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Abstract The equation �u + V (x)u + b(x)u|u|ρ−1 + h(x) = 0 in R
n is studied in aniso-

tropic Lebesgue spaces. We assume n−θ
n−2 < ρ < ∞, with n ≥ 3 and 0 ≤ θ < 2, which

covers the supercritical range. Our approach relies on estimates of the Riesz potential and
allows us to consider a wide class of potentials V , including anisotropic ones. The symmetry
and antisymmetry of the solutions are also addressed.
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1 Introduction and main results

We are concerned with the semilinear elliptic problem

�u + V (x)u + b(x)u|u|ρ−1 + h(x) = 0 in R
n (1.1)

u → 0 as |x | → ∞, (1.2)

where n ≥ 3 and V (x), b(x), h(x) are given functions.
Equation (1.1) appears naturally in the study of traveling waves for the Schrödinger equa-

tion, standing-wave solutions of the Klein–Gordon equation and quantum mechanics. These
equations have been used to describe many physical phenomena, which in general present an
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anisotropic feature, due to the non-homogeneity of the media as well as the complexity of the
energy potentials involved. For instance, crystalline matter with presence of multiple dipoles,
vibrational spectra of single-crystal, the dynamics of Bose–Einstein condensates under aniso-
tropic potential [5,10,14,17]. In the biological branch, the diffusive logistic equation with
harvesting,

∂u

∂t
= �u + V (x)u + b(x)u|u|ρ−1 + h(x), (1.3)

models fishing or hunting managements where V, b represent competition rates in the envi-
ronment and h is interpreted as the harvesting rate. We refer to [12] for further historical
background and bibliography.

Many authors have studied Eq. (1.1) mainly in Sobolev spaces where the potential V
and the range of ρ plays a crucial role. For instance, if the potential V is coercive or has
some symmetry properties, several results based on variational methods, such as existence of
solutions, are well known (see Strauss [16], Berestycki-Lions [3], Rabinowitz [13] for some
recent developments). In [4], the authors consider (1.1), i.e., steady solutions for (1.3), with
V > 0 and V ∈ L

n
2 (Rn) ∩ L∞(Rn).

In this paper, we work in anisotropic Lebesgue spaces, and by means of a contraction
argument, we find a solution for (1.1)–(1.2) (see Sect. 3). Recall that u belongs to the aniso-
tropic Lebesgue space L

−→p (see [1,2]) with −→p = (p1, p2, . . . , pn) and 1 ≤ pi ≤ ∞, if and
only if the norm

‖u‖−→p =
∥
∥
∥. . .

∥
∥‖u‖L p1 (dx1)

∥
∥

L p2 (dx2)
. . .

∥
∥
∥

L pn (dxn)
< ∞. (1.4)

The pair (L
−→p , ‖·‖−→p ) is a Banach space and (L

−→p , ‖·‖−→p ) ≡ (L p, ‖·‖p) when −→p =
(p, p, . . . , p). These spaces enable us to consider different symmetry properties and decay-
ing behavior depending on axial directions for the weights V, b, and h. Examples of them
are

V (x) = V1(x1)V2(x2) . . . Vn(xn) ∈ L
−→s , (1.5)

where x = (x1, x2, . . . , xn),
−→s = (s1, s2, . . . , sn), and Vi ∈ Lsi (R) with si 
= s j if i 
= j .

Indeed, if ‖V ‖−→s = �n
i=1 ‖Vi‖Lsi (R) is small enough, then the potential (1.5) satisfies the

hypotheses of Theorem 1.1 below. We are also able to treat V, b, h with changing sign and not
belonging to L∞(Rn). The proof of our results is based on careful estimates for the integral
operators below (1.10)–(1.12) in anisotropic Lebesgue spaces (see Section 2). As observed in
[5], a rich literature deals with Schrödinger equations and operators with isotropic potentials
but, in contrast, only a few papers deal with anisotropic ones. In this case, we point out that
one cannot perform reduction to spherically symmetric function space which restores the
compactness.

In Sect. 4, we show how to extend the results to include negative potentials V = −Ṽ
without any smallness assumption on Ṽ . For that matter, we consider Ṽ belonging to the
reverse Hölder class Hm , with m ≥ n/2, which contains other types of potentials including
Ṽ coercive and Ṽ = ζ( x

|x | )|x |−α with α < 2, ζ ∈ L∞(Sn−1) and ζ(x) ≥ ζ0 > 0. The case
α = 2 was treated in [5] and [6].

