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Abstract In this paper, by investigating the effect of the subcritical terms and the coeffi-
cients of the singular terms, some existence results for quasilinear elliptic problems involving
combined critical Sobolev–Hardy terms are obtained via variational methods.
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1 Introduction

In this paper, we are concerned with the existence of solutions for the following quasilinear
elliptic problem:

The project is supported by National Natural Science Foundation of China (Grant No. 11001221, 10871157)
and Specialized Research Fund for the Doctoral Program of Higher Education (No. 200806990032).

Y. Li · Q. Guo · P. Niu
Department of Applied Mathematics, Key Laboratory of Space Applied Physics and Chemistry,
Ministry of Education, Northwestern Polytechnical University, Xi’an, 710129 Shaanxi,
People’s Republic of China

Y. Li
e-mail: liyuanyuan@mail.nwpu.edu.cn

Q. Guo
e-mail: gqianqiao@nwpu.edu.cn

P. Niu
e-mail: pengchengniu@nwpu.edu.cn

Y. Li · B. Ruf (B)
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94 Y. Li et al.

{
−�pu = μ

|u|p−2u
|x |p + K (x) |u|p∗(s)−2u

|x |s + Q (x) |u|p∗(t)−2u
|x−x0|t + f (x, u) in �,

u = 0 on ∂�,
(1)

where � is a smooth bounded domain in R
N (N ≥ 3), and −�pu denotes the p-Laplace

operator defined as −�pu = −div
(|∇u|p−2∇u

)
, with 1 < p < N . The parameter μ sat-

isfies 0 ≤ μ < μ :=
(

N−p
p

)p
, the well-known Hardy constant. Furthermore, we assume

that the points 0 and x0 lie in �, with x0 �= 0. The exponents of the singular terms sat-
isfy 0 < s, t < p, and the exponents p∗(s) and p∗(t) of the corresponding nonlinearities
are the critical exponents with respect to the Sobolev–Hardy embeddings into weighted Lq

spaces: W 1,p(�) ⊂ L p∗(s)(�, |x |−sdx), with p∗(s) = p(N−s)
N−p . Finally, K (x) and Q(x) are

continuous non-negative functions, and f (x, u) is a subcritical perturbation. Notice that for
s = 0, we get p∗(0) = p∗ := N p

N−p , the critical Sobolev exponent, while for s = p, we get
p∗(s) = p, i.e., we have the Hardy embedding.

It is well known that if u ∈ W 1,p
0 (�) is a nonzero critical point of the energy functional

associated to (1)

J (u) = 1

p

∫
�

(
|∇u|p − μ

|u|p

|x |p

)
dx − 1

p∗ (s)

∫
�

K (x)
|u|p∗(s)

|x |s dx

− 1

p∗ (t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t dx −
∫
�

F (x, u)dx, (2)

where F (x, u) = ∫ u
0 f (x, s)ds, then u is a nontrivial weak solution for problem (1).

Elliptic equations with critical growth terms have received wide attention in recent years.
In a pioneering work, Pohozaev [23] asserted that if � is a star-shaped domain with respect
to the origin, then there is no nontrivial solution for the following elliptic problem{−�u = |u|2∗−2 u in �,

u = 0 on ∂�.
(3)

However, lower order terms can reverse this situation. Indeed, Brezis and Nirenberg showed
in their seminal paper [2] that there exist positive solutions for the perturbed elliptic problem
with critical Sobolev growth{−�u = λu + |u|2∗−2 u in �,

u = 0 on ∂�,
(4)

by verifying that for appropriate values of λ, the energy of the corresponding energy func-
tional is less than a certain noncompactness level. Generalizations of this result can be found
in [14], and multiplicity results for equations with a variable coefficient in Cao-Noussair [4].
Later, the existence of positive solutions for equation (3) was established on certain nonstar-
shaped domains, see Coron [7] and Ding [8].

Struwe [26] obtained a global compactness result for problem (4) and showed that the lack
of compactness is due to the invariance of the H1

0 - norm and L2∗
- norm under the rescaling

u 	→ ur = r
N−2

2 u (r (·)) and the existence of nontrivial entire solutions for the limiting
problem (3) in R

N . In particular, he gave an asymptotic characterization of all PS-sequences
for (4), showing that compactness is lost only due to the formation of “standard bubbles”
given by the rescaled solutions of the asymptotic equation (3).
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Quasilinear elliptic problems with combined critical Sobolev–Hardy terms 95

Jannelli [19] considered the following doubly critical semilinear elliptic problem with a
Hardy term

{
−�u − μ u

|x |2 = u2∗−1 + λu in �,

u = 0 on ∂�,
(5)

and proved the existence of solutions. This problem was also discussed by Ferrero-Gazzo-
la [10], by Cao-Peng [5], Ruiz-Willem [24] and by Cao-Han [3]. Guo et al. [17] and Chen [6]
considered the equation with a critical Sobolev–Hardy nonlinearity and showed the existence
and multiplicity of nontrivial solutions. Other interesting results about related problems can
be found in Ekeland-Ghoussoub [9] and in the references therein.

Quasilinear elliptic problems involving the p-Laplacian and nonlinearities with the corre-
sponding critical Sobolev growth were studied by Silva-Xavier [25]. Ghoussoub-Yuan [15]
considered such equations with a critical Sobolev–Hardy term and proved existence results
for positive solutions and sign-changing solutions.

As for quasilinear elliptic problems with a singular Hardy term and a critical Sobolev–
Hardy nonlinearity, the following problem

{
−�pu − μ

|u|p−2u
|x |p = b(x) |u|p∗(s)−2u

|x |s + h(x, u) in �,
u = 0 on ∂�,

(6)

has been investigated by several authors, where b(x) is a continuous non-negative function
and h(x, u) is a subcritical perturbation, see Kang [20], Filipucci-Pucci-Robert [11]; in [22],
Liang et al. considered problem (6) for b(x) ≡ 1 and derived the existence of infinitely many
small solutions by using the concentration compactness principle and a symmetric mountain
pass theorem.

