee the strict inequality. Maybe it is possible that UB(0) = U (0)
and UB �≡ U , since (H7) is important for uniqueness of solution for (4.3).

5 Estimates for sublinear equations

The main result in this section is Theorem 5.6. One of the difficulties in proving it is that the
operator w 
→ −div(a(w,∇w)) is non-homogeneous in general. For instance, the homoge-
neity of −�p w is essential in the proof of (3.6) in Theorem 3.3. So we first present a result,
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where |ã(t, z)| is homogeneous for small z. The idea in its proof is to show that for any
solution u and t close to the maximum of u, there exists some radially symmetric solution
Ut that is above u	 in {u	 ≥ t} and Ut = u	 on ∂{u	 ≥ t}. Then, using the results of Sect. 4,
we prove that minimum of the set of t ′s, for which such Ut exists, is zero.

Proposition 5.1 LetΩ ⊂ R
n be a bounded open set, B be the ball centered at the origin with

|B| = |Ω|, and suppose that a and f satisfy hypotheses (H1)–(H5) and ã satisfies (H3)–
(H4), possibly with different constants (C̃s, C̃∗, C̃∗) and different powers ( p̃, q̃, q̃0). Assume
also that a or ã satisfies (H6), ã(t, z) · z ≤ a(t, z) · z for any z ∈ R

n and ã(t, z) · z = C̃s |z|q̃0

for |z| < δ, where δ ∈ (0, 1). Then, there exists a radial solution UB ∈ W 1,p
0 (B) of (P̃B) s.t.

for any solution u of (PΩ),

UB ≥ u	 in Ω	.

If a and ã do not satisfy (H6), we can also guarantee the existence of such UB for the case
Ω = B in the set of radially symmetric solutions.

Remark 5.2 To prove this proposition, we need some existence result to build the solutions
Ut that we mentioned before. For that we define in the next lemma a function a∗ that depends
only on the variable z and which is related to ã. Hence, we can apply classical techniques to
minimize some functional associated to a∗, showing the existence of such Ut .

Lemma 5.3 There exists a function a∗(z) ∈ C0(Rn; R
n) ∩ C1(Rn\{0}; R

n), of the form
a∗(z) = b∗(|z|)z/|z|, where b∗ ∈ C1(R\{0}) is positive on R\{0}, a∗(0) = 0, a∗(z) · z is
convex, that satisfies

• |a∗| ≤ |ã|,
• a∗(z) · z = C̃s |z|q̃0 = ã(t, z) · z for |z| < δ,
• a∗(z) · z ≥ η C̃∗|z|q̃ for |z| ≥ 1, where η ∈ (0, 1),
• a∗(z) · z = η C̃∗|z|q̃ for z large.

Proof For that, define b∗ in [0, δ] by b∗(s) = C̃ssq̃0−1. Then, extend s b∗(s) linearly to [δ, 1]
in such a way that it is C1 in [0, 1]. Defining a∗(z) = b∗(|z|)z/|z|, we have that |a∗| ≤ |ã|
in B1(0) from the convexity of ã(t, z) · z. Let h = b∗(1) and η′ < min{1, h/C̃∗}. Hence,
s b∗(s)|s=1 > η′ C̃∗sq̃ |s=1 and we can extend s b∗(s) linearly until the graph (s, s b∗(s))
reaches (s, η′C̃∗sq̃) at some point s0. So define b∗(s) that satisfies s b∗(s) < η′C̃∗sq̃ for
s > s0, s b∗(s) is convex and s b∗(s) = η′C̃∗sq̃/2 for s large. Taking η = η′/2, the function
a∗(z) defined from b∗ as before, fulfills the requirements. ��
Lemma 5.4 Assume the same hypotheses as in the previous proposition, except (H6), and
that u is a solution of (PΩ). Then there exists t0 ≤ sup u, an open ball B∗ centered at 0 with
the same measure as {u ≥ t0}, and a radial solution Ut0 for{−div ã(V,∇V ) = f (V ) in B∗

V = t0 on ∂B∗ (5.1)

such that Ut0 ≥ u	 in B∗.

Proof Let M = ess sup u > 0, that is finite by Lemma 2.4.
Possibility 1: |{u = M}| > 0
Let r0 be such that the ball B∗ = Br0(0) has the same measure as {u = M}. Applying

Theorem 4.1 or Theorem 4.7 for B ′ = Br0 and m = M , there exists some maximal solution
UB′ for (5.1) with t0 = M . Then, the result follows taking t0 = M and Ut0(x) = UB′ .
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Possibility 2: |{u = M}| = 0
Since f is locally Lipschitz and positive in some neighborhood of M , there exists some

ε0 > 0 such that, for any ε ≤ ε0, the function

Gε(t) := f (t)

(t − (M − ε))q̃0−1

is decreasing on (M − ε,M + ε0).
Part 1: For ε′ ≤ ε0 small and t1 ∈ (M −ε′,M), there is a solution Ut1 to the problem (5.1)

with t0 replaced by t1 such that |{Ut1 > t1}| = μu(t1), sup Ut1 < M + ε0 and |∇Ut1 | ≤ δ,
where δ is given in Proposition 5.1.
To prove this, observe that the definition of M implies that μu(t) > 0 for t ∈ (M − ε0,M).
For t1 ∈ (M − ε0,M), let r1 be such that the ball Br1(0) satisfies |Br1(0)| = μu(t1). Using
the same argument as in the Possibility 1, there exists a radial solution Ut1 for (5.1) with t0
and Br0 replaced by t1 and Br1 . We have that Ut1 − t1 is a solution of

−div ā(U,∇U ) = f̃ (U ),

where ā(t, z) = ã(t + t1, z) and f̃ (t) = f (t + t1), that vanishes on ∂Br1(0). Note that
ā and f̃ satisfy (H1)–(H5) (the constants associated to f̃ are α′ ∈ (α, C̃∗λB) and β ′ as
in the proof of Theorem 4.1). Hence, (2.3) implies that sup Ut1 − t1 ≤ C |Br1(0)|σ , where

C = C(n, q̃, α′, β ′, ηC̃∗
q̃0
, |Ω|) > 0, η is associated to a∗ from Lemma 5.3, and σ = 1/q

if q > n or σ = 1/n if q ≤ n. (Since η ∈ (0, 1) and q̃0 > 1, any operator ā sat-

isfying ā(t, z) · z ≥ C̃∗|z|q̃ also satisfies ā(t, z) · z ≥ ηC̃∗
q̃0

|z|q̃ . Thus, we can consider

C = C(n, q̃, α′, β ′, ηC̃∗
q̃0
, |Ω|) ≥ C1 := C1(n, q̃, α′, β ′, C̃∗, |Ω|) and we can take C instead

C1). Therefore,

sup Ut1 ≤ C(μu(t1))
σ + t1 ≤ C(μu(t1))

σ + M.

