
Annali di Matematica (2013) 192:245–253
DOI 10.1007/s10231-011-0221-2

Gevrey global solvability of non-singular real first-order
differential operators

Paulo L. Dattori da Silva · Maurício Fronza da Silva

Received: 28 July 2011 / Accepted: 9 September 2011 / Published online: 21 September 2011
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2011

Abstract In this article we deal with Gevrey global solvability of non-singular first-order
operators defined on an n-dimensional s-Gevrey manifold, s > 1. As done by Duistermaat
and Hörmander in the C∞ framework, we show that Gevrey global solvability is equivalent
the existence of a global cross section.
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1 Introduction

We say that a complex-valued function f is an s-Gevrey function, or f is a Gsfunction, on
an open subset U of R

n, s ≥ 1, if f is C∞ and for every compact subset K of U there exist
positive constants C and R such that, for all α ∈ Z

n+ and all x ∈ K , one has

|∂α f (x)| ≤ C R|α|α!s .
We denote by Gs(U ) the space of all s-Gevrey functions on U .
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It is well known that Gs(U ) is a vector space and a ring, with respect to the arithmetic
product of functions; moreover, Gs(U ) is closed under differentiation and composition (see
[7] and [10]).

Let s ≥ 1 and let M be a Hausdorff topological space, with a countable basis of open
sets. A Gsstructure over M of dimension n is a collection of pairs A = {(U, x)}, each pair
is called a coordinate neighborhood, where ∅ �= U ⊂ M is an open set, x : U → R

n is a
homeomorphism onto an open subset x(U) of R

n and the following properties are satisfied:

(i)
⋃

(U,x)∈A
U = M ;

(ii) x(U ∩ W)
y◦x−1

→ y(U ∩ W) is Gs for each pair (U, x), (W, y) ∈ A, with U ∩ W �= ∅;
(iii) A is maximal with respect to (i) and (ii).

Fixed s ≥ 1, an n-dimensional Gs-manifold is a Hausdorff topological space M , with a
countable basis equipped with a Gs structure of dimension n.

For s > 1 the space Gs(U ), where U is an open subset of R
n , has the following property:

given an open subset V of U and a compact subset K ⊂ V there exists f ∈ Gs(U ) such
that f ≡ 1 on K and the support of f is contained in V (see [10]). Hence, we can construct
in the standard way partitions of unity on a Gs-manifold M by means of Gs functions with
compact support.

Consider s ≥ 1 and two Gs manifolds M and N . We say that f : M → N is an s-Gevrey
function, or a Gs function, if for each p ∈ M , there exist coordinate neighborhoods (U, x)
and (V, y), with p ∈ U and f (p) ∈ V , such that all the components of y ◦ f ◦ x−1 belong
to Gs(x(U)). We denote by Gs(M, N ) the space of all s-Gevrey functions between M and
N ; moreover, Gs(M) := Gs(M,C).

Fixed s ≥ 1, a Gs real vector field on M is a real linear operator

L : Gs(M) → Gs(M)

satisfying

L(u · v) = Lu · v + u · Lv;

locally, L =
∑n

j=1
a j (x)

∂

∂x j
, where a j ∈ Gs, j = 1, . . . , n.

Let P : Gs(M) → Gs(M) be a linear first-order operator given by P = L + a, where L
is a non-singular Gs real vector field defined on M and a ∈ Gs(M).

We say that P is s-globally solvable in M if for each f ∈ Gs(M) there exists u ∈ Gs(M)
such that Pu = f in M , that is, if PGs(M) = Gs(M).

Malgrange in [8] and also Duistermaat and Hörmander in [2] characterized the global
solvability of P in the C∞ framework.

In [8], Malgrange showed essentially that PC∞(M) = C∞(M) is equivalent to the
following geometric condition:

(GC) (1) No complete integral curve of L is contained in K .
(2) For every compact subset K of M , there exists a compact subset K ′ of M , such

that every compact interval on an integral curve with end points in K is contained
in K ′.

In [2], Duistermaat and Hörmander showed that the geometric condition (GC) is equiva-
lent to
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(�) There exists a manifold M0, an open neighborhood of M1 of M0 × {0} in M0 × R which
is convex in the R direction, and a C∞ diffeomorphism M → M1 which carries L into the
operator ∂/∂t , where points in M1 are denoted by (x, t).

