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Abstract This paper extends results obtained by Tartar (1977, 1986) and revisited in Briane
and Gérard (Ann Scuola Norm Sup Pisa, to appear), on the homogenization of a Stokes equa-
tion perturbed by an oscillating drift. First, a N -dimensional scalar equation, for N ≥ 3, and
a tridimensional Stokes equation are considered in the periodic framework only assuming the
L2-boundedness of the drift and so relaxing the equi-integrability condition of Briane and
Gérard (Ann Scuola Norm Sup Pisa, to appear). Then, it is proved that the L2-boundedness
can be removed in dimension two, provided that the divergence of the drift has a sign. On
the contrary, nonlocal effects are derived in dimension three with a free divergence drift that
is only bounded in L1.

Keywords Homogenization · Second-order elliptic equations · Stokes equation · Drift

Mathematics Subject Classification (2000) 35B27 · 76M50

1 Introduction

At the end of the seventies, Tartar [15,16] (see also [17,18]) studied the homogenization of
the following Stokes equation perturbed by an oscillating drift term (modeling the Coriolis
force) in a bounded domain � of R

3,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�uε + curl (vε) × uε + ∇ pε = f in �

div (uε) = 0 in �

uε = 0 on ∂�,

(1.1)
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854 M. Briane

where vε is a sequence in L∞(�)3 and f belongs to H−1(�)3. Assuming that the sequence vε

converges weakly to some v in L3(�)3, and applying his method of oscillating test functions
(introduced in the Appendix of [14]) with the parameterized functions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�wλ
ε + curl (vε) × λ + ∇qλ

ε = f in �

div
(
wλ

ε

) = 0 in � for λ ∈ R
3,

wλ
ε = 0 on ∂�,

(1.2)

he proved that the limit equation of (1.1) is the Brinkman [8] type equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�u + curl (v) × u + ∇ p + M∗u = f in �

div (u) = 0 in �

u = 0 on ∂�,

(1.3)

where M∗ is the positive definite symmetric matrix-valued function defined by the conver-
gences

(Dwλ
ε )T vε −⇀ M∗λ weakly in L

3
2 (�)3, for any λ ∈ R

3. (1.4)

Since the energy density associated with the Stokes equation (1.1) is reduced to |Duε|2, we
may introduce the equivalent scalar equation in a bounded open set � of R

N , with a drift
term and the same density energy |∇uε|2, namely

⎧
⎨

⎩

−�uε + bε · ∇uε + div (bε uε) = f in �

uε = 0 on ∂�,

(1.5)

where bε is a sequence in L∞(�)N and f belongs to H−1(�). Consider the Hodge decom-
position of bε in L2(�)N , that is, bε = ∇wε + ξε where wε belongs to H1

0 (�) and ξε is a
divergence free function in L2(�)N .

Assuming that bε is bounded in L2(�)N , with ∇wε equi-integrable in L2(�)N , and using
an alternative method based on a parametrix of the Laplace operator, we obtained in [6] the
homogenized equation

⎧
⎨

⎩

−�u + b · ∇u + div (b u) + μ∗ u = f in �

u = 0 on ∂�,

(1.6)

where b = ∇w + ξ is the weak limit of bε in L2(�)N and μ∗ is the function given by

|∇wε − ∇w|2 −⇀ μ∗ weakly in L1(�). (1.7)

This approach was also applied in [6] to the two-dimensional Stokes equation, assuming
similarly that the drift vε is equi-integrable in L2(�)2. Moreover, we showed that the func-
tion μ∗ of (1.7) and the Brinkman matrix M∗ of (1.4) are not in general the correct defect
measures involving in the extra order term of the homogenized equations when the equi-
integrability condition does not hold. Therefore, it seems natural to address the following
question:
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Homogenization with an oscillating drift: from L2-bounded... 855

Do the homogenization results of [6] subsist when the drift is only bounded in L2(�)N ,
or is not bounded in L2(�)N ? In the present paper, we provide a rather complete answer in
the periodic framework.

First, in Sect. 2, we study the case where the drift is bounded in L2(�)N , with N ≤ 3,
both for the N -dimensional scalar Eq. (1.5) and for the tridimensional Stokes equation (1.1).
The homogenized equations are of the same type as (1.6) and (1.3), but in general with
a constant μ �= μ∗ (see Theorem 2.1) and a Brinkman matrix M �= M∗ (see Theo-
rem 2.2). The proof is based on oscillating test functions that differ from the functions
(1.2) used by Tartar and are similar to the functions introduced by Dal Maso and Gar-
roni [10] for studying the homogenization of second-order elliptic equations without drift
term. We also show that the Tartar formula (1.4) for the Brinkman homogenized matrix
is actually valid, that is, M = M∗, when the drift vε is bounded and equi-integrable in
L12/5(�)3.

Then, in Sect. 3, restricting ourselves to the scalar Eq. (1.5), we consider the case
of drifts that are not necessarily bounded in L2(�)N . On the one hand, in dimension
two assuming that the divergence of the drift bε has a sign, with no prescribed bound
for bε, we prove (see Theorem 3.1) that homogenized equation is still of the type (1.6),
including the degenerate equation u = 0 associated with some effective drift of infi-
nite norm. So, the nature of the equation with a zero-order term is preserved in the
homogenization process. On the contrary, in dimension three, there is no such compact-
ness result since nonlocal effects may appear (see Theorem 4.2) with divergence-free
drifts that are only bounded in L1(�)3. This gap between dimension two and dimen-
sion three is reminiscent with the homogenization of purely diffusive equations of the
type

− div (Aε∇uε) = f in �, (1.8)

where Aε is an equi-coercive sequence of symmetric matrix-valued functions which are not
necessarily equi-bounded from above. Indeed, the family of equations (1.8) is shown to be
stable by homogenization in dimension two at least in the periodic case (see, e.g., [3,4]),
while dimension three may induce nonlocal effects for suitable sequences Aε that are only
bounded in L1(�)3×3 (see, e.g., [1,11,7]). However, in the present case, nonlocal effects are
due to a quite different coupling between a second-order equation and a first-order equation
induced by the drift term.

Notations

• For N ≥ 2, I is the unit matrix of R
N×N .

• For any A, B ∈ R
N×N , AT is the transposed matrix of A, and A : B := tr

(
AT B

)
.

• The conjugate exponent of p ≥ 1 is denoted by p′ := p

p − 1
.

• For u : R
N −→ R

N , Du :=
(

∂ui

∂x j

)

1≤i, j≤N

.

• For 	 : R
N −→ R

N×N , Div (	) :=
(∑N

j=1

∂	i j

∂x j

)

1≤i≤N

.

• H1

 (Y ), with Y := [− 1

2 , 1
2

]N
, denotes the space of the Y -periodic functions on R

N which

belong to H1
loc(R

N ).
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856 M. Briane

2 Homogenization with a L2-boundedness drift

2.1 The scalar equation

Along this section, � is a bounded open set of R
N , with N ≤ 3, and Y denotes the unit cube

[− 1
2 , 1

2

]N
, which is identified to the N -dimensional torus R

N /Z
N . Consider a Y -periodic

vector-valued function Bε in L∞

 (Y )N satisfying

Bε −⇀ B weakly in L2

(Y )N , with B̄ :=

∫

Y

B dy, (2.1)

and the oscillating drift bε defined by

bε(x) := Bε

( x

ε

)
, for x ∈ �. (2.2)

Also consider the solution Wε in H1

 (Y )/R of the equation

�Wε = div (Bε) in R
N , (2.3)

and assume that there exists

μ∗ := lim
ε→0

∫

Y

|∇Wε|2 dy. (2.4)

Note that μ∗ < ∞ since Wε is bounded in H1

 (Y )/R.

We have the following homogenization result for the scalar drift problem (1.5):

Theorem 2.1 There exists a subsequence of ε, still denoted by ε, and a constant μ ∈ [0, μ∗]
such that for any f ∈ H−1(�), the solution uε of the problem (1.5) with the drift (2.2)
converges weakly in H1

0 (�) to the solution u of the equation

− �u + 2 B̄ · ∇u + μ u = f in �. (2.5)

Moreover, if the limit B of (2.1) is not divergence free in R
N , then μ > 0.

On the other hand, if the sequence ∇Wε

( x
ε

)
is equi-integrable in L2

loc(�)N , then μ = μ∗.

Proof First of all, putting uε in Eq. (1.5), we obtain the energy equality
∫

�

|∇uε|2 dx = 〈 f, uε〉H−1(�),H1
0 (�), (2.6)

which implies that the sequence uε is bounded in H1
0 (�) and thus converges, up to a subse-

quence, to some function u in H1
0 (�).

