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Abstract We prove unique continuation and maximum modulus principle for solutions to
systems of differential equations and inequalities, involving complex vector fields, under con-
ditions that generalize some weak-pseudoconcavity assumptions for the tangential Cauchy-
Riemann complex.
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0 Introduction

The purpose of this paper is to prove results concerning unique continuation and the max-
imum modulus principle for solutions to systems of differential equations, and differential
inequalities, involving complex linear partial differential operators of the first order. These
results extend similar results obtained in [3,5,6] for the system of complex vector fields
associated with abstract almost C R manifolds, under pseudoconcavity assumptions. Here,
we consider more general systems of complex vector fields, and weaken the pseudoconcavity
assumptions, in the spirit of [2].
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762 C. D. Hill, M. Nacinovich

Throughout the paper, we shall consistently use the following notation:

M = a smooth real manifold of dimension m,

C∞(M) = smooth complex valued functions on M,

X(M) = smooth real vector fields on M,

XC(M) = smooth complex vector fields on M,

Z(M) = some left C∞(M)− submodule ofXC(M),

HZ(M) = {Re Z | Z ∈ Z(M)} ⊂ X(M),

Zp M = {Z p | Z ∈ Z(M)}.

1 The maximum modulus principle

We denote by OZ(U ) the set of weak L2
loc-solutions of

Zu = 0 on U, ∀Z ∈ Z(M). (1.1)

This means that u ∈ L2
loc(U ) and

∫

U

u · Z∗φ dμ = 0, ∀Z ∈ Z(M), ∀φ ∈ C∞
0 (U ).

1.1 Local maximum modulus principle

Lemma 1.1 For any open subset U of M, the space OZ(U ) ∩ W 1,∞
loc (U ) of Lipschitz con-

tinuous solutions of (1.1) is a C-algebra.
Moreover, if W is an open set in C, F ∈ O(W ) a holomorphic function on W , u ∈ OZ(U )∩

W 1,∞
loc (U ) and u(U ) ⊂ W , then also the composition F ◦ u belongs to OZ(U ) ∩ W 1,∞

loc (U ).

Proof Indeed, W 1,∞
loc (U ) is a C-algebra and Z(uv) = vZu +u Zv ∈ L∞

loc(U ) for all complex

vector fields Z ∈ XC(M). If u, v ∈ OZ(U ) ∩ W 1,∞
loc (U ), then Z(uv) = 0 a.e. in U , and

hence, uv ∈ L2
loc(U ) is a weak solution of (1.1).

The last statement follows from the fact that OZ(U ) ∩ W 1,∞
loc (U ) is a closed subspace of

W 1,∞
loc (U ). 	

Let Y(M) be any set of smooth real vector fields on M and for each p ∈ M let Yp M =

{Yp | Y ∈ Y(M)}. Let U be an open subset of M . A Y(M)-path in U is a continuous and
piecewise differentiable map s : [0, 1] → U such that ṡ(t) ∈ Ys(t)M , except for the finite
number of points where ṡ(t) does not exist.

For an open set U of M and a point p ∈ U , the Sussmann leaf of Y(M) in U through p
is the set

S(Y(M),U, p) =
{

q ∈ U

∣∣∣∣∃ a Y(M)-path s : [0, 1] → U,
with s(0) = p, s(1) = q

}
. (1.2)

The leaf S(Y(M),U, p) is a smooth submanifold of U (see [10]).

Definition 1.2 We say that Z(M) satisfies the S-condition at p ∈ M if, for every open neigh-
borhood U of p in M , the Sussmann leaf S(HZ(M),U, p) is an open neighborhood of p
in M .
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Complex vector fields, unique continuation and the maximum modulus principle 763

We say that Z(M) satisfies the H -condition at p ∈ M if HZ(M) satisfies the Hörmander
condition at p. This means that, denoting by

H̃Z(M) = HZ(M)+ [HZ(M),HZ(M)] + [HZ(M), [HZ(M),HZ(M)]] + · · ·
the Lie subalgebra of X(M) generated by HZ(M),

{X p | X ∈ H̃Z(M)} = Tp M.

The validity of the H -condition at p ∈ M implies the validity of the S-condition at p ∈ M .

Definition 1.3 We say that Z(M) is Lipschitz-hypoelliptic if, for every open subset U of M ,
all weak L2

loc-solutions of (1.1) on U are Lipschitz continuous.

This is the case, for instance, when the system Z(M) satisfies the weak pseudo-concavity
conditions of [2]. These conditions lead to the validity of some subelliptic estimates, while
there are examples of hypoelliptic and non subelliptic systems with a big loss of derivatives
(see [8]).