Now, consider the following example. Let M = R
2 \ {(x, 0) ∈ R

2; x ≤ 0} and let ∂/∂t
be a real vector field defined on M . It is easy to see that (GC) is not satisfied. For instance,

take K = ([0, 1]) × {1}) ∪ ([0, 1] × {−1}). Define f : M → R by f (x, t) = 1

x2 + t2 .

A simple calculation shows that there is no u ∈ C∞(M) solution of ∂u/∂t = f in M .
It should be noted that f is real-analytic in M ; in particular, f ∈ Gs(M), for all s ≥ 1.

Of course, there is no u ∈ Gs(M) solution of ∂u/∂t = f in M .
Hence, natural questions are as follows: the geometric condition (GC) characterizes the

global solvability in a Gs framework? If this is true, can we extend condition (�) to Gs

framework?
In this article, we will extend the method developed in [2] to study global solvability in

Gs classes.
It should be noted that (�) is a global version of the tubular flow theorem, and the hard

work is the construction of the manifold M0, which is a global cross section of L . Hence,
one of the main tools of this article is the inverse mapping theorem in Gevrey class.

The organization of this paper is as follows. In Sect. 2, we state some useful results about
ordinary differential equations in Gs class. In Sect. 3, we deal with the s-global solvability
of linear first-order differential equations.

This article grew out of discussions between the authors and by a question posed by Luis
Antônio Carvalho dos Santos during the “II Jornada de Equações Diferenciais Parciais” at
UFSCar—Brazil.

2 Some useful results in Gevrey classes

In this section, we will give a brief review of basic results of Gevrey spaces and, also, we
will present a Gevrey version of tubular flow theorem.

We will start this section proving the following technical result:

Lemma 1 The Gevrey sequence ( j !s) j∈N, s ≥ 1, satisfies the following property:

k! s−1
k−1 ≤ e

s−1
24 j ! s−1

j−1 , for all 2 ≤ k ≤ j.

Proof For s = 1 is trivial. For s > 1, the proof follows from the following well-known
version of Stirling’s Formulae

�(t + 1) = t t e−t
√

2π t ev(t)/(12t), t ≥ 1,

for the Gamma function (or Euler’s second integral)

�(t) =
∞∫

0

e−λλt−1dλ, for t > 0,

where 0 < v(t) < 1. Since �( j + 1) = j !,∀ j ∈ N, we have that

k! 1
k−1

j ! 1
j−1

= �(k + 1)
1

k−1

�( j + 1)
1

j−1

=
(

kk+1/2 e−k
√

2π
) 1

k−1
ev(k)/(12k(k−1))

(
j j+1/2 e− j

√
2π

) 1
j−1

ev( j)/(12 j ( j−1))

.
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Note that

e−v( j)/(12 j ( j−1)) ≥ 1, for all j ≥ 2

and

ev(k)/(12k(k−1)) ≤ e1/24, for all k ≥ 2.

Hence,

1

e1/24 · k! 1
k−1

j ! 1
j−1

≤
(

kk+1/2 e−k
√

2π
) 1

k−1

(
j j+1/2 e− j

√
2π

) 1
j−1

, (1)

for all j ∈ Z+ and for all k ≥ 2.

Finally, since x �→
(

x x+1/2 e−x
√

2π
) 1

x−1
is a monotonically increasing function on

[2,+∞) we have that for 2 ≤ k ≤ j the right hand of (1) is bounded by 1. ��
A C∞ mapping f : M → N between Gs-manifolds M and N is a Gsdiffeomorphism

when f is a C∞ diffeomorphism, f ∈ Gs(M, N ) and f −1 ∈ Gs(N ,M).
By using Lemma 1, we have from [5] the following s-Gevrey version of inverse mapping

theorem:

Theorem 1 (Inverse Mapping Theorem) Let U be an open subset of R
n, p ∈ U and f ∈

Gs(U,Rn), where s ≥ 1. If d f (p) : R
n → R

n is an isomorphism, then there exists a neigh-
borhood V of p and an open subset W ⊂ R

n such that f : V → W is a Gs diffeomorphism.