For ε1 ≤ ε0 that will be defined later, since

lim
t→M− μu(t) = |{u = M}| = 0,

we get (μu(t))σ < ε1/C for t ∈ (M − ε′,M), where ε′ ≤ ε0 is small enough. Thus,
sup Ut1 < M + ε0. For t ≥ t1, define r(t) such that ∂Br(t)(0) = {Ut1 = t}. Then, in the case
|∇Ut1(x)| ≤ 1, (H4) and Lemma 2.6 imply that

nωnr(t)n−1C̃s |∇Ut1(x)|q̃0 ≤
∫

∂Br(t)

|ã(Ut1 ,∇Ut1)| dHn−1

=
∫

Br(t)(0)

f (Ut1) dx ≤ ωnr(t)n f (M + ε0),

for x ∈ {Ut1 = t}. From this estimate and |Br(t)| ≤ |Br1 | = μu(t1) < (ε1/C)
1
σ ,

|∇Ut1(x)| ≤
(
ε1

Cωσn

) 1
σnq̃0

(
f (M + ε0)

nC̃s

) 1
q̃0

for x ∈ Br1(0).

In the case |∇Ut1(x)| > 1, a similar estimate holds replacing C̃s by C̃∗ and q̃0 by q̃ . Any way,
taking ε1 small, |∇Ut1(x)| ≤ δ, where δ is given in hypothesis of Proposition 5.1. Therefore,
Ut1 satisfies the q̃0-Laplacian equation
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− C̃s�q̃0Ut1 = f (Ut1) in Br1 . (5.2)

Part 2: Ut1 is the minimizer of the functional

It1(V ) :=
∫

Br1

∇V · ã(V,∇V )

q̃0
− F̄(V ) dx

in the space E = {V ∈ W 1,q̃(Br1) | V = t1 on ∂Br1}, where F̄(t) = ∫ t
0 f̄ (s) ds,

f̄ (s) =
{

f (s) if s ≤ M + ε0

f (M + ε0) if s > M + ε0.

For that, consider a∗ with the properties stated in the Lemma 5.3. Therefore,

I ∗
t1(V ) ≤ It1(V ) for V ∈ E,

where I ∗
t1 is defined replacing ã by a∗ in the definition of It1 . From the growth conditions on

a∗ and f̄ , we can use classical techniques to prove that I ∗
t1 has a global minimum U∗ ∈ E .

Moreover, this minimum is a solution of

−div â(∇V ) = f̄ (V ) in Br1 ,

where

â(z) := a∗(z)+ z · Da∗(z)
q̃0

.

Observe that â(z) · z ≥ a∗(z) · z/q̃0 since s 
→ |a∗(sz)| is increasing from (H3). Hence
â and f̄ satisfy (H1), (H5), ηC̃∗/q̃0(|z|q − 1) ≤ â(z) · z for z ∈ R

n, t ∈ R where the
important constants in order to apply (2.3) are n, q̃, α, β, ηC̃∗/q̃0 and |Ω|. Then, as in Part

1, sup U∗ − t1 < C |Br1(0)|σ , where C = C(n, q̃, α′, β ′, ηC̃∗
q̃0
, |Ω|) is the same constant as

before. (Now it is clear why we chose a constant C depending on ηC̃∗/q̃0 instead of C̃∗ at
that moment.) Thus, sup U∗ < M + ε0 and, following the same computations as before,
|∇U∗| < δ. Then, from a∗(t, z) = ã(t, z) for |z| < δ, it follows that

I ∗
t1(U

∗) = It1(U
∗) (5.3)

and, therefore, U∗ is also a global minimizer of It1 . From a∗(t, z) = C̃s |z|q̃0−2z for |z| ≤ δ,
we have that U∗ is also a solution of (5.2). Hence Ut1 − t1 and U∗ − t1 are solutions of
−C̃s�q̃0U = f̃ (U ). Taking ε = M − t1, we have that f̃ (t)/t q̃0−1 = Gε(t + t1) that is
decreasing on (0, ε + ε0), which contains the range of Ut1 − t1 and U∗ − t1. From the
uniqueness result of [13], Ut1 = U∗.
Part 3: For t1 ∈ (M − ε′,M), there exists t0 ≥ t1 and a solution U of (5.1) s.t. U ≥ u	 in
Br(t0) := {u	 > t0},U = u	 on ∂Br(t0) and |{U > t0}| = |{u	 > t0}|.
Using a∗(z) · z ≤ ã(t, z) · z ≤ a(t, z) · z and F̄(u	) = F(u	), the Pólya-Szegö principle for
a∗(z) · z, that Ut1 = U∗ minimizes It1 , I ∗

t1 , and (5.3), we get
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∫
Ωt1

∇u · a(u,∇u)

q̃0
− F(u) dx ≥

∫
Ωt1

∇u · a∗(∇u)

q̃0
− F(u) dx

≥
∫

Br1

∇u	 · a∗(∇u	)

q̃0
− F̄(u	) dx

≥
∫

Br1

∇Ut1 · ã(Ut1 ,∇Ut1)

q̃0
− F̄(Ut1) dx .

Hence, from Lemma 2.5 and F̄(Ut1) = F(Ut1), we have∫
Ωt1

(u − t1) f (u)

q̃0
− F(u) dx ≥

∫
Br1

(Ut1 − t1) f (Ut1)

q̃0
− F(Ut1) dx,

that is equal to estimate (3.6). Note also that

ht1(s) = (s − t1) f (t)

q̃0
− F(s)

is decreasing in (t1,M+ε0) since Gε(s) is decreasing in this interval, where ε = M−t1 < ε0.
Therefore, using that Ut1(Br1), u(Br1) ⊂ [t1,M + ε0) and an argument similar to the one
that come after (3.6), we have

max u ≤ max Ut1 .

