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Abstract We study existence, uniqueness, and other geometric properties of the minimiz-
ers of the energy functional

‖u‖2
Hs (�) +

∫

�

W (u) dx,

where ‖u‖Hs (�) denotes the total contribution from� in the Hs norm of u and W is a double-
well potential. We also deal with the solutions of the related fractional elliptic Allen-Cahn
equation on the entire space R

n . The results collected here will also be useful for forthcoming
papers, where the second and the third author will study the �-convergence and the density
estimates for level sets of minimizers.
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1 Introduction

In this paper, we study existence, uniqueness, some qualitative properties and related issues
for the minimizers of a nonlocal energy functional involving a Gagliardo-type norm.

Let � ⊆ R
n be an open domain and denote by C� its complement. We deal with the

functional F defined by

F (u,�) = K (u,�)+
∫

�

W (u) dx, (1)

where K (u,�) is given by

K (u,�) = 1

2

∫

�

∫

�

|u(x)− u(y)|2
|x − y|n+2s

dx dy +
∫

�

∫

C�

|u(x)− u(y)|2
|x − y|n+2s

dx dy, (2)

with s ∈ (0, 1), and the function W is a smooth double-well potential with wells at +1 and
−1, i.e., W is a nonnegative function vanishing only at {−1,+1}. The functional in (1) is a
nonscaled Allen-Cahn-Ginzburg-Landau-type energy with its kinetic term K given by some
nonlocal fractional integrals, in place of the classical Dirichlet integral. The energy K (u,�)
of a function u, with prescribed boundary data outside �, can be view as the contribution in
� of the (squared) Hs (semi)norm of u

∫

Rn

∫

Rn

|u(x)− u(y)|2
|x − y|n+2s

dx dy.

Nonlocal models involving the Hs norm are quite important in physics, since they naturally
arise from many problems that exhibit long-range interactions among particles.

In the specific case in (1) with the potential W given by a double-well function, an adequate
scaling of the kinetic term K brings to the energy for a liquid–liquid two-phase transition
model of nonlocal type. A�-convergence theory for such energy has been recently developed
by two of the authors in [22]. They show that suitable scalings of the functional F �-converge
to the standard minimal surface functional when s ∈ [1/2, 1) and to the nonlocal one when
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Local and global minimizers for a variational energy involving a fractional norm 675

s ∈ (0, 1/2). As in the classical case with the singular perturbation given by the Dirichlet
energy, the functional in (1) is strictly related to the elliptic Allen-Cahn equation, which is
of nonlocal character in this framework. The nonlocal analog of the Allen-Cahn equation is
given by the following Euler-Lagrange equation for the energy F (u) := F (u,Rn)

(−�)su(x)+ W ′(u(x)) = 0 for any x ∈ R
n, (3)

As usual, for any s ∈ (0, 1), (−�)s denotes the s-power of the Laplacian operator and,
omitting a multiplicative constant c = c(n, s), we have

(−�)su(x) = P.V .
∫

Rn

u(x)− u(y)

|x − y|n+2s
dy = lim

ε→0

∫

C Bε(x)

u(x)− u(y)

|x − y|n+2s
dy.

Here, Bε(x) denotes the n-dimensional ball of radius ε, centered at x ∈ R
n (and the standard

notation Bε = Bε(0) will be also used). “P.V .” is a commonly used abbreviation for “in
the principal value sense”. In the sequel, we will often omit the P.V . notation in front of the
integrals, for simplicity of notation.

In the same spirit of a celebrate De Giorgi conjecture about the level sets of the solutions
of the elliptic analog of (3), it seems natural to study the solutions u of (3) that satisfy the
following two conditions:

∂xn u(x) > 0 for any x ∈ R
n (4)

and, possibly,

lim
xn→±∞ u(x ′, xn) = ±1, for any x ′ ∈ R

n−1. (5)

We refer to [8–11,16,25,26] for several results in this direction. Here, by means of a technical
variation of the classical sliding method, we can prove that the solutions of the fractional
elliptic Allen-Cahn equation (3) that enjoy (4) and (5) have also to satisfy a minimizing
property for the functional F defined in (1), as stated here below:

Theorem 1 Let s ∈ (0, 1) and let u ∈ C1(Rn) be a solution of

− (−�)su(x) = W ′(u(x)), for any x ∈ R
n . (6)

Suppose that

∂xn u(x) > 0, for any x ∈ R
n (7)

and

lim
xn→±∞ u(x ′, xn) = ±1, for any x ′ ∈ R

n−1. (8)

Then, for any r > 0, we have that

F (u, Br ) ≤ F (u + φ, Br ) for any measurable φ supported in Br . (9)

In the literature, (9) is generally referred by saying that u is a local minimizer for F in the
domain Br .

The proof of Theorem 1 follows a classical sliding argument (see, e.g., Lemma 9.1 in [27]
and also [2] and [5] for a different variational approach for the classical local functional), but
we need here to operate some modifications due to the nonlocality of the fractional operators
(−�)s .
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676 G. Palatucci et al.

In the case of � being an open one-dimensional set, we will carefully characterize such
class of minimizers, showing that they are monotone increasing and unique up to transla-
tions. Moreover, by further regularity assumptions on the potential W , we have that the 1-D
minimizers satisfy certain regularity properties, and then, we will analyze their asymptotic
behavior and the one of their derivative (see Theorem 2 below). Precisely, we denote by

X = {
f ∈ L1

loc(R) s.t. lim
x→±∞ f (x) = ±1

}
(10)

the space of admissible functions and we suppose that the double-well potential W belongs
to C2(R) and satisfies

W ′′(±1) > 0. (11)

Then, we prove the following theorem.

Theorem 2 Let F given by (1). Then there exists a unique (up to translations) nontrivial
global minimizer u(0) ∈ X of the energy F which is strictly increasing. The minimizer
u(0) solves the equation (3) and is unique (up to translations) also in the class of monotone
solutions of (3). Moreover, u(0) belongs to C2(R) and there exists a constant C ≥ 1 such that

|u(0)(x)− sign (x)| ≤ C |x |−2s and
∣∣(u(0))′(x)∣∣ ≤ C |x |−(1+2s) (12)

for any large x ∈ R.

As a further matter, exploiting Theorem 2, we will be able to construct a minimizer in
higher dimensions u∗ and we will estimate the energy (1) of u∗ on the ball BR , proving that,
as R gets larger and larger, the contribution in K (u∗, BR) from C BR becomes negligible if
s ≥ 1/2, however, when s < 1/2 this does not happen. Precisely, we consider the functional
G : X → R ∪ {+∞} defined as follows

G (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim inf
R→+∞

1

R1−2s
F (u, [−R, R]) if s ∈ (0, 1/2),

lim inf
R→+∞

1

log R
F (u, [−R, R]) if s = 1/2,

F (u,R) if s ∈ (1/2, 1),

(13)

where, for every I ∈ R, F (·, I ) is defined by (1). The functional G is given by the natural
scaling of the energy F , in the sense that, for any s ∈ (0, 1), we have that G (u(0)) is finite,
where u(0) is the minimizer in Theorem 2. In this respect, we say that the function u(0) is
a global minimizer for F if G (u(0)) is finite and u(0) is a local minimizer for F in any Br

(see Section 4).1 Finally, it is worth mentioning that the scaling in (13) also appears in the
�-convergence analysis in [22] (see, in particular, Theorem 1.2 and Theorem 1.3 there).

We extend u(0) to all the dimensions by setting, for any x ∈ R
n (and n ≥ 2),

u∗(x) = u∗(x1, . . . , xn) := u(0)(	 xn). (14)

1 We note that in the following of the paper, we generally deal with global minimizers, but we also prefer to
keep the definition of local minimizers given by (9), since this difference will be relevant when working on
higher dimensions, as well as in the forthcoming papers [20–22].
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Local and global minimizers for a variational energy involving a fractional norm 677

where	 is a constant needed just to keep track of the dependence of (−�)s on the dimension,
given by

	 := 1⎛
⎜⎝

∫

Rn−1

dζ

(1 + |ζ |2)(n+2s)/2

⎞
⎟⎠

1
2s

. (15)

This constant2 also appears in [13] and [6].
We prove the following theorem.

Theorem 3 Let G be the 1-D functional defined by (13) and let u∗ be defined by (14). Then,
for any r > 0, we have that

F (u∗, Br ) ≤ F (u∗ + φ, Br ) (16)

for any measurable φ supported in Br .
Also, the following results hold as R → +∞.

(i) If s ∈ (0, 1/2), then

c1 ≤ 1

Rn−2s

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy ≤ c2.

(ii) If s = 1/2, then

F (u∗, BR)

Rn−1 log R
→ b∗ and

1

Rn−1 log R

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+1 dx dy → 0.

(iii) If s ∈ (1/2, 1), then

F (u∗, BR)

Rn−1 → b∗ and
1

Rn−1

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy → 0,

where c1 and c2 are positive constants and b∗ = ωn−1
	

G (u(0)).
Moreover, there exists C > 0 such that for any R ≥ 2 and δ ∈ (0, 1/2) we have

F (u∗, BR \ B(1−δ)R) ≤ CδRn−1. (17)

Finally, it is worth noticing that, in order to prove all the above cited results, we need to
perform careful computations on the strongly nonlocal form of the functional F . Hence, it
was important for us to understand some modifications of the classical techniques to deal
with the fractional energy term, in particular to manage the contributions coming from far.
Therefore, in the Appendix, we collect some general and independent results involving the
Gagliardo-type norm in (2), to be applied here and in [20–22], like construction of barriers,
compactness results, and various estimates, as well as regularity and limit properties for the
solutions of equation (3).

We prove Theorem 1 in Sect. 2, Theorem 2 in Sect. 4, and Theorem 3 in Sect. 5. Some
preliminary results on 1-D minimizers on intervals are collected in Sect. 3.

2 Of course, we could have kept track of the normalization constant 	 in the definition of the fractional
Laplacian operator (instead of in (14)), so that (14) reduces to the simpler u∗(x) = u(0)(xn). However, we
preferred this choice both for consistency with [20–22] and because most of the computations here are not
complicated at all by this setting.
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2 Minimization by sliding—Proof of Theorem 1

In this section, we prove the minimization result via sliding method stated in Theorem 1.
First, we need the following lemma, in which we point out that the problem of minimizing
the energy in a given ball has a solution.

Lemma 1 Let R > 0 and uo : R
n → R be a measurable function. Suppose that there exists

a measurable function ũ which coincides with uo in C BR and such that F (ũ, BR) < +∞.
Then, there exists a measurable function u such that F (u, BR) ≤ F (v, BR) for any
measurable function v which coincides with uo in C BR.

Proof We take a minimizing sequence, that is, let uk be such that uk = uo in C BR ,
F (uk, BR) ≤ F (ũ, BR) and

lim
k→+∞ F (uk, BR) = inf F (v, BR), (18)

where the infimum is taken over any v that coincides with uo in C Br . Then, (18) and
Lemma 10 give that, up to subsequence, uk converges almost everywhere to some u. Thus,
the desired result follows from (18) and Fatou Lemma. �

Now, we are in position to prove that every monotone solution of equation (3), satisfying
the limit condition (5), is a local minimizer for the corresponding energy functional F .

Proof of Theorem 1 We argue by contradiction. Suppose that there exist r , co > 0 and φ
supported in Br such that F (u, Br )− F (u + φ, Br ) ≥ co.

By choosing ũ = u + φ in Lemma 1, we have that F (ũ) ≤ co + F (u, Br ) < +∞ and
then we can take u minimizing F (v, Br ) among all the measurable functions v such that
v = u in C Br . Since we assumed by contradiction that u is not a minimizer, then there exists
P ∈ R

n such that

u(P) < u(P). (19)

By cutting at the levels ±1, which possibly makes F decrease, we see that |u| ≤ 1.
Moreover, by the minimizing property of u,

(−�)su(x)+ W ′(u(x)) = 0 for any x ∈ Br (20)

and then, by Lemma 5 in the Appendix and [12, Theorem 3.3], u is continuous up to the
boundary of Br .3

We claim that

|u| < 1. (21)

3 We observe that the solutions of (3) at every point are also viscosity solutions (according to Definition 2.5
of [12]). Indeed, if v ≥ u and v(xo) = u(xo), we have that

∫

Rn

v(y)− v(xo)

|xo − y|n+2s
dy ≥

∫

Rn

u(y)− v(xo)

|xo − y|n+2s
dy =

∫

Rn

u(y)− u(xo)

|xo − y|n+2s
dy.