We will apply the Tartar oscillating test function method to the following functions. By
the Lax–Milgram theorem, for any δ > 0, there exists a unique solution Zδ,ε in H1


 (Y ) of
the equation

− 1

ε2 �Zδ,ε − 1

ε
Bε · ∇Zδ,ε − 1

ε
div
(
Bε Zδ,ε

)+ δ Zδ,ε = 1 in R
N , (2.7)
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Homogenization with an oscillating drift: from L2-bounded... 857

the variational formulation of which is given for any ϕ ∈ H1

 (Y ), by

1

ε2

∫

Y

∇Zδ,ε · ∇ϕ dy − 1

ε

∫

Y

Bε · ∇Zδ,ε ϕ dy + 1

ε

∫

Y

Bε · ∇ϕ Zδ,ε dy +
∫

Y

δ Zδ,ε ϕ dy

=
∫

Y

ϕ dy. (2.8)

Hence, the function defined by

zδ,ε(x) := Zδ,ε

( x

ε

)
, for x ∈ R

N , (2.9)

satisfies the rescaled equation

− �zδ,ε − bε · ∇zδ,ε − div
(
bε zδ,ε

)+ δ zδ,ε = 1 in R
N . (2.10)

Putting Zδ,ε as test function in (2.8), we have

1

ε2

∫

Y

|∇Zδ,ε|2 dy + δ

∫

Y

Z2
δ,ε dy = Z̄δ,ε :=

∫

Y

Zδ,ε dy, (2.11)

which implies that Zδ,ε converges weakly, up to a subsequence, to a constant Z̄δ in H1

 (Y ).

Using a diagonal extraction, there exists a subsequence of ε, still denoted by ε, such that the
previous convergence holds for any δ in a dense countable set D of (0,∞).

Note that Z̄δ ≥ 0, since by the maximum principle Zδ,ε ≥ 0 a.e. in Y . Moreover, if
Z̄δ = 0, then by (2.11), the sequence 1

ε
|∇Zδ,ε| + Zδ,ε converges strongly to 0 in L2(Y ).

But, putting ϕ = 1 as test function in (2.8), we get that

1 = − 1

ε

∫

Y

Bε · ∇Zδ,ε dy + δ Z̄δ,ε = − 1

ε

∫

Y

∇Wε · ∇Zδ,ε dy + δ Z̄δ,ε, (2.12)

which yields to the contradiction 1 = 0. Therefore, we have Z̄δ > 0. By estimate (2.11) we
also have δ Z̄2

δ ≤ Z̄δ , hence Z̄δ ∈ (0, 1
δ

]
.

Now, apply the Tartar oscillation test functions. Let f ∈ H−1(�) and ϕ ∈ C∞
c (�).

Putting ϕzδ,ε in (1.5), ϕuε in (2.10), and equating the two formulas, we get that
∫

�

∇uε · ∇ϕ zδ,ε dx−
∫

�

∇zδ,ε · ∇ϕ uε−2
∫

�

bε · ∇ϕ uε zδ,ε dx−δ

∫

�

ϕ zδ,ε uε dx

=
∫

�

f ϕ zδ,ε dx −
∫

�

ϕ uε dx . (2.13)

Moreover, by (2.1), the sequence bε of (2.2) weakly converges to the constant B̄ in
L2(�)N , zδ,ε weakly converges to the constant Z̄δ > 0 in H1(�) for any δ ∈ D, and
up to a subsequence uε converges weakly to u in H1

0 (�). Hence, by the Rellich compactness
theorem, the sequence uε zδ,ε converges strongly to u Z̄δ in L2(�) (N ≤ 3). Therefore,
passing to the limit in (2.13), it follows that

∫

�

∇u · ∇ϕ Z̄δ dx − 2
∫

�

B̄ · ∇ϕ u Z̄δ dx +
∫

�

ϕ (1 − δ Z̄δ) u dx =
∫

�

f ϕ Z̄δ dx .
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858 M. Briane

Therefore, u is the solution in H1
0 (�) of the equation

− �u + 2 B̄ · ∇u + μδ u = f in �, where μδ := 1

Z̄δ

− δ ≥ 0. (2.14)

Since (2.14) has a unique solution u for given f ∈ H−1(�) and δ > 0, uε converges weakly
to u in H1

0 (�) for the whole sequence ε which ensures the weak convergences of Bε in
L2


(Y )N and of Zδ,ε in H1

 (Y ) for any δ ∈ D. In particular choosing f = 1, we deduce from

(2.14) that for any δ, δ′ ∈ D, μδ u = μδ′ u, which implies that μδ = μδ′ since u is clearly
not the zero function in �. The nonnegative constant μ := μδ is thus independent of δ ∈ D.

On the other hand, applying the Cauchy–Schwarz inequality in (2.12) and using (2.11),
we have

1 − δ Z̄δ,ε ≤
⎛

⎝

∫

Y

|∇Wε|2 dy

⎞

⎠

1
2
⎛

⎝
1

ε2

∫

Y

|∇Zδ,ε|2 dy

⎞

⎠

1
2

=
⎛

⎝

∫

Y

|∇Wε|2 dy

⎞

⎠

1
2
⎛

⎝Z̄δ,ε − δ

∫

Y

Z2
δ,ε dy

⎞

⎠

1
2

,

Hence, passing to the limit as ε → 0 with (2.4) we get that

μ = 1

Z̄δ

− δ ≤ μ
1
2∗
(

1

Z̄δ

− δ

) 1
2 = μ

1
2∗ μ

1
2 ,

which yields the inequality μ ≤ μ∗.
Now, assume that μ = 0. Then, by (2.11) we have

lim
ε→0

⎛

⎝
1

ε2

∫

Y

|∇Zδ,ε|2 dy

⎞

⎠ = Z̄δ − δ Z̄2
δ = Z̄2

δ μ = 0. (2.15)

Putting ϕ ∈ H1

 (Y ) in (2.8) and multiplying by ε the equality, we obtain that

1

ε

∫

Y

∇Zδ,ε · ∇ϕ dy −
∫

Y

Bε · ∇Zδ,ε ϕ dy +
∫

Y

Bε · ∇ϕ Zδ,ε dy = O(ε).

Therefore, passing to the limit as ε → 0 in the previous equality together with (2.1) and
(2.15) we obtain that

Z̄δ

∫

Y

B · ∇ϕ dy = 0, ∀ ϕ ∈ H1

 (Y ),

which implies that B is divergence free in R
N , since Z̄δ > 0. Conversely, if B is not diver-

gence free in R
N , then μ is positive.

Finally, assume that the sequence ∇Wε

( x
ε

)
is equi-integrable in L2(�)N , and choose

Wε such that
∫

Y Wε(y) dy = 0. Then, by the Poincaré–Wirtinger inequality combined with
μ∗ < ∞, the sequence Wε is bounded in H1


 (Y ). Now, consider the εY -periodic function

defined by w


ε(x) := ε Wε(

x
ε
), and the solution wε in H1

0 (�) of the equation �wε = div (bε)
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in �. By (2.2) and (2.3), the function wε − w


ε is harmonic in �, and w



ε converges weakly

to 0 in H1(�), so does wε in H1
0 (�). Let ϕ ∈ C∞

c (�), we have
∫

�

|∇wε − ∇w

ε|2 ϕ dx

=
∫

�

∇(wε − w

ε) · ∇(ϕ (wε − w


ε)
)

dx −
∫

�

∇(wε − w

ε) · ∇ϕ (wε − w


ε) dx

= −
∫

�

∇(wε − w

ε) · ∇ϕ (wε − w


ε) dx −→
ε→0

0,

hence

|∇wε − ∇w

ε|2 −→ 0 strongly in L1

loc(�). (2.16)

On the other hand, the equi-integrability and the εY -periodicity of ∇w


ε combined with (2.4)

imply that |∇w


ε|2 converges weakly to μ∗ in L1

loc(�). This combined with (2.16) yields that
|∇wε|2 also converges weakly to μ∗ in L1

loc(�). Therefore, thanks to Theorem 2.4 of [6] the
homogenized equation reads as (2.5) with μ = μ∗. ��
2.2 The Stokes equation

In this section, N = 3, and � is a regular connected bounded open set of R
3. Consider a

Y -periodic vector-valued function Vε in L∞

 (Y )3, satisfying

Vε −⇀ V weakly in L2

(Y )3, with V̄ :=

∫

Y

V dy, (2.17)

such that there exists

μ∗ := lim
ε→0

∫

Y

|Vε|2 dy, (2.18)

and consider the associated oscillating function vε defined by

vε(x) := Vε

( x

ε

)
, for x ∈ �. (2.19)

Let f ∈ H−1(�)3. Our aim is to study the homogenization of the perturbed Stokes problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�uε + curl (vε) × uε + ∇ pε = f in �

div (uε) = 0 in �

uε = 0 on ∂�.