By using the theorem above, we have the following version of Theorem 5.5 of [1]:

Theorem 2 Let f : N ′ → M be an imbedding of a Gs-manifold N of dimension n in a Gs

manifold M of dimension m. Then N = f (N ′) is a regular submanifold. As such it is Gs

diffeomorphic to N ′ with respect to the mapping f : N ′ → M.

It is easy to see that p!2 ≤ (p − 1)!(p + 1)!. Hence, by using Lemma 1, we have from [6]
the following result:

Theorem 3 Let U be an open subset of R
n and T > 0. If f : (−T, T ) × U → R

n is
an s-Gevrey function, then for each relatively compact open subset U1 of U there exists
0 < T1 ≤ T such that all the components of the unique solution of

{
ϕ′

x0
(t) = f (t, x)

ϕx0(0) = x0,
(2)

are also s-Gevrey functions on (−T1, T1)× U1.

Throughout this article ϕ will denote the flow of L , that is,

ϕ : Dϕ ⊂ R × M → M
(t, x) �→ ϕ(t, x) = ϕx (t),

where ϕx (t) is the unique solution of (2) with f given by the coefficients of L . It should be
noted that since L is a Gs real vector field, Theorem 3 implies that ϕ ∈ Gs(Dϕ).

Let M and N be Gs-manifolds and let L and L̃ be Gs real vector fields defined on M
and N , respectively; also, denote by ϕ and ϕ̃ its respective flows. We say that L and L̃ are
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Gs-conjugated if there exists a Gs diffeomorfism f ∈ Gs(M, N ) such that f (ϕ(t, x)) =
ϕ̃ (t, f (x)) ,∀(t, x) ∈ Dϕ .

We now recall the concept of cross section. Let M be an n-dimensional Gs-manifold.
Let p ∈ M and let U ⊂ M be a neighborhood of p. A global (local) cross section of L on
M containing p is a codimension one immersed Gs-submanifold 	 of M (of U ) such that
for all x ∈ M (for all x ∈ U ) there exists a unique t ∈ R such that y = ϕ(t, x) ∈ 	 and
Ty(	)⊕ L(y) = Ty M (Ty(	)⊕ L(y) = TyU ) (see [3] and [4]; also, [11]).

It is known that the inverse mapping theorem is the key to prove the tubular flow theorem
in the Ck framework. Hence, using Theorems 1 and 3, we can prove the following version:

Theorem 4 (Tubular Flow) Let L be a Gs real vector field on a Gs-manifold M and let
p ∈ M. Assume that L is non-singular at p. Then there exist ε > 0 and a neighborhood U
of p such that L |U is Gs-conjugated to ∂

∂x1
|Bn
ε
, where Bn

ε is the ball in the maximum norm
{x = (x1, . . . , xn) ∈ R

n; |x | < ε}. Moreover, if 	 is a cross section of L containing p, we
can obtain a Gs-conjugation ψ with the additional property: ψ(U ∩ 	) = {x ∈ Bn

ε ; x =
(0, x2, . . . , xn)}.
Corollary 1 Let L be a Gs real vector field on a Gs-manifold M. Let 	 be a cross section
of L. Given p ∈ 	, there are ε > 0, a neighborhood V of p and a Gs function τ : V → R

such that τ(V ∩	) = 0 and

(i) for all q ∈ V the integral curve ϕ(t, q) of L |V is defined and one-to-one on Jq =
(−ε + τ(q), ε + τ(q));

(i i) ξ(q) = ϕ(τ(q), q) is the unique point of ϕ(·, q)|Jq
in 	; in particular, q ∈ V ∩	 if

and only if τ(q) = 0;
(i i i) ξ : V → 	 is a Gs function and Dξ(q) is surjective for all q ∈ V ; moreover,

Dξ(q) · v = 0 if and only if v = αL(q), for some α ∈ R.