Note also that the solutions in the distributional sense satisfy the comparison principle and then they are
solutions in the viscosity sense, too (see, e.g., [23, Section 2.2] and, in particular, Proposition 2.2.6 there).
This allows us to use the results of [12].
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Local and global minimizers for a variational energy involving a fractional norm 679

To check this, let us argue by contradiction and suppose that, say, u(x̄) = +1, for some
x̄ ∈ R

n . Since |u| < 1 by our assumptions and u = u in C Br , we have that x̄ ∈ Br .
Then, (20) and the fact that W ′(+1) = 0 would give that

∫

Rn

1 − u(y)

|x̄ − y|n+2s
dy = 0.

Since the integrand is always nonnegative, u must be identically equal to +1. But this is in
contradiction with the fact that u = u in C Br , hence it proves (21).

Now, we note that there is a first contact point in Br . Though this looks quite obvious, we
give full details for the reader’s convenience.

First, we claim that there exists k̄ ∈ R such that,

if k ≥ k̄, then u(x ′, xn + k) ≥ u(x) for any x = (x ′, xn) ∈ R
n . (22)

Again, this looks quite straightforward, but we give a complete argument: we argue by
contradiction and we suppose that, for any k ∈ N, there exists x (k) = (x (k)

′
, x (k)n ) ∈ R

n

for which u(x (k)
′
, x (k)n + k) < u(x (k)). Since u is monotone and k ≥ 0, it follows that

u(x (k)) < u(x (k)) and therefore x (k) ∈ Br . Thus, up to subsequence, we suppose that

lim
k→+∞ x (k) = x,

for some x in the closure of Br . Consequently, by (8),

+1 = lim
k→+∞ u(x (k)

′
, x (k)n + k) ≤ lim

k→+∞ u(x
(k)) = u(x) ≤ sup

Br

u.

Since this is in contradiction with (21), we have proved (22).
Then, by (22) and the monotonicity of u, we have that, if k > k̄, then u(x ′, xn + k) >

u(x) for any x = (x ′, xn) ∈ R
n . We take k̄ as small as possible with this property, i.e.,

u(x ′, xn + k) ≥ u(x) for any k ≥ k̄ and any x ∈ R
n , and there exist an infinitesimal

sequence η j > 0 and points p( j) ∈ R
n for which u(p( j)′, p( j)

n + k̄ − η j ) ≤ u(p( j)).
So, recalling (19), we have that u(P) < u(P) ≤ u(P ′, Pn + k̄) and then the monotonicity

of u implies that

k̄ > 0. (23)

We claim that

p( j) ∈ Br . (24)

Indeed, if p( j) belonged to C Br we would have that

u
(

p( j)′, p( j)
n + k̄ − η j

)
≤ u(p

( j)) = u(p( j)).

Hence, by the monotonicity of u, we would have that k̄ − η j ≤ 0 and so, by taking the limit
in j , that k̄ ≤ 0. This is in contradiction with (23) and so (24) is proved.

Then, by (24), we may suppose that lim
j→+∞ p( j) = ζ, for some ζ in the closure of Br .

As a consequence, the function w(x) := u(x ′, xn + k̄) − u(x) satisfies w(x) ≥ 0 for any
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680 G. Palatucci et al.

x ∈ R
n and w(ζ ) = 0. Thus, recalling (20), we have

∫

Rn

w(y)

|ζ − y|n+2s
dy = −(−�)sw(ζ )

= −(−�)su(ζ ′, ζn + k̄)+ (−�)su(ζ )

= W ′(u(ζ ′, ζn + k̄))− W ′(u(ζ )) = 0.

Since the integrand is nonnegative, this implies that w vanishes identically, and so

u(x ′, xn + k̄) = u(x).

Taking into account the above equality, (23) and the strict monotonicity of u, it yields that

u(x) < u(x) for any x ∈ R
n .

This is in contradiction with the fact that u and u coincide in C Br and so Theorem 1 is
proved. �

Remark 1 We note that hypothesis (7) of strictly monotony in one direction in Theorem 1
may be relaxed as follows.

∂xn u(x) ≥ 0, for any x ∈ R
n . (25)

Precisely, if we assume that the function W belongs to C2(R), we can prove that the solu-
tions of the Allen-Cahn equation (6) that satisfy (25) and (8) are strictly increasing in one
direction. For this, we suppose by contradiction that ∂xn u(x̄) = 0, for some x̄ ∈ R

n . Then,
by differentiating in xn the equation in (6), we have that

−
∫

Rn

∂xn u(y)

|x̄ − y|n+2s
dy =

∫

Rn

∂xn u(x̄)− ∂xn u(y)

|x̄ − y|n+2s
dy

= (−�)s∂xn u(x̄)

= (−�)s∂xn u(x̄)+ W ′′(u(x̄)) ∂xn u(x̄) = 0.

In view of (25), the integrand is nonnegative, and then, we would obtain that ∂xn u vanishes
identically. This would give that u is constant along the n-direction, which is in contradiction
with (8). This proves that u satisfies (7).

3 Minimizing the energy on intervals

In this section, we deal with the problem of minimizing the energy F on bounded intervals
I in R.

The first result is in Lemma 2 below, in which we justify the existence of a minimizer
vI and we provide a lower bound for the corresponding energy F (vI , I ) with respect to the
length of I (and depending on the fractional power s).

By Lemma 2, together with some properties of the fractional Allen-Cahn equation (3)
proved in the Appendix, we will obtain an ulterior energy-estimate for the minimizers vI

with I = [0, R] and we will study their asymptotic behavior as R goes to +∞ (see Corollary 1
and Corollary 2).
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Local and global minimizers for a variational energy involving a fractional norm 681

Lemma 2 Let I = [a, b] ⊂ R be an interval with length |I | = b − a > 4. Then, there
exists a measurable function vI = v[a,b] : R → [−1,+1] such that vI (x) = −1 if x ≤ a,
vI (x) = +1 if x ≥ b and

F (vI , I ) ≤ F (vI + φ, I )

for any measurable function φ supported in I .
Moreover,

F (vI , I ) ≤ �(|I |) :=

⎧⎪⎨
⎪⎩

Cs(1 + |I |1−2s) if s ∈ (0, 1/2),

Cs(1 + log |I |) if s = 1/2,

Cs if s ∈ (1/2, 1),

(26)

for a suitable constant Cs > 1 depending only on s.

Proof For any fixed interval I = [a, b] ⊂ R, we will prove the existence of the function vI ,
by means of Lemma 1. Therefore, it suffices to construct a suitable competitor in [a, b].

In view of translations invariance, we may suppose that a < −2 and b > +2. We consider
the following function h : R → [−1, 1] defined by

h(x) :=

⎧⎪⎨
⎪⎩

−1 if x ≤ −1,

x if x ∈ (−1,+1),

+1 if x ≥ +1,

Let us compute each contribution in the energy F (h, I ). In the following, we will denote
by Cs suitable positive quantities, possibly different from line to line, and possibly depending
on s.

First, since h(x) ∈ {−1,+1} out of (−1, 1), we deduce

b∫

a

W (h(x)) dx =
+1∫

−1

W (h(x)) dx ≤ Cs,

Second, let us compute the contributions in the kinetic term K (h, I ).
If s ∈ (0, 1/2),

−1∫

a

b∫

+1

|h(x)− h(y)|2
|x − y|1+2s

dx dy = 4

−1∫

a

b∫

+1

dx dy

|x − y|1+2s
≤ Cs |I |1−2s .

If s = 1/2,

−1∫

a

b∫

+1

|h(x)− h(y)|2
|x − y|1+2s

dx dy = 4

−1∫

a

b∫

+1

dx dy

|x − y|2 ≤ Cs log |I |.

If s ∈ (1/2, 1),

−1∫

a

b∫

+1

|h(x)− h(y)|2
|x − y|1+2s

dx dy = 4

−1∫

a

b∫

+1

dx dy

|x − y|1+2s
≤ Cs .
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682 G. Palatucci et al.

If s ∈ (0, 1),

+1∫

−1

+1∫

−1

|h(x)− h(y)|2
|x − y|1+2s

dx dy =
+1∫

−1

+1∫

−1

|x − y|1−2s dx dy ≤ Cs,

+1∫

−1

⎡
⎣

b∫

+1

|h(x)− h(y)|2
|x − y|1+2s

dy

⎤
⎦ dx =

+1∫

−1

⎡
⎣

b∫

+1

|1 − x |2
|x − y|1+2s

dy

⎤
⎦ dx ≤ Cs

and

+1∫

−1

⎡
⎣

−1∫

a

|h(x)− h(y)|2
|x − y|1+2s

dy

⎤
⎦ dx =

+1∫

−1

⎡
⎣

−1∫

a

|x + 1|2
|x − y|1+2s

dy

⎤
⎦ dx ≤ Cs .

Now, we estimate the contribution coming from far in the energy:

∫ ∫

[a,b]×(C [a,b])

|h(x)− h(y)|2
|x − y|1+2s

dx dy ≤
∫ ∫

[−1,1]×(C [a,b])

4

|x − y|1+2s
dx dy

+
∫ ∫

[a,−1]×[b,+∞]

4

|x − y|1+2s
dx dy

+
∫ ∫

[1,b]×(C (−∞,a])

4

|x − y|1+2s
dx dy

≤

⎧⎪⎨
⎪⎩

Cs
(
1 + |I |1−2s

)
if s ∈ (0, 1/2),

Cs
(
1 + log |I |) if s = 1/2,

Cs if s ∈ (1/2, 1).

All in all,

F (h, I ) ≤

⎧⎪⎨
⎪⎩

Cs(1 + |I |1−2s) if s ∈ (0, 1/2),

Cs(1 + log |I |) if s = 1/2,

Cs if s ∈ (1/2, 1).

(27)

Consequently, we use Lemma 1 to obtain that there exists the desired function vI such that
vI (x) = h(x) if x ∈ C [a, b] and F (vI , I ) ≤ F (vI +ϕ, I ) for any measurable ϕ supported
in I . The estimate in (26) plainly follows from (27). �

Corollary 1 Let the notation of Lemma 2 hold. Then, fixed any � > 0, there exists a function
α� : (0,+∞) → (0,+∞) such that

lim
R→+∞α�(R) = 0

and

F (v[0,R], [−�, �]) ≤ F (v[0,R] + φ, [−�, �])+ α�(R). (28)

for any measurable function φ supported in [−�, �].

123



Local and global minimizers for a variational energy involving a fractional norm 683

Proof The main idea is scaling the minimizer in [−�, R + �] in order to get a suitable
competitor and then computing. Let

zR(x) := v[−�,R+�]
(
(R + 2�)x

R
− �

)
.

We observe that zR(x) = −1 if x ≤ 0 and zR(x) = +1 if x ≥ R. Therefore, by the
minimality of v[0,R], we get

F
(
v[0,R], [0, R]) ≤ F (zR, [0, R]). (29)

Now, by scaling the variable of integration, we obtain

F (zR, [0, R])

=
(

R

R + 2�

)1−2s

⎡
⎢⎣1

2

∫ ∫

[−�,R+�]×[−�,R+�]

|v[−�,R+�](x)− v[−�,R+�](y)|2
|x − y|1+2s

dx dy

+
∫ ∫

[−�,R+�]×(C [−�,R+�])

|v[−�,R+�](x)− v[−�,R+�](y)|2
|x − y|1+2s

dx dy

⎤
⎥⎦ .

+
(

R

R + 2�

) R+�∫

−�
W
(
v[−�,R+�](x)

)
dx

≤
(

R

R + 2�

)1−2s

F (v[−�,R+�], [−�, R + �]). (30)

Now, we set

β�(R) :=

⎧⎪⎨
⎪⎩

0 if s ∈ (0, 1/2],
Cs

[(
R

R + 2�

)1−2s

− 1

]
if s ∈ (1/2, 1),

where Cs is the constant introduced in (26). Notice that lim
R→+∞β�(R) = 0.

In view of Lemma 2, we see that (30) becomes

F (zR, [0, R]) ≤ F (v[−�,R+�], [−�, R + �])

+
[(

R

R + 2�

)1−2s

− 1

]
F (v[−�,R+�], [−�, R + �])

≤ F (v[−�,R+�], [−�, R + �])+ β�(R). (31)

Hence, combining (31) with (29), we obtain, for any fixed � > 0,

F (v[0,R], [0, R]) ≤ F (v[−�,R+�], [−�, R + �])+ β�(R). (32)

Now, we claim that, for any fixed � > 0 there exists a function γ� : (0,+∞) → (0,+∞)

such that γ�(R) → 0 as R → +∞ and

F (v[0,R], [0, R]) = F (v[0,R], [−�, R + �])− γ�(R). (33)
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Indeed, since v[0,R](x) = −1 for any x ≤ 0 and v[0,R](x) = +1 for any x ≥ R, we have

F (v[0,R], [−�, R + �])− F (v[0,R], [0, R])
≤
∫ ∫

[−�,0]×[R,+∞)

4

|x − y|1+2s
dx dy +

∫ ∫

[R,R+�]×(−∞,−�]

4

|x − y|1+2s
dx dy

≤ γ�(R),

with

γ�(R) :=

⎧⎪⎨
⎪⎩

4 log

(
1 + 2�

R

)
if s = 1/2,

2

s(1 − 2s)

(
(R + 2�)1−2s − R1−2s

)
if s �= 1/2.