(2.20)

Problem (2.20) can be regarded as a drift problem due to the following weak formulation of
the zero-order term

curl (vε) × uε = Div (vε ⊗ uε) + (Duε)
T vε − ∇ (vε · uε) , (2.21)

where the vector-valued function vε plays the same role as the drift bε in the scalar prob-
lem (1.5). Indeed, the term Div (vε ⊗ uε) + (Duε)

T vε is similar to div (bε uε) + bε · ∇uε in
(1.5), while ∇ (vε · uε) can be included in the pressure term of (2.20).
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860 M. Briane

Since � is a connected regular bounded open set and vε ∈ L∞(�)N for a fixed ε, we easily
deduce from the Lax–Milgram Theorem applied to the Hilbert space of the free divergence
functions in H1

0 (�)3 that there exist a unique uε ∈ H1
0 (�)3 and a unique pε ∈ L2(�)/R

solutions of the Stokes problem (1.1).
Tartar [15,16] (see also [18], Chapter 19) derived a Stokes equation with a Brinkman law

assuming that vε is bounded in L3(�)3. To this end, he introduced a family of oscillating test
functions parameterized by a vector λ ∈ R

3, the equivalent of which in the periodic case is
defined by

wλ
ε (x) := W λ

ε

( x

ε

)
and qλ

ε (x) := Qλ
ε

( x

ε

)
, for x ∈ R

3, (2.22)

where W λ
ε ∈ H1


 (Y )3 and Qλ
ε ∈ L2


(Y )/R are the solutions of the Stokes problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

ε
�W λ

ε + curl (Vε) × λ + ∇Qλ
ε = 0 in R

3

div
(
W λ

ε

) = 0 in R
3

∫

Y

W λ
ε dy = 0.

(2.23)

The functions wλ
ε and pλ

ε are solutions of the rescaled problem

⎧
⎨

⎩

−�wλ
ε + curl (vε) × λ + ∇qλ

ε = 0 in R
3

div
(
wλ

ε

) = 0 in R
3.

(2.24)

Tartar obtained a homogenized problem with a Brinkman force of the type M∗ u, where u is
the limit velocity and M∗ is the constant matrix in R

3×3 defined, up to a subsequence, by

M∗λ := lim
ε→0

⎛

⎝
1

ε

∫

Y

(
DW λ

ε

)T
Vε dy

⎞

⎠ , for λ ∈ R
3. (2.25)

Note that the matrix M∗ is symmetric and nonnegative, since by putting W μ
ε in (2.23) and

using the weak formulation (2.21), we have

M∗λ · μ = lim
ε→0

⎛

⎝
1

ε2

∫

Y

DW λ
ε : DW μ

ε dy

⎞

⎠ , ∀ λ,μ ∈ R
3. (2.26)

In the present context, the sequence vε is only assumed to be bounded in L2(�)3. Hence,
we propose an approach based on different oscillating test functions that are similar to the
functions (2.7) of the scalar case. More precisely, consider for fixed δ > 0 and λ ∈ R

3 the
solution Zλ

δ,ε in H1

 (Y )3 of the Stokes problem

⎧
⎪⎨

⎪⎩

− 1

ε2 �Zλ
δ,ε − 1

ε
curl (Vε) × Zλ

δ,ε + 1

ε
∇ Pλ

δ,ε + δ Zλ
δ,ε = λ in R

3

div
(
Zλ

δ,ε

) = 0 in R
3,

(2.27)

123



Homogenization with an oscillating drift: from L2-bounded... 861

the variational formulation of which is given by

1

ε2

∫

Y

DZλ
δ,ε : D
 dy + 1

ε

∫

Y

(Vε ⊗ Zλ
δ,ε) : D
 dy − 1

ε

∫

Y

(DZλ
δ,ε)

T Vε · 
 dy

− 1

ε

∫

Y

Pλ
δ,ε div (
) dy +

∫

Y

(δ Zλ
δ,ε − λ) · 
 dy = 0, ∀ 
 ∈ H1


 (Y )3. (2.28)

The functions defined by

zλ
δ,ε(x) := Zλ

δ,ε

( x

ε

)
and pλ

δ,ε(x) := Pλ
δ,ε

( x

ε

)
, for x ∈ R

3, (2.29)

are solutions of the rescaled Stokes problem
⎧
⎨

⎩

−�zλ
δ,ε − curl (vε) × zλ

δ,ε + ∇ pλ
δ,ε + δ zλ

δ,ε = λ in R
3

div
(
zλ
δ,ε

) = 0 in R
3.

(2.30)

We have the following result:

Theorem 2.2 There exist a subsequence of ε, still denoted by ε, and a nonnegative matrix
M ∈ R

3×3 satisfying the inequality

|MT λ|2 ≤ μ∗ MT λ · λ, ∀ λ ∈ R
3, where μ∗ is the limit (2.18), (2.31)

such that for any f ∈ H−1(�)3, the solution uε of (2.20) weakly converges in H1
0 (�)3 to

the solution u of the Brinkman problem
⎧
⎨

⎩

−�u + ∇ p + Mu = f in �

div (u) = 0 in �.

(2.32)

Moreover, if the limit V of (2.17) satisfies the condition

∀ μ ∈ R
3 \ {0}, curl

(
curl (V ) × μ

) ∈ D′(R3) \ {0}, (2.33)

then M is positive definite.
On the other hand, if the sequence vε of (2.19) is bounded and equi-integrable in L12/5(�)3,
then M agrees with the Tartar matrix M∗ of (2.25).

Remark 2.3 The matrix M of the Brinkman problem is not necessarily symmetric. In [6],
we gave an example of a nonsymmetric matrix for a two-dimensional Stokes equation.

Proof The proof is divided into three steps.

First step: Derivation of a priori estimates.

First of all, putting uε in Eq. (2.20), we obtain the energy equality
∫

�

|∇uε|2 dx = 〈 f, uε〉H−1(�)3,H1
0 (�)3 , (2.34)

which implies that the sequence uε is bounded in H1
0 (�)3. Then, by the embedding of

H1(�) into L6(�), the sequences |vε ⊗ uε| and vε · uε are bounded in L
3
2 (�), while the
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sequence
∣
∣(Duε)

T vε

∣
∣ is bounded in L1(�). Moreover, the Eq. (1.1) combined with the weak

formulation (2.21) yields

∇ pε = �uε − Div (vε ⊗ uε) − (Duε)
T vε + ∇(vε · uε) + f

which is thus bounded in W −1,r ′
(�) for any r ∈ (1, 3

2

)
, due to the embedding of L1(�) into

W −1,r ′
(�). Hence, pε is bounded in Lr (�)/R for any r ∈ (1, 3

2

)
, by the classical estimate

of the pressure (see, e.g., [12]). Therefore, up to extract a subsequence uε and pε satisfy for
any r ∈ (1, 3

2

)
, the convergences

uε −⇀ u weakly in H1(�)3 and pε −⇀ p weakly in Lr (�)/R. (2.35)

Now, let us derive estimates satisfied by the test function (2.27). Let δ > 0 and λ ∈ R
3.

Putting 
 = Zλ
δ,ε as test function in (2.28), we have

1

ε2

∫

Y

|DZλ
δ,ε|2 dy + δ

∫

Y

|Zλ
δ,ε|2 dy = λ · Z̄λ

δ,ε, where Z̄λ
δ,ε :=

∫

Y

Zλ
δ,ε dy. (2.36)

By this energy estimate, the linearity of λ �→ Zλ
δ,ε, and using a diagonal extraction, there

exist a subsequence of ε, still denoted by ε, and a constant vector Z̄δ ∈ R
3, such that for a

given countable dense set D of (0,∞), we have

Zλ
δ,ε −⇀ Z̄λ

δ weakly in H1

 (Y )3, ∀ λ ∈ R

3, ∀ δ ∈ D. (2.37)

Moreover, proceeding as for the pair (uε, pε), by the weak formulation (2.21) and the con-
vergences (2.17), (2.37), the sequence curl (Vε) × Zλ

δ,ε is bounded in W −1,r ′

 (Y )3 for any

r ∈ (
1, 3

2

)
, while by (2.36), the sequence 1

ε
�Zλ

δ,ε is bounded in H−1

 (Y )3. Hence, the

pressure in (2.27) satisfies for any r ∈ (1, 3
2

)
,

Pλ
δ,ε −⇀ Pλ

δ weakly in Lr

(Y )/R, ∀ λ ∈ R

3, ∀ δ ∈ D. (2.38)

Therefore, rescaling the convergence (2.37) combined with the boundedness of 1
ε

|DZλ
δ,ε| in

L2

(Y ) and the convergence (2.38), we get that the εY -periodic sequences zλ

δ,ε, pλ
δ,ε defined

by (2.29) satisfy for any r ∈ (1, 3
2

)
,

zλ
δ,ε −⇀ Z̄λ

δ weakly in H1(�)3, pλ
δ,ε −⇀ 0 weakly in Lr (�)/R, ∀ λ ∈ R

3, ∀ δ∈ D.