If u	 ≤ Ut1 in Br1 , Part 3 is proved taking t0 = t1. Otherwise, there exist t2 ∈ (t1,M) such
that μu(t2) > μUt1

(t2). Therefore, B ′ = {u	 > t2} and B ′′ = {Ut1 > t2} are concentric balls
satisfying |B ′| > |B ′′|. Hence, from Theorem 4.1 or 4.7, there exists some solution Ut2 of
(5.1) with t0 replaced by t2, such that {Ut2 > t2} = B ′ and Ut2 > Ut1 in B ′′. Since

max u	 ≤ max Ut1 < max Ut2 ,

it follows from the right continuity of μu and the continuity of μUt2
that there exists t0 ≥ t2,

such that |{Ut2 > t0}| = |{u	 > t0}| and Ut2 ≥ u	 in {u	 > t0}, proving this part.
Part 4: There exists a solution Ut0 of (5.1) s.t. Ut0 ≥ u	 in B∗ := {u	 ≥ t0},U = u	 on ∂B∗
and |{Ut0 ≥ t0}| = |{u	 ≥ t0}|.
Let t0 and U as in Part 3. If |{u	 ≥ t0}| = μu(t0), then the theorem is proved with B∗ =
{u	 > t0}. Otherwise, applying Theorem 4.1 or 4.7 for B ′ = {u	 ≥ t0} and B ′′ = {u	 > t0},
there exists a solution Ut0 of (5.1) s.t. Ut0 > U in B ′′, proving the result with B∗ = B ′. ��

Now we present a result that resembles a maximum principle for distribution function
in the following sense: if the distribution μu of a solution satisfies μu ≤ μU , where μU

is the distribution of a radial solution, and μu(t0) = μU (t0) for some t0 ≤ max U , then
μu(t) = μU (t) for any t ≤ t0.

Proposition 5.5 Suppose that a, ã, and f satisfy (H2)–(H4), where the constants and powers
presented in (H4) associated to ã are given by (C̃s, C̃∗, C̃∗) and ( p̃, q̃, q̃0), a or ã satisfies
(H6), and that ã(t, z) · z ≤ a(t, z) · z for any z ∈ R

n. Assume also that u ∈ W 1,p
0 (Ω) is

a solution of (PΩ) and U ∈ W 1,p(B) ∩ C1(B) is a radial positive solution of (P̃B) that
not necessarily vanishes on ∂B. If u	 ≤ U and u	 �≡ U, then there exists t1 ≥ 0 such that
u	 < U in {U > t1} and u	 = U in {U ≤ t1} (that can be empty if U > 0 on ∂B).

This conclusion also holds if a and ã does not satisfy (H6), but Ω = B and u = u	.
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Moreover, assuming that u	 ≤ U, if f is strictly increasing and u	 �≡ U, or Ω is not a
ball and a = a(z)(or ã = ã(z)) satisfies hypotheses of Proposition 2.7, then u	 < U in B.

Proof Since U ≥ u	 and f is nondecreasing, we have∫
{U>t}

f (U ) dx ≥
∫

{u	>t}
f (u	) dx =

∫
{u>t}

f (u) dx, (5.4)

for any t ≥ 0. Hence, applying Lemma 2.6 for u and U , we get∫
{U=t}

ã(U,∇U ) · ∇U

|∇U | dHn−1 ≥
∫

{u=t}

a(u,∇u) · ∇u

|∇u| dHn−1 (5.5)

for almost every t ≥ inf U . Now suppose that a satisfies (H6). Observe that from the coarea
formula,

∫
{u>t}

a(u,∇u) · ∇u dx =
t∫

0

h1(s) ds and
∫

{u>t}
|∇u| + |∇u|p dx =

t∫
0

h2(s) ds,

where

h1(t) =
∫

{u=t}

a(u,∇u) · ∇u

|∇u| dHn−1 and h2(t) =
∫

{u=t}
1 + |∇u|p−1 dHn−1.

The same identity holds if we replace u by u	. For this one, denote h	1, h	2 instead of h1 and
h2. From the Lebesgue Differentiation Theorem, almost every t ∈ [0, sup u] is a Lebesgue
point of h1, h2, h	1, and h	2. For such t , define B(z) = a(t, z) · z. Applying Pólya-Szegö
inequality for B, we have∫

{t<u≤s}
a(t,∇u) · ∇u dx ≥

∫

{t<u	≤s}
a(t,∇u	) · ∇u	 dx (5.6)

Moreover, from (H6), we have for s > t ,∫
{t<u≤s}

|a(u,∇u) · ∇u − a(t,∇u) · ∇u|
s − t

dx ≤ ω(|s − t |)
∫

{t<u≤s}

|∇u| + |∇u|p

s − t
dx .

The integral in the right-hand side converges, since t is a Lebesgue point of h2. Hence, the
right-hand side goes to zero as s → t and, therefore,

lim
s→t

∫
{t<u≤s}

a(t,∇u) · ∇u

s − t
dx = lim

s→t

∫
{t<u≤s}

a(u,∇u) · ∇u

s − t
dx = h1(t).

In the same way,

lim
s→t

∫

{t<u	≤s}

a(t,∇u	) · ∇u	

s − t
dx = h	1(t).

Using these two relations, (5.6) and (5.5), it follows that∫
{U=t}

ã(U,∇U ) · ∇U

|∇U | dHn−1 ≥
∫

{u	=t}

a(u	,∇u	) · ∇u	

|∇u	| dHn−1 (5.7)
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for almost every t ≥ inf U . Since ã(t, z) · z ≤ a(t, z) · z, we have the same inequality with
a or ã appearing in both sides. If ã satisfies (H6) instead of a, from ã(t, z) · z ≤ a(t, z) · z
we can replace a by ã in (5.5). Hence, repeating the argument for ã, we obtain (5.7) with
ã in both sides. If a and ã does not satisfy (H6), but Ω = B and u = u	, then (5.7) is an
immediate consequence of (5.5). In any situation (5.7) holds. Letting r1 = (μu(t)/ωn)

1/n

and r2 = (μU (t)/ωn)
1/n , we have some t0 such that r1(t0) < r2(t0) since u	 �≡ U . Hence,

Lemma 2.8 implies that u	 < U on {U > t0}. Indeed, we can infer that the set of t ′s, for
which r1(t) = r2(t), is an interval that contains 0. Denoting the supremum of this set by t1,
we have the first part of the result.