Concerning problems with multiple critical Sobolev–Hardy terms centered in different
points, we mention Gao-Peng [12], who studied problem (1) with p = 2 and obtained some
existence results by investigating the limit behavior of the PS-sequences for the corresponding
energy functional.

For p-Laplace equations involving multiple critical Sobolev–Hardy terms as well as Hardy
terms, there has been little research up to now. We point out that concerning problem (1),
Li et al. [21] have established the complete asymptotic description for any PS-sequence {un}
of the associated energy functional (2). They show that in the presence of multiple critical
Sobolev–Hardy terms, the possible concentration of PS-sequences is localized in the singu-
larities of the nonlinear terms, that is, concentration may only occur in the points 0 and x0,
and the associated levels of noncompactness for the functional (2) are explicit, and there is
compactness away from these levels. The aim of the present paper is to provide sufficient
conditions on the coefficients K (x), Q(x) and the lower order term f (x, u) in order to guar-
antee that there exist minimax levels of the associated functional (2) that lie below the lowest
noncompactness level, thus regaining compactness and hence the existence of critical points.
Depending on the values K (0) and Q(x0), the concentration with lowest energy occurs in 0
or x0. The two cases require separate treatment, and the results are stated in Theorems 3.1
and 4.1. We remark that the situations are not symmetric: indeed, in Sects. 3 and 4, the
following two limiting problems

−�pu − μ
|u|p−2 u

|x |p = |u|p∗(s)−2 u

|x |s , in R
N \{0}
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96 Y. Li et al.

and

−�pu = |u|p∗(t)−2 u

|x − x0|t , in R
N \{x0}

are used, respectively. We note that the accurate form of the solutions for the first limiting
problem is not clear, different from the second one, which leads to some clear differences
between the proofs in Sects. 3 and 4.

Finally, in Sect. 5, we will give conditions on K (x) and Q(x) under which, due to a
Pohozaev type identity, there do not exist nontrivial solutions for the equation{

−�pu = μ
|u|p−2u

|x |p + K (x) |u|p∗(s)−2u
|x |s + Q (x) |u|p∗(t)−2u

|x−x0|t in �,

u = 0 on ∂�.
(7)

It is clear that our approach can be generalized to the case of several critical Sobolev–Hardy
terms that are centered in different points in �.

2 Hypotheses and functional setup

Throughout this paper, we assume that the function f (x, u) : �×R → R is a Carathéodory
function of the form

f (x, u) = a (x) |u|p−2 u + g (x, u), (8)

with

g(x, u) > 0 and g (x, u) = o
(
u p−1) as u → 0+, uniformly in x; (9)

g (x, u) = o
(
uγ−1) as u → ∞, uniformly in x, where p < γ < p∗. (10)

In the sequel, B(x, r) denotes a ball of radius r with center in x , and dx in integrals is omitted
for convenience.

We also need to assume that the first eigenvalue of the operator −�p − μ
|x |p − a (x) is

positive, that is, we assume that there exists an α > 0 such that∫
�

(
|∇u|p − μ

|u|p

|x |p − a (x) |u|p
)

≥ α

∫
�

|u|p, for all u ∈ W 1,p
0 (�). (11)

Set

0 < a(0) < λ1(μ), 0 < a(x0) < λ1(μ), (12)

where

λ1(μ) = inf
u∈W 1,p

0 (�)\{0}

∫
�

|∇u|p − μ
|u|p

|x |p∫
�

|u|p

is the first eigenvalue of the positive operator (−�p − μ
|x |p ).

Define

‖u‖
W 1,p

0 (�)
:=

⎡
⎣∫
�

|∇u|p − μ
|u|p

|x |p

⎤
⎦

1
p

.
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Quasilinear elliptic problems with combined critical Sobolev–Hardy terms 97

By Hardy’s inequality (see [13]), we can conclude that the above norm is equivalent to the
usual norm

‖u‖ =
⎛
⎝∫
�

|∇u|p dx

⎞
⎠

1
p

in W 1,p
0 (�).

Next, we recall the following standard compactness definition:

Definition 2.1 A C1-functional E defined on Banach space X satisfies the Palais-Smale con-
dition at the level c ((PS)c in short), if every Palais-Smale (PS in short) sequence {un} ⊂ X
has a convergent subsequence. And a sequence {un} is a PS-sequence for E if {un} satisfies
E(un) → c and E ′(un) → 0 as n → ∞.

In the sequel, let E = J (see (2)) and X = W 1,p
0 (�).

To state the main results, we need the following notations:

F∞
μ,K (0) (u) = 1

p

∫
�

|∇u|p − μ
|u|p

|x |p − 1

p∗ (s)

∫
�

K (0)
|u|p∗(s)

|x |s ;

F∞
0,Q(x0)

(u) = 1

p

∫
�

|∇u|p − 1

p∗ (t)

∫
�

Q (x0)
|u|p∗(t)

|x − x0|t .

Furthermore, set

Aμ,s = inf
u∈W 1,p

0 (�)\{0}

∫
�

|∇u|p − μ
|u|p

|x |p(∫
�

|u|p∗(s)
|x |s

) p
p∗(s)

and

A0,t = inf
u∈W 1,p

0 (�)\{0}

∫
�

|∇u|p(∫
�

|u|p∗(t)
|x−x0|t

) p
p∗(t)

.

We also assume that

K (0) > 0 and Q(x0) > 0.