Theorem 1.4 Assume that Z(M) is Lipschitz-hypoelliptic and satisfies the S-condition on U.
If u ∈ OZ(U ) ∩ C0(U ) and |u| has a local maximum at a point p0 ∈ U, then u is constant
on a neighborhood of p0 in U.

Proof By the Banach-Schauder open mapping theorem, our assumption implies that for
every pair U,U ′ of open subsets of M , with U ′ � U , we have, for some positive constant C ,

‖u‖W 1,∞(U ′) ≤ C‖u‖L2(U ), ∀u ∈ OZ(U ) ∩ L2(U ). (1.3)

Let now u ∈ OZ(U ) ∩ C0(U ) and assume that |u| has a local maximum at a point p0 ∈ U .
We can as well assume that U is relatively compact in M , that u is defined and continuous on
a neighborhood of Ū , and that |u(p0)| ≥ |u(p)| for all p ∈ U . If u(p0) = 0, there is nothing
to prove. Consider then the case where u(p0) �= 0. Multiplying u by a complex constant,
we can also take u(p0) = 1. Fix any connected open neighborhood U ′ of p0 in U , with
U ′ � U . By (1.3), {uk |U ′ }k∈N is a sequence bounded in W 1,∞(U ′). By the Ascoli-Arzelà
compactness theorem, there is a subsequence {ukν } which converges, uniformly on Ū ′, to a
continuous function u∞ on U ′. Let F = {p ∈ U ′ | |u(p)| = 1}. We have u∞ ∈ OZ(U ′)
and |u∞(p)| = 1 for p ∈ F , u∞(p) = 0 for all p ∈ U ′ ∩ �F . Since {|u(p)| | p ∈ U ′} is
connected, it follows that |u(p)| = 1 for all p ∈ U ′. Let U ′′ = {p ∈ U ′ | Re u(p) > 0}.
This is an open neighborhood of p0 in U . Then, we can define w(p) = i log(u(p)) on U ′′
in such a way that w(p0) = 0. The function w belongs to OZ(U ′′), is continuous, and takes
real values. Then, it is Lipschitz continuous and satisfies also Z̄w = 0 for all Z ∈ Z(M),
hence Xw = 0 for all X ∈ HZ(M). Having assumed that Z(M) satisfies the S-condition, it
follows that w, and hence also u, is constant on U ′′. 	

Corollary 1.5 Assume that U is a relatively compact open subset of M, that Z(M) is
Lipschitz-hypoelliptic and satisfies the S-condition on U. Then

|u(p)| ≤ max
q∈∂U

|u(q)|, ∀p ∈ U, ∀u ∈ OZ(U ) ∩ C0(Ū ). (1.4)

Corollary 1.6 Assume that U is a relatively compact open subset of M, that Z(M) is
Lipschitz-hypoelliptic and satisfies the S-condition on U. Then, there are no nonzero u ∈
OZ(M) having compact support in U.

Proof This follows indeed from (1.3). 	
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764 C. D. Hill, M. Nacinovich

1.2 The global maximum modulus principle

The local maximum modulus principle, together with a weak unique continuation result for
funtions in OZ(U ), yields a global maximum modulus principle.

Theorem 1.7 Let U be a connected open set of M, and assume that Z(M) is Lipschitz-
hypoelliptic on U. If weak unique continuation holds true for OZ(M) on U, then any function
u ∈ OZ(U ) such that |u| has a local maximum in U is constant in U.

Proof Let u ∈ OZ(U ), and assume that |u| has a local maximum at p0 ∈ U . Then, by Theo-
rem 1.4, u is constant in an open neighborhood V of p0 in U . By weak unique continuation,
u(p)− u(p0) is then equal to zero on U . 	


2 Weak unique continuation

In this section, we shall discuss weak continuation for general systems of complex vector
fields. For the convenience of the reader, we begin by stating the trapping lemma, that will
be a fundamental tool in our approach. Although Propositions 2.4 and 2.5 in the following
may be considered standard, we found it convenient to provide the reader with their state-
ment and short proofs, to emphasize the fact that a different approach is needed to prove
unique continuation in the more general framework of Theorem 2.6. Although this theorem
is a consequence of Theorem 2.12, we found it cleaner to distinguish the two statements.

2.1 The trapping lemma

Let M be a smooth manifold, T ∗M
π−→ M its cotangent bundle. Given a closed subset F

of M , the set Ne(F) of its exterior normals consists of all ν ∈ T ∗M such that ν �= 0,
p = π(ν) ∈ F , and there exists a C2 real valued function φ : M → R satisfying:

dφ(p) = ν, φ(q) ≤ φ(p) ∀q ∈ F.