Now consider the case f is strictly increasing and t1 > 0. Then we have a strict inequality
in (5.4) and, therefore, in (5.7) for any t ∈ [0, t1], that contradicts u	 = U in {0 ≤ U < t1}.

If a is as stated in Proposition 2.7, it follows from ã(z) · z ≤ a(z) · z, (5.4), Lemma 2.6,
and Pólya-Szegö principle that∫

U<t

∇U · a(∇U ) dx ≥
∫

u<t

∇u · a(∇u) dx ≥
∫

u	<t

∇u	 · a(∇u	) dx,

for t < t1. Since u	 = U in {U < t1}, the three integrals are equal for t < t1, and therefore,
Proposition 2.7 implies that u	 is a translation of u in {u < t1} and Ω is a ball, which is an
absurd. Replacing a by ã, we see that the same conclusion holds if ã satisfies the hypotheses
of that proposition. ��
Proof of Proposition 5.1 Observe that ã and f satisfy (H1)–(H5). Furthermore, ã also satisfy
(H7), since |ã(t, z)| = C̃s |z|q̃0−1 for z small. Then let UB be the solution stated in Theorem
4.1 or in Theorem 4.7 for m = 0. Consider the set

A = {t0 : ∃ a radial sol. Ut0 of (5.1) s.t.Ut0 ≥ u	 in B∗ and |B∗| = |{u	 ≥ t0}|}.
According to the previous lemma, this set is not empty. To prove the theorem, it suffices to
show that 0 ∈ A. For that we prove the following assertions.
Assertion 1: For any positive t1 ∈ A, there exists t ′ ∈ A such that t ′ < t1.

From the definition of A, there exists a radial solution Ut1 of (5.1) greater than or equal
to u	 in {u	 ≥ t1}. Since Ut1 is radial, it can be extended as a positive radial solution of
−div(ã(V,∇V )) = f (V ) in some ball that contains {u	 ≥ t1} or in R

n . The maximal
extension will be denoted by Ut1 . Consider

D = {t ≥ 0 : |{Ut1 > t}| = |{u ≥ t}| and |{Ut1 > s}| ≥ |Ωs | for s > t},
and let t2 = inf D. Observe that t1 ∈ D and so t2 ≤ t1. If t2 < t1, then there exists
t3 ∈ [t2, t1) ∩ D. Hence, in this case, our assertion is proved taking t ′ = t3. Consider now
the case t2 = t1. Thus 0 �∈ D, since 0 < t1 = t2. Therefore, there are two possibilities:

(1) |{Ut1 > 0}| > |Ω| and |{Ut1 > s}| ≥ |Ωs | for s > 0;
(2) |{Ut1 > s0}| < |Ωs0 | for some s0 ≥ 0.

Case 1): since |{Ut1 > s}| ≥ μu(s) for s > 0,Ut1 ≥ u	. Then, from the first part of Prop-
osition 5.5, Ut1 = u	 in {Ut1 < t2}, since Ut1 = u	 in {Ut1 = t2}. (This is the
only time in this proof we use that either a and ã satisfies (H6) orΩ = B and u is
radially symmetric.) However, this contradicts |{Ut1 > 0}| > |Ω|, and so this case
is not possible.

Case 2): from the definition of t1, it follows that s0 < t1. Let B ′
s0
(0) be a ball such that

|B ′
s0

| = |{u ≥ s0}|. Hence B ′ = B ′
s0
(0) and B ′′ = {Ut1 > s0} satisfy |B ′| > |B ′′|,
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and from Theorem 4.1 or 4.7, there exists a solution Us0 of (P̃B′) with Us0 = s0 on
∂B ′, such that Us0 > Ut1 in B ′′. Then Us0 > Ut1 ≥ u	 in {Ut1 > t1}, and therefore,

μUs0
(t1) = |{Us0 > t1}| > |{Ut1 > t1}| = |{u ≥ t1}| = μu(t

−
1 ).

Since μUs0
is continuous and μu(t

−
1 ) = limt→t−1

μu(t), we have μUs0
(t) > μu(t)

for s0 < t < t1, sufficiently close to t1. Defining

t ′ = inf{t ≥ s0 : μUs0
(s) > μu(s), for t1 ≥ s > t},

it follows that s0 ≤ t ′ < t1 and μu(t ′) ≤ μUs0
(t ′) ≤ μu(t ′−). Observe also that

Us0 > u	 in {u	 > t ′}. Hence, this assertion is proved if μUs0
(t ′) = μu(t ′−). If

μUs0
(t ′) < μu(t ′−), applying Theorem 4.1 or Theorem 4.7 for the balls {Us0 >

t ′} � {u	 ≥ t ′}, we get a solution Ut ′ s.t. Ut ′ > Us0 in {Us0 > t ′} and |{Ut ′ > t ′}| =
|{u	 ≥ t ′}|. Then Ut ′ > u	 in {u	 ≥ t ′} and Ut ′ = u	 on ∂{u	 ≥ t ′}, completing
Assertion 1.

Assertion 2: If t1 = inf A, then t1 ∈ A.
We can prove this using the same limit argument as in Lemma 4.4.
These assertions imply that inf A = 0. Then there is a solution U0 of (P̃B) such that

U0 ≥ u	. Since UB is maximal, it follows that U0 ≤ UB , proving the result. ��
Theorem 5.6 Let Ω ⊂ R

n be a bounded open set, B be a ball centered at the origin with
|B| = |Ω|, and suppose that a, ã, and f satisfy the hypotheses (H1)–(H5), where the con-
stants and powers associated to a and ã may be different, and a or ã satisfies (H6). If
ã(t, z) · z ≤ a(t, z) · z for any z ∈ R

n, then there exists a radial solution UB ∈ W 1,p
0 (B) of

(P̃B) such that

UB ≥ u	 in B,

where u	 is the symmetrization of any solution u of (PΩ). UB does not depend on a.
Furthermore, if Ω is not a ball, one of these solutions is positive, and a = a(z) (or ã =

ã(z)) is as stated in Proposition 2.7, then UB > u	.