Denoting the area of the unit sphere by ωn , problem (1.1) can be converted into the
following integral equation

u(x) = 1

(n − 2)ωn

∫

Rn

1

|x − y|n−2 (V u + bu|u|ρ−1 + h)(y)dy. (1.6)
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The next step is to find the right spaces to tackle the integral operators in (1.6). The norm
‖·‖−→p presents the dilation property

‖u(σ x)‖−→p = σ
−

n∑

i=1

1
pi ‖u(x)‖−→p , σ > 0. (1.7)

Let 0 ≤ θ < 2, bσ (x) = σ θ b(σ x), Vσ (x) = σ 2V (σ x) and hσ (x) = σα0+2h(σ x) with
α0 = (2 − θ)/(ρ − 1). If u(x) is a solution to (1.1), then uσ (x) = σα0 u(σ x) solves the
rescaling equation

�uσ + Vσ (x)uσ + bσ (x)uσ |uσ |ρ−1 + hσ (x) = 0 in R
n, (1.8)

and thus, we consider the following scaling for (1.1):

u(x) → uσ (x) = σα0 u(σ x), σ > 0. (1.9)

In order to prove that the integral operator in (1.6) is well defined, we write it in three parts,
namely

TV (u)(x) = 1

(n − 2)ωn

∫

Rn

1

|x − y|n−2 (V u)(y)dy, (1.10)

Bb(u)(x) = 1

(n − 2)ωn

∫

Rn

1

|x − y|n−2 (bu|u|ρ−1)(y)dy, (1.11)

H(h)(x) = 1

(n − 2)ωn

∫

Rn

1

|x − y|n−2 (h)(y)dy. (1.12)

With this notation, the Eq. (1.6) can be written as

u = TV (u) + Bb(u) + H(h). (1.13)

Denote −→a ≤ −→
b when ai ≤ bi for all i = 1, . . . , n,

−→
1 = (1, . . . , 1),

−→∞ = (∞, . . . ,∞)

and

1
−→p =

(
1

p1
,

1

p2
, . . . ,

1

pn

)

for −→p = (p1, . . . , pn). (1.14)

We assume that the functions V and b satisfy

V ∈ L
−→s (Rn) and b ∈ L

−→q (Rn), (1.15)

with −→s = (s1, . . . , sn) and −→q = (q1, . . . , qn) such that �n
i=1

1
si

= 2 and �n
i=1

1
qi

< 2.

In light of dilatation property (1.7), we choose θ = �n
i=1

1
qi

and consider the following
indexes obtained by looking for anisotropic Lebesgue spaces whose norm is invariant by the
scaling (1.9):

α0 = 2 − θ

ρ − 1
, αh = α0 + 2 = 2ρ − θ

ρ − 1
,

−→r 0 = (r0,1, . . . , r0,n),
−→r 1 = (r1,1, . . . , r1,n) and

−→
d = (d1, . . . , dn) such that

−→
1 <

−→
d <

−→r 0,
−→r 1 <

−→∞, �n
i=1

1

r0,i
= α0 = 2 − θ

ρ − 1
, (1.16)

�n
i=1

1

di
= αh = 2ρ − θ

ρ − 1
and �n

i=1
1

r1,i
= α0 + 1 = ρ + 1 − θ

ρ − 1
. (1.17)
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We also assume that
−→
1 <

−→s <
−→∞,

−→
1 ≤ −→q ≤ −→∞,

1
−→s = ρ − 1

−→r 0
+ 1

−→q and
1
−→
d

= ρ
−→r 0

+ 1
−→q ≤ −→

1 . (1.18)

In what follows, we state the existence of solution for the equation (1.13).

Theorem 1.1 Let 0 ≤ θ < 2, n−θ
n−2 < ρ < ∞, and let −→r 0,

−→r 1,
−→s ,

−→q ,
−→
d as in (1.16)–

(1.18). Assume that h ∈ L
−→
d (Rn), V ∈ L

−→s (Rn), b ∈ L
−→q (Rn) with �n

i=1
1
si

= 2 and

θ = �n
i=1

1
qi

.

(A) Let C1 be as in Lemma 2.3. There exists ε > 0 such that if η = C1 ‖V ‖−→s < 1 and

‖h‖−→
d

≤ ε
C1

, then the integral equation (1.13) has a unique solution u ∈ L
−→r 0(Rn)

satisfying ‖u‖−→r 0
≤ 2ε

1−η
. Moreover, ∇u ∈ L

−→r 1(Rn).

(B) Let
−→
1 <

−→
l <

−→r 2 <
−→∞ satisfy 1−→r 2

= 1−→
l

− 1−→s . Assume that h ∈ L
−→
d (Rn)∩L

−→
l (Rn)

and η = C3 ‖V ‖−→s < 1, where C3 is as in Lemma 2.3. There exists 0 < ε ≤ ε such

that if ‖h‖−→
d

≤ ε
C1

then u ∈ L
−→r 0(Rn) ∩ L

−→r 2(Rn).

Remark 1.1 (Isotropic case) In Theorem 1.1, assume in particular that qi = q , si = s,
di = d , and r0,i = r0, for all i = 1, 2, . . . n. This corresponds to the isotropic case in which
we obtain a solution

u ∈ Lr0(Rn) with r0 = n(ρ − 1)

2 − n
q

,

for V ∈ L
n
2 (Rn), b ∈ Lq(Rn) with n

2 < q ≤ ∞ and h ∈ Ld(Rn) with d = n(ρ−1)

2ρ− n
q

.