As a (non-trivial) consequence of Theorem 4, we have

Theorem 5 (Long Tubular Flow) Under the hypotheses of Theorem 4, let ϕx : [a, b] → M
be a non-closed, compact arc of an integral curve of L. Then there exist a neighborhood
U of ϕx ([a, b]), an open interval I containing [a, b] and ε > 0 such that L |U is Gs-conju-
gated to ∂

∂x1
|I×Bn−1

ε
. Moreover, the Gs-conjugation ψ has the property: ψ(ϕx ([a, b])) =

[a, b] × {0} × · · · × {0}.
Remark 1 Of course, the Corollary 1 can be extended in terms of Theorem 5.

The proof of Theorems 4 and 5 are similar to that of Theorem 1.1 and Proposition 1.1 in
[9]—pages 40 and 93—and we will not repeat them here.

3 s-global solvability

Fixed s > 1, let M be an n-dimensional Gs-manifold. In this section, we will deal with the
s-global solvability of operators of the form P = L + a, where L is a Gs real vector field
on M and a ∈ Gs(M).

Our first result (which is a Gevrey version of Theorem 6.4.1 of [2]) is addressed to
semiglobal solvability. Denote by Gs(K ) the space of all functions of Gs class in some
neighborhood of K .

Theorem 6 Let L be a Gs real vector field on M, and let K be a compact subset of M. Then
the following conditions are equivalent:
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a) LGs(K ) = Gs(K ).
b) (L + a)Gs(K ) = Gs(K ), for every a ∈ Gs(K ).
c) There exists ψ ∈ Gs(K ) such that L2ψ > 0 on K .
d) No complete integral curve of L is contained in K .

Proof The arguments to prove that b) ⇔ a) ⇒ c) ⇒ d) are analogous to those used by
Duistermaat and Hörmander in [2]—Theorem 6.4.1. Here, we will prove that d) ⇒ a). The
argument is similar that in [2], but with some differences.

As in [2] we have that d) implies
d′) no integral curve of L is contained in K for all positive or negative values of the parameter.

Now, we have that d′) implies that every y ∈ K lies on a compact interval ϕy : [a, b] → M
of an integral curve of L with end points in K c.

Next, we will denote x ∈ R
n by x = (x1, x ′), where x1 ∈ R and x ′ ∈ R

n−1. Applying
Theorem 5, we may take new coordinates in a neighborhood U of ϕy([a, b]) such that

U = {a − δ < x1 < b + δ, |x ′| < ε},
ϕy(t) = (t, 0), a ≤ t ≤ b,

for a suitable choice of δ, ε > 0, and

L = ∂

∂x1
on U .

Hence,

u(x1, x ′) =
x1∫

0

f (t, x ′)dt

is a Gs solution for Lu = f in U ; consequently, if f has support sufficiently close to
ϕy([a, b]) then Lu = f can be solved in a neighborhood of K . Finally, using partition of
unity (as mentioned in introduction), we can find a desired solution. ��

Next, we will present our main result, which is a Gevrey version of Theorem 6.4.2 of [2].

Theorem 7 Let L be a Gs real vector field on M. The following conditions are equivalent:

a) LGs(M) = Gs(M).
b) (L + a)Gs(M) = Gs(M), for every a ∈ Gs(M).
c) There exists ψ ∈ Gs(M) such that L2ψ > 0 and {y ∈ M; ψ(y) ≤ c} is compact for

every c.
d) (1) No complete integral curve of L is contained in K .

(2) For every compact subset K of M, there exists a compact subset K ′ of M such that
every compact interval on an integral curve with end points in K is contained in
K ′.

e) There are no periodic integral curves and the relation

R = {(x, y) ∈ M × M; x and y are on the same integral curve of L}
is a closed Gs submanifold of M × M.

f) There exist a manifold M0, an open neighborhood M1 of M0 × {0} in M0 × R which is
convex in the R direction, and a Gs diffeomorphism M → M1 which carries L into the
operator ∂/∂t , where points in M1 are denoted by (x, t).
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Proof The arguments to prove that f) ⇒ a) ⇔ b), f) ⇒ c) ⇒ d) and a) ⇒ d) ⇒ e) are analogous
to that used by Duistermaat and Hörmander in [2]—Theorem 6.4.2; however, we will give
a special attention to d) ⇒ e). As in [2], we can show that the map (x, t) �→ (ϕ(x, t), x) is
proper; hence, by applying Theorem 2 we have the result.