Denote

K ∗ = p − s

p (N − s)
K (0)

N−p
s−p A

N−s
p−s
μ, s ,

and

Q∗ = p − t

p (N − t)
Q (x0)

N−p
t−p A

N−t
p−t

0, t .

Then, we have the following key lemma due to Li et al. [21].

Lemma 2.1 The functional J given by (2) satisfies the (PS)c condition for all

c < min{K ∗, Q∗}. (13)
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98 Y. Li et al.

3 Existence result when K∗ ≤ Q∗

Before giving the main theorem in this section, we state the following lemma.

Lemma 3.1 [20] Assume 1 < p < N , 0 ≤ s < p and 0 ≤ μ < μ. Then the problem⎧⎪⎨
⎪⎩

−�pu − μ
|u|p−2u

|x |p = |u|p∗(s)−2u
|x |s in R

N \{0},
u > 0 in R

N \{0},
u ∈ D1,p(RN )

(14)

has radially symmetric ground states

V ε(x) = ε
− N−p

p Up,μ

( x

ε

)
= ε

− N−p
p Up,μ

( |x |
ε

)
, ∀ ε > 0,

satisfying

∫
RN

(∣∣∇V ε(x)
∣∣p − μ

∣∣V ε(x)
∣∣p

|x |p

)
=

∫
RN

∣∣V ε(x)
∣∣p∗(s)

|x |s = (Aμ,s)
N−s
p−s ,

where Up,μ(x) = Up,μ(|x |) is the unique radial solution for the problem (14) satisfying

Up,μ(1) =
(
(N − s)(μ− μ)

N − p

) 1
p∗(s)−p

.

Moreover, Up,μ(x) also has the following properties,

lim
r→0

ra(μ)Up,μ(r) = c1 > 0,

lim
r→+∞ rb(μ)Up,μ(r) = c2 > 0,

lim
r→0

ra(μ)+1U ′
p,μ(r) = c1a(μ) ≥ 0,

lim
r→+∞ rb(μ)+1U ′

p,μ(r) = c2b(μ) > 0,

where c1 and c2 are positive constants depending on p and N , a(μ) and b(μ) are zeros of
the function

f (τ ) = (p − 1)τ p − (N − p)τ p−1 + μ, τ ≥ 0, 0 ≤ μ < μ

satisfying

0 ≤ a(μ) <
N − p

p
< b(μ) ≤ N − p

p − 1
. (15)

Remark After a direct calculation, we deduce that τmin = N−p
p is the only minimal point

of f (τ ). Furthermore, f ′(τ ) < 0 for 0 < τ < τmin and f ′(τ ) > 0 for τ > τmin. Thus, we
infer that

τmin <
N

p
≤ b(μ) ⇐⇒ f (

N

p
) ≤ f (b(μ)) = 0 ⇐⇒ 0 < μ ≤ N p−1(N − p2)

p p
. (16)

Furthermore, by (16), we know that b(μ) > N
p implies N > p2.
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Quasilinear elliptic problems with combined critical Sobolev–Hardy terms 99

Theorem 3.1 Suppose K ∗ ≤ Q∗ and (8)–(10) hold. Moreover, if b(μ) > N
p , then K (x) =

K (0) + O(|x |β) as |x | → 0 holds with some β > p; if b(μ) ≤ N
p , then K (x) = K (0) +

O(|x |β) as |x | → 0 with some β ≥ p and

there exists an open nonempty subset �0 ⊂ �, such that 0 ∈ �0

and lim
u→∞

F(x, u)

ul
= +∞ uniformly with respect to x ∈ �0, (17)

where l > � = max
{

p, p(2N−p−pb(μ))
N−p

}
. Then there is at least one nontrivial solution

u ∈ W 1,p
0 (�) of the problem (1).

In order to prove Theorem 3.1, we need the following key lemma:

Lemma 3.2 Under the assumptions of Theorem 3.1, there exists a function u ∈ W 1,p
0 (�)

satisfying

sup
τ≥0

J (τu) < K ∗. (18)

Proof Set ρ > 0 small enough such that B(0, ρ) ⊂ �, ϕ(x) ∈ C∞
0 (�), 0 ≤ ϕ(x)≤ 1,

ϕ(x) = 1 for |x | ≤ ρ
2 , ϕ(x) = 0 for |x | ≥ ρ. Let

vε(x) = ϕ(x)V ε(x), ε > 0.

The following estimates are from [18] and [20].

‖vε‖p

W 1,p
0 (�)

= (Aμ,s)
N−s
p−s + O

(
εb(μ)p+p−N

)
, (19)

∫
�

|vε|p∗(s)

|x |s = (Aμ,s)
N−s
p−s + O

(
εb(μ)p∗(s)+s−N

)
, (20)

∫
�

|vε|q ≥

⎧⎪⎪⎨
⎪⎪⎩

cεN+(1− N
p )q , q > N

b(μ) ,

cεN+(1− N
p )q | ln ε|, q = N

b(μ) ,

cεq(b(μ)+1− N
p ), q < N

b(μ) .

(21)

Especially, when q = p, we have

∫
�

|vε|p ≥

⎧⎪⎨
⎪⎩

cε p, p > N
b(μ) ,

cε p| ln ε|, p = N
b(μ) ,

cε p−N+pb(μ), p < N
b(μ) .

(22)
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100 Y. Li et al.