Remark 1.2 (i) The solution u obtained in Theorem 1.1 (A) is a solution in the sense of
distributions for (1.1). Moreover, assuming in addition that V, b, h ∈ C0,γ (Rn) for
0 < γ < 1 (Hölder continuous functions), one can prove that the solution u belongs
to C2(Rn) and is a classical solution for (1.1) (see [7, Lemma 4.2]).

(ii) (Continuous dependence) Let u1 and u2 be two solutions as in Theorem 1.1 (A) corre-
sponding to (h1, V1, b) and (h2, V2, b), respectively. Let (ε1, η1) and (ε2, η2) be their
respective parameters. Denote η = max{η1, η2} and take ε = max{ε1, ε2} sufficiently
small so that η + 2ρ K1

(1−η)ρ−1 ερ−1‖b‖−→q < 1. Then,

‖u1 − u2‖−→r 0
≤ C1

1 − η − 2ρ K1
(1−η)ρ−1 ερ−1‖b‖−→q

‖h1 − h2‖−→
d

+ 2εC1

1 − η
‖V1 − V2‖−→s ,

(1.19)

where C1 and K1 are given in (2.3) and (2.12), respectively.

In order to address symmetry results for Eq. (1.1), we denote by O(n) the orthogonal
matrix group in R

n . Let G be a subset of O(n). We recall that a function u is symmetric under
the action of G when u(x) = u(T (x)) for any T ∈ G. If u(x) = −u(T −1(x)) for any T ∈ G,
then u is said to be antisymmetric under G.

Theorem 1.2 Under hypotheses of Theorem 1.1. Let � ⊂ R
n be an arbitrary positive mea-

sure set and G a subset of O(n).
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A class of elliptic equations in anisotropic spaces 543

(A) The solution u is positive (resp. negative) if V (x), b(x), h(x) ≥ 0 (resp. ≤ 0) a.e. in
R

n and h(x) > 0 (resp. < 0) in �.
(B) Let V (x) and b(x) be symmetric under the action of G. The solution u is antisymmetric

(resp. symmetric) when h(x) is antisymmetric (resp. symmetric) under G.

Remark 1.3 (Special types of symmetry and antisymmetry)

(i) Let G = O(n). If V (x), b(x), h(x)are radially symmetric then uis radially symmetric.
(ii) Let V (x), b(x)be even functions. The solution uis odd (resp. even) when h(x)is odd

(resp. even).

The plan of this paper is as follows. In the next section, we prove estimates in anisotropic
Lebesgue spaces for the operators (1.10)–(1.12). Theorems 1.1 and 1.2 are proved in Sect. 3.
The results concerning potentials in the reverse Hölder class Hm are stated and proved in
Sect. 4.

2 Estimates in anisotropic spaces

The aim of this section is to obtain estimates for the operators H, TV , and Bb in anisotropic
Lebesgue spaces. We start by recalling the Hölder type inequality in those spaces (see [1]).

Lemma 2.1 Let
−→
1 ≤ −→p ,

−→p j ≤ −→∞ for all j = 1, . . . , m. If

1
−→p =

m
∑

j=1

1
−→p j

then
∥
∥
∥
∥
∥
∥

m
∏

j=1

u j

∥
∥
∥
∥
∥
∥−→p

≤
m

∏

j=1

∥
∥u j

∥
∥−→p j

. (2.1)

Below we state the version of the Hardy–Littlewood–Sobolev inequality in anisotropic
L

−→p spaces. This estimate was already obtained by [9] in a more general situation for weighted
spaces and asymmetric kernels. For completeness, here we present a simpler proof, which is
adequate for our purposes.

Lemma 2.2 Let −→r = (r1, . . . , rn) and −→p = (p1, . . . , pn) be such that
−→
1 <

−→r <
−→p <−→∞ and �n

i=1
1
pi

= �n
i=1

1
ri

− β, where 0 < β < n. Then there exists C = C(
−→r , n, β) such

that
∥
∥
∥|x |−(n−β) ∗ f

∥
∥
∥−→p ≤ C ‖ f ‖−→r , (2.2)

for all f ∈ L
−→r .

Proof Let us choose −→z = (z1, z2, . . . , zn) with zi ≥ 0, �n
i=1zi = 1, and zi (n − β) < 1 for

every i = 1, . . . , n, in such a way that

1

pi
= 1

ri
− (1 − zi (n − β)).
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For instance,

zi = 1

n − β

[

1 −
(

1

ri
− 1

pi

)]

.

Since n |x | ≥ (|x1| + . . . + |xn |), we obtain from Young inequality that

1

|x |n−β
≤ C

(|x1| + |x2| + . . . + |xn |)n−β
≤ C�n

i=1 |xi |−zi (n−β) .

Therefore,

∥
∥
∥
∥

1

|x |n−β
∗ f

∥
∥
∥
∥−→p

=

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥

. . .

∥
∥
∥
∥
∥

∥
∥
∥
∥

1

|x |n−β
∗ f

∥
∥
∥
∥

L p1 (dx1)

∥
∥
∥
∥
∥

L p2 (dx2)

. . .