The main properties of Ne(F) are collected in the following:

Proposition 2.1 Let F be any closed subset of M. Then:

π(Ne(F)) ⊂ ∂F and is dense in ∂F.
Let X be a Lipshitz-continuous real vector field in M. If ν(X) ≤ 0 for all ν ∈ Ne(F), then
F contains all integral curves of X issuing from a point of F.

For the proof, see Proposition 8.5.8 and Theorem 8.5.11 in [7].
From Proposition 2.1 one obtains

Proposition 2.2 Let Y(M) be a system of real vector fields on M and let F be a closed
subset of M. Then, the following are equivalent:

(i) p ∈ F and U open � p �⇒ S(Y(M),U, p) ⊂ F,

(ii) ν(Y ) = 0, for all ν ∈ Ne(F), and all Y ∈ Y(M).

2.2 Real analytic systems

First, we consider the case of a real analytic system, where we can use Holmgren’s unique-
ness theorem and the trapping lemma, to generalize Zachmanoglou’s uniqueness theorem
(see [13,14]) to the case of overdetermined systems.
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Complex vector fields, unique continuation and the maximum modulus principle 765

Definition 2.3 We say that Z(M) is real analytic at p0 ∈ M if there is a coordinate patch
U centered at p0 such that Z(U ) is generated by complex vector fields Z1, . . . , Zm ∈ Z(M)
that are real analytic on a neighborhood of p0.

Conditions S and H are equivalent at a point p0 of M where Z(M) is real analytic (see [9]).

Proposition 2.4 Let U be a connected open subset of M. Assume that Z(M) is real analytic
at p and has the H-property at all points of U. Then, any u ∈ OZ(U ) which vanishes on a
non empty open subset of U is identically zero on U.

Proof Let u ∈ OZ(U ), and F = supp u ⊂ U . Assume by contradiction that ∅ �= F �= U .
By the trapping lemma and the assumption that Z(M) satisfies the H -condition on U , there
are points p0 of ∂F ∩ U with an exterior normal νp0 which is non characteristic for Z(M).
Consider a smooth hypersurface S through p0 with normal νp0 at p0 and F ∩ S = {p0}, and a
Z ∈ Z(M) that is real analytic on a neighborhood of p0 in U , which satisfies νp0(Re Z) �= 0.
Then, u solves the Cauchy problem

{
Zu = 0 on U,
u = 0 on S.

Applying the Holmgren uniqueness theorem, we obtain that u = 0 on a neighborhood of p0,
and this gives a contradiction. 	

2.3 Embedded C R manifolds

Here, we consider the case where M is a C R manifold and Z(M) is the system of its smooth
(0, 1)-vector fields.

Proposition 2.5 Let M be a C R submanifold of a complex manifold N, and let Z(M) be the
space of smooth complex tangent vector fields of type (0, 1) on M. If M is minimal in the
sense of [11] and [12], i.e. if Z(M) has the S-property, then OZ(M) satisfies the weak unique
continuation principle.

Proof Indeed, by [12], for every connected open subset U of M , there is a connected wedge
Ũ in N , with edge U , such that every continuous u ∈ OZ(U ) extends to a continuous function
ũ on Ũ , that is holomorphic in the interior of Ũ . If u vanishes on a nonempty open subset V of
U , then ũ vanishes on the corresponding wedge Ṽ and hence in Ũ , by the unique continuation
theorem for holomorphic functions. Hence, also the boundary value u of ũ vanishes on U . 	

2.4 S-condition for �Z(M)

Following [2], we associate to Z(M) the new system of complex vector fields

�Z(M) =
{

Z ∈ Z(M)

∣∣∣∣ ∃r ≥ 0, ∃Z1, . . . , Zr ∈ Z(M), s.t.
i[Z , Z̄ ] + i

∑r
j=1[Z j , Z̄ j ] ∈ HZ(M)

}
. (2.1)

The result of [3] and [5, Theorem 5.1] can be generalized to:

Theorem 2.6 Let U be a connected open subset of M, and assume that �Z(M) has the
S-property on U. Then, if u ∈ L2

loc(U ) satisfies
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766 C. D. Hill, M. Nacinovich

⎧⎨
⎩

for every Z ∈ Z(M), Zu ∈ L2
loc(U ),

there exists κZ ∈ L∞
loc(U ) such that

|Zu(p)| ≤ κZ (p)|u(p)| a.e. on U,
(2.2)

and u is zero a.e. on a non empty open subset of U, then u = 0 a.e. on U.