(2.39)

Let us conclude this first step by some properties satisfied by the limit Z̄λ
δ . Note that by

linearity, there exists a matrix Nδ ∈ R
3×3 such that Z̄λ

δ = Nδλ for any λ ∈ R
3. Passing to

the limit ε → 0 in (2.36), we get the inequality

Nδλ · λ ≥ δ |Zλ
δ |2 = δ |Nδλ|2, ∀ λ ∈ R

3. (2.40)

Moreover, putting 
 = λ ∈ R
3 as test function in (2.28), we have

− 1

ε

∫

Y

(
curl (Vε) × Zλ

δ,ε

) · λ dy+δ Z̄λ
δ,ε · λ=− 1

ε

∫

Y

(
DZλ

δ,ε)
T Vε · λ dy+δ Z̄λ

δ,ε · λ=|λ|2.

(2.41)
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If Nδλ = 0, then by (2.36), the sequence 1
ε

|DZλ
δ,ε| converges strongly to 0 in L2


(Y ). Hence,
passing to the limit as ε → 0 in (2.41), we deduce that λ = 0. Therefore, the matrix Nδ is
invertible and by (2.40) satisfies the inequality (in the sense of the quadratic forms)

N−1
δ ≥ δ I. (2.42)

On the other hand, assume that there exists μ ∈ R
3 \ {0} such that N−1

δ μ · μ = δ |μ|2. Then,
the vector λ := N−1

δ μ satisfies the equality N δλ ·λ = δ |Nδλ|2. This combined with equality
(2.36) thus yields

lim
ε→0

⎛

⎝
1

ε2

∫

Y

|DZλ
δ,ε|2 dy

⎞

⎠ = Nδλ · λ − δ |Nδλ|2 = 0.

Therefore, passing to the limit in the variational formulation (2.28) multiplied by ε, and using
convergences (2.37) and (2.38), we obtain that

−
∫

Y

(
curl (V )×Nδλ

) · 
 dy =−
∫

Y

(
curl (V )×μ

) · 
 dy =0, ∀ 
∈ H1

 (Y )3, div (
)=0,

which by periodicity implies that curl
(
curl (V ) × μ

) = 0 in D′(R3). Conversely, if (2.33)
holds, then

N−1
δ μ · μ > δ |μ|2, ∀ μ ∈ R

3 \ {0},
namely N−1

δ − δ I is positive definite.

Second step: Derivation of the limit problem.

Let us apply the Tartar method with the oscillating test functions zλ
δ,ε. Let λ ∈ R

3 and

ϕ ∈ C∞
c (�). Putting ϕ uε in (2.30) and ϕ zλ

δ,ε in (2.20), and equating the two formulas, we
have

∫

�

Duε : (zλ
δ,ε ⊗ ∇ϕ) dx −

∫

�

Dzλ
δ,ε : (uε ⊗ ∇ϕ) dx

−
∫

�

pε ∇ϕ · zδ,ε dx +
∫

�

pλ
δ,ε ∇ϕ · uε dx − δ

∫

�

ϕ zδ,ε · uε dx

=
∫

�

ϕ f · zδ,ε dx −
∫

�

ϕ λ · uε dx .

Hence, passing to the limit as ε → 0 in the previous equality owing to convergences (2.35)
and (2.39) and to the strong convergences of uε, zλ

δ,ε in Ls(�) for any s ∈ [1, 6), we obtain
that
∫

�

Du : (Nδλ ⊗ ∇ϕ) dx−
∫

�

p ∇ϕ · Nδλ dx+
∫

�

ϕ (λ−δ Nδλ) · u dx =
∫

�

ϕ f · Nδλ dx .

(2.43)

Set λi := N−1
δ ei , for i = 1, 2, 3, where (e1, e2, e3) is the canonic basis of R

3, and let

 = (ϕ1, ϕ2, ϕ3) ∈ C∞

c (�)3. Using λ = λi and the functions ϕ = ϕi , for i = 1, 2, 3, in
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(2.43), and adding the three equations, it follows that u satisfies the variational problem
∫

�

Du : D
 dx −
∫

�

p div (
) dx +
∫

�

(N−1
δ − δ I )T u · 
 dx =

∫

�

f · 
 dx . (2.44)

On the other hand, proceeding as in the scalar case, it is easy to check that by (2.42) the
nonnegative matrix

M := (N−1
δ − δ I )T (2.45)

is independent of δ. Therefore, (2.44) is the variational formulation of the Stokes problem
(2.32) with the nonnegative matrix M . Moreover, for the whole sequence ε such that the
convergences (2.17), (2.37), and (2.38) hold, the sequences uε, pε converge according to
(2.35), respectively, to the solutions u, p of problem (2.32)

Let us prove the inequality (2.31). Let λ ∈ R
3. Using the Cauchy–Schwarz inequality

combined with estimate (2.36) in the equality (2.41), we have

|λ|2−δ Z̄λ
δ,ε · λ = −1

ε

∫

Y

(DZλ
δ,ε)

T Vε · λ dy ≤
⎛

⎝

∫

Y

|Vε|2 dy

⎞

⎠

1
2
⎛

⎝
1

ε2

∫

Y

|DZλ
δ,ε|2 dy

⎞

⎠

1
2

|λ|

=
⎛

⎝

∫

Y

|Vε|2 dy

⎞

⎠

1
2
⎛

⎝λ · Z̄λ
δ,ε − δ

∫

Y

|Zλ
δ,ε|2 dy

⎞

⎠

1
2

|λ|.

Hence, by convergences (2.37) and (2.18), we get that

(I − δ Nδ)λ · λ = |λ|2 − δ Nδλ · λ ≤ μ
1
2∗
(
Nδλ · λ − δ |Nδλ|2)

1
2 |λ|

= μ
1
2∗
(
(I − δ Nδ)λ · Nδλ

) 1
2 |λ|

Set μ := Nδλ. Therefore, from the previous inequality and the definition (2.45) of M , we
deduce that

MT μ · (M + δ I )T μ ≤ μ
1
2∗ (MT μ · μ)

1
2
∣
∣(M + δ I )T μ

∣
∣,

which implied the desired inequality (2.31) as δ tends to 0.

Third step: Comparison with the Tartar result.

It remains to prove the equality M = M∗ assuming that vε (2.19) is bounded and equi-inte-
grable in L12/5(�)3. First of all, thanks to the regularity result of the Stokes equation (see,
e.g., [12] Theorem 2, p. 67) there exists a subsequence of ε, still denoted by ε, such that the
solutions w

μ
ε , qμ

ε of (2.24) satisfy the convergences

wμ
ε −⇀ 0 weakly in W 1,12/5(�)3, qμ

ε −⇀ 0 weakly in L12/5(�)/R, ∀ μ ∈ R
3.

(2.46)

Let λ,μ ∈ R
3 and ϕ ∈ C∞

c (�). Putting ϕ w
μ
ε in (2.30) and ϕ zλ

δ,ε in (2.24) (with μ), using
the weak formulation (2.21), the weak convergences (2.39) and (2.46) of the velocities and
the pressures, and equating the two formulas we have
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∫

Y

(vε ⊗ zλ
δ,ε) : Dwμ

ε ϕ dx−
∫

�

(Dzλ
δ,ε)

T vε · wμ
ε ϕ dx+

∫

Y

(vε ⊗ μ) : Dzλ
δ,ε ϕ dx −→

ε→0
0.

(2.47)

In the first term of (2.47), vε is bounded and equi-integrable in L12/5(�)3, by the Sobolev
embedding zλ

δ,ε is bounded in L6(�)3 and converges a.e. in � to Z̄λ
δ up to a subsequence,

and Dw
μ
ε is bounded in L12/5(�)3×3, with 5

12 + 1
6 + 5

12 = 1. Hence, by the Egorov theorem,
we have

(vε ⊗ zλ
δ,ε) : Dwμ

ε − (vε ⊗ Z̄λ
δ ) : Dwμ

ε −⇀ 0 in D′(�).