∥
∥
∥
∥
∥
∥

L pn−1 (dxn−1)

∥
∥
∥
∥
∥
∥
∥

L pn (dxn)

≤ C

∥
∥
∥
∥
∥
∥
∥

|xn |−zn(n−β) ∗
∥
∥
∥
∥
∥
. . .

∥
∥
∥|x2|−z2(n−β) ∗ f1(x2, . . . , xn)

∥
∥
∥

L p2 (dx2)

. . .

∥
∥
∥
∥
∥

L pn−1 (dxn−1)

∥
∥
∥
∥
∥
∥
∥

L pn (dxn )

where we define

f1(x2, . . . , xn) =
∥
∥
∥|x1|−z1(n−β) ∗ f (x1, x2, .., xn)

∥
∥
∥

L p1 (dx1)

.

Using L p-estimates for the Riesz potential (−�)−
γ
2 when n = 1 (see [8, Theorem 4.5.3 p.

117] and [11]), it follows that
∥
∥
∥|x1|−z1(n−β) ∗ f (x1, x2, . . . , xn)

∥
∥
∥

L p1 (dx1)
≤ C ‖ f (x1, x2, . . . , xn)‖Lr1 (dx1)

.

Inductively, we obtain
∥
∥
∥|x |−(n−β) ∗ f

∥
∥
∥−→p

≤ C

∥
∥
∥
∥
∥
∥
∥

|xn |−zn (n−β) ∗
∥
∥
∥
∥
∥
. . .

∥
∥
∥|x2|−z2(n−β) ∗ f1(x2, . . . , xn)

∥
∥
∥

L p2 (dx2)

. . .

∥
∥
∥
∥
∥

L pn−1 (dxn−1)

∥
∥
∥
∥
∥
∥
∥

L pn (dxn )

≤ C

∥
∥
∥
∥
∥
|xn |−zn (n−β) ∗

∥
∥
∥
∥
. . .

∥
∥
∥|x2|−z2(n−β) ∗ ‖ f (x1, x2, . . . , xn)‖Lr1 (dx1)

∥
∥
∥

L p2 (dx2)
. . .

∥
∥
∥
∥

L pn−1 (dxn−1)

∥
∥
∥
∥
∥

L pn (dxn )

≤ C

∥
∥
∥
∥
|xn |−zn (n−β) ∗

∥
∥
∥. . . |x3|−z3(n−β) ∗

[∥
∥‖ f (x1, x2, . . . , xn)‖Lr1 (dx1)

∥
∥

Lr2 (dx2)

]

. . .

∥
∥
∥

L pn−1 (dxn−1)

∥
∥
∥
∥

L pn (dxn )

. . .

≤ C

∥
∥
∥
∥

∥
∥
∥. . .

∥
∥‖ f (x1, x2, . . . , xn)‖Lr1 (dx1)

∥
∥

Lr2 (dx2)
. . .

∥
∥
∥

Lrn−1 (dxn−1)

∥
∥
∥
∥

Lrn (dxn )

= C ‖ f ‖−→r ,

which is the desired estimate. ��
We now prove a sequence of three lemmas that provide estimates for the operators

H, TV , Bb and their derivatives.

Lemma 2.3 Let −→r 0,
−→r 1,

−→r 2,
−→
d and

−→
l be as in Theorem 1.1. There exist C1, C2, C3 > 0

such that
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‖H(h)‖−→r 0
≤ C1‖h‖−→

d
, for all h ∈ L

−→
d , (2.3)

‖∇ H(h)‖−→r 1
≤ C2‖h‖−→

d
, for all h ∈ L

−→
d , (2.4)

‖H(h)‖−→r 2
≤ C3‖h‖−→

l
, for all h ∈ L

−→
l . (2.5)

Proof It follows from hypotheses that

�n
i=1

1

di
= 2ρ − �n

i=1
1
qi

ρ − 1
= 2 − �n

i=1
1
qi

ρ − 1
+ 2 = �n

i=1
1

r0,i
+ 2.

Applying Lemma 2.2 with −→p = −→r 0,
−→r = −→

d and β = 2, we obtain

‖H(h)‖−→r 0
= 1

(n − 2)ωn

∥
∥
∥
∥

1

|x |n−2 ∗ h

∥
∥
∥
∥−→r 0

≤ C ‖h‖−→
d

,

which proves estimate (2.3). Similarly, since the condition 1−→r 2
= 1−→

l
− 1−→s implies �n

i=1
1

r2,i
=

�n
i=1

1
li

− 2, the estimate (2.5) follows by using Lemma 2.2 with (
−→p ,

−→r , β) = (
−→r 2,

−→
l , 2),

namely

‖H(h)‖−→r 2
= C

∥
∥
∥
∥

1

|x |n−2 ∗ h

∥
∥
∥
∥−→r 2

≤ C ‖h‖−→
l

.

In order to prove (2.4), we observe first that

∇ H(h)(x) =
∫

Rn

∇x

(
1

|x − y|n−2

)

h(y)dy (2.6)

and
∣
∣
∣
∣
∇x

(
1

|x − y|n−2

)∣
∣
∣
∣
≤ C

|x − y|n−1 .