This gives (33).
From (32) and (33), together with the minimality of the function v[−�,R+�], it follows that

F (v[0,R], [−�, R + �])− β�(R)− γ�(R) ≤ F (v[0,R] + φ, [−�, R + �]). (34)

Now, we use the fact that φ is supported in [−�, �] to obtain

F (v[0,R] + φ, [−�, R + �])− F (v[0,R] + φ, [−�, �])
= 1

2

∫ ∫

[�,R+�]×[�,R+�]

|v[0,R](x)− v[0,R](y)|2
|x − y|1+2s

dx dy

+
∫ ∫

[�,R+�]×(C [−�,R+�])

|v[0,R](x)− v[0,R](y)|2
|x − y|1+2s

dx dy +
∫

[�,R]
W (v[0,R](x)) dx

= F (v[0,R], [−�, R + �])− F (v[0,R], [−�, �]).
By plugging this identity into (34), we obtain the desired result, withα�(R) := β�(R)+γ�(R).

�
Corollary 2 Let the notation of Lemma 2 hold. Then the function v[0,R] converges to −1
locally uniformly as R goes to +∞.

Proof By minimality, the function v[0,R] is a solution of

−(−�)sv[0,R](x) = W ′(v[0,R](x)) for any x ∈ [0, R].
Then, in view of Lemma 5 and [12, Theorem 3.3], v[0,R] is uniformly continuous on the
whole of R with modulus of continuity bounded independently of R (recall the footnote on
page 678). Hence, there exists a function v such that, up to subsequences, v[0,R] → v as
R → +∞ locally uniformly in R. Moreover, by taking into account Lemma 7, the limit
function v satisfies

− (−�)sv(x) = W ′(v(x)) for any x ∈ [0,∞). (35)

Also,

v(x) = −1 for any x ∈ (−∞, 0]. (36)

We claim that actually

v is a minimizer in the whole of R, (37)
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i.e., for any � > 0,

F (v, [−�, �]) ≤ F (v + φ, [−�, �])
for any perturbation φ supported in [−�, �].

This fact follows by Corollary 1. Indeed, we notice that, for any (x, y) ∈ [−�, �]×[−�, �],
we have

|v[0,R](x)− v[0,R](y)|2
|x − y|1+2s

dx ≤ g(x, y) :=
{

4|x − y|−(1+2s) if s < 1/2,

C1|x − y|1−2s if s ≥ 1/2,

where the constant C1 does not depend on R (recall Lemma 5 and [12, Theorem 3.3]). Thus,
since the function g belongs to L1

([−�, �] × [−�, �]) and v[0,R] uniformly converges to v,
the Dominated Convergence Theorem yields

lim
R→+∞

1

2

∫ ∫

[−�,�]×[−�,�]

|v[0,R](x)− v[0,R](y)|2
|x − y|1+2s

dx dy

= 1

2

∫ ∫

[−�,�]×[−�,�]

|v(x)− v(y)|2
|x − y|1+2s

dx dy.

Similarly,

lim
R→+∞

∫ ∫

[−�,�]×(C [−�,�])

|v[0,R](x)− v[0,R](y)|2
|x − y|1+2s

dx dy

=
∫ ∫

[−�,�]×(C [−�,�])

|v(x)− v(y)|2
|x − y|1+2s

dx dy.

and

lim
R→+∞

�∫

−�
W (v[0,R](x)) dx =

�∫

−�
W (v(x)) dx .

This implies that

lim
R→+∞ F (v[0,R], [−�, �]) = F (v, [−�, �])

and the same holds for the function v[0,R] + φ, i.e.,

lim
R→+∞ F (v[0,R] + φ, [−�, �]) = F (v + φ, [−�, �]).

Then, by taking the limit as R → +∞ in (28), the claim in (37) plainly follows.
Finally, by (37) we see that (35) holds for any x ∈ R. This and (36) yield that the function

v is identically −1. �
Next results may be seen as energy decreasing rearrangements with more elementary tech-

niques with respect to the ones in [18] (see also [7] for more general integral inequalities).

Lemma 3 Given a measurable set � and two measurable functions u, v : � → R. Then

F (min{u, v},�)+ F (max{u, v},�) ≤ F (u,�)+ F (v,�) (38)
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and the equality holds if and only if

u(x) ≤ v(x) or v(x) ≤ u(x) for any x ∈ �. (39)

Proof Denote by

m(x) := min{u(x), v(x)} and M(x) := max{u(x), v(x)}. (40)

Then, we may deduce the claim in (38)–(39) by the following fact. For any x , y ∈ �,

|m(x)− m(y)|2 + |M(x)− M(y)|2 ≤ |u(x)− u(y)|2 + |v(x)− v(y)|2

and if equality holds then
(
u(x)− v(x)

)(
u(y)− v(y)

) ≥ 0. (41)

This is straightforward to check and we leave the details to the reader. �
Corollary 3 Let the notation of Lemma 2 hold. Then, vI is non-decreasing.

Proof First, we remark that for any function w and z such that w = z outside �′ ⊆ �, we
have

F (w,�)− F (z,�) = F (w,�′)− F (z,�′). (42)

Now, for any τ > 0, we let

u(x) := vI (x) and v(x) := vI (x + τ)

and we recall the setting in (40). We have that

M(x) = −1 if x ≤ a − τ and M(x) = +1 if x ≥ b − τ. (43)

Therefore, we can apply (42), with w := M and z := v in �′ := [a − τ, b − τ ] ⊆ � :=
[a − τ, b], and we get

F (M, [a − τ, b])− F (v, [a − τ, b])
= F (M, [a − τ, b − τ ])− F (v, [a − τ, b − τ ]) ≥ 0, (44)

where we also used the minimality of vI .
Analogously, since

m(x) = −1 if x ≤ a and m(x) = +1 if x ≥ b,

we get

F (m, [a − τ, b])− F (u, [a − τ, b]) ≥ 0. (45)

Consequently, by (44) and (45), we conclude that

F (m, [a − τ, b])+ F (M, [a − τ, b]) ≥ F (u, [a − τ, b])− F (v, [a − τ, b).

Since we know that the reverse inequality holds true as well, due to Lemma 3, we obtain that

F (m, [a − τ, b])+ F (M, [a − τ, b]) = F (u, [a − τ, b])+ F (v, [a − τ, b]).
Therefore, by (39), we have that u − v does not change sign, hence vI is monotone. �
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4 The 1-D minimizer—Proof of Theorem 2

We are ready to deal with the 1-D minimizers (for related observations when s ∈ (1/2, 1)
see [17] and [19]).

Proof of Theorem 2 For the sake of simplicity, we define the auxiliary set of functions M in
X as follows

M =
{

u ∈ X s.t. G (u) < +∞ and F (u, [−a, a]) ≤ F (u + φ, [−a, a])
for any a > 0 and any φ measurable and supported in [−a, a]

}
(46)

and we divide the proof in few steps.

Step 1. Claim: the set M is non-empty.

We will prove this claim by taking the limit of a suitable sequence of functions in X .
For any K > 2, we may use Lemma 2 with a = −K and b = K and we obtain a mini-

mizer v[−K ,K ] : R → [−1, 1] such that v[−K ,K ](x) = −1 if x ≤ 0 and v[−K ,K ](x) = +1 if
x ≥ K . Also,

F (v[−K ,K ], [−K , K ]) ≤

⎧⎪⎨
⎪⎩

Cs
(
1 + (2K )1−2s

)
if s ∈ (0, 1/2),

Cs
(
1 + log (2K )

)
if s = 1/2,

Cs if s ∈ (1/2, 1),

(47)

for a suitable constant Cs > 0.
Also, we recall that, in view of Corollary 3, the function v[−K ,K ] is monotone non-decreas-

ing.
The minimization property of v[−K ,K ] yields that

∫

R

v[−K ,K ](y)− v[−K ,K ](x)
|x − y|1+2s

dy = −(−�)sv[−K ,K ](x)

= W ′(v[−K ,K ](x)), ∀x ∈ [−K , K ], (48)

and so, by Lemma 5 and [12, Theorem 3.3], we have that v[−K ,K ] is continuous, with modulus
of continuity bounded independently of K .

Now, we fix a point co ∈ (−1, 1) such that

W ′(co) �= 0. (49)

By continuity, there must be a point pK ∈ [−K ,+K ] such that v[−K ,K ](pK ) = co. We
claim that

lim
K→+∞ K − |pK | = +∞. (50)

To check this, we suppose by contradiction that there exists a constant C > 0 such that
|pK + K | ≤ C for infinitely many K ’s. We denote by p = lim

K→+∞ (pK + K ) and we con-

sider the function v[0,2K ](x) = v[−K ,K ](x −K ). Notice that, according to Corollary 2, v[0,2K ]
converges locally uniformly to −1 as K → +∞. Besides, for any x > p, we have

v[0,2K ](x) = v[−K ,K ](x − K ) ≥ v[−K ,K ](pK ) = co, (for large K )
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that implies

lim
K→+∞ v[0,2K ](x) ≥ co > −1,

and thus, we get a contradiction. This proves (50).
Now, we set

uK (x) := v[−K ,K ](x + pK ),

so uK (0) = co. As a consequence, we may suppose that uK converges locally uniformly to
some u∗ ∈ C(R; [−1,+1]), with

u∗(0) = co (51)

and

u∗ is non-decreasing. (52)

By (48) and Lemma 7,

(−�)su∗(x)+ W ′(u∗(x)) = 0 for any x ∈ R. (53)

This and Lemma 6 imply that u∗ ∈ C2(R). From (52), we already know that u′∗ ≥ 0, and
then, by arguing as in Remark 1, one can prove that

u′∗(x) > 0 for any x ∈ R. (54)

Now, we prove that

G (u∗) < +∞. (55)

Indeed, by (47), we get

F (uK , [pK − K , pK + K ]) = F (v[−K ,K ], [−K ,+K ])

≤

⎧⎪⎨
⎪⎩

Cs
(
1 + (2K )1−2s

)
if s ∈ (0, 1/2),

Cs
(
1 + log (2K )

)
if s = 1/2,

Cs if s ∈ (1/2, 1),

This, (50) and Fatou Lemma imply (55).
Moreover, u∗ is such that

lim
x→±∞ u∗(x) = ±1. (56)

We can prove (56) arguing by contradiction. By (54), we know that there exists a−, a+ such
that

−1 ≤ a− < a+ ≤ +1

and

lim
x→∞ u∗(x) = a±.

Let us show that a− = −1. Suppose, by contradiction, that

a− > −1. (57)
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Then, we set a∗ := (a− + a+)/2 ∈ (−1, a+) and we infer from (57) that

i := inf[a∗,a+] W > 0.

Recalling (52), we have that there exists κ ∈ R such that, if x ≥ κ , then u∗(x) ∈ [a∗, a+].
So, from (55),

+∞ > G (u∗)

≥ lim
R→+∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2s−1

R∫

κ

W (u∗) dx if s ∈ (0, 1/2)

(log R)−1

R∫

κ

W (u∗) dx if s = 1/2

R∫

κ

W (u∗) dx if s ∈ (1/2, 1)

≥ lim
R→+∞ i (R − κ)

⎧⎪⎨
⎪⎩

R2s−1 if s ∈ (0, 1/2)

(log R)−1 if s = 1/2

1 if s ∈ (1/2, 1)

= +∞,

and this contradiction proves that a− = −1. Analogously, one proves that a+ = +1. This
finishes the proof of (56).

By (56) and Theorem 1, we obtain that

F (u∗, [−a, a]) ≤ F (u∗ + φ, [−a, a])
for any a > 0 and any φ measurable and supported in [−a, a]. (58)

By collecting the results in (55), (56), and (58), we obtain that the set M is not empty.
Now, for any xo ∈ R, define the set

M (xo) := {
u ∈ M s.t. xo = sup{t ∈ R s.t. u(t) < 0} }. (59)

Step 1. Claim: the set M (xo) consists of only one element, which will be denoted by u(xo),
and u(xo)(x) = u(0)(x − xo).