Observe that∫
�

K (x)
|vε|p∗(s)

|x |s = K (0)
∫

RN

|V ε|p∗(s)

|x |s +
∫
�

(K (x)− K (0))|ϕ|p∗(s) |V ε|p∗(s)

|x |s

−K (0)
∫

RN

(1 − |ϕ|p∗(s))
|V ε|p∗(s)

|x |s = K (0)
∫

RN

|Up,μ|p∗(s)

|x |s

+ ε−(N−s)
∫
�

(K (x)− K (0))|ϕ|p∗(s) |Up,μ(
x
ε
)|p∗(s)

|x |s

− ε−(N−s)K (0)
∫

RN

(1 − |ϕ|p∗(s))
|Up,μ(

x
ε
)|p∗(s)

|x |s

:= K (0)
∫

RN

|Up,μ|p∗(s)

|x |s + I1 + I2. (23)

Now we calculate I1 and I2, respectively. First for δ0 > 0 small enough, we deduce that

|I1| ≤ |ε−(N−s)
∫
�

(K (x)− K (0))
|Up,μ(

x
ε
)|p∗(s)

|x |s |

≤ cε−(N−s)
∫

�∩{|x |≤δ0}
|x |β (|

x
ε
|a(μ) + | x

ε
|b(μ))−p∗(s)

|x |s

+ cε−(N−s)
∫

�∩{|x |≥δ0}

∣∣∣ x

ε

∣∣∣−b(μ)p∗(s) 1

|x |s

≤ cε−(N−s)

δ0∫
0

rβ+N−1−s
(∣∣∣r

ε

∣∣∣a(μ) +
∣∣∣r

ε

∣∣∣b(μ)
)−p∗(s)

+ cε p∗(s)b(μ)−N+s

≤ cε−(N−s)

ε−1δ0∫
0

εβ+N−s tβ+N−1−s(ta(μ) + tb(μ))−p∗(s) + cε p∗(s)b(μ)−N+s

≤ cεβ
ε−1δ0∫
0

tβ+N−1−s−a(μ)p∗(s)(1 + tb(μ)−a(μ))−p∗(s) + cε p∗(s)b(μ)−N+s .

If β < p∗(s)b(μ)− N + s, then

β + N − 1 − s − a(μ)p∗(s)− p∗(s)(b(μ)− a(μ)) < −1.

We conclude that

I1 = O(εβ).

If β = p∗(s)b(μ)− N + s, then

β + N − 1 − s − a(μ)p∗(s)− p∗(s)(b(μ)− a(μ)) = −1.
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Quasilinear elliptic problems with combined critical Sobolev–Hardy terms 101

So we get

I1 = O(ε p∗(s)b(μ)−N+s | ln ε|).

If β > p∗(s)b(μ)− N + s, then

β + N − 1 − s − a(μ)p∗(s)− p∗(s)(b(μ)− a(μ)) > −1.

We have

I1 = O
(
ε p∗(s)b(μ)−N+s

)
.

Therefore, we obtain that

I1 =
⎧⎨
⎩

O(εβ), β < p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s | ln ε|), β = p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s), β > p∗(s)b(μ)− N + s.

(24)

Again by b(μ) > N−p
p , it is not difficult to derive that

|I2| = |ε−(N−s)K (0)
∫

RN

(
1 − |ϕ|p∗(s)

) |Up,μ(
x
ε
)|p∗(s)

|x |s |

≤ ε−(N−s)K (0)
∫

RN \|x |≥ ρ
2

|Up,μ
( x
ε

) |p∗(s)

|x |s

≤ cεb(μ)p∗(s)−N+s
∫

RN \|x |≥ ρ
2

|x |−b(μ)p∗(s)−s

≤ cεb(μ)p∗(s)−N+s

∞∫
ρ
2

r N−1−b(μ)p∗(s)−s

≤ cε p∗(s)b(μ)−N+s,

thus

I2 = O(ε p∗(s)b(μ)−N+s). (25)

Therefore, inserting (24) and (25) into (23), we obtain

∫
�

K (x)
|vε|p∗(s)

|x |s = K (0)(Aμ,s)
N−s
p−s

+
⎧⎨
⎩

O(εβ), β < p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s | ln ε|), β = p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s), β > p∗(s)b(μ)− N + s.

(26)
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102 Y. Li et al.

Now we consider the following functions

g(τ ) = J (τvε) = τ p

p

∫
�

(
|∇vε|p − μ

|vε|p

|x |p

)
− τ p∗(s)

p∗ (s)

∫
�

K (x)
|vε|p∗(s)

|x |s

− τ
p∗(t)

p∗ (t)

∫
�

Q (x)
|vε|p∗(t)

|x − x0|t −
∫
�

F (x, τvε),

and

g(τ ) = τ p

p
‖vε‖p

W 1,p
0 (�)

− τ p∗(s)

p∗ (s)

∫
�

K (x)
|vε|p∗(s)

|x |s .

Using the fact that

max
τ≥0

(
τ p

p
B1 − τ p∗(s)

p∗ (s)
B2

)
= p − s

p(N − s)
B1

N−s
p−s B2

− N−p
p−s , B1 > 0, B2 > 0,

by (19) and (26) we calculate that

max
τ≥0

g(τ ) = p − s

p(N − s)
‖vε‖

p(N−s)
p−s

W 1,p
0 (�)

⎛
⎝∫
�

K (x)
|vε|p∗(s)

|x |s

⎞
⎠

− N−p
p−s

= p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s + O(εb(μ)p+p−N )

+
⎧⎨
⎩

O(εβ), β < p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s | ln ε|), β = p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s), β > p∗(s)b(μ)− N + s.