In view of

�n
i=1

1

r1,i
= ρ + 1 − �n

i=1
1
qi

ρ − 1
= 2ρ − �n

i=1
1
qi

ρ − 1
− 1 = �n

i=1
1

di
− 1,

Lemma 2.2 with −→p = −→r 1,
−→r = −→

d , β = 1 yields

‖∇ H(h)‖−→r 1
≤ C

∥
∥
∥
∥
∥
∥

∫

Rn

1

|x − y|n−1
|h(y)| dy

∥
∥
∥
∥
∥
∥−→r 1

(2.7)

≤ C‖h‖−→
d

,

which is the inequality (2.4). ��
The next lemma deals with the linear operator TV .

Lemma 2.4 Under the hypotheses of Theorem 1.1 and let C1, C2 and C3 be as in Lemma 2.3.
We have

‖TV (u)‖−→r 0
≤ C1‖V ‖−→s ‖u‖−→r 0

, for all V ∈ L
−→s and u ∈ L

−→r0 , (2.8)

‖∇TV (u)‖−→r 1
≤ C2‖V ‖−→s ‖u‖−→r 0

, for all V ∈ L
−→s and u ∈ L

−→r0 , (2.9)

‖TV (u)‖−→r 2
≤ C3‖V ‖−→s ‖u‖−→r 2

, for all V ∈ L
−→s and u ∈ L

−→r2 . (2.10)
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Proof In view of the relation [see (1.18)]

1
−→
d

= ρ
−→r 0

+ 1
−→q = 1

−→r 0
+ 1

−→s ,

the Hölder inequality (2.1) yields

‖V u‖−→
d

≤ ‖V ‖−→s ‖u‖−→r 0
. (2.11)

Since TV (u) = H(V u), it follows from (2.3) that

‖TV (u)‖−→r 0
= ‖H(V u)‖−→r 0

≤ C1‖V u‖−→
d

≤ C1‖V ‖−→s ‖u‖−→r 0
,

which proves (2.8). Due to the condition 1−→r 2
= 1−→

l
− 1−→s , (2.10) can be proved similarly by

using (2.5) and Hölder inequality (2.1).
Finally, we deal with (2.9). For that, recall

∇TV (u)(x) = ∇ H(V u) =
∫

Rn

∇x

(
1

|x − y|n−2

)

(V u)dy,

apply (2.4) with h = V u and afterward use (2.11) to obtain

‖∇TV (u)‖−→r 1
= ‖∇ H(V u)‖−→r 1

≤ C2‖V u‖−→
d

≤ C2‖V ‖−→s ‖u‖−→r 0
,

which is the desired estimate. ��
In the sequel, we give estimates for the nonlinear term Bb.

Lemma 2.5 Under hypotheses of Theorem 1.1. There exist K1, K2, K3 > 0 such that

‖Bb(u) − Bb(v)‖−→r 0
≤ K1‖b‖−→q ‖u − v‖−→r 0

(

‖u‖ρ−1−→r 0
+ ‖v‖ρ−1−→r 0

)

, (2.12)

‖∇ [Bb(u) − Bb(v)] ‖−→r 1
≤ K2‖b‖−→q ‖u − v‖−→r 0

(

‖u‖ρ−1−→r 0
+ ‖v‖ρ−1−→r 0

)

, (2.13)

‖Bb(u) − Bb(v)‖−→r 2
≤ K3‖b‖−→q ‖u − v‖−→r 2

(‖u‖ρ−1
r0

+ ‖v‖ρ−1
r0

)

, (2.14)

for all u, v.

Proof We will only prove the estimate (2.12) because (2.13) and (2.14) can be obtained
through arguments similar to those used to prove (2.12) and (2.9).

First, recall the pointwise estimate

|t |t |ρ−1 − s|s|ρ−1| ≤ ρ|t − s|(|t |ρ−1 + |s|ρ−1) for all s, t ∈ R, (2.15)

and note that

Bb(u) − Bb(v) = H [b(u |u|ρ−1 − v |v|ρ−1)]. (2.16)

Moreover, taking −→a = (a1, . . . , an) with −→a = (ρ − 1)−1−→r 0, it follows from (1.18) that

1
−→
d

= ρ
−→r 0

+ 1
−→q = 1

−→r 0
+ 1

−→a + 1
−→q = 1

−→r 0
+ 1

−→c , (2.17)
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where −→c is such that 1−→c = 1−→a + 1−→q . In view of (2.17), estimates (2.1) and (2.15) imply

‖b(u |u|ρ−1 − v |v|ρ−1)‖−→
d

≤ ‖b‖−→q ‖u |u|ρ−1 − v |v|ρ−1 ‖−→r 0
ρ

.

≤ ρ‖b‖−→q ‖u − v‖−→r 0
‖ |u|ρ−1 + |v|ρ−1 ‖−→a .

≤ ρ‖b‖−→q ‖u − v‖−→r 0
(‖u‖ρ−1−→r 0

+ ‖v‖ρ−1−→r 0
). (2.18)

Finally, (2.16), (2.3), and (2.18) yield the required estimate. ��

3 Proof of results

The existence of solutions will be proved by using the previous estimates and a contraction
argument.