Proof For k ∈ N, let ak(t, z) = bk(t, |z|)z/|z| be a function satisfying (H3) s.t.

• |ak | ≤ |ã|,
• ak(t, z) · z = C |z|q̃0 for some C > 0 and |z| ≤ 1/k,
• ak(t, z) · z = ã(t, z) · z for |z| ≥ 2/k.

To obtain such ak , first observe that the convexity of ã(t, z) · z in z and the relation
ã(t, z) · z ≥ C̃s |z|q̃0 imply that the derivative of s 
→ ã(t, sw) · sw is uniformly bounded
from below by some Dk > 0 for t ∈ R, |w| = 1 and s = 1/k. From ã(t, z) = b̃(t, |z|)z/|z|,
we get ∂s[b̃(t, s) s] ≥ Dk for s = 1/k and t ∈ R. Since ã(t, z) · z in z is convex, ∂s[b̃(t, s) s]
is increasing in s and then ∂s b̃(t, s) s ≥ Dk for s = 2/k. Now define bk(t, s) in R ×[0, 1/k]
by bk(t, s) = Ck |s|q̃0−1, where Ck is such that ∂s[bk(t, s) s] = Dk/2 for s = 1/k. (Indeed
we can chose Dk = C̃s(1/k)q̃0−1 and C = Ck = C̃s/(2q̃0).) Hence, it is possible to extend
bk to R × [0,+∞) in such a way that ∂s[bk(t, s) s] is strictly increasing in s, continuous
and bk(t, s) = b̃(t, s) for s ≥ 2/k. The function ak defined from bk satisfies the required
properties.

Since a, ak , and f satisfy the hypotheses of Proposition 5.1, there exists some radial solu-
tion Uk ∈ W 1,p

0 (B) of −div ak(V,∇V ) = f (V ) in B that satisfies Uk ≥ u	, for any solution
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u of (PΩ). Using (2.3), it follows that the sequence (Uk) is bounded in the L∞ norm and,
following the same argument as in Part 1 of Lemma 5.4, the derivative of Uk is also uniformly
bounded and equicontinuous. Hence, some subsequence converges to some function UB that
is a weak solution of (P̃B), by usual arguments. Moreover, Uk ≥ u	 implies that UB ≥ u	,
for any solution u of (PΩ), completing the first part of the theorem.

To see that UB does not depend on a, it is enough to show that there exists UB that is
the maximal solution of (P̃B) according to the definition (1.2). This is a consequence of
Theorem 4.1 or Theorem 4.7 if we assume also (H7). In the case (H7) is not satisfied, we
can apply Proposition 5.1 for ã, ak, f , andΩ = B, just as we did in the previous paragraph.
Then, there is a solution UB of (P̃B) that satisfies UB ≥ U for any radial solution U of (P̃B).
Observe that we can apply Proposition 5.1 even if ã and ak does not obey (H6), sinceΩ = B
and U is radial.

Suppose now that Ω is not a ball, a = a(z), and u is a solution of (PΩ). From the first
part, UB ≥ u	 and, therefore, applying Proposition 5.5, UB > u	. ��

6 Existence and bound result

First we apply the results of the previous section to prove that the symmetrization of solutions
of (1.4) are bounded by a radial solution. Notice that if h is also bounded from above, the result
follows immediately from Theorem 5.6 applied to the equation −div(h(v)a(∇v)) = f (v).
For h just bounded from below by some positive constant, the proof is given in the next
proposition.

Proposition 6.1 Suppose that a1(t, z) = h(t)a(z) and f (t) = g(t)h(t) satisfy (H1)–(H5),
where h is a C1 function bounded from below by some positive constant. Then there exists a
radial function UB, solution of (1.4) when the domain is B, such that UB ≥ u	, where u	 is
the symmetrization of any solution of (1.4). This is also true even if a1(t, z) does not satisfy
the right inequality of (1.1), provided a(z) obeys the upper bounds of (H4).

Proof Let m = inf h and a0(t, z) = m a(z). Due to the assumption on a, a0 satisfies (H3),
(H4), and (H6). Moreover, the constant C∗ of (H4) can be taken as the same for a0 and a.
Theorem 5.6 implies that there exists a maximal solution U0 for

−m div(a(∇V )) = f (V ) in B.

Let M1 = max U0 and observe that, from (2.3), there is a positive constant M2 that depends
only on n, q, α, β,C∗, and |Ω| such that sup u ≤ M2, where u ∈ W 1,p

0 (Ω) is any solution
of −div(a1(v,∇v)) = f (v) in Ω . Let M = max{M1,M2}, h1 be a C1 function such that
h1(t) = h(t) for t ≤ M and h1(t) = h(M + 1) for t ≥ M + 1, and a2(t, z) = h1(t)a(z).
Observe that u is solution of −div(a2(v,∇v)) = f (v) and a2 satisfies (H1)–(H6). Hence,
from Theorem 5.6, there exists a maximal solution UB of −div(a2(V,∇V )) = f (V ) in B
and UB ≥ u	. Moreover UB ≤ U0 ≤ M , since a2(z) · z ≥ a0(z) · z. Therefore, UB is also a
solution of−div(h(V )a(∇V )) = f (V ) completing the proof. ��

This result gives a priori estimate of a solution u, but does not prove its existence, except
for the ball where we obtain the function UB . We show now an existence result for a particular
case, using this estimate.

Theorem 6.2 Let a(z) = z|z|p−2 and suppose that a1 = ha and f = gh satisfy (H1)–(H5),
with the possibility of not fulfillment of the right inequality of (1.1). Then there exists a
solution u to the problem (1.4).
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Proof Let M, h1, and UB be as defined before. Define the functional

J (v) =
∫
Ω

(h1(v))
p

p−1
|∇v|p

p
−

v∫
0

f (s)(h1(s))
1

p−1 ds dx .