(27)

By (8)–(10), (12) and (17), we can select non-negative constants a1 and a2, such that

f (x, u) ≥ a1u p−1 + a2ul−1

for x ∈ B(0, ρ) and u ≥ 0 if ρ > 0 small enough, where 0 ≤ a2 ≤ a1 <

λ1(μ), a2 = 0 if b(μ) > N
p , a2 > 0 and � < l < γ if b(μ) ≤ N

p . Combining this
with (21) and (22), for arbitrary τ ∈ (0,+∞) we have

∫
�

F(x, τvε) ≥

⎧⎪⎨
⎪⎩

cε p, p > N
b(μ)

cε p| ln ε|, p = N
b(μ)

cε p−N+pb(μ), p < N
b(μ)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cεl(b(μ)+1− N
p ), p < l < N

b(μ) ,

cε
N+

(
1− N

p

)
l | ln ε|, l = N

b(μ) ,

cε
N+

(
1− N

p

)
l
, N

b(μ) < l < γ,

(28)

where c = c(τ ).
Since

lim
τ→+∞ g(τ ) = −∞,

and by (12) we have

g(τ ) > 0 as τ → 0.
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So supτ≥0 g(τ ) is attained for some 0 < τ0 < +∞. Together with (27) and (28), we obtain
that

g(τ ) ≤ g(τ0)

≤ max
τ≥0

g(τ )−
∫
�

F(x, τ0vε)

≤ p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s + O(εb(μ)p+p−N )

+
⎧⎨
⎩

O(εβ), β < p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s | ln ε|), β = p∗(s)b(μ)− N + s,
O(ε p∗(s)b(μ)−N+s), β > p∗(s)b(μ)− N + s,

−

⎧⎪⎨
⎪⎩

cε p, p > N
b(μ)

cε p| ln ε|, p = N
b(μ)

cε p−N+pb(μ), p < N
b(μ)

−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cεl(b(μ)+1− N
p ), p < l < N

b(μ) ,

cε
N+

(
1− N

p

)
l | ln ε|, l = N

b(μ) ,

cε
N+

(
1− N

p

)
l
, N

b(μ) < l < γ.

(29)

Now we distinguish two cases: that is, b(μ) > N
p and b(μ) ≤ N

p .

(C1) If b(μ) > N
p , then by (15), we get

p∗(s)b(μ)− N + s > b(μ)p + p − N > p,

and

β > p.

For ε small enough, by (29), we deduce that

g(τ0) ≤ p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s − O(ε p)

<
p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s .

(C2) If b(μ) ≤ N
p , then by (15) and l > �, we have

l >
p(2N − p − pb(μ))

N − p
≥ N

b(μ)
,

β ≥ p = N + p

(
1 − N

p

)
> N + l

(
1 − N

p

)
,

and

p∗(s)b(μ)− N + s > b(μ)p + p − N > N + l

(
1 − N

p

)
.

For ε small enough, by (29), we get that

g(τ0) ≤ p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s − O

(
ε

N+l
(

1− N
p

))

<
p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s .
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Hence, (18) holds and the proof of the lemma is completed by taking u = vε . ��
Proof of Theorem 3.1 Set

c = inf
ψ∈� sup

τ∈[0,1]
J (ψ (τ)),

where

� =
{
ψ ∈ C([0, 1], W 1,p

0 (�)), ψ (0) = 0, ψ (1) = ψ0 ∈ W 1,p
0 (�)

}
,

and ψ0 satisfies J (τψ0) ≤ 0 for all τ ≥ 1. By (8)–(10), there exist positive constants c1 and
c2 such that

g(x, u) ≤ c1u p−1 + c2uγ−1.

Thus by (8), we have

F(x, u) ≤ 1

p
a(x)|u|p + 1

p
c1|u|p + c2

γ
|u|γ

for a.e. x ∈ �. Hence, for all u ∈ W 1,p
0 (�), by (11) and Sobolev–Hardy’s inequality, we

derive that

J (u) ≥ 1

p

∫
�

(
|∇u|p − μ

|u|p

|x |p

)
− 1

p∗ (s)

∫
�

K (x)
|u|p∗(s)

|x |s − 1

p∗ (t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t

−
∫
�

1

p
a(x)|u|p + 1

p
c1|u|p + c2

γ
|u|γ

≥ (A − B‖u‖p∗(s)−p

W 1,p
0 (�)

− C‖u‖p∗(t)−p

W 1,p
0 (�)

− D‖u‖γ−p

W 1,p
0 (�)

)‖u‖p

W 1,p
0 (�)

,

where A, B, C and D are all positive constants, which implies that there exist ρ0 > 0 and
c′ > 0 such that

J |∂B(0,ρ0) > c′ > 0.

Notice that

J (τvε) → −∞ as τ → +∞,

thus, there exists τ1 > 0 such that

‖τ1vε‖W 1,p
0 (�)

> ρ0,

and

J (τ1vε) < 0.

Therefore, by using the Mountain Pass Lemma [1], there exists a sequence {un} ⊂ W 1,p
0 (�)

such that

J (un) → c, J ′(un) → 0 in (W 1,p
0 (�))−1.

By Lemma 3.2, we know that

0 < c′ ≤ c ≤ sup
τ∈[0,1]

J (ττ1vε) ≤ sup
τ≥0

J (τvε) <
p − s

p(N − s)
K (0)

N−p
s−p (Aμ,s)

N−s
p−s = K ∗.

(30)
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By Lemma 2.1, {un} has a subsequence, still denoted by {un}, such that

un → u strongly in W 1,p
0 (�).

Hence, combining this with (30), we deduce that u ∈ W 1,p
0 (�) is a critical point of the

functional J and is also a nontrivial solution for the problem (1). ��

4 Existence result when Q∗ < K∗

First we introduce the following lemma which is from [15].