Now, we prove that there exists x∗ ∈ R such that

M (x∗) has only one element. (60)

For this, we consider the previously constructed minimizer u∗ and we take x∗ ∈ R such that
u∗ ∈ M (x∗). Let us take u ∈ M (x∗). By cutting at the levels ±1, we see that |u| ≤ 1. Thus,
for any fixed ε > 0, there exists k(ε) ∈ R such that, for k ∈ (−∞, k(ε)], we have

u(x − k)+ ε > u∗(x) for any x ∈ R.

Now we take k as large as possible with the above property; that is, we take kε such that

u(x − kε)+ ε ≥ u∗(x) (61)

for any x ∈R
n and for any j ≥1, there exist a sequence η j,ε≥0 and points x j,ε∈R such that

lim
j→+∞ η j,ε = 0

and u(x j,ε − (kε + η j,ε))+ ε ≤ u∗(x j,ε).
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We observe that x j,ε must be a bounded sequence in j . Otherwise, if

lim
j→+∞ x j,ε = ±∞,

then

±1 + ε = lim
j→+∞ u(x j,ε − (kε + η j,ε))+ ε ≤ lim

j→+∞ u∗(x j,ε) = ±1,

which is a contradiction. Therefore, we may suppose that

lim
j→+∞ x j,ε = xε,

for some xε ∈ R. By (53) and by Lemma 5, we know that u and u∗ are continuous (recall
20), therefore

u(xε − kε)+ ε = u∗(xε). (62)

Thus, if we set

uε(x) := u(x − kε)+ ε,

we have that uε ≥ u∗, uε(xε) = u∗(xε) and, by (53),

−(−�)suε(x) = −(−�)su(x − kε) = W ′(u(x − kε)) = W ′(uε(x)− ε).

Consequently,

0 ≤
∫

R

(uε − u∗)(y)
|xε − y|1+2s

dy = −(−�)s(uε − u∗)(xε)

= W ′(u∗(xε)− ε)− W ′(u∗(xε)). (63)

Now, we claim that

|xε| is bounded. (64)

Indeed, suppose that, for some subsequence,

lim
ε→0+ |xε| = +∞.

Then,

lim
ε→0+ u∗(xε) = ±1. (65)

By taking into account hypothesis (11) on the potential W , we have that

W ′(t) ≥ W ′(r)+ c(t − r) when r ≤ t, r, t ∈ [−1, −1 + c] ∪ [+1 − c, +1], (66)

for some c > 0.
Then, by (65) there exists εo > 0 such that both u∗(xε) and u∗(xε) − ε belong, for

ε ∈ (0, εo), to [−1, −1+c]∪ [+1−c, +1], where c > 0 is the one given by (66). It follows

W ′(u∗(xε)) ≥ W ′(u∗(xε)− ε)+ cε > W ′(u∗(xε)− ε),

and this is in contradiction with (63). Thus, (64) is proved.
As a consequence, we may suppose, up to subsequences, that

lim
ε→0+ xε = xo, (67)
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for some xo ∈ R. We also have that

|kε| is bounded. (68)

Indeed, if

lim
ε→0+ kε = ±∞,

we would obtain from (62) and (67) that

∓1 = lim
ε→0+ u(xε − kε)+ ε = lim

ε→0+ u∗(xε) = u∗(xo),

and so, from (53),

0 = W ′(u∗(xo)) = −(−�)su∗(xo) =
∫

R

u(y)± 1

|xo − y|1+2s
dy.

Since the integrand is either nonnegative or nonpositive, it follows that u∗ is identically equal
to ±1, which is a contradiction. This proves (68).

Accordingly, we may suppose that

lim
ε→0+ kε = ko,

for some ko ∈ R. Hence,

lim
ε→0+(uε − u∗)(y) = lim

ε→0+ u(y − kε)+ ε − u∗(y) = u(y − ko)− u∗(y), ∀y ∈ R,

and so, passing to the limit in (63), we conclude that
∫

R

u(y − ko)− u∗(y)
|xε − y|1+2s

dy = 0. (69)

On the other hand, by passing to the limit in (61), we see that u(x − ko) ≥ u∗(x) for any
x ∈ R, that is, the integrand in (69) is nonnegative. Consequently,

u∗(x) = u(x − ko) for any x ∈ R. (70)

We claim that

ko = 0. (71)

To check this, we argue as follows. Since u belongs to M (x∗), we have that

if u(x) < 0 then x ≤ x∗,

and that

there exists an infinitesimal sequence ε j > 0 such that u(x∗ − ε j ) < 0.

Hence, by (70),

if u∗(x) < 0 then x ≤ x∗ + ko (72)

and

there exists an infinitesimal sequence ε j > 0 such that u∗(x∗ + ko − ε j ) < 0. (73)
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On the other hand, since u∗ ∈ M (x∗), we have that

if u∗(x) < 0 then x ≤ x∗ (74)

and

there exists an infinitesimal sequence δ j > 0 such that u∗(x∗ − δ j ) < 0. (75)

By (73) and (74), we have that x∗ + ko − ε j ≤ x∗ and so, by passing to the limit, ko ≤ 0.
But, from (72) and (75), we have that x∗ − δ j ≤ x∗ + ko, that is, again by passing to the
limit, ko ≥ 0. The observations above prove (71), that is, ko = 0. Then, from (70) and (71),
we have that u = u∗, and this proves (60).

From (60), we can easily deduce that the set M (xo) consists of only one element, for any
xo ∈ R. Take any u ∈ M (xo) and set ũ(x) = u(x + (x∗ − xo)) for every x ∈ R. Since such
translate function ũ belongs to M (x∗), it follows that ũ ≡ u∗. Accordingly, u ∈ M (xo) is such
that u(x) = u∗(x − (x∗ − xo)), i.e., M (xo) consists of only one element. By the arbitrariness
of xo ∈ R, the claim in Step 2 is proved.

Step 3. Claim: u(0) ∈ C2(R) is such that (u(0))′(x) > 0 for any x ∈ R and M (x0) ≡ {u ∈
M s.t. u(xo) = 0}.

First, in view of (53) and the regularity assumptions on the function W , by Lemma 6 we
can deduce that u(0) belongs to C2(R). Moreover, we know from the previous step that M (0)

only consists of one element and, in the proof of the claim in Step 1, we built one with positive
derivative (recall (54)). In particular, such u(0) is continuous and strictly monotone increasing.

Finally, we observe that, in view of the previous steps, the minimum u(0) satisfies the
hypothesis in Proposition 3 and then the estimates in (12) plainly follow.

The proof of Theorem 2 is complete. �
Remark 2 Existence of global minimizers in the case s ∈ (1/2, 1).

We note that when s ∈ (1/2, 1) the functional G coincides with F on X . Hence, in
view of Theorem 1 and the fact that global minimizers of F are solutions of the equation
(3), we can provide an alternative proof of the existence result in Theorem 2, by showing the
existence of a monotone global minimizer which satisfies the limit condition (8). We will
prove that the following infimum

γ1 := inf

{
G (v), v : R → R s.t. lim

x→±∞ v(x) = ±1

}
(76)

is achieved by an non-decreasing function.
The key of the proof is given by the fact that the energy functional G is decreasing with

respect to monotone rearrangements. The proof is adapted from [3, Theorem 2.4], in which
the authors deals with a nonlocal functional deriving from Ising spin systems.

First, we recall that the energy G is also decreasing under truncations by −1 and +1, and
then, it is not restrictive to minimize the problem (76) with the additional condition |u| ≤ 1.

We denote by X the class of all v : R → [1, 1] such that lim
x→±∞ v(x) = ±1; we denote

by X the class of v ∈ X such that v is non-decreasing and v(0) = 0.
We claim that the infimum of G on X is equal to the infimum of G on X. In fact, since

X ⊂ X we have infv∈X G (v) ≥ infv∈X G (v), while the reverse inequality follows mainly
by the fact that the singular perturbation term in the energy G is decreasing under monotone
rearrangements; see for instance [4, Theorem 9.2] (and also [1, Theorem 2.11]) and [18,
Theorem I.1] for monotonicity on the real line and on bounded intervals, respectively.
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Now, we are in position to show that the infimum of G on X is achieved, by the direct
method.

Take a minimizing sequence (un) ⊂ X. Since un is non-decreasing and converging to
−1 and +1 at ±∞, its distributional derivative u′

n is a positive measure on R with ‖u′
n‖ =

|Dun(R)| = 2 < +∞, ∀n ∈ N. Then, there exist u∗ ∈ BVloc(R) and a subsequence (unk )

such that unk converges to u∗ almost everywhere as k goes to +∞ (see for instance [14,
Helly’s First Theorem]). By construction, u is non-decreasing and satisfies u∗(x) = 0.

Let us show that lim
x→±∞ u∗(x) = ±1.

Since u∗ is non-decreasing in [−1, 1], there exist a < 0 and b > 0 such that

lim
x→−∞ u∗(x) = a and lim

x→+∞ u∗(x) = b.

By contradiction, we assume that either a �= −1 or b �= 1. Then, since W is continuous and
strictly positive in (−1, 1), we obtain

∫

R

W (u∗) dx = +∞.

This is impossible, because, by Fatou’s Lemma, we have

∫

R

W (u) dx ≤ lim inf
n→+∞

∫

R

W (un) dx ≤ lim inf
n→+∞ G (un) < +∞. (77)

Hence, u∗ belongs to X.
Finally, since G is lower semicontinuous on sequences such that un → u∗ pointwise, the

minimum problem γ1 has a solution and this concludes the proof.
It is worth mentioning that an ulterior proof of the existence of minimizers for (76) can

be found in [17], where it was studied the 1-D functional F̃ given by

F̃ (u) =
∫

R

∫

R

|u(x)− u(y)|p

|x − y|p
dx dy +

∫

R

W (u) dx, (p > 2).

Our case is analogous if we take p = 1 + 2s ∈ (2, 3), since the exponent of the term
|u(x)− u(y)| does not play any special role in the proof (see [17, Proposition 3.3]).

5 Extending the 1-D minimizer to any dimension—Proof of Theorem 3

We start by proving the following lemma, which we will need in the proof of Theorem 3:

Lemma 4 Let K ≥ 0. Let α : R × [1,+∞) → [0, K ] and β : R → [0,+∞). Suppose that
α(·, R) is measurable for any fixed R ∈ [1,+∞) and that β is measurable.

Let also λR ∈ (0,+∞) for any R ∈ [1,+∞).
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Assume that

for any η ∈ (0, 1), lim
R→+∞

λR

ληR
= 1, (78)

for any η ∈ (0, 1), lim
R→+∞ sup

|t |≤ηR
α(t, R) = 0, (79)

for any R ≥ K , λR

R∫

−R

β(t) dt ≤ K , (80)

and lim inf
R→+∞ λR

R∫

−R

β(t) dt = c, (81)

for some c ∈ R. Then

lim inf
R→+∞ λR

R∫

−R

α(t, R) β(t) dt = 0.

Proof We fix η ∈ (0, 1) and we use (81) and (78) to see that

c = lim inf
R→+∞ λR

R∫

−R

β(t) dt

= lim inf
R→+∞

⎛
⎜⎝λR

ηR∫

−ηR

β(t) dt + λR

∫

{ηR<|t |≤R}
β(t) dt

⎞
⎟⎠

≥ lim inf
R→+∞ λR

ηR∫

−ηR

β(t) dt + lim inf
R→+∞ λR

∫

{ηR<|t |≤R}
β(t) dt

= lim inf
R→+∞ ληR

ηR∫

−ηR

β(t) dt + lim inf
R→+∞ λR

∫

{ηR<|t |≤R}
β(t) dt

= c + lim inf
R→+∞ λR

∫

{ηR<|t |≤R}
β(t) dt.

As a consequence, by simplifying c,

0 ≥ lim inf
R→+∞ λR

∫

{ηR<|t |≤R}
β(t) dt.