This combined with the εY -periodicity of the functions and the definition (2.25) of M∗ yields,
up to a subsequence,

(vε ⊗ zλ
δ,ε) : Dwμ

ε −⇀ lim
ε→0

⎛

⎝
1

ε

∫

Y

(Vε ⊗ Z̄λ
δ ) : DW μ

ε dy

⎞

⎠ = M∗μ · Z̄λ
δ in D′(�).

(2.48)

Similarly for the second term of (2.47), since w
μ
ε is bounded in L12(�)3 by (2.46) combined

with the Sobolev embedding, and converges to 0 a.e. in � up to a subsequence, we have

(Dzλ
δ,ε)

T vε · wμ
ε −⇀ 0 in D′(�). (2.49)

For the third term of (2.47), the εY periodicity implies that, up to a subsequence,

(vε ⊗ μ) : Dzλ
δ,ε −⇀ lim

ε→0

⎛

⎝
1

ε

∫

Y

(Vε ⊗ μ) : DZλ
δ,ε dy

⎞

⎠ in D′(�). (2.50)

On the other hand, putting 
 = μ in (2.28), it follows that

− 1

ε

∫

Y

(Vε ⊗ μ) : DZλ
δ,ε dy = − 1

ε

∫

Y

(DZλ
δ,ε)

T Vε · μ dy = λ · μ − δ Z̄λ
δ,ε · μ.

Finally, using the convergence (2.47) combined with (2.48), (2.49), (2.50), and the previous
equality, and taking into account (2.25), (2.45) and the symmetry of M∗, we obtain that

M∗μ · Z̄λ
δ = M∗Nδλ · μ = (I − δ Nδ)λ · μ = MT Nδλ · μ, ∀ λ,μ ∈ R

3,

which implies that M∗ = MT = M , since Nδ is invertible. Therefore, we derive the same
Brinkman matrix that in the Tartar approach. ��

3 Homogenization with a large drift in dimension two

Let Y := [− 1
2 , 1

2

]2
, let Bε be a Y -periodic vector-valued function in L∞


 (Y )2, and let bε be
the oscillating drift defined by

bε(x) := Bε

( x

ε

)
, for x ∈ R

2. (3.1)

Consider the solution Zε in H1

 (Y ) of the equation

− 1

ε2 �Zε − 1

ε
Bε · ∇Zε − 1

ε
div (Bε Zε) + Zε = 1 in R

2, (3.2)
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or equivalently in the torus, for any V ∈ H1

 (Y ),

1

ε2

∫

Y

∇Zε · ∇V dy − 1

ε

∫

Y

Bε · ∇Zε V dy+ 1

ε

∫

Y

Bε · ∇V Zε dy +
∫

Y

Zε V dy =
∫

Y

V dy.

(3.3)

By the maximum principle Zε is nonnegative. Moreover, taking V = Zε in (3.3), we get that

1

ε2

∫

Y

|∇Zε|2 dy +
∫

Y

Z2
ε dy =

∫

Y

Zε dy. (3.4)

Hence, up to extract a subsequence, we can assume that

Zε −⇀ Z̄ weakly in H1

 (Y ), where lim

ε→0

⎛

⎝

∫

Y

Zε dy

⎞

⎠ = Z̄ ∈ [0, 1]. (3.5)

Define the sequence ξε in R
2 by

ξε :=
∫

Y

Bε Zε dy. (3.6)

As in the previous section, we will use the oscillating test function defined by zε(x) := Zε(
x
ε
),

for x ∈ R
2, which is solution of the rescaled equation from (3.3),

− �zε − bε · ∇zε − div (bε zε) + zε = 1 in R
2. (3.7)

Then, we have the following homogenization result for the scalar drift problem (1.5) with
no prescribed bound on bε, but assuming a sign of its divergence:

Theorem 3.1 Assume that the drift bε satisfies

div (bε) ≥ 0 in D′(R2) or − div (bε) ≥ 0 in D′(R2). (3.8)

Let � be a bounded open set of R
2, and let f ∈ H−1(�). Then, we have the following

alternative:

• If the sequence |Bε Zε| is bounded in L1(Y ) and Z̄ > 0, then, up to a subsequence, ξε

converges to some ξ in R
2, and the solution uε of the problem (1.5) with the drift (3.1)

converges weakly in H1
0 (�) to the solution u of the equation

− �u − 2

Z̄
ξ · ∇u +

(
1

Z̄
− 1

)

u = f in �. (3.9)

• If ‖Bε Zε‖L1(Y )2 converges to ∞ with the extra assumption

lim inf
ε→0

|ξε|
‖Bε Zε‖L1(Y )2

> 0, (3.10)

or Z̄ = 0, then uε converges strongly to 0 in H1
0 (�).

Proof First of all, for a given f ∈ H−1(�), the solution uε of (1.5) satisfies the energy
equality

∫

�

|∇uε|2 dx = 〈 f, uε〉H−1(�),H1
0 (�), (3.11)
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which implies that uε is bounded in H1
0 (�) and thus converges weakly, up to a subsequence, to

some u in H1
0 (�). Using a density argument in (3.11), we can also assume that the right-hand

side f belongs to L∞(�).
Let ϕ ∈ C∞

c (�). Putting ϕ zε in (1.5), ϕ uε in equation of (3.7), and equating the two
formulas, we get that

∫

�

∇uε · ∇ϕ zε dx −
∫

�

∇zε · ∇ϕ uε dx − 2
∫

�

bε · ∇ϕ uε zε dx −
∫

�

ϕ zε uε dx

=
∫

�

f ϕ zε dx −
∫

�

ϕ uε dx .

(3.12)

The delicate term is the third one with the product bε zε uε. It is enough to derive its limit
locally thanks to a partition of the unity. To this end, consider an open square Q � �,
and, for ε small enough, the smallest square Qε composed of an entire number of cells
ε (k + Y ) , k ∈ Z

2, such that Q ⊂ Qε � �. Note that Qε = Rε(Q), where Rε is an affine
mapping converging uniformly to Identity locally in R

2. Let wε ∈ H1
0 (Qε) be the solution

of the equation

�wε = div (bε zε) in Qε. (3.13)

The following result holds:

Lemma 3.2 Under assumption (3.8), the sequence ‖∇wε‖L p(Qε)2 is bounded for any p ∈
[1, 2).

Let w̃ε ∈ H1(Qε) be the stream function with zero Qε-average, defined from (3.13) by

bε zε = ∇wε + J∇w̃ε, where J := (
0 −1
1 0

)
. (3.14)

First, assume that the sequence |Bε Zε| is bounded in L1(Y ). Hence, by periodicity, the
sequence bε zε is bounded in L1(Q)2. Moreover, by Lemma 3.2 and (3.14), the sequence w̃ε

is bounded in W 1,1(Q). For ϕ ∈ C∞
c (Q), we have by an integration by parts

∫

Q

bε · ∇ϕ uε zε dx =
∫

Q

∇wε · ∇ϕ uε dx −
∫

Q

J∇w̃ε · ∇uε ϕ dx (3.15)

On the one hand, thanks to Lemma 3.2 and to the weak convergence of uε to u in H1
0 (�),

which is compactly embedded in Lq(�) for any q ∈ [1,∞), we clearly have, up to a subse-
quence,

lim
ε→0

∫

Q

∇wε · ∇ϕ uε dx =
∫

Q

∇w · ∇ϕ u dx, (3.16)

where w is the weak limit of wε in L p(Q), for some p ∈ (1, 2). On the other hand, up to a
subsequence w̃ε converges weakly to some w̃ in BV (Q). Due to the periodicity of bε zε and
Lemma 3.2, the sequence ∇w̃ε converges weakly-∗ in M(Q)2 to ∇w̃ satisfying

ξ = ∇w + J∇w̃, (3.17)
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where ξ is the limit of ξε (3.6) in R
2, so that ∇w̃ ∈ L p(Q)2. Moreover, again by periodicity

and up to a subsequence we have

|bε zε| −⇀ lim
ε→0

⎛

⎝

∫

Y

|Bε Zε| dy

⎞

⎠ weakly-∗ in M(Q), (3.18)

and |∇wε| converges weakly in L p(Q). This combined with |J∇w̃ε| ≤ |bε zε| + |∇wε|
implies that the sequence |J∇w̃ε| converges weakly-∗ in M(Q) to a function of L p(Q).
Therefore, since ∇uε converges weakly to ∇u in L2(�)2, J∇w̃ε is divergence free and
converges weakly-∗ to J∇w in M(�)2, and since there is no concentration effects for the
sequence |J∇w̃ε − J∇w̃|, the div-curl result of [5] (Theorem 3.1 and Remark 3.2) combined
with integrations by parts and the fact that ∇w̃ ∈ L p(Q)2 yields

lim
ε→0

∫

Q

J∇w̃ε · ∇uε ϕ dx = 〈
J∇w̃ · ∇u, ϕ

〉

D′(Q),C∞
c (Q)

= 〈
div (u J∇w̃) , ϕ

〉

D′(Q),C∞
c (Q)

= −
∫

Q

J∇w̃ · ∇ϕ u dx .