Lemma 4.1 Suppose 1 < p < N , 0 ≤ t < p. Then the following holds:

(i) A0,t is independent of �;
(ii) A0,t is attained when � = R

N by the functions

yε(x) =
(
ε(N − t)(

N − p

p − 1
)p−1

) N−p
p(p−t)

(ε + |x − x0|
p−t
p−1 )

p−N
p−t

for some ε > 0. Moreover the functions yε(x) solve the equation

−�pu = |u|p∗(t)−2 u

|x − x0|t in R
N \{x0},

and satisfy ∫
RN

|∇ yε|p =
∫

RN

|yε|p∗(t)

|x − x0|t = (A0,t )
N−t
p−t .

Theorem 4.1 Suppose Q∗ < K ∗ and (8)–(10) hold. Moreover, if N > p2, then Q(x) =
Q(x0) + O(|x − x0|σ ) as |x − x0| → 0 holds with some σ > p; if N ≤ p2, then Q(x) =
Q(x0)+ O(|x − x0|σ ) as |x − x0| → 0 with some σ ≥ p and

there exists an open nonempty subset �0 ⊂ �, such that x0 ∈ �0

and lim
u→∞

F(x, u)

ul
= +∞ uniformly with respect to x ∈ �0, (31)

where l > pN (p−1)−p(N−p)
(p−1)(N−p) . Then there is at least one nontrivial solution u ∈ W 1,p

0 (�) of
the problem (1).

Now we give the following key lemma which is very useful for the proof of Theorem 4.1.

Lemma 4.2 Under the assumptions of Theorem 4.1, there exists a function u ∈ W 1,p
0 (�)

such that

sup
τ≥0

J (τu) < Q∗. (32)

Proof Let

Cε =
(
ε(N − t)(

N − p

p − 1
)p−1

) N−p
p(p−t)

,

Uε(x) = yε(x)

Cε
.
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Set ϕ(x)∈ C∞
0 (�), 0 ≤ϕ(x)≤ 1, ϕ(x)= 1 for |x − x0| ≤ R

2 , ϕ(x)= 0 for |x − x0| ≥ R,
where B(x0, R) ⊂ �. Denote

uε(x) = ϕ(x)Uε(x), for all ε > 0,

wε(x) = uε(x)(∫
�

|uε |p∗(t)
|x−x0|t

) 1
p∗(t)

,

such that ∫
�

|wε|p∗(t)

|x − x0|t = 1.

Then, we can obtain the following results by the methods used in [15],

‖wε‖p

W 1,p
0 (�)

= A0,t + O(ε
N−p
p−t ), (33)

∫
�

|wε|q ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cε
q(N−p)
p(p−t) , q < N (p−1)

N−p ,

cε
q(N−p)
p(p−t) | ln ε|, q = N (p−1)

N−p ,

cε
(p−1)(pN−q(N−p))

p(p−t) , q > N (p−1)
N−p .

(34)

Especially, when q = p, we have that

∫
�

|wε|p ≥

⎧⎪⎪⎨
⎪⎪⎩

cε
N−p
p−t , p2 > N ,

cε
N−p
p−t | ln ε|, p2 = N ,

cε
p(p−1)

p−t , p2 < N .

(35)

Observing thatwε concentrates on x = x0 when ε > 0 small enough, we can easily calculate
that

∫
�

|wε|p

|x |p
≥

⎧⎪⎪⎨
⎪⎪⎩

cε
N−p
p−t , p2 > N ,

cε
N−p
p−t | ln ε|, p2 = N ,

cε
p(p−1)

p−t , p2 < N .

(36)

Notice that∫
�

|x − x0|k |uε|p∗(t)

|x − x0|t = O(1)+
∫

|x−x0|≤R

|x − x0|k−t (ε + |x − x0|
p−t
p−1 )

p(N−t)
t−p

= O(1)+ c

R∫
0

rk−t+N−1(ε + r
p−t
p−1 )

p(N−t)
t−p

= O(1)+ cε
k(p−1)−(N−t)

p−t

Rε
− p−1

p−t∫
0

rk−t+N−1(1 + r
p−t
p−1 )

p(N−t)
t−p .

If k < N−t
p−1 , then

k − t + N − 1 + p − t

p − 1

p(N − t)

t − p
< −1.
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We conclude that

∫
�

|x − x0|k |uε|p∗(t)

|x − x0|t = O(ε
k(p−1)−(N−t)

p−t ).

If k = N−t
p−1 , then

k − t + N − 1 + p − t

p − 1

p(N − t)

t − p
= −1.

So we get

∫
�

|x − x0|k |uε|p∗(t)

|x − x0|t = O(| ln ε|).

If k > N−t
p−1 , then

k − t + N − 1 + p − t

p − 1

p(N − t)

t − p
> −1.

We have

∫
�

|x − x0|k |uε|p∗(t)

|x − x0|t = O(1).

Therefore, we obtain that

∫
�

|x − x0|k |uε|p∗(t)

|x − x0|t =

⎧⎪⎨
⎪⎩

O(ε
k(p−1)−(N−t)

p−t ), k < N−t
p−1 ,

O(| ln ε|), k = N−t
p−1 ,

O(1), k > N−t
p−1 ,

and hence

∫
�

|x − x0|k |wε|p∗(t)

|x − x0|t =

⎧⎪⎪⎨
⎪⎪⎩

O(ε
k(p−1)

p−t ), k < N−t
p−1 ,

O(ε
N−t
p−t | ln ε|), k = N−t

p−1 ,

O(ε
N−t
p−t ), k > N−t

p−1 .

(37)

By (37), for R > 0 small enough and x ∈ B(x0, R), we infer that

∫
�

Q(x)
|wε|p∗(t)

|x − x0|t ≥
∫
�

Q(x0)
|wε|p∗(t)

|x − x0|t − c
∫
�

|x − x0|σ |wε|p∗(t)

|x − x0|t

= Q(x0)−

⎧⎪⎪⎨
⎪⎪⎩

O(ε
σ(p−1)

p−t ), σ < N−t
p−1 ,

O(ε
N−t
p−t | ln ε|), σ = N−t

p−1 ,

O(ε
N−t
p−t ), σ > N−t

p−1 .