If u ∈ L2
loc(U ) is a solution of (2.2), we can apply Proposition 2.2 to F = supp u. The

assumption that �Z(M) has the S-property on U implies that either ∂F ∩ U = ∅, or else
there is ν ∈ Ne(supp u) and Z ∈ �Z(M) with ν(Z) �= 0. Thus, Theorem 2.6 will follow
from

Proposition 2.7 Let U be an open subset of M, and U− an open subset of U such that
∂U− ∩ U is smooth and

∀ν ∈ Ne(Ū
−), ∃Z ∈ �Z(M), with ν(Z) �= 0.

Then, every u ∈ L2
loc(U ) which satisfies (2.2) and vanishes on U− is zero a.e. on a neigh-

borhood of Ū− in U.

After introducing a Riemannian metric on M , the proof of Proposition 2.7 reduces to the
following Carleman type estimate:

Proposition 2.8 Let U be a relatively compact open subset of M. Let φ be a real valued
smooth function on U, and p0 ∈ U a point where φ(p0) = 0 and (Zφ)(p0) �= 0 for some
Z ∈ �Z(M). Then, we can find a neighborhood U0 of p0 in U, L1, . . . , Ln ∈ Z(M), and
constants A > 0, c > 0 and τ0 > 0 such that

τ ‖u exp(τψA)‖2
0 ≤ c

n∑
i=1

‖(Li u) exp(τψA)‖2
0,

where ψA = φ + Aφ2, ∀u ∈ C∞
0 (U0), ∀τ ≥ τ0.

(2.3)

Proof Having fixed u ∈ C∞
0 (U ), we set vτ = u · exp(τψA), so that

‖(Zu) exp(τψA)‖0 = ‖Zvτ − τvτ ZψA‖0.

Let L1 ∈ �Z(M) be such that (L1φ)(p0) �= 0, and let L2, . . . , Ln ∈ Z(M) be such that

i
n−1∑
j=1

[L j , L̄ j ] = Re Ln .

It suffices to prove that there is an open neighborhood U0 of p0 in U and constants A > 0,
c > 0, τ0 > 0 such that

c
n∑

j=1

‖Liv − τvLiψA‖2
0 ≥ τ‖v‖2

0, ∀v ∈ C∞
0 (U0), ∀τ > τ0. (2.4)

Using integration by parts, we obtain

n−1∑
j=1

‖Liv − τvLiψA‖2
0 =

n−1∑
j=1

‖L∗
i v − τv L̄iψA‖2

0

+
∫ n−1∑

j=1

[L∗
i , Li ]v · vdλ+ 2τRe

∫
|v|2

n−1∑
j=1

Li L̄iψAdλ.
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Complex vector fields, unique continuation and the maximum modulus principle 767

The second term in the right hand side can be estimated by

c1‖Lnv − τvLnψA‖0 · ‖v‖0 + c2(U0)τ‖v‖2
0,

where c1 is a constant that can be taken independent of A and τ , provided the support of v
is contained in a fixed relatively compact open neighborhood of p0 in U ; if supp(v) ⊂ U0,
the constant c2(U0) is the supremum of (1 + 2Aφ(p))|Lnφ(p)| on U0.

The third term in the right hand side is bounded from below by

c3(U0)τ‖v‖2
0,

where

c3(U0) = inf
p∈U0

⎛
⎝A

n−1∑
j=1

|L jφ(p)|2 − c4(1 + A|φ(p)|)
n−1∑
j=1

(|Liφ(p)| + |Li L̄iφ(p)|)
⎞
⎠ .

By taking U0 sufficiently small, so that |φ(p)| � 1 on U0, and taking A sufficiently large,
we obtain with some constants c5 > 0, c6 > 0,

n∑
j=1

‖L jv − τvLiψA‖2
0 ≥ (c5 τ − c6) ‖v‖2

0,∀v ∈ C∞
0 (U0),

and the Carleman estimate (2.4) follows for τ > τ0, provided we take c5τ0 > c6. 	


Proof of Proposition 2.7 Fix a point p0 ∈ ∂U− ∩ U and a defining function ρ for U− in
a neighborhood V ⊂ U of p0: ρ ∈ C2(V,R), U− ∩ V = {p ∈ V | ρ(p) < 0}. By our
assumption, there is Z ∈ �Z(M) such that Zρ(p0) �= 0. After shrinking, we can assume that
Zρ(p) �= 0 for all p ∈ V . Take for V a coordinate patch, with coordinates x ∈ R

m vanishing
at p0, and setφ(p) = ρ(p)−C ·|x(p)|2 with C sufficiently large, so thatφ(p) < −1 outside
a compact neighborhood of p0 in V . By Proposition 2.8, there are an open neighborhood U0

of p0 in V , and constants A > 0, c > 0 and τ0 > 0 such that (2.3) is valid for the weight
function φ. Fix another function ν : R → R with:

⎧⎨
⎩

0 ≤ ν(θ) ≤ 1 ∀θ ∈ R,

ν(θ) = 1 if θ > 1,
ν(θ) = 0 if θ < −1.