(3.19)

Hence, passing to the limit in (3.15) together with (3.16), (3.19), and (3.17), it follows that

lim
ε→0

∫

Q

bε · ∇ϕ uε zε dx =
∫

Q

ξ · ∇ϕ u dx . (3.20)

Moreover, by estimates (3.5), the sequence zε converges weakly to Z̄ in H1(�). Therefore,
passing to the limit in (3.12) together with (3.20), we obtain that

∫

Q

∇u · ∇ϕ Z̄ dx−2
∫

Q

ξ · ∇ϕ u dx −
∫

Q

ϕ Z̄ u dx =
∫

Q

f ϕ Z̄ dx −
∫

Q

ϕ u dx, (3.21)

which is the variational formulation of Eq. (3.9) if Z̄ > 0. Using a uniqueness argument, the
sequence uε converges weakly to the solution u of (3.9) for any sequence ε satisfying the
convergence of ξε to ξ and (3.5)

Otherwise, Z̄ = 0 and equality (3.21) implies that for any ϕ ∈ H1
0 (�),

∫

�

ϕ u dx − 2
∫

�

ξ · ∇ϕ u dx = 0.

Taking ϕ = u and integrating by parts the second integral, it follows that u = 0. This
combined with the energy equality (3.11) implies that uε converges strongly to 0 in H1

0 (�).
Now, assume that ‖Bε Zε‖L1(Y )2 converges to ∞. Dividing the equality (3.12) by

‖Bε Zε‖L1(Y )2 and taking into account that the sequences uε, zε are bounded in H1(�),
we get that

lim
ε→0

∫

�

ζε · ∇ϕ uε dx = 0, where ζε := Bε Zε

‖Bε Zε‖L1(Y )2

( x

ε

)
. (3.22)

By virtue of the εY -periodicity, the sequence ζε is bounded in L1(�)2, and, up to a sub-
sequence, converges weakly-∗ in M(�) to some vector ζ ∈ R

2, with ζ �= 0 by (3.10).
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Replacing bε zε by ζε, and repeating the procedure of the previous case, we obtain similarly
to (3.20) that

lim
ε→0

∫

�

ζε · ∇ϕ uε dx =
∫

�

ζ · ∇ϕ u dx .

This combined with equality (3.22) yields that ζ · ∇u = 0 a.e. in �. However, since ζ is a
nonzero vector of R

2, there exists a constant C > 0 such that the following Poincaré–Wirtin-
ger inequality holds (it is enough to extend u ∈ H1

0 (�) by zero in an open square containing
�̄, a side of which is parallel to ζ ):

∫

�

u2 dx ≤ C
∫

�

|ζ · ∇u|2 dx = 0.

Therefore, u = 0 and by (3.11) uε converges strongly to 0 in H1
0 (�). ��

Proof of Lemma 3.2 For any k > 0, define the truncation wk
ε := (−k ∨ wε) ∧ k. Putting wk

ε

in equations (3.7), (3.13) and integrating by parts, we have
∫

Qε

∇zε · ∇wk
ε dx −

∫

Qε

bε · ∇zε wk
ε dx +

∫

Qε

|∇wk
ε |2 dx =

∫

Qε

(1 − zε) wk
ε dx . (3.23)

Again using (3.13), the second integral of (3.23) can be written
∫

Qε

bε · ∇zε wk
ε dx =

∫

Qε

bε · ∇(zε wk
ε ) dx −

∫

Qε

bε · ∇wk
ε zε dx

=
∫

Qε

bε · ∇(zε wk
ε ) dx −

∫

Qε

|∇wk
ε |2 dx .

Substituting this equality in (3.23), it follows that

2
∫

Qε

|∇wk
ε |2 dx +

∫

Qε

∇zε · ∇wk
ε dx =

∫

Qε

bε · ∇(zε wk
ε ) dx +

∫

Qε

(1 − zε) wk
ε dx

=
∫

Qε

bε · ∇(zε (wk
ε ∓ k)

)
dx +

∫

Qε

bε · ∇(± k zε) dx +
∫

Qε

(1 − zε) wk
ε dx . (3.24)

Then, by the inequality (3.8), that is, ∓ div (bε) ≥ 0, combined with the fact that ∓ zε (wk
ε∓ k)

is Qε-periodic and nonnegative, equality (3.24) implies that

2
∫

Qε

|∇wk
ε |2 dx +

∫

Qε

∇zε · ∇wk
ε dx ≤ ± k

∫

Qε

bε · ∇zε dx +
∫

Qε

(1 − zε) wk
ε dx . (3.25)

However, using the definition of Qε combined with the εY -periodicity of bε ·∇zε , and putting
V = 1 in Eq. (3.3), we obtain that

∣
∣
∣
∣
∣
∣
∣

∫

Qε

bε · ∇zε dx

∣
∣
∣
∣
∣
∣
∣

= |Qε|
ε

∣
∣
∣
∣
∣
∣

∫

Y

Bε · ∇Zε dy

∣
∣
∣
∣
∣
∣
= |Qε|

∣
∣
∣
∣
∣
∣

∫

Y

(Zε − 1) dy

∣
∣
∣
∣
∣
∣
≤ c.
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Therefore, since zε is bounded in H1(�) inequality (3.25) and the previous estimate imply
that there exist two constants k0, C > 0 such that

sup
ε>0

∫

Qε

|∇wk
ε |2 dx ≤ C k, ∀ k ≥ k0. (3.26)

Now, passing from the square Qε to the fixed square Q = R−1
ε (Qε) through the affine map-

ping Rε (the gradient of which converges to I2 in R
2×2), we can apply Lemma 4.2 of [2] to

the sequence wε ◦ Rε ∈ H1
0 (Q) satisfying the estimate (3.26) with the fixed square Q. As

a consequence, ∇ (wε ◦ Rε) is bounded in any Marcinkiewicz space of exponent q ∈ [1, 2)

in the bounded open set Q; hence, ∇ (wε ◦ Rε) is bounded in L p(Q)2 for any p ∈ [1, 2).
Therefore, for any p ∈ [1, 2), there exists a constant C p > 0 such that

sup
ε>0

∫

Qε

|∇wε|p dx ≤ C p,

which concludes the proof. ��

4 Nonlocal effects in dimension three

Let Y := [− 1
2 , 1

2

]2
, and let � := ω × (0, 1) be a vertical cylinder the basis of which ω is

a regular bounded open set of R
2. Let ωε ⊂ ω be the εY -periodic lattice composed of the

small disks centered at the points εk, k ∈ Z
2, and of radius εrε , that is,

ωε = ω ∩
⋃

k∈Z2

(ε k + ε Qε) , (4.1)

where Qε is the closed disk centered at the origin and of radius rε → 0. Consider the
oscillating drift bε defined by

bε(x) := βε

2

1ωε (x ′)
|Qε| e3 = βε

2

1�ε (x)

|Qε| e3, for x = (x ′, x3) ∈ �, (4.2)

where βε is a positive sequence, e3 :=
(

0
0
1

)
, and �ε := ωε ×(0, 1). Note that bε is divergence

free in �. Assume that

lim
ε→0

2π

ε2| ln rε| = γ ∈ [0,∞] and lim
ε→0

βε = β ∈ [0,∞]. (4.3)

To state the homogenization result, we need the following preliminary lemma:

Lemma 4.1 Let zε be the solution in H1
0 (�) of the equation

− �zε − bε · ∇zε − div (bε zε) = −�zε − βε

1�ε

|Qε|
∂zε

∂x3
= 1 in �. (4.4)

Assume that γ ∈ (0,∞). Then, there exist a subsequence of ε, still denoted by ε, and two
nonnegative functions z ∈ H1

0 (�) ∩ C0(�) and z̄ ∈ H1
(
0, 1; L2(ω)

)
such that

zε −⇀ z weakly in H1
0 (�) and

1�ε

|Qε| zε −⇀ z̄ weakly-∗ in M(�̄), (4.5)
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with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z > 0 in �,

1∫

0

z̄(·, t) dt ≤
1∫

0

z(·, t) dt a.e. in ω,

z̄(·, 1) ≤ z̄(·, 0) a.e. in ω.