3.1 Proof of Theorem 1.1.

Part (A): Define the map � : L−→r 0
→ L−→r 0

by

�(u) := TV (u) + Bb(u) + H(h)

and consider the ball

Bε =
{

u ∈ L−→r 0
; ‖u‖−→r 0

≤ 2ε

1 − η

}

endowed with the complete metric W(u, v) = ‖u − v‖−→r 0
. We are going to show that �|Bε

is a contraction for some ε > 0. Recalling η = C1 ‖V ‖−→s < 1, estimates (2.3), (2.8) and
(2.12) with v = 0 yield

‖�(u)‖−→r 0
≤ ‖H(h)‖−→r 0

+ ‖TV (u)‖−→r 0
+ ‖Bb(u)‖−→r 0

≤ C1 ‖h‖−→
d

+ C1 ‖V ‖−→s ‖u‖−→r 0
+ K1 ‖b‖−→q ‖u‖ρ−→r 0

≤ ε + η
2ε

1 − η
+ K1 ‖b‖−→q

2ρερ

(1 − η)ρ

=
(

1 + η + K1 ‖b‖−→q
2ρερ−1

(1 − η)ρ−1

)
ε

1 − η
≤ 2ε

1 − η
, (3.1)

provided that ‖h‖−→
d

≤ ε
C1

, K1 ‖b‖−→q 2ρερ−1

(1−η)ρ−1 +η < 1 and u ∈ Bε. Therefore, Bε is invariant
by �. Since TV is linear, it follows from (2.8) and (2.12) that

‖�(u) − �(v)‖−→r 0
= ‖TV (u − v) + Bb(u) − Bb(v)‖−→r 0

≤ η ‖u − v‖−→r 0
+ K1 ‖b‖−→q ‖u − v‖−→r 0

(

‖u‖ρ−1−→r 0
+ ‖v‖ρ−1−→r 0

)

≤
(

η + K1 ‖b‖−→q
2ρερ−1

(1 − η)ρ−1

)

‖u − v‖−→r 0
, (3.2)

for all u, v ∈ Bε. The estimates (3.1) and (3.2) together imply that �|Bε is a contraction.
Then, there is a unique solution u of (1.13) satisfying ‖u‖−→r 0

≤ 2ε
1−η

, which is the fixed point

of � in Bε . Moreover, because u ∈ L
−→r 0 and satisfies (1.13), it follows at once from (2.4),

(2.9), and (2.13) with v = 0 that ∇u ∈ L
−→r 1 .
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Part (B): Consider the following interactive sequence

u1 = H(h) and uk+1 = TV (uk) + Bb(uk) + H(h) , k ∈ N. (3.3)

Due to the contraction argument performed above, the solution u is the limit of (3.3) in L
−→r 0 .

From (2.5), (2.10) and (2.14) with v = 0, we deduce

‖H(h)‖−→r 2
≤ C3 ‖h‖−→

l

and

‖uk+1‖−→r 2
≤ C3 ‖h‖−→

l
+ C3 ‖V ‖−→s ‖uk‖−→r2

+ K3 ‖b‖−→q ‖uk‖−→r 2
‖uk‖ρ−1−→r 0

≤ C3 ‖h‖−→
l

+
[

C3 ‖V ‖−→s + K3 ‖b‖−→q ‖uk‖ρ−1−→r 0

]

‖uk‖−→r2
, (3.4)

because 1−→
l

= 1−→r 2
+ 1−→s and 1−→s = ρ−1−→r 0

+ 1−→q . Let η = C3 ‖V ‖−→s < 1 and choose 0 < ε ≤ ε

so that

η + K3 ‖b‖−→q
2ρ−1ερ−1

(1 − η)ρ−1 < 1. (3.5)

Taking ‖h‖−→
d

≤ ε
C1

, the proof of Part (A) shows that the sequence (3.3) satisfies ‖uk‖−→r 0
≤

2ε
1−η

for all k ∈ N. In view of (3.4),

‖uk+1‖−→r 2
≤ C3 ‖h‖−→

l
+

(

η + K3 ‖b‖−→q
2ρ−1ερ−1

(1 − η)ρ−1

)

‖uk‖−→r2

= C3 ‖h‖−→
l

+ � ‖uk‖−→r2

Since � < 1, the sequence {uk}k∈N is bounded in L
−→r 2 ; more precisely

‖uk‖−→r2
≤ C3 ‖h‖−→

l

1 − �
, for all k ∈ N.

Therefore, up to a subsequence, uk converges weakly in L
−→r 2 to ũ, and in particular, it con-

verges in the sense of distributions. Because uk → u in L
−→r 0 by Part (A), we conclude from

the uniqueness of limit in the sense of distributions that u = ũ ∈ L
−→r 2 . ��

3.2 Proof of Theorem 1.2

Part (A): Let h, V, b ≥ 0 a.e. in R
n and let � be a positive-measure set. From expression

(1.12), u1(x) = H(h) ≥ 0 in R
n if h ≥ 0 a.e. in R

n; and H(h) > 0 in R
n if h(x) > 0 in �.