(38)
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Now we consider the following function

h(τ ) = J (τwε) = τ p

p

∫
�

(
|∇wε|p − μ

|wε|p

|x |p

)
− τ p∗(s)

p∗ (s)

∫
�

K (x)
|wε|p∗(s)

|x |s

− τ
p∗(t)

p∗ (t)

∫
�

Q (x)
|wε|p∗(t)

|x − x0|t −
∫
�

F (x, τwε).

By (8)–(10), (12) and (31), we can find non-negative constants a1 and a2, such that

f (x, u) ≥ a1u p−1 + a2ul−1

for x ∈ B(x0, R) and u ≥ 0 if R > 0 small enough, where 0 ≤ a2 ≤ a1<λ1(μ), a2 = 0 if N >

p2, a2 > 0 and pN (p−1)−p(N−p)
(p−1)(N−p) < l < γ if N ≤ p2. Combining this with (34) and (35),

for arbitrary τ ∈ (0,∞), we have that

∫
�

F(x, τwε) ≥

⎧⎪⎪⎨
⎪⎪⎩

cε
N−p
p−t , p2 > N

cε
N−p
p−t | ln ε|, p2 = N

cε
p(p−1)

p−t , p2 < N

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cε
l(N−p)
p(p−t) , p < l < N (p−1)

N−p ,

cε
l(N−p)
p(p−t) | ln ε|, l = N (p−1)

N−p ,

cε
(p−1)(pN−(N−p)l)

p(p−t) ,
N (p−1)

N−p < l < γ,

(39)

where c = c(τ ).
Since

lim
τ→+∞ h(τ ) = −∞,

by (12) we get

h(τ ) > 0 as τ → 0.

So supτ≥0 h(τ ) is attained for some 0 < τ0 < +∞. Together with (33), (36), (38) and (39),
we calculate that

h(τ ) ≤ h(τ0)

≤ τ0
p

p
‖wε‖2

W 1,p
0 (�)

− τ0
p∗(t)

p∗ (t)

∫
�

Q (x)
|wε|p∗(t)

|x − x0|t −
∫
�

F (x, τ0wε)

≤ p − t

p(N − t)
Q(x0)

N−p
t−p (A0,t )

N−t
p−t + O(ε

N−p
p−t )+

⎧⎪⎪⎨
⎪⎪⎩

O(ε
σ(p−1)

p−t ), σ < N−t
p−1 ,

O(ε
N−t
p−t | ln ε|), σ = N−t

p−1 ,

O(ε
N−t
p−t ), σ > N−t

p−1 ,

−

⎧⎪⎪⎨
⎪⎪⎩

cε
N−p
p−t , p2 > N

cε
N−p
p−t | ln ε|, p2 = N

cε
p(p−1)

p−t , p2 < N

−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cε
l(N−p)
p(p−t) , p < l < N (p−1)

N−p ,

cε
l(N−p)
p(p−t) | ln ε|, l = N (p−1)

N−p ,

cε
(p−1)(pN−(N−p)l)

p(p−t) ,
N (p−1)

N−p < l < γ.

(40)

Now we distinguish two cases: that is, N ≤ p2 and N > p2.

(C1) If N ≤ p2, noticing that

l >
N p(p − 1)− p(N − p)

(p − 1)(N − p)
≥ N (p − 1)

N − p
,
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we have

σ(p − 1)

p − t
≥ N − p

p − t
>
(p − 1) (pN − (N − p)l)

p(p − t)
,

and

N − t

p − t
>

N − p

p − t
.

By (40), we deduce for ε small enough,

h(τ0) <
p − t

p(N − t)
Q(x0)

N−p
t−p (A0,t )

N−t
p−t − cε

(p−1)(pN−(N−p)l)
p(p−t)

<
p − t

p(N − t)
Q(x0)

N−p
t−p (A0,t )

N−t
p−t .

(C2) If N > p2, then

N − t

p − t
>

N − p

p − t
>

p(p − 1)

p − t
,

and

σ(p − 1)

p − t
>

p(p − 1)

p − t
.

By (40), for ε small enough, we derive that

h(τ0) <
p − t

p(N − t)
Q(x0)

N−p
t−p (A0,t )

N−t
p−t − cε

p(p−1)
p−t

<
p − t

p(N − t)
Q(x0)

N−p
t−p (A0,t )

N−t
p−t .

Hence, (32) holds and we end the proof by taking u = wε . ��
Proof of Theorem 4.1 Set

c = inf
ψ∈� sup

τ∈[0,1]
J (ψ (τ)),

where

� =
{
ψ ∈ C([0, 1], W 1,p

0 (�)), ψ (0) = 0, ψ (1) = ψ0 ∈ W 1,p
0 (�)

}
,

and ψ0 satisfies J (τψ0) ≤ 0 for all τ ≥ 1. Then similarly to the proof of Theorem 3.1,
we infer that the functional J (u) satisfies all the assumptions of the Mountain Pass Lemma.
Hence, there exists a sequence {un} ⊂ W 1,p

0 (�) such that

J (un) → c, J ′(un) → 0 in (W 1,p
0 (�))−1.

By Lemma 4.2, we deduce that

0 < c′ ≤ c ≤ sup
τ∈[0,1]

J (ττ1wε) ≤ sup
τ≥0

J (τwε) <
p − t

p(N − t)
Q(x0)(A0,t )

N−t
p−t = Q∗, (41)

where c′ and τ1 are defined in the proof of Theorem 3.1. Then by Lemma 2.1, {un} has a
subsequence, still denoted by {un}, such that

un → u strongly in W 1,p
0 (�).
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Therefore, together with (41), we deduce that u is a critical point of J and is also a nontrivial
solution for the problem (1). ��

5 A nonexistence result

In this section, we prove a nonexistence result for the problem (7).