Given a solution u ∈ L2
loc(U ) of (2.2) vanishing on U−, for real δ > 0, we consider the

function uδ = u · ν(φ/δ). Its support is contained in {φ(p) ≥ −δ} ∩ �U− and therefore is
compact and contained in U0 if δ > 0 is sufficiently small, say δ < δ0. The estimate (2.3) is
valid for uδ when δ < δ0 by Friedrichs extension theorem (cf. [4]). For a fixed 0 < δ < δ0

and ψA = φ + Aφ2, we obtain

τ‖uδ · exp(τψA)‖2 ≤ c
n∑

j=1

‖ exp(τψA) L j uδ)‖2.
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For λ = δ + Aδ2, we obtain:

τ‖ exp(τψA − λ) · u‖2
φ≥δ

≤ c

⎛
⎝ n∑

j=1

‖exp(τψA − λ)L j u‖φ≥δ +
n∑

j=1

‖ exp(τψA − λ)L j uδ‖2
φ≤δ

⎞
⎠

≤ constant‖ exp(τψA − λ) · u‖2
φ≥δ + c

n∑
j=1

‖ exp(τψA − λ)L j uδ)‖2
φ≤δ.

This gives:

(τ − constant)‖u‖2
φ≥δ ≤ c ‖∂M ( fδ)‖2

φ≤δ
for all τ ≥ τ0 and hence u = 0 a.e. for φ ≥ δ, showing that u vanishes on a neighborhood
of p0.

The proof is complete. 	

Example 2.9 Let N = {�1 ⊂ �3 ⊂ C

6} be the complex flag manifold of complex lines
and 3-planes in C

6. We denote by �i a C-linear subspace of dimension i . Fix a Hermitian
symmetric form h with signature (2, 4) and let M be the minimal orbit in N of the group
SU(2, 4) of C-linear transformations of C

6 leaving h invariant. This is a compact smooth real
submanifold of M , consisting of the pairs �1 ⊂ �2 with rank h|�1 = 0, rank h|�3 = 1. M has
a natural structure of a generic real analytic C R submanifold of N , with C R dimension 5 and
C R codimension 6. Let Z(M) be the system of (0, 1)-vector fields tangent to M . Then, Z(M)
is a distribution of complex vector fields of rank 5, and �Z(M) a distribution of complex
vector fields of rank 4, that satisfies the H -condition, and hence the S condition. In particular,
Propositions 1.7 and 2.6 apply.

Example 2.10 Fix a Hermitian symmetric form h on C
7, with signature (2, 5). Let M be the

manifold consisting of the flags �1 ⊂ �3 ⊂ �4 ⊂ C
7 such that h|�1 , h|�3 , and h|�4 have ranks

0, 1, and 2, respectively. As a submanifold of the complex flag manifold N = {�1 ⊂ �3 ⊂
�4 ⊂ C

4}, M has the structure of a generic real analytic C R submanifold of C R dimension
7 and C R codimension 10. Let Z(M) be the set of smooth complex vector fields of type
(0, 1), tangent to M . It is a distribution of complex vector fields of rank 7. Then, �Z(M) is
a distribution of complex vector fields of rank 6, and Z(M) is generated by �Z(M) as a Lie
subalgebra of XC(M). Conditions H and S are then satisfied, and, in particular, Propositions
1.7 and 2.6 apply. (For other similar examples, we refer to [1]).

2.5 Dropping the S-condition for �Z(M)

Definition 2.11 We denote by YZ(M) the Lie subalgebra of X(M) generated by {Re Z | Z ∈
�Z(M)}.
We have

Theorem 2.12 Let U be an open set of M and assume that u ∈ L2
loc(U ) satisfies (2.2). Then,

supp(u) is foliated by the Sussmann leaves of YZ(M) in U.

Proof Assume that F = supp(u) �= U . By using the Carleman estimate of Proposition 2.7,
we can prove that ν(Z) = 0 for all Z ∈ �Z(M). By Proposition 2.2, this implies that a
Sussmann leaf of YZ(M) in U , which has a point in F is contained completely in F . 	
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