We also have that

TV (u) ≥ 0 and Bb(u) ≥ 0 when u ≥ 0 a.e. in R
n, (3.6)

because V, b ≥ 0 a.e. in R
n . In view of (3.3), an induction procedure shows that, for all

k ∈ N, either uk ≥ 0 if h ≥ 0 a.e. in R
n or uk > 0 if h > 0 in �. Since uk → u in L

−→r 0 and
the convergence in L

−→r 0 preserves non-negativity, we get u ≥ 0 a.e. in R
n . From (1.13) and

(3.6),

u = TV (u) + Bb(u) + H(h) ≥ H(h) > 0 a.e. in R
n,

and we are done. A similar argument works well for the statement concerning negative
solutions.
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Part (B): We will prove the antisymmetric part of the statement, because the symmetric one
is analogous. We claim that if h is antisymmetric under G, then H(h) is also. In fact, given a
T ∈ G, we have

−H(h)(T −1(x)) = − 1

(n − 2)ωn

∫

Rn

1

|T −1(x) − y|n−2 h(y)dy

= − 1

(n − 2)ωn

∫

Rn

1

|T −1(x − T (y))|n−2 h(y)dy

= − 1

(n − 2)ωn

∫

Rn

1

|x − T (y)|n−2 h(y)dy.

Performing the change of variables T (y) = z and using that h is antisymmetric, we obtain

−H(h)(T −1(x)) = 1

(n − 2)ωn

∫

Rn

1

|x − z|n−2

[−h(T −1(z))
]

dz

= 1

(n − 2)ωn

∫

Rn

1

|x − z|n−2 h(z)dz = H(h)(x).

Moreover, TV (u) = H(V u) and Bb(u) = H(bu |u|ρ−1) are antisymmetric whenever u is,
because V and b are symmetric. Therefore, through an induction argument, one can prove
that each element uk of the sequence (3.3) is antisymmetric. The convergence uk → u in
L

−→r 0 implies (up a subsequence) a.e. pointwise convergence, and so u is also antisymmetric.
��

4 Signed potentials

Replacing V (x) = −Ṽ (x), the Eq. (1.1) becomes

�u − Ṽ (x)u + b(x)u|u|ρ−1 + h(x) = 0 in R
n . (4.1)

In this section, we restrict our attention to potentials Ṽ in the reverse Hölder class Hm for
n/2 ≤ m < ∞. We recall that a nonnegative locally Lm integrable function Ṽ (x) in R

n

is said to belong to Hm if there exists C = C(m, n, Ṽ ) > 0 such that the reverse Hölder
inequality

⎛

⎝
1

|B|
∫

B
Ṽ m dx

⎞

⎠

1/m

≤ C

⎛

⎝
1

|B|
∫

B
Ṽ dx

⎞

⎠

holds true for every ball B in R
n . For example, Ṽ (x) = |x |2 belongs to Hm for all m > 1

and in this case the operator LṼ = −� + Ṽ , is the well-known Hamiltonian harmonic
oscillator or Hermite operator that has been widely studied in physics. For instance, in [14],
the authors studied the dynamics of Bose–Einstein condensates under the action of potentials
with distinct behaviors in the longitudinal axial and transverse radial directions, such as

Ṽ (x1, x2, x3) = λ
x2

1

2
+ x2

2

2
+ �(x3), (4.2)

123



550 L. C. F. Ferreira et al.

where � is a bounded function. If � ∈ L∞(R) with �(x) ≥ δ0 > 0 then (4.2) belongs to Hm .
Another potentials in Hm are Ṽ ∈ L∞(Rn) with Ṽ (x) ≥ V0 > 0 and Ṽ (x) = ζ( x

|x | )|x |−α

with α < n
m , ζ ∈ L∞(Sn−1) and ζ(x) ≥ ζ0 > 0.

We can convert the problem (4.1) into the integral equation

u(x) =
∫

Rn

GṼ (x, y)(bu|u|ρ−1 + h)(y)dy, (4.3)

where GṼ (x, y) is the Green function in R
n of the operator LṼ = −�+ Ṽ . We remark that

GṼ enjoys some properties, which we will make use of in the sequel. There exists CṼ > 0
such that

0 ≤ GṼ (x, y) ≤ CṼ

|x − y|n−2 , (4.4)

see for example [15, estimate 2.6, p.525] and references therein. This time, the integral
equation (1.10) can be written as

u = B̃b(u) + H̃(h), (4.5)

where

B̃b(u) =
∫

Rn

GṼ (x, y)(bu|u|ρ−1)(y)dy and H̃(h) =
∫

Rn

GṼ (x, y)h(y)dy. (4.6)

One can adapt the proof of Lemmas 2.3 and 2.5 to obtain the following estimates:

Lemma 4.1 Let 0 ≤ θ < 2, n−θ
n−2 < ρ < ∞, and let −→r 0,

−→q ,
−→
d be as in (1.16)–(1.18) with

θ = �n
i=1

1
qi

. Suppose that Ṽ ≥ 0 and Ṽ ∈ Hm with m ≥ n/2. There exist C̃1, K̃1 > 0 such
that

‖H̃(h)‖−→r 0
≤ C̃1‖h‖−→

d
(4.7)

and
∥
∥B̃b(u) − B̃b(v)

∥
∥−→r 0

≤ K̃1 ‖b‖−→q ‖u − v‖−→r 0

(

‖u‖ρ−1−→r 0
+ ‖v‖ρ−1−→r 0

)

, (4.8)

for all h, u, v.