So, since the integrand is nonnegative,

lim inf
R→+∞ λR

∫

{ηR<|t |≤R}
β(t) dt = 0. (82)
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Now, we use (80), (82), and (79) to conclude that

lim inf
R→+∞ λR

R∫

−R

β(t)α(t, R) dt

≤ lim inf
R→+∞

⎡
⎢⎣ sup

|τ |≤ηR
α(τ, R) λR

ηR∫

−ηR

β(t) dt + KλR

∫

{ηR<|t |≤R}
β(t) dt

⎤
⎥⎦

≤ lim inf
R→+∞

⎡
⎢⎣K sup

|τ |≤ηR
α(τ, R)+ KλR

∫

{ηR<|t |≤R}
β(t) dt

⎤
⎥⎦

= lim
R→+∞ K sup

|τ |≤ηR
α(τ, R)+ lim inf

R→+∞ KλR

∫

{ηR<|t |≤R}
β(t) dt

= 0,

which implies the desired result. �
Proof of Theorem 3 First, we recall that, by construction, the function u∗ defined in (14)
coincides with the 1-D minimizer u(0) along the n-th coordinate xn . Then, Theorem 2 yields

∂xn u∗(x) = (u(0))′(xn) > 0 ∀x ∈ R
n (83)

and

lim
xn→±∞ u∗(x ′, xn) = lim

xn→±∞ u(0)(xn) = ±1 ∀x ′ ∈ R
n−1. (84)

In view of (83) and (84), it remains to show that u∗ satisfies −(−�)su∗(x) = W ′(u∗(x)),
for any x ∈ R

n , and (16) will follow by Theorem 1. This is straightforward, since, by setting

z′ := (y′ − x ′)/|yn − xn | and zn := 	 yn (85)

the change of variable formula yields

−(−�)su∗(x) =
∫

R

⎡
⎢⎢⎢⎣
∫

Rn−1

u(0)(	 yn)− u(0)(	 xn)

|xn − yn |n+2s

(
1 + |x ′ − y′|2

|xn − yn |2
)(n+2s)/2

dy′

⎤
⎥⎥⎥⎦ dyn

= 	 2s
∫

R

⎡
⎢⎣
∫

Rn−1

u(0)(zn)− u(0)(	 xn)

|	 xn − zn |1+2s (1 + |z′|2)(n+2s)/2
dz′

⎤
⎥⎦ dzn

=
∫

R

u(0)(zn)− u(0)(	 xn)

|	 xn − zn |1+2s
dzn = W ′(u(0)(	 xn))

= W ′(u∗(x)).

Now, we will prove the claims in (i), (ii), and (iii).
We need to carefully estimate the contribution on BR and on C BR of the Hs

0 norm of the
function u∗.
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Let s ∈ (0, 1), we observe that by the estimate in (12), it follows that there exists a constant
C1 > 0 such that

‖(u(0))′(xn)‖L∞
(
[xn−(|xn |/2),xn+|xn |/2]

) ≤ C1|xn |−(1+2s)

for any xn large enough.
Accordingly, Lemma 12 (used here with ρ := |xn |/2) gives

∫

R

|u(0)(xn)− u(0)(yn)|2
|xn − yn |1+2s

dyn ≤ C2|xn |−2s, (86)

for any xn ∈ R
n with |xn | large enough, for a suitable constant C2 > 0.

From (86), we obtain that, for any x ∈ R
n with |xn | large enough,

∫

Rn

|u∗(x)− u∗(y)|2
|x − y|n+2s

dy ≤ C3

∫

R

|u(0)(	 xn)− u(0)(	 yn)|2
|xn − yn |1+2s

dyn

≤ C4|xn |−2s, (87)

for suitable C3, C4 > 0.
Also, if x ∈ R

n with |xn | ≤ R/2, we have that

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dy ≤
∫

C BR

4

(|y|/2)n+2s
dy ≤ C5 R−2s (88)

for a suitable C5 > 0.
Hence, for any R ≥ 4, by (87) and (88), we get

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

≤
∫

BR∩{|xn |≤R/2}

∫

Rn

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

+
∫

BR∩{|xn |>R/2}

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

≤ C5

∫

BR∩{|xn |≤R/2}
R−2s dx + C4

∫

BR∩{|xn |>R/2}
|xn |−2s dx

≤ C6 Rn−2s, (89)

for a suitable C6 > 0.
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Note that by (89) it follows

if s = 1/2,

1

Rn−1 log R

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy ≤ C6
1

log R
R→+∞−→ 0,

∀s ∈ (1/2, 1),

1

Rn−1

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy ≤ C6
1

R2s−1
R→+∞−→ 0,

which shows the asymptotic behavior as R goes to infinity of the contribution in the Hs
0 norm

of u∗ on C BR , as stated in claim (ii) and (iii).
For the case s ∈ (0, 1/2), the estimate in (89) yields

1

Rn−2s

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy ≤ C6, (90)

which provides an upper bound for any R large enough. Moreover, by construction of u∗,
we can obtain a lower bound as follows.

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy ≥ C7

∫

BR/2

∫

C B2R

dx dy

|x − y|n+2s

≥ C7

∫

BR/2

dx
∫

C B2R

dy

|y|n+2s

= C8 Rn−2s, (91)

for suitable positive constants C7 and C8, provided that R is large enough. Hence, (90)
together with (91) gives the estimates of the contribution in the Hs

0 norm of u∗ on C BR for
the case s ∈ (0, 1/2) as in claim (i).

Now, notice that for any s ∈ (0, 1) using the change of variable in (85), t := 	 xn ,
ρ = x ′/R, we have

1

Rn−1

∫

BR

∫

Rn

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

= 	 2s

Rn−1

∫

BR

⎡
⎢⎣
∫

Rn−1

⎛
⎝
∫

R

|u(0)(	 xn)− u(0)(zn)|2
|	 xn − zn |1+2s(1 + |z′|2)(n+2s)/2

dzn

⎞
⎠ dz′

⎤
⎥⎦ dx

= 1

	

	 R∫

−	 R

⎡
⎢⎢⎣

∫

B√
1−|t |2/(	2 R2)

⎛
⎝
∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn

⎞
⎠ dρ

⎤
⎥⎥⎦ dt

= ωn−1

	

	 R∫

−	 R

⎡
⎣
∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn

⎤
⎦ dt − 2θ1(R), (92)
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where

θ1(R) := 1

2

ωn−1

	

	 R∫

−	 R

[(
1 −

(
1 − t2

	 2 R2

)n−1
)

∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn

]
dt. (93)

Hence, it follows

1

2
R1−n

∫

BR

∫

BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

= 1

2
R1−n

⎛
⎜⎝
∫

BR

∫

Rn

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy −
∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

⎞
⎟⎠

= 1

2

ωn−1

	

	 R∫

−	 R

⎡
⎣
∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn

⎤
⎦ dt − θ2(R), (94)

where

θ2(R) := 1

2
R1−n

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy + θ1(R).

Using again the change of variable in (85), we have

1

Rn−1

∫

BR

W (u∗(x)) dx = ωn−1

	

	 R∫

−	 R

W ′(u(0)(t))
(

1 − t2

	 2 R2

)n−1

dt

= ωn−1

	

	 R∫

−	 R

W ′(u(0))(t)− θ3(R), (95)

where

θ3(R) := ωn−1

	

	 R∫

−	 R

W ′(u(0))(t)
(

1 −
(

1 − t2

	 2 R2

)n−1
)

dt.

Now we define the scaling constant λR depending of s as follows

λR =
⎧⎨
⎩

1

log R
if s = 1/2,

1 if s ∈ (1/2, 1)
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and we combine (94) with (95); we have

λR R1−nF (u∗; BR)

= λR R1−n ·

⎧⎪⎨
⎪⎩

1

2

∫

BR

∫

BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

+
∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy +
∫

BR

W ′(u∗(x)) dx

⎫⎪⎬
⎪⎭

= λR ·
{

1

2

ωn−1

	

	 R∫

−	 R

⎡
⎣
∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn

⎤
⎦ dt

+1

2
R1−n

∫

BR

∫

C BR

|u∗(x)− u∗(y)|2
|x − y|n+2s

dx dy

+ωn−1

	

	 R∫

−	 R

W ′(u(0)(t)) dt − θ4(R)

}
, (96)

where

θ4(R) = (
θ2(R)+ θ3(R)

)
.

We observe that

lim inf
R→+∞ λR θ4(R) = 0. (97)

Indeed, recalling that G (u(0)) is finite, due to Theorem 2, it suffices to recall (89) and
apply Lemma 4 with

α(t, R) = ωn−1

	

(
1 −

(
1 − |t |2

R2

)n−1
)

and

β(t) = 1

2

∫

R

|u(0)(t)− u(0)(zn)|2
|t − zn |1+2s

dzn + W ′(u(0))(t).

Thus, we make use of (89) and (97), so that by taking the limit as R → +∞ in (96) we
obtain

lim inf
R→+∞ λR R1−nF (u∗; BR) = ωn−1

	
G (u(0)).

This completes the proof of claim (ii) and (iii).
Finally, using Lemma 12 with ρ := 1, we obtain

∫

Rn

|u∗(x)− u∗(y)|2
|x − y|n+2s

dy ≤ C9,
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for any x ∈ R
n , for a suitable C9 > 0, and so

F (u∗; BR \ B(1−δ)R) ≤
(

C9 + sup
r∈[−1,1]

W (r)
) ∣∣BR \ B(1−δ)R

∣∣,
that is (17). The proof of the theorem is complete. �
Acknowledgments The authors would like to thank Luis Silvestre for his useful comments.

6 Appendix

In this Appendix, we state and prove some general results involving the Gagliardo norm
‖ · ‖Hs and various results that are necessary for the proofs of the main results of this papers.

As usual in this paper, throughout this section, we will assume that the fractional exponent
s is a real number belonging to (0, 1).

6.1 Regularity properties of the fractional Allen-Cahn equation

The following propositions recall how the fractional Laplacian operators interact with the
Cα-norms. Their proofs can be found in [23, Chapter 2], which present some general proper-
ties of the (−�)s operators and provide characterization of its supersolutions (see also [24]
and [12]).

Proposition 1 ([23, Proposition 2.1.10]) Let n ≥ 1. Let w ∈ C0,α(Rn), for α ∈ (0, 1]. Let
u ∈ L∞(Rn) be such that

− (−�)su(x) = w(x) for any x ∈ R
n . (98)

Then,

(i) If α + 2s ≤ 1, then u ∈ C0,α+2s(Rn). Moreover

‖u‖C0,α+2s (Rn) ≤ C
(‖u‖L∞(RN ) + ‖w‖C0,α(Rn)

)
for a constant C depending only on n, α and s.

(ii) If α + 2s > 1, then u ∈ C1,α+2s−1(Rn). Moreover

‖u‖C1,α+2s−1(Rn) ≤ C
(‖u‖L∞(Rn) + ‖w‖C0,α(Rn)

)
for a constant C depending only on n, α and s.

Proposition 2 ([23, Proposition 2.1.11]) Let n ≥ 1. Let u and w ∈ L∞(Rn) be such that

−(−�)su(x) = w(x) for any x ∈ R
n .

Then,

(i) If 2s ≤ 1, then u ∈ C0,α(Rn) for any α < 2s. Moreover

‖u‖C0,α(Rn) ≤ C
(‖u‖L∞(Rn) + ‖w‖L∞(Rn)

)
for a constant C depending only on n, α and s.

(ii) If 2s > 1, then u ∈ C1,α(Rn) for any α < 2s − 1. Moreover

‖u‖C1,α(Rn) ≤ C
(‖u‖L∞(Rn) + ‖w‖L∞(Rn)

)
for a constant C depending only on n, α and s.
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We remark that the above results (and, consequently, the claims in the forthcoming
Lemma 5) are valid also for solutions of (98) in bounded domains, leading to a local regularity
theory.

Since we deal with the case of w in (98) being the derivative of a double-well potential
W , we have to extrapolate the regularity informations for the solutions of equation (3); this
can be obtained by iterating the results in Proposition 1 and Proposition 2. In the following
two lemmas, we arrange some regularity results in the form to be applied in this paper (as
well as in [21] and [22]).

Lemma 5 Let n ≥ 1. Let u ∈ L∞(Rn) be such that

− (−�)su(x) = W ′(u(x)) for any x ∈ R
n, (99)

with W ∈ C1(R). Then,

(i) If s ∈ (0, 1/2], then u ∈ C0,α(Rn) for any α < 2s. Moreover,

‖u‖C0,α(Rn) ≤ C
(‖u‖L∞(Rn) + ‖W ′(u)‖L∞(Rn)

)
.

(ii) If s ∈ (1/2, 1), then u ∈ C1,α(Rn) for any α < 2s − 1. Moreover,

‖u‖C1,α(Rn) ≤ C
(‖u‖L∞(Rn) + ‖W ′(u)‖L∞(Rn)

)
,

for a constant C depending only on n, α and s.

Proof The proof is immediate. Let u in L∞(Rn) be a solution of equation (99). Since W
belongs to C1(R), it suffices to apply Proposition 2(i)–(ii) by chosing w(x) := W ′(u(x)). �
Lemma 6 Let n ≥ 1 and let u ∈ L∞(Rn) satisfy equation (99), with W ∈ C2(R). Then
u ∈ C2,α(Rn), with α depending on s.