The proof that e) ⇒ f) is a non-trivial adaptation of that in [2]. Let us repeat the arguments
here.
e) ⇒ f)
Let ∼ be the following relation in M : two points x, y ∈ M are said to be equivalent, x ∼ y,
if x and y lie on the same integral curve of L . Let M0 = M/ ∼ be the quotient space and
denote by [x] the equivalence class for which x is a representant.

Define π : M → M0 by π(x) = [x]. It is easy to see that π is an open map. It follows
from [12] that ∼ on M is open if and only if π is an open map; moreover, if ∼ is open and
M has open countable basis then M/ ∼ has open countable basis; also, R = {(x, y); x ∼ y}
is closed in M × M if and only if M/ ∼ is Hausdorff. Hence, M0 has open countable basis
and is a Hausdorff space.

For each [p] ∈ M0, let f p : Ap → 	p be the Gs function that define	p as a (local) cross
section containing p (we can consider that 	p contains at most one point of each integral
curve of L). Denote Up = π(	p), which is an open subset of M0.

Define γp = π−1
|	p

: Up → M . As π|	p
is an open bijective function, we have that γp and

f −1
p ◦ γp are homeomorphism.

Hence, {(Up, f −1
p ◦ γp), p ∈ M} gives a structure of topological manifold to M0. As a

consequence of Theorem 5, we have that γp ◦γ−1
q ∈ Gs(Up ∩Uq); hence, ( f −1

p ◦γp)◦( f −1
q ◦

γq)
−1 = f −1

p ◦(γp◦γ−1
q )◦ fq ∈ Gs( f −1

q ◦γp(Up∩Uq)). Therefore, {(Up, f −1
p ◦γp), p ∈ M}

gives a structure of Gs manifold to M0.
Finally, we are ready to construct a global cross section γ : M0 → M . Let {Vj } be

a locally finite countable refinament with compact closure of {Up}. For each Vj , choose
one among the sets Up for which Vj ⊂ Up and define γ j : Vj → 	 j ⊂ M by γ j =
γp|V j

. Let {χ j } be the partition of unit by means of Gs functions subordinated to {Vj } (as

described in introduction). Let [y] ∈ M0. Since {Vj } is locally finite, there exists a neigh-
borhood W of [y] for which W ∩ Vj �= ∅ at most for a finite number of index j , say,
{ j1, . . . , jN }. Let δ1 = min{d([y], ∂Vjk ), for an index jk for which [y] �∈ ∂Vjk }; defining
S(χ jk ) the support of χ jk , let δ2 = min{d([y], S(χ jk )), for an index jk for which [y] ∈
∂Vjk }. Finally, let δ = min{δ1, δ2}. Denote U[y] = B([y], δ). We have that U[y] ∩ Vλ �=
∅ for λ ∈ �[y] ⊂ { j1, . . . , jN }. Define λ[y] = min{λ ∈ �[y]; [y] ∈ Vλ}. Now, define
tλλ[y] : U[y] ∩ Vλ → R so that ϕ(tλλ[y] [x], γλ[y] [x]) ∈ 	λ. Of course, U[y] ⊂ Vλ[y] and

tλλ[y]χλ ∈ Gs(M0).
Define

γ : M0 → M

[y] �→ ϕ
(
	λ∈�[y] t

λ
λ[y] [y]χλ[y], γλ[y] [y]

)
.

We claim that γ belongs to the Gs class in M0. First, we must show that γ
is well defined in M0. Let [y1], [y2] ∈ M0. For j = 1, 2, let U j = U[y j ] be
a neighborhood of [y j ] and let �[y j ] be the index set of [y j ] given in the defini-
tion of the function γ . Suppose that U1 ∩ U2 �= ∅. Without loss of generality, we
can assume that λ[y1] ≤ λ[y2]. It should be noted that for λ �∈ �[y1] ∩ �[y2] one
has χλ[x] = 0 for all [x] ∈ U1 ∩ U2. Hence, for all [x] ∈ U1 ∩ U2, we have
that
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ϕ
(
	λ′∈�2 tλ