(4.6)

Moreover,

– if β < ∞, z and z̄ are solutions of the coupled system
⎧
⎪⎪⎨

⎪⎪⎩

−�z + γ (z − z̄) = 1 in �

β
∂ z̄

∂x3
+ γ (z − z̄) = 0 in �,

(4.7)

– if β = ∞, z and z̄ are solutions of
⎧
⎨

⎩

−�z + γ (z − z̄) = 1 in �

z̄ − z̄(·, 0) = 0 in �.

(4.8)

In the sequel, we will use a subsequence ε defined as in Lemma 4.1. Consider for f ∈ H−1(�)

and the vector-valued function bε defined by (4.2) the drift problem
⎧
⎪⎪⎨

⎪⎪⎩

−�uε + bε · ∇uε + div (bε uε) = −�uε + βε

1�ε

|Qε|
∂uε

∂x3
= f in �

uε = 0 on ∂�.

(4.9)

Then, we have the following homogenization result:

Theorem 4.2 The solution uε of (4.9) converges weakly in H1
0 (�) to the solution u of one

of the following equations in �:

– if γ, β ∈ (0,∞),

− �u+γ u− γ 2

β
e− γ

β
x3

x3∫

0

e
γ
β

t u(x ′, t) dt−γ
e− γ

β
x3 z̄(x ′, 1)

∫ 1
0 e

γ
β

(1−t)z(x ′, t) dt

1∫

0

e
γ
β

t u(x ′, t) dt = f,

(4.10)

– if γ ∈ (0,∞) and β = ∞,

− �u + γ u − γ
z̄(x ′)

∫ 1
0 z(x ′, t) dt

1∫

0

u(x ′, t) dt = f, (4.11)

– if γ = ∞ and β < ∞,

− �u + β
∂u

∂x3
= f, (4.12)
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– if γ = 0 or β = 0,

− �u = f, (4.13)

– if γ = β = ∞,

u = 0. (4.14)

Proof We will need the following auxiliary results:

Lemma 4.3 There exists a constant C > 0 such that

∀ v ∈ H1
0 (�), −

∫

�ε

v2 dx ≤ C
(
1 + ε2| ln rε|

)
∫

�

|∇v|2 dx . (4.15)

Lemma 4.4 Let v̂ε be the x3-independent and εY -periodic function defined by

v̂ε(x) := V̂ε

(
x ′

ε

)

, for x = (x ′, x3) ∈ R
3, where

V̂ε(y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if r =
√

y2
1 + y2

2 ≤ rε

ln rε − ln r

ln rε + ln 2
if r ∈ (rε, 1/2)

1 elsewhere,

for y ∈ Y.

(4.16)

Then, there exists a constant C > 0 such that for any v ∈ H1
0 (�),

∣
∣
∣
∣
∣
∣

∫

�

∇v̂ε · ∇v dx − 2π

ε2| ln(2rε)|

⎛

⎝

∫

�

v dx −
∫

�

1�ε

|Qε| v dx

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C

ε | ln rε| ‖∇v‖L2(�).

(4.17)

Moreover, if γ < ∞, the sequence v̂ε converges weakly to 1 in H1
loc(R

2).

Lemma 4.3 is a straightforward consequence of [13] (Lemma 3), and Lemma 4.4 is an easy
adaptation of [9] (Example 2.1) and [7] (Lemma 1).

First of all, as in the previous section, the energy equality (3.11) holds, the sequence uε

weakly converges, up to a subsequence, to some function u in H1
0 (�), and we can assume

that the right-hand side f of (4.9) belongs to L∞(�).
Assume that γ > 0, and set

ūε := 1�ε

|Qε| uε. (4.18)

Note that |�ε| ≈ |�| |Qε|. Hence, by the Cauchy–Schwarz inequality and the estimate (4.15)
with γ > 0, we have for any ϕ ∈ C0(�̄),

lim sup
ε→0

∫

�

|ϕ ūε| dx ≤ c lim sup
ε→0

⎡

⎢
⎢
⎣

⎛

⎜
⎝−
∫

�ε

u2
ε dx

⎞

⎟
⎠

1
2
⎛

⎜
⎝−
∫

�ε

ϕ2 dx

⎞

⎟
⎠

1
2
⎤

⎥
⎥
⎦ ≤ c ‖ϕ‖L2(�). (4.19)
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Taking ϕ = 1 in (4.19), we get that the sequence ūε is bounded in L1(�), and thus, up
to a subsequence, ūε converges weakly-∗ to some ū in M(�̄). Again using (4.19) with an
arbitrary ϕ ∈ C0(�̄), the Riesz representation theorem implies that ū ∈ L2(�).

Now, assume that γ > 0 and β < ∞. Passing to the limit in Eq. (4.9), we obtain that

− �u + β
∂ ū

∂x3
= f in D′(�). (4.20)

Assume in addition that γ < ∞. Let ϕ ∈ C∞
c (�). Putting ϕ v̂ε (which vanishes in �ε) in

Eq. (4.9) and ϕ uε in estimate (4.17) it follows that
∫

�

∇uε · ∇(ϕ v̂ε) dx −
∫

�

∇v̂ε · ∇(ϕ uε) dx =
∫

�

∇uε · ∇ϕ v̂ε dx −
∫

�

∇v̂ε · ∇ϕ uε dx

=
∫

�

f ϕ v̂ε dx − 2π

ε2| ln(2rε)|
∫

�

ϕ (uε − ūε) dx + o(1).

This combined with the weak convergences of v̂ε to 1 in H1(�), of uε to u in H1
0 (�), and

of ûε to ū in M(�) implies that
∫

�

∇u · ∇ϕ dx =
∫

�

f ϕ dx −
∫

�

γ (u − ū) ϕ dx,

which yields the equation

− �u + γ (u − ū) = f in D′(�). (4.21)

Equating (4.20) and (4.21), we also have

β
∂ ū

∂x3
+ γ (ū − u) = 0 in D′(�). (4.22)

Since u, ū ∈ L2(�), we deduce from (4.22) that ū ∈ H1
(
0, 1; L2(ω)

)
.

Now, it remains to distinguish the different cases.
Case γ, β ∈ (0,∞):
To derive the limit Eq. (4.10), it is enough to determine the trace ū(·, 0) by virtue of the
first-order Eq. (4.22). To this end, we use the sequence zε of Lemma 4.1. Let ϕ ∈ C∞

c (ω)

(ϕ = ϕ(x ′)). Putting ϕ zε in Eq. (4.9), ϕ uε in Eq. (4.4), equating the two equations, and
integrating by parts the term with ∂uε

∂x3
(using that ϕ is independent of x3), we get that

∫

�

∇uε · ∇ϕ zε −
∫

�

∇zε · ∇ϕ uε =
∫

�

f ϕ zε dx −
∫

�

ϕ uε dx,

which yields at the limit
∫

�

∇u · ∇ϕ z −
∫

�

∇z · ∇ϕ u dx =
∫

�

f ϕ z dx −
∫

�

ϕ u dx . (4.23)

On the other hand, putting ϕ z in Eq. (4.21), ϕ u in the first Eq. of (4.7), and equating the two
equations, we obtain that
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∫

�

∇u · ∇ϕ z +
∫

�

γ (u − ū) ϕ z dx −
∫

�

∇z · ∇ϕ u dx −
∫

�

γ (z − z̄) ϕ u dx

=
∫

�

f ϕ z dx −
∫

�

ϕ u dx,

which combined with (4.23) implies that
∫

�

γ ū z ϕ dx =
∫

�

γ z̄ u ϕ dx .

Therefore, due to γ > 0 and the arbitrariness of ϕ = ϕ(x ′), we deduce that

1∫

0

u(·, x3) z̄(·, x3) dx3 =
1∫

0

z(·, x3) ū(·, x3) dx3 a.e. in ω. (4.24)

Moreover, using that ū z̄ ∈ W 1,1
(
0, 1; L2(ω)

)
, the second Eq. of (4.7), (4.22), and (4.24)

gives

ū(·, 1) z̄(·, 1) − ū(·, 0) z̄(·, 0)=
1∫

0

∂(ū z̄)

∂x3
dx3 = γ

β

1∫

0

[
(u − ū) z̄−(z − z̄) ū

]
dx3 =0.