Proof Let s ∈ (1/2, 1) and let u in L∞(Rn) be a solution of the equation (99). Then,
u ∈ C1,α(Rn) with its C1,α norm bounded as in Lemma 5(i). Moreover u′ satisfies

− (−�)su′(x) = W ′′(u(x))u′(x) for any x ∈ R
n . (100)

By the hypothesis on W and u, we can apply Proposition 2(ii) to the solution u′ of equation
(100) with w := W ′′(u(x))u′(x). It follows that u′ belongs to C1,α(Rn) for any α < 2s − 1
and thus the claim is proved.

Let s = 1/2. Then, by the fact that W is in C2 together with the regularity of u provided
by Lemma 5(i), Proposition 1(ii) with w := W ′(u) yields that the function u belongs to
C1,α(Rn) for any α < 1. Now, we can argue as for the case s ∈ (1/2, 1) to obtain the desired
regularity for u by Proposition 2(ii).

Finally, let s ∈ (0, 1/2) and let u ∈ L∞(Rn) be a solution of (99). So, Lemma 5(i) yields
u ∈ C0,α(Rn) for any α < 2s. Then, for s ∈ (1/4, 1/2) we can apply Proposition 1(ii)
and we get u ∈ C1,α+2s−1(Rn). Hence, u′ is well defined and it satisfies equation (100)
with w = W ′′(u)u′ belonging to C0,α+2s−1(Rn) and again by Proposition 1(ii) we get
u′ ∈ C1,α+2s−1 for any α < 2s.

For s ∈ (0, 1/4], we can use Proposition 1(i) in order to obtain u ∈ C0,α+2s(Rn) for any
α < 2s. Thus, when s ∈ (1/6, 1/4)], we can apply twice Proposition 1(ii) arguing as in the
case s ∈ (1/4, 1/2) and we get u′ ∈ C1,α+4s−1(Rn), for any α < 2s.

By iterating the above procedure on k ∈ N, we obtain that, when s ∈ (1/(2k + 2), 1/2k],
u belongs to C2,α+2k−1 for any α < 2s. �
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We conclude this section observing that the equation we deal with behaves well under
limits:

Lemma 7 Let W ∈ C1(R). For any k ∈ N, let uk ∈ C(Rn) ∩ L∞(Rn) be such that

−(−�)suk(x) = W ′(uk(x)) for any x ∈ Bk .

Suppose that supk ‖uk‖L∞(Rn) < ∞ and that uk converges a.e. to a function u. Then,

−(−�)su(x) = W ′(u(x)) for any x ∈ R
n .

Proof Given any φ ∈ C∞
0 (R) supported in Bk ,

∫

R

W ′(uk(x)) φ(x) dx =
∫

R

⎡
⎣
∫

R

uk(y)− uk(x)

|x − y|n+2s
dy

⎤
⎦ φ(x) dx

=
∫

R

∫

R

uk(x)
(
φ(y)− φ(x)

)
|x − y|n+2s

dx dy.

Moreover,

∫

R

∣∣∣∣∣∣
∫

R

φ(x)− φ(y)

|x − y|n+2s
dy

∣∣∣∣∣∣ dx =
∫

R

∣∣∣∣∣∣
∫

R

|φ(x)− φ(x − y)|
|y|n+2s

dy

∣∣∣∣∣∣ dx

≤
∫

R

dx

⎡
⎢⎣
∣∣∣∣∣∣∣
∫

B1

φ(x)− φ(x + y)+ ∇φ(x)y
|y|n+2s

dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

C B1

2‖φ‖L∞

|y|n+2s
dy

∣∣∣∣∣∣∣

⎤
⎥⎦ dx

≤
∫

R

dx

∣∣∣∣∣∣
1∫

0

‖∇2φ‖L∞

rn+2s
rn+1 dr +

∞∫

1

2‖φ‖L∞

r1+2s
dr

∣∣∣∣∣∣ < +∞.

Thus, by Dominated Convergence Theorem,
∫

R

W ′(u(x))φ(x) dx =
∫

R

∫

R

u(x)
(
φ(y)− φ(x)

)
|x − y|n+2s

dx dy

=
∫

R

⎡
⎣
∫

R

u(y)− u(x)

|x − y|n+2s
dy

⎤
⎦ φ(x) dx

=
∫

R

−(−�)su(x)φ(x) dx,

which gives the desired claim, since φ is arbitrary. �
6.2 Construction of barriers

We start by recalling the construction of an useful barrier that is used in [20–22] and also
here in the asymptotic analysis of the one-dimensional minimizers of the energy (1) (see the
forthcoming Proposition 3). The proof can be found in [21, Lemma 3.1]; it relies on a fine
construction around the power function t �→ |t |−2s together with some estimates proved here
in the following.
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Lemma 8 ([21]). Let n ≥ 1. Given any τ > 0, there exists a constant C > 1, possibly
depending on n, s and τ , such that the following holds: for any R ≥ C, there exists a
rotationally symmetric function

w ∈ C
(
R

n; [−1 + C R−2s, 1]), (101)

with

w = 1 in C BR, (102)

such that ∫

Rn

w(y)− w(x)

|x − y|n+2s
dy ≤ τ

(
1 + w(x)

)
(103)

and

1

C
(R + 1 − |x |)−2s ≤ 1 + w(x) ≤ C

(
R + 1 − |x |)−2s (104)

for any x ∈ BR.

Now, we consider the following equation related to the fractional operator (−�)s on the
real line,

− (−�)sv(x)− αv(x) = 0, (105)

where α is a positive constant. Precisely, in Corollary 4, we show that the function v being a
subsolution of equation (105) away from the origin is bounded (up to a multiplicative con-
stant) by the function x �→ |x |−(1+2s). This estimate will be crucial in the analysis of the
global minimizers of the functionals F (see Theorem 2).

First, we need to prove the following 1-D result.

Lemma 9 Let η ∈ C2(R; (0,+∞)), with ‖η‖C2(R) < +∞, and

η(x) = 1

|x |1+2s
for any x ∈ R \ (−1, 1).

Then there exists κ ∈ (0,+∞), possibly depending on s and η, such that

lim sup
x→±∞

−(−�)sη(x)
η(x)

≤ κ.

Proof We will denote by C suitable positive quantities, possibly different from line to line,
and possibly depending on s and η. For all (x, y) ∈ R

2 with |x | ≥ 2, we define

i(x, y) := η(y)− η(x)− χ(−1/4,1/4)(x − y) η′(x)(y − x)

|x − y|1+2s
.

For any fixed y ∈ R, we have that

lim
x→±∞ |x |1+2s i(x, y) = lim

x→±∞
|x |1+2s

|x − y|1+2s

(
η(y)− η(x)

) = η(y). (106)

Also, if |y| ≤ 1 and |x | ≥ 2, we have that |x − y| ≥ |x | − |y| ≥ |x |/2 and so

|x |1+2s |i(x, y)| = |x |1+2s
∣∣η(y)− η(x)

∣∣
|x − y|1+2s

≤ 16 sup
R

|η|. (107)
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Using (106), (107), and the Bounded Convergence Theorem, we conclude that

lim
x→±∞ |x |1+2s

1∫

−1

η(y)− η(x)− χ(−1/4,1/4)(x − y) η′(x)(y − x)

|x − y|1+2s
dy

=
1∫

−1

lim
x→±∞ |x |1+2s i(x, y) dy =

1∫

−1

η(y) dy. (108)

Now, fixed |x | ≥ 2, we estimate the contribution in R \ (−1, 1). We write R \ (−1, 1) =
P ∪ Q ∪ R ∪ S, where

P =
{

y ∈ R \ (−1, 1) s.t. |x |/2 < |y| ≤ 2|x | and |x − y| ≥ 1/4
}
,

Q =
{

y ∈ R \ (−1, 1) s.t. |x |/2 < |y| ≤ 2|x | and |x − y| < 1/4
}
,

R =
{

y ∈ R \ (−1, 1) s.t. |y| > 2|x |
}
,

S =
{

y ∈ R \ (−1, 1) s.t. |y| ≤ |x |/2
}
.

We observe that, if y ∈ P ,

|i(x, y)| = |η(y)− η(x)|
|x − y|1+2s

≤ |η(y)| + |η(x)|
|x − y|1+2s

= (1/|y|1+2s)+ (1/|x |1+2s)

|x − y|1+2s

≤ C

|x |1+2s |x − y|1+2s
. (109)

As a consequence,

|x |1+2s
∫

P

i(x, y) dy ≤ C
∫

P

dy

|x − y|1+2s
≤ C

∫

{|x−y|≥1/4}

dy

|x − y|1+2s
≤ C.

Moreover, if y ∈ Q, we can use the Taylor expansion of the function 1/|t |1+2s to obtain that

η(y)− η(x)− χ(−1/4,1/4)(x − y) η′(x)(y − x)

= η(y)− η(x)− η′(x) · (y − x)

= 1

|y|1+2s
− 1

|x |1+2s
+ (1 + 2s)

|x |3+2s
x(y − x)

= (1 + 2s)(2 + 2s)

|ξ |3+2s
|x − y|2,

for an appropriate ξ which lies on the segment joining x to y. Notice also that if y ∈ Q,
then y ≥ 0 if and only if x ≥ 0, therefore both x and y lie either in [|x |/2,+∞) or in
(−∞,−|x |/2]. In any case, |ξ | ≥ |x |/2 and so, for any y ∈ Q,

|i(x, y)| = |η(y)− η(x)− χ(−1/4,1/4)(x − y) η′(x)(y − x)|
|x − y|1+2s

= C

|ξ |3+2s
|x − y|1−2s ≤ C

|x |3+2s
|x − y|1−2s .
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As a consequence,

|x |1+2s
∫

Q

i(x, y) dy ≤ C

|x |2
∫

Q

|x − y|1−2s

≤ C

|x |2
∫

|x−y|<1/4

|x − y|1−2s ≤ C

|x |2 ≤ C.

Furthermore, if y ∈ R, we have that |x − y| ≥ |y| − |x | ≥ |x | > 1/4, thus we can estimate
the function i(x, y) as in (109) and we obtain

|i(x, y)| ≤ C

|x |1+2s |x − y|1+2s
.

In particular,

|x |1+2s
∫

R

i(x, y) dy ≤ C
∫

{|y|≥2|x |}

dy

|x − y|1+2s

≤ C
∫

{|x−y|≥|x |}

dy

|x − y|1+2s
= C

|x |2s
≤ C.

As for the last contribution, if y ∈ S then |x − y| ≥ |x | − |y| ≥ |x |/2 ≥ 1 and so

|i(x, y)| ≤ |η(y)| + |η(x)|
|x − y|1+2s

= (1/|y|1+2s)+ (1/|x |1+2s)

|x − y|1+2s

≤ C

|x |1+2s |y|1+2s
.

Accordingly,

|x |1+2s
∫

S

i(x, y) dy ≤ C
∫

{1≤|y|≤|x |/2}

dy

|y|1+2s
≤ C.

All in all, we obtain that

lim sup
x→±∞

|x |1+2s
∫

R\(−1,1)

η(y)− η(x)− χ(−1/4,1/4)(x − y)∇η(x) · (y − x)

|x − y|1+2s
dy

= lim sup
x→±∞

|x |1+2s

⎛
⎜⎝
∫

P

i(x, y) dy +
∫

Q

i(x, y) dy

+
∫

R

i(x, y) dy +
∫

S

i(x, y) dy

⎞
⎠ ≤ C.

From this and (108), the desired result plainly follows. �
Corollary 4 Let α, β > 0. Let v be a bounded function in C0,γ (R), with γ > 2s, such
that −(−�)sv(x) ≥ αv(x) for any x ∈ R \ (−β, β). Then, there exists a constant C̄ > 0,
possibly depending on s, α and β, such that

v(x) ≤ C̄

|x |1+2s
for any x ∈ R.
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Proof If v is identically 0, we have done. So, we suppose ‖v‖L∞(R) > 0.
Take η and κ as in Lemma 9. Define

a :=
( α

2κ

)1/(2s)

and ζ(x) := η(ax).
Then,

lim sup
x→±∞

−(−�)sζ(x)
ζ(x)

= a2s lim sup
x→±∞

−(−�)sη(ax)

η(ax)
≤ a2sκ = α

2
.

As a consequence, there exists β ′ ≥ β such that

− (−�)sζ(x) ≤ αζ(x) for any x ∈ R \ (−β ′, β ′). (110)

Now, we set

C̄ := 4‖v‖L∞(R)
min

[−aβ ′,aβ ′]
η

= 4‖v‖L∞(R)
min

[−β ′,β ′]
ζ
.