Since h1 is bounded from above and from bellow by some positive constants, conditions
(H4) and (H5) hold with q = q0 = p. Then we can minimize J in W 1,p

0 (Ω) and obtain a
solution u to −div(h1(v)∇v|∇v|p−2) = f (v). From the previous result, we have that u is
bounded by UB and, therefore, is a solution that we are looking for. ��

7 Estimates for eigenfunctions

In the next result, the estimate (7.2) and (1.6) were established in [20] and [21] for p = q = 2,
with the best constant, and extended in [2] for p = q > 1, when λ is the first eigenvalue. We
use different techniques that can be applied for more general situations.

Theorem 7.1 Let Ω ⊂ R
n be an open-bounded set and w be a solution of{−�pv = λv|v|q−2 in Ω

v = 0 on ∂Ω
(7.1)

where 1 < q ≤ p and λ is either a real number if q < p or any eigenvalue of −�p with
trivial boundary data if q = p. Then

(max |w|)1+ n(p−q)
r p ≤ 2

(ωn)1/r

(
2(p − 1)

p

) n(p−1)
r p

(
λ

n

)n/r p

‖w‖r , (7.2)

for any r > 0. Furthermore,

|Ω̃t | ≥ ωn(‖w‖∞ − t)
n(p−1)

p

(
p

p − 1

) n(p−1)
p (n

λ

)n/p ‖w‖
n(1−q)

p∞ , (7.3)

where Ω̃t = {|w| > t}, t ∈ [0,max |w|].
Proof Let M = ‖w‖∞, ρ ≥ 1, and Ω2 = {x : |w(x)| > M/ρ}. Then

‖w‖r
r =

∫
Ω

|w|r dx ≥
∫
Ω2

|w|r dx ≥
(

M

ρ

)r

|Ω2| (7.4)

On the other hand,

−�pw = λw|w|q−2 ≤ λMq−1

Hence, by the comparison principle of [24], |w| ≤ u in Ω2, where u is solution of{−�pv = λMq−1 in Ω2

v = M
ρ

on ∂Ω2

Let U be the solution of {−�pV = λMq−1 in B

V = M
ρ

on ∂B
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where B is a ball such that |B| = |Ω2|. From Theorem 1 of [45] or Theorem 5.6 (or Theorem
3.7), u	 ≤ U . Then

M = max |w| ≤ max u = max u	 ≤ max U

We can compute U explicitly:

U (x) = p − 1

p

(
λ

n

) 1
p−1

M
q−1
p−1

(
R

p
p−1 − |x | p

p−1

)
+ M

ρ
,

where ωn Rn = |Ω2| = |B|. Since M ≤ max U = U (0),

M ≤ p − 1

p

(
λ

n

) 1
p−1

M
q−1
p−1 R

p
p−1 + M

ρ
.

Hence,

R ≥
[
(ρ − 1)p

ρ(p − 1)

] p−1
p (n

λ

)1/p
M

p−q
p .

Using this and R =
( |Ω2|
ωn

)1/n
, we get

|Ω2| ≥ ωn

[
(ρ − 1)p

ρ(p − 1)

] n(p−1)
p (n

λ

)n/p
M

n(p−q)
p .

From this, we get the estimate for |Ωt | taking t = M/ρ. Moreover, applying this inequality
with ρ = 2 and using (7.4), it follows that

‖w‖r
r ≥ 1

2r
ωn

(
p

2(p − 1)

) n(p−1)
p (n

λ

)n/p
M

n(p−q)
p +r

.

��
Remark 7.2 The estimates of this theorem still holds if |�pw| ≤ |λw|w|q−2| or, equiva-
lently, −�pw = λg(w), where |g(w)| ≤ |w|q−1. Hence, using the interpolation inequality,

‖w‖s ≤ ‖w‖1−r/s∞ ‖w‖r/s
r , for 0 < r < s ≤ ∞

we get (1.6) for solutions of −�pw = λg(w), where |g(w)| ≤ |w|q−1, with the boundary
condition w = 0 on ∂Ω . Inequality (7.2) is also true for solutions of div(a(x, Dw)) ≤
|λg(w)|, provided a : Ω × R

n → R
n is such that some comparison principle holds. For

instance, consider the following hypotheses on a given by [24]:

a ∈ C(Ω̄ × R
n; R

n) ∩ C1(Ω̄ × (Rn\{0}); R
n),

a(x, 0) = 0 for x ∈ Ω,
〈Dza(x, z)ξ, ξ 〉 ≥ (p − 1)|z|p−2|ξ |2 for (x, z) ∈ Ω × R

n\{0},
|Dza(x, z)| ≤ C |z|p−2 for (x, z) ∈ Ω × R

n\{0} , C > 0.

(7.5)

Theorem 7.3 Let w be a bounded solution of{−div(a(x,∇v)) = f (v) in Ω

v = 0 on ∂Ω,
(7.6)
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where a satisfies (7.5) and f ∈ C1(R) satisfies | f (t)| ≤ c|t |q−1 + d, with 0 < q ≤ p and
c, d ≥ 0. Then

‖w‖∞ ≤ max

{
C1‖w‖

r p
n(p−q)+r p
r ,C2‖w‖

r p
n(p−1)+r p
r

}

where C1 = C1(n, p, q, r, ρ, c) and C2 = C2(n, p, r, ρ, d) are positive constants.

Proof We use the same ideas of the last theorem. By the comparison principle of [24],
|w| ≤ u, where u solves −div(a(x,∇v)) = cMq−1 + d inΩ2 and u = M/ρ on ∂Ω2. Since
the hypotheses on a imply that 〈a(x, z), z〉 ≥ |z|p , using the same argument as in Remark
3.6, we have that max u ≤ max U , where U is the solution of −�pv = cMq−1 + d on B
and v = M/ρ on ∂B. Notice that U is given by

U (x) = p − 1

p

(
1

n

) 1
p−1

(cMq−1 + d)
1

p−1

(
R

p
p−1 − |x | p

p−1

)
+ M

ρ
.