Theorem 5.1 Assume K (x), Q(x) ∈ C1(�) and � is a strictly star-sharped domain with
respect to the origin in R

N . If

〈x,∇K (x)〉 ≤ 0, 〈x,∇Q(x)− t Q(x)

|x − x0|2 (x − x0)〉 + t Q(x) ≤ 0, for all x ∈ �, (42)

then there exists no nontrivial solution for the problem (7).

Proof Suppose that we have the necessary regularity in the following operations. Otherwise,
we can use an approximation argument as in [16].

Set

d(x, u) = μ
|u|p−2 u

|x |p + K (x)
|u|p∗(s)−2 u

|x |s + Q (x)
|u|p∗(t)−2 u

|x − x0|t .

Then

D(x, u) =
u∫

0

d(x, v)dv = 1

p
μ

|u|p

|x |p + 1

p∗(s)
K (x)

|u|p∗(s)

|x |s + 1

p∗(t)
Q (x)

|u|p∗(t)

|x − x0|t ;

(43)

(∂i D)(x, u) = −μ |u|p

|x |p+2 xi − s

p∗(s)
K (x)

|u|p∗(s)

|x |s+2 xi − t

p∗(t)
Q (x)

|u|p∗(t)

|x − x0|t+2 (xi − xi0)

+ 1

p∗(s)
∂i K (x)

|u|p∗(s)

|x |s + 1

p∗(t)
∂i Q (x)

|u|p∗(t)

|x − x0|t ; (44)

∂i (D(x, u)) = (∂i D)(x, u)+ d(x, u)∂i u. (45)

Multiplying Eq. (7) by 〈x,∇u〉 on both sides, we get

−
∫
�

�pu〈x,∇u〉 =
∫
�

d(x, u)〈x,∇u〉. (46)
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An application of the divergence theorem yields that∫
�

�pu〈x,∇u〉 =
∫
�

div(|∇u|p−2∇u)〈x,∇u〉

=
∫
∂�

|∇u|p〈x, ν〉dS −
∫
�

|∇u|p−2〈∇u,∇(x,∇u)〉

=
∫
∂�

|∇u|p〈x, ν〉dS −
∫
�

|∇u|p − 1

p

∫
�

〈x,∇(|∇u|p)〉

=
∫
∂�

|∇u|p〈x, ν〉dS −
∫
�

|∇u|p − 1

p

∫
∂�

|∇u|p〈x, ν〉dS + n

p

∫
�

|∇u|p

= p − 1

p

∫
∂�

|∇u|p〈x, ν〉dS − p − n

p

∫
�

|∇u|p, (47)

where ν is the outwards normal to ∂�.
Again by (45), (43), (44) and integrating by parts, we derive that∫

�

d(x, u)〈x,∇u〉 = −n
∫
�

D(x, u)−
∫
�

∑
i

xi (∂i D)(x, u)

= −n − p

p

∫
�

μ
|u|p

|x |p − n − s

p∗(s)

∫
�

K (x)
|u|p∗(s)

|x |s − n − t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t

− 1

p∗(s)

∫
�

〈x,∇K 〉 |u|p∗(s)

|x |s − 1

p∗(t)

∫
�

〈x,∇Q〉 |u|p∗(t)

|x − x0|t

+ t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t+2 〈x0, x − x0〉. (48)

Then inserting (47) and (48) into (46), we deduce that

p − 1

p

∫
∂�

|∇u|p〈x, ν〉dS − p − n

p

∫
�

|∇u|p − μ
|u|p

|x |p

= n − s

p∗(s)

∫
�

K (x)
|u|p∗(s)

|x |s + n − t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t

+ 1

p∗(s)

∫
�

〈x,∇K 〉 |u|p∗(s)

|x |s + 1

p∗(t)

∫
�

〈x,∇Q〉 |u|p∗(t)

|x − x0|t

− t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t+2 〈x0, x − x0〉. (49)

On the other hand, multiplying the Eq. (7) by u and integrating by parts, we obtain that∫
�

|∇u|p − μ
|u|p

|x |p =
∫
�

K (x)
|u|p∗(s)

|x |s + Q (x)
|u|p∗(t)

|x − x0|t . (50)
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By (49) and (50), we have

p − 1

p

∫
∂�

|∇u|p〈x, ν〉dS

=
(

n − s

p∗(s)
+ p − n

p

) ∫
�

K (x)
|u|p∗(s)

|x |s +
(

n − t

p∗(t)
+ p − n

p

) ∫
�

Q (x)
|u|p∗(t)

|x − x0|t

+ 1

p∗(s)

∫
�

〈x,∇K 〉 |u|p∗(s)

|x |s + 1

p∗(t)

∫
�

〈x,∇Q〉 |u|p∗(t)

|x − x0|t

− t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t+2 〈x0, x − x0〉, (51)

which is equivalent to

p − 1

p

∫
∂�

|∇u|p〈x, ν〉dS

= 1

p∗(s)

∫
�

〈x,∇K 〉 |u|p∗(s)

|x |s + 1

p∗(t)

∫
�

〈x,∇Q〉 |u|p∗(t)

|x − x0|t

− t

p∗(t)

∫
�

Q (x)
|u|p∗(t)

|x − x0|t+2 〈x0, x − x0〉. (52)

If� is a strictly star-sharped domain with respect to the origin, then 〈x, ν〉 > 0 on ∂�. Thus,
by (42) and (52), we conclude that the problem (7) has no nontrivial solution. ��
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