We claim that

v(x) ≤ C̄ζ(x) for any x ∈ R. (111)

In order to prove the above inequality, we take b in [0,+∞) and we define vb(x) := C̄ζ(x)+
b − v(x). When b > ‖v‖L∞(R), we have that vb(x) > 0 for any x ∈ R. Now, if vb(x) >
0 ∀x ∈ R and ∀b ∈ [0,+∞], we take b := 0 and we get (111). Then, we may take bo the
first b for which vb touches 0 from above; we have that vbo(x) ≥ 0 and that there exists a
sequence xk ∈ R such that vbo(xk) ≤ 2−k , for k ∈ N. We claim that

bo = 0. (112)

Indeed, we have, if k is sufficiently large,

‖v‖L∞(R) ≥ 2−k ≥ vbo(xk) ≥ C̄ζ(xk)− v(xk) ≥ C̄ζ(xk)− ‖v‖L∞(R)

and so

ζ(xk) ≤ 2‖v‖L∞(R)
C̄

=
min

[−β ′,β ′]
ζ

2
.

Therefore, |xk | > β ′.
Hence, recalling (110),∫

R

vbo(y)− vbo(xk)

|xk − y|1+2s
dy = −(−�)svbo(xk)

= −C̄(−�)sζ(xk)+ (−�)sv(xk) ≤ α(C̄ζ(xk)− v(xk))

= αvbo(xk)− αbo ≤ 2−kα − αbo. (113)

Now, we define vk(x) := vbo(x +xk). Notice that vk(x) ≥ 0 for any x ∈ R
n and vk(0) ≤ 2−k .

Also, by the Theorem of Ascoli, up to subsequence, we may suppose that vk converges to
some v∞ locally uniformly as k → +∞. It follows that

v∞(x) ≥ 0 = v∞(0) for any x ∈ R. (114)
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Moreover, by the assumption on the function v, we obtain that vk satisfies

|vk(t)− vk(0)|
|t |1+2s

≤ C
(|t |γ−1−2sχ(−1,1)(t)+ |t |−1−2sχR\(−1,1)(t)

)
,

for a suitable constant C > 0. Thus, the Dominated Convergence Theorem yields

lim
k→+∞

∫

R

vk(t)− vk(0)

|t |1+2s
dt =

∫

R

v∞(t)
|t |1+2s

dt. (115)

Finally, combining the above equation with (113) and (114), we get

−αbo ≥ lim
k→+∞

∫

R

vbo(y)− vbo(xk)

|xk − y|1+2s
dy

= lim
k→+∞

∫

R

vk(t)− vk(0)

|t |1+2s
dt

=
∫

R

v∞(t)
|t |1+2s

dt ≥ 0.

This completes the proof of (112).
Now, from (112), we conclude that, for any x ∈ R,

0 ≤ vbo(x) = C̄ζ(x)+ bo − v(x) = C̄ζ(x)− v(x)

and so v(x) ≤ C̄ζ(x). �
We finish this section by using the barriers constructed in Lemma 8 and Lemma 9 in

order to obtain a precise control on the behavior at infinity of the monotone solutions of
equation (3).

Proposition 3 Let n = 1 and let W ∈ C2(R) be a double-well potential with wells at
{−1,+1} such that W ′′(±1) > 0. Suppose that u is a strictly increasing function which
satisfies

{−(−�)su(x) = W ′(u(x)) for any x ∈ R,

lim
x→±∞ u(x) = ±1.

(116)

Then there exists a constant C ≥ 1 such that

|u(x)− sign (x)| ≤ C |x |−2s, (117)∣∣u′(x)
∣∣ ≤ C |x |−(1+2s) (118)

for any large x ∈ R.

Proof First, we note that the potential W satisfies

W ′(t) ≥ W ′(r)+ c(t − r) when r ≤ t, r, t ∈ [−1, −1 + c] ∪ [+1 − c, +1], (119)

for some c > 0.
Now, we choose τ = c in Lemma 8 and, for any R ≥ C , we consider the barrier w

constructed there.
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From (101), we know that there exists K ∈ R such that, if k ∈ (−∞, K ], thenw(x −k) >
u(x) for any x ∈ R. We take k̄ as large as possible with this property, i.e.,

w(x − k) > u(x) for any k < k̄ and any x ∈ R (120)

and there exists an infinitesimal sequence η j ∈ [0, 1) and points x j ∈ R for which

w(x j − (k̄ + η j )) ≤ u(x j ). (121)

From the asymptotic behavior at ∞ and the strict monotonicity of u, we know that |u(x)| < 1
for any x ∈ R. Hence, by (121),

w(x j − (k̄ + η j )) < 1.

This and (102) gives that
∣∣x j − (k̄ + η j )

∣∣ ≤ R, (122)

therefore

|x j | ≤ R + |k̄| + 1.

Thus, up to subsequence, we may suppose that

lim
j→+∞ x j = x̄,

for some x̄ ∈ R. Moreover, (122) implies that

x̄ − k̄ ∈ [−R, R], (123)

while (121) and (120) give that w(x̄ − k̄) = u(x̄).
Thus, we set v(x) := w(x − k̄) − u(x) and we see that v(x) ≥ 0 for any x ∈ R and

v(x̄) = 0.
Note that if x − k̄ ∈ [−R, R] and u(x) ∈ [−1,−1 + c], then

∫

R

v(y)− v(x)

|x − y|1+2s
dy =

∫

R

w(y − k̄)− w(x − k̄)

|x − y|1+2s
dy + (−�)su(x)

≤ τ(1 + w(x − k̄))− W ′(u(x))
≤ τ(1 + w(x − k̄))− c(u(x)+ 1)

= cv(x), (124)

thanks to (103), (116), and (119).
We claim that

u(x̄) > −1 + c. (125)

The proof of (125) is by contradiction: if u(x̄) ∈ [−1, −1 + c], we deduce from (123)
and (124) that

∫

R

v(y)

|x̄ − y|1+2s
dy =

∫

R

v(y)− v(x̄)

|x̄ − y|1+2s
dy ≤ cv(x̄) = 0.
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Since the first integrand is nonnegative, we would have that v vanishes identically, i.e.,
w(x − k̄) = u(x) for any x ∈ R

n . But then

+1 = lim
x→−∞w(x − k̄) = lim

x→−∞ u(x) = −1

and this contradiction proves (125).
From (104), (123), and (125), we obtain

C
(
R + 1 − |x̄ − k̄|)−2s ≥ 1 + w(x̄ − k̄) = 1 + u(x̄) > c,

hence

|x̄ − k̄| ≥ R − C ′ (126)

for a suitable C ′ > 0.
We now observe that

x̄ − k̄ ≥ 0. (127)

Indeed, if, by contradiction, x̄ − k̄ < 0, we define k̂ := 2x̄ − k̄ < k̄ and we use (120) to
obtain

w(k̄ − x̄) = w(x̄ − k̂) > u(x̄) = w(x̄ − k̄).

Since w is even, this is a contradiction, and (127) is proved.
We deduce from (123), (126), and (127) that

x̄ − k̄ ∈ [R − C ′, R]. (128)

We fix κ ∈ R such that u(−κ) = −1 + c. We remark that −κ ≤ x̄ and so

u(x − κ) ≤ u(x + x̄), (129)

for any x ∈ R, thanks to (125) and the monotonicity of u.
Now, we take any

y ∈
[

R

2
, R

]
. (130)

Then, by (128), we have that

x̄ − y − k̄ ∈
[
− R

2
,

R

2

]
,

and so, by (104),

1 + w(x̄ − y − k̄) ≤ C
(
R + 1 − |x̄ − y − k̄|)−2s

≤ C(R/2)−2s ≤ 4C y−2s .

By the above inequality, (120) and (129) we obtain that

u(−κ − y) ≤ u(x̄ − y) ≤ w(x̄ − y − k̄) ≤ −1 + 4C y−2s

for any y as in (130).
Since κ is a constant and R may be taken arbitrarily large, this says that, when x is negative

and very large,

u(x) ≤ −1 + C |x |−2s,
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for a suitably renamed C > 0. Analogously, one can prove that

u(x) ≥ +1 − C |x |−2s

when x is positive and very large, and these estimates prove the formula in (117).
Finally, in order to prove the estimate in (118), we observe that the function u belongs to

C2(R) (see Lemma 6) and that its derivative u′ satisfies the following equation

−(−�)su′(x) = W ′′(u(x))u′ for any x ∈ R.

Then, since lim
x→±∞ u = ±1 and the C2 potential W attains its minimum on ±1, there exist

α, β > 0 such that (u)′ satisfies

−(−�)su′(x) ≥ α u′(x) for any x ∈ R \ (−β, β).
Hence, if we choose v = u′, Corollary 4 yields the desired estimate in (118). �
Remark 3 We note that the statement in Proposition 3 is also valid for solution in [0,∞), by
replacing the limit condition in (116) with the following assumptions

lim
x→+∞ u(x) = +1 and u(x) = −1 ∀x ∈ (−∞, 0].

In such a case, the estimates (117) and (118) are meant for x positive and large enough.

6.3 A compactness remark

In the following lemma, we give full details of a compactness result of classical flavor.

Lemma 10 Let n ≥ 1,� ⊂ R
n be a Lipschitz bounded open set and T be a bounded subset

of L2(�). Suppose that

sup
f ∈T

∫

�

∫

�

| f (x)− f (y)|2
|x − y|n+2s

dx dy < +∞.

Then T is precompact in L2(�).

Proof The proof follows the one of the classical Riesz-Frechet-Kolmogorov Theorem, but
we need to operate some modifications due to the nonlocality of the fractional norm.

We show that T is totally bounded in L2(�), i.e., for any ε ∈ (0, 1), there exist
β1, . . . , βM ∈ L2(�) such that for any f ∈ T , there exists j ∈ {1, . . . ,M} such that

‖ f − β j‖L2(�) ≤ ε. (131)

First, we remark that we can extend any function f ∈ T as a function f̃ in Hs(Rn) (see,
for instance, [15, Section 5]). Therefore, we can suppose that � is contained in a large cube
�̃, with ‖ f̃ ‖Hs (�̃) ≤ C0‖ f ‖Hs (�). For the sake of simplicity, we drop the tilda’s in f and�
and we let

C := 1 + sup
f ∈T

‖ f ‖L2(�) + sup
f ∈T

∫

�

∫

�

| f (x)− f (y)|2
|x − y|n+2s

dx dy,

ρ ≤ ρε :=
(

ε

4
√

C n(n/2)+1

)1/s

and η = ηε := ε ρn/2

2
,
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and we take a collection of disjoints cubes Q1, . . . , QN of side ρ such that

� =
N⋃

j=1

Q j .

For any x ∈ �, we define

j (x) as the unique integer in {1, . . . , N } for which x ∈ Q j (x). (132)

Also, for any f ∈ T , let

P( f )(x) := 1

|Q j (x)|
∫

Q j (x)

f (y) dy.

Notice that

P( f + g) = P( f )+ P(g) for any f, g ∈ T

and that P( f ) is constant, say equal to q j ( f ), in any Q j , for j ∈ {1, . . . , N }. Therefore, we
can define

R( f ) := ρn/2(q1( f ), . . . , qN ( f )
) ∈ R

N .

We observe that R( f + g) = R( f )+ R(g). Moreover,

‖P( f )‖2
L2(�)

=
N∑

j=1

∫

Q j

|P( f )|2 dx

≤ ρn
N∑

j=1

|q j ( f )|2 = |R( f )|2 ≤ |R( f )|2
ρn

. (133)

and, by Hölder inequality,

|R( f )|2 =
N∑

j=1

ρn |q j ( f )|2 = 1

ρn

N∑
j=1

∣∣∣∣∣∣∣
∫

Q j

f (y) dy

∣∣∣∣∣∣∣

2

≤
N∑

j=1

∫

Q j

| f (y)|2 dy =
∫

�

| f (y)|2 = ‖ f ‖2
L2(�)

.