(4.25)

On the other hand, integrating the first-order Eq. (4.22) with respect to the variable x3, we
have

ū(·, x3) = γ

β
e− γ

β
x3

x3∫

0

e
γ
β

t u(·, t) dt + ū(·, 0) e− γ
β

x3 a.e. in ω, (4.26)

and similarly with the second Eq. of (4.7)

z̄(·, x3) = − γ

β
e

γ
β

x3

x3∫

0

e− γ
β

t z(·, t) dt + z̄(·, 0) e
γ
β

x3 a.e. in ω. (4.27)

Combining (4.25) and (4.26), (4.27) for x3 = 1, and taking into account (4.6), we get the
formula

ū(·, 0) = z̄(·, 1)
∫ 1

0 e
γ
β

(1−t)z(·, t) dt

1∫

0

e
γ
β

t u(·, t) dt a.e. in ω. (4.28)

Therefore, putting (4.26) and (4.28) in (4.21), we obtain the desired nonlocal Eq. (4.10).
To conclude, we need to prove that Eq. (4.10), or equivalently the system (4.21), (4.22),

and (4.28), admits a unique solution u in H1
0 (�). Due to the linearity, it is enough to show

that u = 0 when the right-hand side f = 0 in �. In this case, putting u in (4.21), ū in (4.22),
integrating by parts, and adding the two equations, it follows that

∫

�

|∇u|2 dx + γ

∫

�

(u − ū)2 dx + β

2

∫

ω

(
ū2(x ′, 1) − ū2(x ′, 0)

)
dx ′ = 0. (4.29)
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Moreover, taking into account the equalities (4.26) and (4.27) (as by-products of (4.22) and
the second Eq. of (4.7), respectively), it is easy to check that conversely equality (4.28)
implies relation (4.25). Now, if ū(x ′, 0) = 0, then we clearly have ū2(x ′, 1)− ū2(x ′, 0) ≥ 0.
Otherwise, by (4.28) we have both ū(x ′, 0) �= 0 and z̄(x ′, 1) �= 0, hence from (4.25) and the
third inequality of (4.6) we deduce that

∣
∣
∣
∣

ū(x ′, 1)

ū(x ′, 0)

∣
∣
∣
∣ = z̄(x ′, 0)

z̄(x ′, 1)
≥ 1,

which implies that ū2(x ′, 1) − ū2(x ′, 0) ≥ 0 a.e. in ω. Therefore, using this inequality in
(4.29), we get that u = 0 a.e. in �, which establishes the uniqueness for Eq. (4.10) As a
consequence, uε converges to the solution u of (4.10) for the whole sequence ε defined in
Lemma 4.1.
Case γ ∈ (0,∞) and β = ∞:
Since γ ∈ (0,∞), the limit Eq. (4.21) and the relation (4.24) are still valid. Moreover,
dividing equations (4.4) and (4.9) by βε and passing to the limit as ε → 0, it follows that

∂ z̄

∂x3
= ∂ ū

∂x3
= 0 in �.

Hence, the functions z̄ and ū are independent of the coordinate x3. This combined with (4.24)
implies that

ū = z̄
∫ 1

0 z(·, t) dt

1∫

0

u(·, t) dt a.e. in ω.

Putting this relation in (4.21), we thus get the nonlocal Eq. (4.11).
To conclude as in the previous case, it remains to prove the uniqueness in Eq. (4.11).

Assume that f = 0 in �. Then, putting u in Eq. (4.11) and integrating by parts, we get that

∫

�

|∇u|2 dx + γ

∫

ω

⎡

⎢
⎣

1∫

0

u2(x ′, x3) dx3− z̄(x ′)
∫ 1

0 z(x ′, t) dt

⎛

⎝

1∫

0

u(x ′, x3) dx3

⎞

⎠

2⎤

⎥
⎦ dx ′ =0.

(4.30)

However, using successively the Cauchy–Schwarz inequality and the second inequality of
(4.6), we have

1∫

0

u2(x ′, x3) dx3 ≥
⎛

⎝

1∫

0

u(x ′, x3) dx3

⎞

⎠

2

≥ z̄(x ′)
∫ 1

0 z(x ′, t) dt

⎛

⎝

1∫

0

u(x ′, x3) dx3

⎞

⎠

2

a.e. x ′ ∈ ω.

Therefore, using this inequality in (4.30), we obtain that u = 0 a.e. in �, which implies the
uniqueness property.
Case γ = ∞ and β < ∞:
The function v̂ε defined by (4.16) satisfies the estimate

‖∇v̂ε‖L2(�) ≤ c
√

ε2| ln rε|
. (4.31)
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Then, multiplying inequality (4.17) by ε2| ln rε| (which tends to 0 since γ = ∞), and passing
to the limit with v = ϕ uε, for ϕ ∈ C∞

c (�), we obtain that
∫

�

ϕ (u − ū) dx = 0,

hence ū = u. Therefore, Eq. (4.20) yields the local Eq. (4.12).
Case γ = 0 or β = 0:
If γ = 0, by Lemma 4.4 and estimate (4.31), the sequence v̂ε converges strongly to 1 in
H1(�). Let ϕ ∈ C∞

c (�). Then, putting ϕ v̂ε (which vanishes in �ε) in Eq. (4.9) and passing
to the limit, we get that

∫

�

∇u · ∇ϕ dx =
∫

�

f ϕ dx,

which yields the limit Eq. (4.13) whatever the asymptotic behavior of βε .
If γ > 0 and β = 0, Eq. (4.20) gives the limit Eq. (4.13).
Case γ = β = ∞:
As in the third case, we have ū = u. Moreover, dividing the Eq. (4.9) by βε and passing to
the limit, it follows that

∂ ū

∂x3
= ∂u

∂x3
= 0 in �.

Since u ∈ H1
0 (�), this implies that u = 0 a.e. in �. ��

Proof Lemma 4.1 Proceeding as in the proof of Theorem 4.2, the convergences (4.5) hold
true up to a subsequence, with z̄ ∈ H1

(
0, 1; L2(ω)

)
. Moreover, the functions z and z̄ are

solutions of the coupled system (4.7) (if β < ∞) or (4.8) (if β = ∞). The De Giorgi, Stam-
pacchia regularity result for the second-order elliptic equations also implies that z ∈ C0(�).
On the other hand, putting the negative part z−

ε of zε in Eq. (4.4), we deduce immediately
that zε , and thus, the limits z, z̄ are nonnegative in �. Then, since

−�z + γ z = 1 + γ z̄ ≥ 1 = −�ζ + γ ζ in �, where ζ ∈ H1
0 (�),

the strong maximum principle applied to ζ implies that z ≥ ζ > 0 in �.
It remains to prove the second part of (4.6). To this end, consider for a nonnegative function

ϕ ∈ C∞
c (ω), the solution w

ϕ
ε of the problem

⎧
⎪⎪⎨

⎪⎪⎩

−�wϕ
ε + βε

1�ε

|Qε|
∂w

ϕ
ε

∂x3
= 0 in �

w
ϕ
ε − (1 − v̂ε) ϕ = 0 on ∂�.

(4.32)

Putting the function (w
ϕ
ε )− ∈ H1

0 (�) in (4.32), we deduce that w
ϕ
ε ≥ 0 a.e. in �. Then,

putting w
ϕ
ε − (1 − v̂ε) ϕ in (4.4), zε in (4.32) and noting that (1 − v̂ε) ϕ is independent of x3,

we have

−
∫

�

(1 − v̂ε) ϕ dx ≤
∫

�

(
wϕ

ε − (1 − v̂ε) ϕ
)

dx

=
∫

�

∇zε · ∇(wϕ
ε −(1−v̂ε) ϕ

)
dx−

∫

�

βε

1�ε

|Qε|
∂zε

∂x3

(
wϕ

ε −(1−v̂ε) ϕ
)

dx
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=−
∫

�

∇zε · ∇((1−v̂ε) ϕ
)

dx+
∫

�

∇wϕ
ε · ∇zε dx+

∫

�

βε

1�ε

|Qε|
∂w

ϕ
ε

∂x3
zε dx

= −
∫

�

∇zε · ∇((1 − v̂ε) ϕ
)

dx .

Hence, thanks to the weak convergence of v̂ε to 1 in H1(�) and to estimate (4.17), we get
the inequality

0 ≤
∫

�

∇v̂ε · ∇zε ϕ dx + o(1) =
∫

�

γ (z − z̄) ϕ dx + o(1),

which, due to γ > 0 and the arbitrariness of ϕ = ϕ(x ′) ≥ 0, implies that

0 ≤
1∫

0

(
z(·, x3) dx3 − z̄(·, x3)

)
dx3 a.e. in ω, (4.33)

which yields the second inequality of (4.6). Finally, if β ∈ (0,∞), inequality (4.33) combined
with the second Eq. of (4.7) gives

z̄(·, 0) − z̄(·, 1) = −
1∫

0

∂ z̄

∂x3
dx3 = γ

β

1∫

0

(
z(·, x3) − z̄(·, x3)

)
dx3 ≥ 0 a.e. in ω,

which establishes the third inequality of (4.6). The case β ∈ {0,∞} is straightforward. ��
Acknowledgments The author wishes to thank P. Gérard for several stimulating discussions.
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