Following the same computations as before, we conclude the proof where the constants are
given by

C1 = (2c)
n

n(p−q)+r p K
p

n(p−q)+r p , C2 = (2d)
n

n(p−1)+r p K
p

n(p−1)+r p ,

and

K = 1

ωn

(
1 − 1

ρ

)− n(p−1)
p

ρr
(

p − 1

p

) n(p−1)
p

(
1

n

) n
p

.

��
Using the interpolation inequality observed in Remark 7.2, we can obtain estimates for ‖w‖s ,
where s ∈ (r,∞].

Now, we use this theorem to show that the L p norms of a solution go to zero when its
domain becomes “far away” from a ball with the same measure. More precisely, when the
first eigenvalue of a domain of a given measure is large, then the L p norms of solutions in
this domain are small.

Corollary 7.4 Assuming the same hypotheses as in the previous theorem, if p = q and
c < λp(Ω), the first eigenvalue of −�p, then

‖w‖∞ ≤ max

{
C1

(
d

λp(Ω)− c

) 1
p−1 |Ω| 1

p ,C2

(
d

λp(Ω)− c

) κ1
p−1 |Ω| κ1

p

}
,

where κ1 = p2/[n(p − 1)+ p2]. If p > q, then

‖w‖∞ ≤ max
{

C1τ
r p

n(p−q)+r p ,C2τ
r p

n(p−1)+r p

}
,

where τ = |Ω|1/p max{(2c/λp(Ω))
1/(p−q), (2d/λp(Ω))

1/(p−1)}.
Proof First note that the growth condition on f and Hölder inequality imply

λp(Ω)‖w‖p
p ≤ ‖∇w‖p

p ≤
∫
Ω

∇w · a(∇w, x) dx ≤ c‖w‖q
p|Ω| p−q

p + d‖w‖p|Ω| p−1
p .

The proof for the case p = q follows directly from this and Theorem 7.3. In the case p > q ,
we get from this inequality that ‖w‖p ≤ τ . Hence, we complete the proof applying Theorem
7.3. ��

123



Comparison results for nonlinear elliptic equations 1019

Corollary 7.5 Assume the same hypotheses about a and f as in the previous theorem. Sup-
pose also that a = a(z), f (t) > 0 for t > 0, f (t) = 0 for t ≤ 0 and there exists some positive
solution U of (7.6) in the ball B with the same measure asΩ . If λp(Ω) is sufficiently large,
then any solution u of (7.6) in Ω satisfies u	 < U, where u	 is the symmetrization of u.

The novelty in this corollary is that f does not need to be monotone.

Proof From Hopf lemma, ∂nU = c < 0 on ∂B, and, therefore, there exists some “parabo-
loid”

P(x) = p − 1

p

(
1

n

) 1
p−1

C
1

p−1

(
r

p
p−1 − |x − x0|

p
p−1

)
,

where x0 is the center of B and r is its radius, such that 0 < P < U in B. Observe that
−�p P = C . Since f is continuous and f (0) = 0, let M > 0 be such that f (t) < C for
t < M . Corollary 7.4 implies that ‖u‖∞ < M , where u is any solution of (7.6), if λp(Ω) is
large enough. Then

−div a(∇u) = f (u) ≤ C = −�p P,

and, from Theorem 5.6, u	 ≤ P < U proving the result. ��
Acknowledgments This collaborative research is co-sponsored by the J. Tinsley Oden Faculty Fellowship
Program in the Institute for Computational Engineering and Sciences at The University of Texas at Austin.

8 Appendix

We show now Lemma 2.4 with the same arguments as in Theorem 3.11 of [40].

Proof of Lemma 2.4 Let K > 0, � >K , r ≥ 1, γ = qr − q + 1,

v = P(u) = min{(u + K )r , �r−1(u + K )}
and

ϕ = G(u) = min{(u + K )γ , �γ−1(u + K )} − K γ ∈ W 1,q
0 (Ω ′).

Then, using that a(t, z) · z ≥ C∗(|z|q − 1) for all z ∈ R
n and t ∈ R, we get∫

Ω ′
|∇v|q dx ≤

∫
Ω ′

|P ′(u)|q
(∇u · a(u,∇u)

C∗
+ 1

)
dx

≤
∫
Ω ′

|P ′(u)|q
G ′(u)

· ∇ϕ · a(u,∇u)

C∗
dx +

∫
Ω ′

|P ′(u)|q dx .

Notice that |P ′(u)|q/G ′(u) = E , where E = 1 if u + K > � and E = rq/γ if u + K < �.
Then, E ≤ rq and, using ∇ϕ · a(u,∇u) ≥ 0,∫

Ω ′
|∇v|q dx ≤ rq

C∗

∫
Ω ′

∇ϕ · a(u,∇u) dx +
∫
Ω ′

|P ′(u)|q dx

= rq

C∗

∫
Ω ′

f (u)G(u) dx +
∫
Ω ′

|P ′(u)|q dx . (8.1)
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Observe now that for u + K < �,

f (u)G(u) ≤ (αuq−1 + β) · (u + K )γ ≤ α(u + K )q−1+γ + β
(u + K )q−1+γ

K q−1

≤ vq
(
α + β

K q−1

)
.

In a similar way, we can prove this inequality also for the case for u + K ≥ �. Furthermore,
for u + K ≤ �,

|P ′(u)|q = |r(u + K )r−1|q = rq (u + K )rq

(u + K )q
≤ rq v

q

K q
,

that is also true for u + K > �. From these two inequalities and (8.1), we get∫
Ω ′

|∇v|q dx ≤
[

rq

C∗
·
(
α + β

K q−1

)
+ rq

K q

] ∫
Ω ′
vq dx . (8.2)

Now we study the cases q > n, q < n and q = n separately.

Case 1 q > n.
Observe that for r = 1, we get v = u + K . Using the Morrey’s inequality for v− K ∈ W 1,q

0 ,

‖v − K‖C0,1−n/q ≤ C̃0‖v − K‖W 1,q ≤ C0(‖v‖q + K |Ω ′|1/q + ‖Dv‖q),

where C0 = C0(n, q). From this one and (8.2), we get

sup u = sup v − K ≤
[

C0 +
[

1

C∗
·
(
α + β

K q−1

)
+ 1

K q

]1/q
]
‖v‖q + C0 K |Ω ′|1/q .