In particular,

sup
f ∈T

|R( f )|2 ≤ C,

that is, the set R(T ) is bounded in R
N and so, since it is finite dimensional, it is totally

bounded. Therefore, there exist b1, . . . , bM ∈ R
N such that

R(T ) ⊆
M⋃

i=1

Bη(bi ). (134)
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For any i ∈ {1, . . . ,M}, we write the coordinates of bi as bi = (bi,1, . . . , bi,N ) ∈ R
N . For

any x ∈ �, we set

βi (x) := ρ−n/2 bi, j (x),

where j (x) is as in (132).
Notice that βi is constant on Q j , i.e., if x ∈ Q j , then

P(βi )(x) = ρ− n
2 bi, j = βi (x) (135)

and so q j (βi ) = ρ− n
2 bi, j ; thus,

R(βi ) = bi . (136)

Furthermore, for any f ∈ T , by Hölder inequality,

‖ f − P( f )‖2
L2(�)

=
N∑

j=1

∫

Q j

| f (x)− P( f )(x)|2 dx

=
N∑

j=1

∫

Q j

∣∣∣∣∣∣∣
f (x)− 1

|Q j |
∫

Q j

f (y) dy

∣∣∣∣∣∣∣

2

dx

=
N∑

j=1

∫

Q j

1

|Q j |2

∣∣∣∣∣∣∣
∫

Q j

f (x)− f (y) dy

∣∣∣∣∣∣∣

2

dx

≤ 1

ρn

N∑
j=1

∫

Q j

⎡
⎢⎣
∫

Q j

∣∣ f (x)− f (y)
∣∣2 dy

⎤
⎥⎦ dx

≤ n(n/2)+1ρ2s
N∑

j=1

∫

Q j

⎡
⎢⎣
∫

Q j

| f (x)− f (y)|2
|x − y|n+2s

dy

⎤
⎥⎦ dx

≤ n(n/2)+1ρ2s
N∑

j=1

∫

Q j

⎡
⎣
∫

�

| f (x)− f (y)|2
|x − y|n+2s

dy

⎤
⎦ dx

= n(n/2)+1ρ2s
∫

�

⎡
⎣
∫

�

| f (x)− f (y)|2
|x − y|n+2s

dy

⎤
⎦ dx

≤ C n(n/2)+1 ρ2s = ε2

16
.

Consequently, for any j ∈ {1, ...,M}, recalling (133) and (135)

‖ f − β j‖L2(�) ≤ ‖ f − P( f )‖L2(�) + ‖P(β j )− β j‖L2(�) + ‖P( f − β j )‖L2(�)

≤ ε

2
+ |R( f )− R(β j )|

ρn/2 . (137)
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Now, given any f ∈ T , we recall (134) and (136) and we take j ∈ {1, . . . ,M} such that
R( f ) ∈ Bη(b j ). Then, (135) and (137) give that

‖ f − β j‖L2(�) ≤ ε

2
+ |R( f )− b j |

ρn/2 ≤ ε

2
+ η

ρn/2 = ε.

This proves (131), as desired. �
6.4 Integral computations

Lemma 11 deals with the kernels of the Gagliardo norm in the case of n-dimensional balls
BR . We provide a lower bound, with respect to the radius R of the contribution coming from
far of the energy.

Lemma 12 and Lemma 13 estimate the fractional derivative of bounded functions on the
whole space R

n . We also provide some estimates of the energy with respect to the L∞-norm
of the functions and their derivatives. The case of radial symmetric functions is analyzed in
Lemma 14.

Lemma 11 Let n ≥ 1 and R ≥ 1. Then,

if s ∈ (0, 1/2),
∫

BR

∫

B2R\BR

dx dy

|x − y|n+2s
≤ 3ω2

n−1 Rn−2s

2s (1 − 2s)
. (138)

If s = 1/2,
∫

BR

∫

C BR+1

dx dy

|x − y|n+2s
≤ ω2

n−1 Rn−1 (
2n + log(3R)

)
. (139)

If s ∈ (1/2, 1),
∫

BR

∫

C BR+1

dx dy

|x − y|n+2s
≤ ω2

n−1 Rn−1

2s − 1
. (140)

Proof For any fixed y ∈ R
n ,

2s
∫

B1

dx

|x − y|n+2s
= −

∫

B1

div

(
x − y

|x − y|n+2s

)
dx

= −
∫

∂B1

x − y

|x − y|n+2s
· x dH n−1(x)

≤
∫

∂B1

|x − y|1−n−2s dH n−1(x). (141)

Accordingly, if s ∈ (0, 1/2),

2s
∫

B1

∫

B2\B1

dx dy

|x − y|n+2s
≤

∫

∂B1

⎡
⎢⎣

∫

B2\B1

|x − y|1−n−2s dy

⎤
⎥⎦ dH n−1(x)

≤
∫

∂B1

⎡
⎢⎣
∫

B3

|ζ |1−n−2s dζ

⎤
⎥⎦ dH n−1(x)

= 31−2s ω2
n−1

1 − 2s
,
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which is finite by our assumption on s, and so, by changing variable x̃ := x/R and ỹ := y/R,

2s
∫

BR

∫

B2R\BR

dx dy

|x − y|n+2s
= Rn−2s

∫

B1

∫

B2\B1

dx̃ dỹ

|x̃ − ỹ|n+2s

≤ 31−2s ω2
n−1 Rn−2s

1 − 2s
,

proving (138).
On the other hand, if s ∈ (1/2, 1), we set ε := 1/R, and we use (141) to conclude that

∫

B1

∫

C B1+ε

dx dy

|x − y|n+2s
≤

∫

∂B1

⎡
⎢⎣

∫

C B1+ε

|x − y|1−n−2s dy

⎤
⎥⎦ dH n−1(x)

≤
∫

∂B1

⎡
⎢⎣
∫

C Bε

|ζ |1−n−2s dζ

⎤
⎥⎦ dH n−1(x) ≤ ω2

n−1ε
1−2s

2s − 1
,

hence (140) follows from scaling.
Finally, when s = 1/2, we use (141) in the following way:

∫

B1

∫

C B1+ε

dx dy

|x − y|n+2s
≤
∫

B1

∫

B2\B1+ε

dx dy

|x − y|n+1 +
∫

B1

∫

C B2

dx dy

(|y|/2)n+1

≤
∫

∂B1

⎡
⎢⎣

∫

B2\B1+ε

|x − y|−n dy

⎤
⎥⎦ dH n−1(x)+ 2nω2

n−1

≤
∫

∂B1

⎡
⎢⎣

∫

B3\Bε

|ζ |−n dζ

⎤
⎥⎦ dH n−1(x)+ 2nω2

n−1

= ω2
n−1

(
2n + log

3

ε

)
,

hence (139) follows again from scaling. �

Similarly as in previous Lemma 11, one can estimate the kernel interaction of smooth
functions as follows.

Lemma 12 Let n ≥ 1 and x ∈ R
n, ρ > 0 and ψ ∈ L∞(Rn) ∩ W 1,∞(Bρ(x)). Then,

∫

Rn

|ψ(x)− ψ(y)|2
|x − y|n+2s

dy ≤ 4ωn−1

(1 − s) s

[
‖∇ψ‖2

L∞(Bρ(x))ρ
2(1−s) + ‖ψ‖2

L∞(Rn)ρ
−2s

]
. (142)
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Proof We bound the left hand side of (142) by
∫

Bρ(x)

|ψ(x)− ψ(y)|2
|x − y|n+2s

dy +
∫

C Bρ(x)

|ψ(x)− ψ(y)|2
|x − y|n+2s

dy

≤
∫

Bρ(x)

‖∇ψ‖2
L∞(Bρ(x))

|x − y|n+2s−2 dy +
∫

C Bρ(x)

4 ‖ψ‖2
L∞(Rn)

|x − y|n+2s
dy

=
∫

Bρ

‖∇ψ‖2
L∞(Bρ(x))

|ζ |n+2s−2 dζ +
∫

C Bρ

4 ‖ψ‖2
L∞(Rn)

|ζ |n+2s
dζ

≤ ωn−1

(‖∇ψ‖2
L∞(Bρ(x)) ρ

2(1−s)

2(1 − s)
+ 4 ‖ψ‖2

L∞(Rn)ρ
−2s

s

)

and this easily implies (142). �
Lemma 13 Let n ≥ 1. Let x ∈ R

n, ρ > 0 and ψ ∈ L∞(Rn).
Suppose that there exists � ∈ R

n and K ∈ R

ψ(y)− ψ(x)−� · (y − x) ≤ K |x − y|2, (143)

for any y ∈ Bρ(x). Then,
∫

Rn

ψ(y)− ψ(x)

|x − y|n+2s
dy ≤ ωn−1

(Kρ2(1−s)

2(1 − s)
+ ‖ψ‖L∞(Rn)ρ

−2s

s

)
. (144)

Analogously, if we replace (143) with the assumption that there exists �̃ ∈ R
n and K̃ ∈ R

such that

ψ(y)− ψ(x)− �̃ · (y − x) ≥ −K̃ |x − y|2, (145)

for any y ∈ Bρ(x), we obtain that
∫

Rn

ψ(x)− ψ(y)

|x − y|n+2s
dy ≤ ωn−1

( K̃ρ2(1−s)

2(1 − s)
+ ‖ψ‖L∞(Rn)ρ

−2s

s

)
. (146)

In particular, if ψ ∈ L∞(Rn) ∩ W 2,∞(Bρ(x)) we have that∣∣∣∣∣∣
∫

Rn

ψ(y)− ψ(x)

|x − y|n+2s
dy

∣∣∣∣∣∣
≤ ωn−1

(1 − s) s

(
‖D2ψ‖L∞(Bρ(x))ρ

2(1−s) + ‖ψ‖L∞(Rn)ρ
−2s

)
. (147)

Proof We prove (144) under assumption (143), since the proof of (146) under assump-
tion (145) is the same, and then (147) follows from (143) and (145) by choosing � = �̃ =
∇ψ(x) and K = K̃ := ‖D2ψ‖L∞(Bρ(x)). The proof below is similar to the one of Lemma 12,
but we give the details for the facility of the reader.

Notice that, by symmetry, ∫

Bρ(x)

� · (x − y)

|x − y|n+2s
dy = 0.

123



716 G. Palatucci et al.

Consequently, we bound the left hand side of (144) by∫

Bρ(x)

ψ(y)− ψ(x)+� · (x − y)

|x − y|n+2s
dy +

∫

C Bρ(x)

|ψ(x)− ψ(y)|
|x − y|n+2s

dy

≤
∫

Bρ(x)

K

|x − y|n+2s−2 dy +
∫

C Bρ(x)

2‖ψ‖L∞(Rn)

|x − y|n+2s
dy

=
∫

Bρ

K

|ζ |n+2s−2 dζ +
∫

C Bρ

2‖ψ‖L∞(Rn)

|ζ |n+2s
dy

= ωn−1

[K ρ2(1−s)

2(1 − s)
+ ‖ψ‖L∞(Rn)ρ

−2s

s

]
,

that is (144). �
Lemma 14 Let n ≥ 1 and let x ∈ R

n. Let ψ ∈ L∞(Rn) be continuous, radial and radially
non-decreasing, with

sup
Rn
ψ = max

Rn
ψ = M.

Suppose that ψ ∈ W 2,∞({ψ < M}). Then,∫

Rn

ψ(x)− ψ(y)

|x − y|n+2s
dy ≤ ωn−1

(1 − s) s

(
‖D2ψ‖L∞({ψ<M}) + ‖ψ‖L∞(Rn)

)
. (148)

Proof By the radial symmetry of ψ , we have that

{ψ < M} = Bκ

for some κ > 0. Accordingly,

for any z, y in the closure of Bκ ,

ψ(y) ≥ ψ(z)+ ∇ψ(z)(y − z)− ‖D2ψ‖L∞({ψ<M})(z − y)2. (149)

Also, fixed any x ∈ R
n , we define

z :=
{

x if x ∈ Bκ ,
κx/|x | otherwise.

Notice that |z| ≤ κ , that ψ(x) = ψ(z), that ψ(z)− ψ(y) ≥ 0 if and only if |z| ≥ |y|. Also,
if |x | > κ and α is the angle between the vector x − z and y − z, the convexity of Bκ implies
that

α ∈
[
π

2
,

3π

2

]

and so cosα ≤ 0. Hence,

|x − y| =
√

|z − y|2 + |z − x |2 − 2|z − y| |z − x | cosα

≥
√

|z − y|2 + |z − x |2 ≥ |z − y|,
if |x | > κ (and, obviously, the estimate holds for |x | ≤ κ too, since is the case z = x).
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Thus, we use the above observations to obtain∫

Rn

ψ(x)− ψ(y)

|x − y|n+2s
dy ≤

∫

B|z|

ψ(z)− ψ(y)

|x − y|n+2s
dy ≤

∫

B|z|

ψ(z)− ψ(y)

|z − y|n+2s
dy

≤
∫

B|z|∩B1(z)

ψ(z)− ψ(y)

|z − y|n+2s
dy +

∫

B|z|∩C B1(z)

ψ(z)− ψ(y)

|z − y|n+2s
dy

≤
∫

B1(z)

‖D2ψ‖L∞({ψ<M}) |z − y|2−n−2s dy +
∫

C B1(z)

2 ‖ψ‖L∞(Rn)

|z − y|n+2s
dy

≤ ωn−1

[
‖D2ψ‖L∞({ψ<M})

1 − s
+ ‖ψ‖L∞(Rn)

s

]
,

which implies the desired result. �
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