′
λ[y2] [x]χλ′ [x], γλ[y2] [x]

)

= ϕ
(
	λ′∈�[y1]∩�[y2] t

λ′
λ[y2] [x]χλ′ [x], ϕ(tλ[y2]

λ[y1] [x], γλ[y1] [x])
)

= ϕ

⎛

⎝	λ′∈�[y1]∩�[y2] t
λ′
λ[y2] [x]χλ′ [x] + t

λ[y2]
λ[y1] [x]

⎛

⎝
∞∑

j=1

χ j [x]
⎞

⎠ , γλ[y1] [x])
⎞

⎠

= ϕ
(
	λ′∈�[y1]∩�[y2] t

λ′
λ[y1] [x]χλ′ [x], γλ[y1] [x]

)
= ϕ

(
	λ∈�[y1] t

λ
λ[y1] [x]χλ[x], γλ[y1] [x]

)
.

Therefore, γ is well defined. Finally, since tλλ[y]χλ, γλ[y] ∈ Gs(U ) and ϕ ∈ Gs(Dϕ) we have
that γ ∈ Gs(U ); consequently, γ ∈ Gs(M0).

By construction, for all x ∈ M , there exists a unique t ∈ R such that p = ϕ(t, x) ∈
γ (M0). We claim that Tp(γ (M0)) ⊕ L(p) = Tp M , for all p ∈ γ (M0). Indeed, given
p ∈ γ (M0) and f p : Ap → 	p , the cross section containing p let ξ : V →
I × Bn−1

ε (p) ⊂ I × Ap be the diffeomorphism given by Theorem 4. Hence, we have
that γ (M0) ∩ V = γ ◦ γ−1

p ◦ f p(Bn−1
ε (p)) and also that g : Bn−1

ε (p) → R
n given

by g(x) = ξ ◦ γ ◦ γ−1
p ◦ f p(x) = (g1(x), x) belongs to the Gs class (here g1 is the

1-coordinate function of g). Of course, for all x ∈ Bn−1
ε (p) the rank of g is equal to

n − 1; also, for all 0 �= v ∈ R
n−1 and for all k ∈ R one has that Dg(x) · v �=

(k, 0, . . . , 0), that is, for all 0 �= v ∈ R
n−1 we have that Dg(x) · v and (1, 0, . . . , 0)

are linearly independent. Since for each y ∈ V, Dξ(y) is an isomorphism, it follows
that

D
(
γ ◦ γ−1

p ◦ f p

)
(x) · v = Dξ−1(γ ◦ γ−1

p ◦ f p(x)) · Dg(x) · v,

for all x ∈ Bn−1
ε (p); consequently, the rank of γ ◦ γ−1

p ◦ f p is equal to n − 1 and,
also,

D
(
γ ◦ γ−1

p ◦ f p

)
(x) · v �= k · ∂ϕ

∂t

(
0, γ ◦ γ−1

p ◦ f p(x)
)

= k · ∂ϕ
∂t
(0, γ [x]),

for all 0 �= v ∈ R
n−1 and for all k ∈ R; that is, for all 0 �= v ∈ R

n−1 one has that

D(γ ◦γ−1
p ◦ f p)(x) ·v and

∂ϕ

∂t
(0, γ [x]) are linearly independent. Hence, for all p ∈ γ (M0),

we have that Tp(γ (M0))⊕ L(p) = Tp(M).
It is an easy consequence of the discussion above that γ is an immersion.
Therefore, γ : M0 → M is a global cross section of L .
Consider M1 = {([x], t) ∈ M0 × R; [x] ∈ M0 and (t, γ [x]) ∈ Dϕ}, which is an open

subset of M0 × R.
Define

h : M1 → M
([x], t) �→ ϕ(t, γ [x]).

A simple calculation shows that h is a Gs diffeomorphism; moreover,

Dh([x], t) · (0, 0, . . . , 1) = Dnh([x], t) = Lϕ(t, γ [x]) = L(h([x], t)).

Hence, L is the pushforward of ∂/∂t , via function h. Therefore, the proof is completed.
��

Remark 2 It should be noted that if M is a compact manifold, then LGs(M) � Gs(M).
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