Since ‖v‖q = ‖u + K‖q ≤ ‖u‖q + K |Ω ′|1/q , we get sup u ≤ D1‖u‖q + D2 K |Ω ′|1/q ,
where

D1 = C0 +
[

1

C∗
·
(
α + β

K q−1

)
+ 1

K q

]1/q

and D2 = D1 + C0.

Case 2 q < n.
Since v − K r ∈ W 1,q

0 (Ω ′), the Sobolev inequality implies

‖v − K r‖q∗ ≤ C0‖∇v‖q , (8.3)

where q∗ = nq/(n − q) and C0 = q(n−1)
n−q . Using this and (8.2), we get

‖v − K r‖q∗ ≤ C0

[
rq

C∗
·
(
α + β

K q−1

)
+ rq

K q

]1/q

‖v‖q . (8.4)

Hence, naming χ = n/(n − q), it follows that

‖v‖χq ≤ C0

[
rq

C∗
·
(
α + β

K q−1

)
+ rq

K q

]1/q

‖v‖q + K r |Ω ′|1/χq ,

that is, ‖v‖χq ≤ D1‖v‖q + D2, where

D1 = C0

[
rq

C∗
·
(
α + β

K q−1

)
+ rq

K q

]1/q

and D2 = K r |Ω ′|1/χq .
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Since v depends on r and �, we name it by vr,�. In the same way, D1 = D1(r) and D2 = D2(r).
Hence, the last inequality can be rewritten as

‖vr,l‖χq ≤ D1(r) ‖vr,l‖q + D2(r). (8.5)

Taking r = 1, we have v = u + K and, then

‖u + K‖χq ≤ D1(1) ‖u + K‖q + D2(1).

Hence u+K ∈ Lχq and, therefore, (u+K )χ ∈ Lq . Taking r = χ , we have |vχ,�| ≤ (u+K )χ

for any �. Thus ‖vχ,�‖q ≤ ‖(u + k)χ‖q and, from (8.5),

‖vχ,�‖χq ≤ D1(χ)‖(u + K )χ‖q + D2(χ).

Using that vχ,� ↑ (u + K )χ as � → ∞, we get

‖(u + K )χ‖χq ≤ D1(χ)‖(u + K )χ‖q + D2(χ).

Therefore, u + K ∈ Lχ
2q . More generally, if we take r = χn , it follows in a similar way that

‖(u + K )χ
n ‖χq ≤ D1(χ

n)‖(u + K )χ
n ‖q + D2(χ

n)

and u + K ∈ Lχ
n+1q . Thus, u + K is an Lr function for any r ≥ 1. Hence, making � → ∞

in (8.5), we get

‖u + K‖r
rχq ≤ D1(r) ‖u + K‖r

rq + D2(r).

Observe now that D1(r) = r H , where

H = C0

[
1

C∗
·
(
α + β

K q−1

)
+ 1

K q

]1/q

.

Furthermore,

D2(r) = K r |Ω ′|1/χq ≤ ‖u + K‖r
rq

|Ω ′|1/q |Ω ′|1/χq ≤ r‖u + K‖r
rq |Ω ′|(1/χ−1)1/q .

Therefore, the last three relations imply

‖u + K‖rχq ≤ r1/r H1/r
0 ‖u + K‖rq , (8.6)

for r ≥ 1 and χ = n/(n − q), where H0 = H + |Ω ′|(1/χ−1)1/q . Taking r = χm in (8.6), we
have

‖u + K‖χm+1q ≤ χm/χm
H1/χm

0 ‖u + K‖χmq for m ∈ N ∪ {0}.
Hence, defining Am = ∑m

j=0 j/χ j and Bm = ∑m
j=0 1/χ j , it follows that

‖u + K‖χm+1q ≤ χ Am H Bm
0 ‖u + K‖q for m ∈ N ∪ {0}.

Since Am and Bm are convergent series,

sup(u + K ) ≤ χ A H B
0 ‖u + K‖q ,

where A = limm→∞ Am and B = limm→∞ Bm = χ
χ−1 . Then

sup u ≤ D(H B + |Ω ′|B(1/χq−1/q))(‖u‖q + ‖K‖q),
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1022 L. P. Bonorino, J. F. B. Montenegro

for D = χ A2B . Observe that B( 1
χq − 1

q ) = − 1
q . Therefore

sup u ≤ D(H B + |Ω ′|−1/q)(‖u‖q + K |Ω ′|1/q).
Notice that

H ≤ C022/q
(
α

C∗
+ β

C∗
+ 1

)(
1 + 1

K

)
.

Then, taking K = |Ω ′|1/n , it follows that

H B ≤ C1(|Ω ′|1/n + 1)B |Ω ′|−1/q ,

where C1 = [C022/q (α/C∗ + β/C∗ + 1)]B . Hence

sup u ≤ 2DC1
(|Ω ′|1/n + 1

)B |Ω ′|−1/q (‖u‖q + K |Ω ′|1/q)
≤ C(|Ω ′|1/n + 1)B (|Ω ′|−1/q‖u‖q + |Ω ′|1/n) ,

proving the result.

Case 3 q = n: Taking q̃ < q = n, we get the same estimate as in (8.3) with q̃∗ instead of
q∗. Hence

‖v − K r‖q̃∗ ≤ C0‖∇v‖q̃ ,

where q̃∗ = nq̃/(n − q̃) and C0 = q̃(n−1)
n−q̃ . Therefore, from Hölder inequality,

‖v − K r‖q̃∗ ≤ C0‖∇v‖q |Ω ′|(q−q̃)/qq̃ .

For q̃ > n/2, we get q̃/(n − q̃) > 1 and, then, q̃∗ > n = q . In this case,

‖v − K r‖χq ≤ C0‖∇v‖q |Ω ′|(q−q̃)/qq̃ ,

where χ = q̃∗/q > 1. Using this and (8.2), it follows that

‖v − K r‖χq ≤ C0

[
rq

C∗
·
(
α + β

K q−1

)
+ rq

K q

]1/q

‖v‖q |Ω ′|(q−q̃)/qq̃ .

This estimate is basically the same as in (8.4). Hence, taking K = |Ω|1/n and following the
same argument as before we get the result. ��
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