Proof The estimate (4.8) follows from (4.7) and (2.18), because B̃b(u) = H̃(bu|u|ρ−1) and
1−→
d

= 1−→q + ρ−→r 0
. It remains to prove (4.7). Since Ṽ ∈ Hm the estimate (4.4) holds, and then

‖H̃(h)‖−→r 0
≤ ‖

∫

Rn

GṼ (x, y) |h(y)| dy‖−→r 0

≤ CṼ ‖
∫

Rn

1

|x − y|n−2
|h(y)| dy‖−→r 0

≤ C̃1‖h‖−→
d

,

where in the last inequality we have used Lemma 2.2. ��
We have now the background to undertake potentials in the reverse Hölder class and

formulate results for (4.1) in the spirit of Sect. 1.
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Theorem 4.2 Under the hypotheses of Lemma 4.1, let � ⊂ R
n be a positive-measure set

and assume that Ṽ ≥ 0 and Ṽ ∈ Hm with m ≥ n/2.

(A) There exists ε > 0 such that if ‖h‖−→
d

≤ ε

C̃1
, then the integral equation (4.3) has a

unique solution u ∈ L
−→r 0(Rn) satisfying ‖u‖−→r 0

≤ 2ε where C̃1 is as in Lemma 4.1.

(B) Let b(x), h(x) ≥ 0 (resp. ≤ 0) a.e. in R
n and h > 0 (resp. < 0) in �. Then the

solution u given in Part (A) is positive. Furthermore, u is radially symmetric when
Ṽ (x), b(x), h(x) are radially symmetric.

Remark 4.1 (i) Notice that Theorems 1.1 and 4.2 deal with distinct classes of potentials.
Indeed there is no inclusion relation between Hm(m ≥ n/2) and L

−→s with �n
i=1

1
si

= 2.
In Theorem 4.2 we deal with sign-defined potentials, but without assuming a smallness
condition on Ṽ .

(ii) A slight modification in the proof of Theorems 1.1 and 4.2 allows us to consider more
general potential such as V = V1 − V2 where V1 ∈ L

−→s is as in Theorem 1.1 and
0 ≤ V2 ∈ Hm(m ≥ n/2). Indeed, in this case we can write (1.1) as

−�u + V2(x)u = V1(x)u + b(x)u|u|ρ−1 + h(x),

which can be converted into the integral equation

u(x) =
∫

Rn

GV2 (x, y)(V1(x)u + bu|u|ρ−1 + h)(y)dy

= ˜̃T V1(u) + ˜̃Bb(u) + ˜̃H(h),

where GV2 satisfies (4.4).

4.1 Proof of Theorem 4.2

Part (A): The proof also relies upon a fixed point procedure similar to the proof of Theo-
rem 1.1. We define the map �̃ : L

−→r 0(Rn) → L
−→r 0(Rn) by �̃(u) = B̃b(u) + H̃(h). Let K̃1

be as in (4.8). Fix 0 < ε < 1
(2ρ K̃1‖b‖−→q )1/(ρ−1) and consider the set

Bε = {u ∈ L
−→r 0(Rn) : ‖u‖−→r 0

≤ 2ε}.
From Lemma 4.1, if u ∈ Bε and ‖h‖−→

d
≤ ε

C̃1
we obtain

∥
∥�̃(u)

∥
∥−→r 0

≤ C̃1‖h‖−→
d

+ K̃1 ‖b‖−→q ‖u‖ρ−→r 0

≤ ε + K̃1 ‖b‖−→q 2ρερ

≤
(

1 + K̃1 ‖b‖−→q 2ρερ−1
)

ε < 2ε,

which implies that �̃(Bε) ⊂ Bε . On the other hand, we have that

‖�̃(u) − �̃(v)‖−→r 0
≤ ‖B̃b(u) − B̃b(v)‖−→r 0

≤ K̃1 ‖b‖−→q ‖u − v‖−→r 0

(

‖u‖ρ−1−→r 0
+ ‖v‖ρ−1−→r 0

)

≤ K̃1 ‖b‖−→q 2ρερ−1‖u − v‖−→r 0
,
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for all u, v ∈ Bε, and so it follows that �̃ is a contraction in Bε . Now an application of the
Banach fixed point theorem completes the proof.

Part (B): Because the Green function GṼ is positive, and radial when Ṽ is radial, the result
can be proved by proceeding in parallel to the proof of Theorem 1.2. ��
Acknowledgments L. Ferreira, E. Medeiros and M. Montenegro were partially supported by CNPq,
FAPESP and CAPES.
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