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Abstract We show that a coherent analytic sheaf F with prof F ≥ 2 defined outside a
holomorphically convex compact set K in a 1-convex space X admits a coherent extension
to the whole space X if, and only if, the canonical topology on H1(X \ K ,F) is separated.
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1 Introduction

Let X be a Stein space and K ⊂ X a Stein compact set, i.e., K admits a neighborhood system
of Stein open sets.

A theorem due to Bănică [4] states that, for any coherent analytic sheaf ̂F on X and any
positive integer q , the canonical topology (defined via the Čech cohomology) on Hq(X \
K , ̂F) is separated.

On the other hand, it is shown in [5] that if F is a coherent analytic sheaf on X \ K and
prof F ≥ 3, then F admits a coherent extension to X , namely there is a coherent analytic

sheaf ̂F on X such that ̂F |X\K = F (equality means OX\K -module isomorphism). If, more-
over, K is holomorphically convex, then F = F [1] is sufficient for a coherent extension, see
[3]; this will be improved in the subsequent Proposition 1. The gap condition is equivalent
to saying that prof F ≥ 2 and the set {x ∈ X \ K ; prof Fx = 2} is discrete in X \ K .

In this circle of ideas, we prove:

Theorem 1 Let X be a 1-convex space and K ⊂ X a holomorphically convex compact set.
Let F be a coherent analytic sheaf on X \ K with prof F ≥ 2. Then F admits a coherent
extension ̂F to X if, and only if, H1(X \ K ,F) is separated.
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712 V. Vâjâitu

Remark 1 If X is Stein, then the extension ̂F can be chosen such that prof ̂F ≥ 2; moreover
such an ̂F is unique (up to an isomorphism). However, the unicity fails in the 1-convex case.

For instance, if π : X −→ C
2

is the blowing-up of the origin in C
2
, then X is 1-convex and

its exceptional set S is a rational curve; its canonically associated invertible sheaf is holomor-
phically trivial on X \ S. Therefore, OX\S admits two non isomorphic coherent extensions.
Note also that, if ι : X \ S ↪→ X is the canonical inclusion, then ι�(OX\S) is not coherent.

Corollary 1 Let K ⊂ C
2

be a polynomially convex set and L an invertible sheaf on C
2 \ K .

Then H1(C
2 \ K ,L) is separated if, and only if, L is the trivial invertible sheaf.

Remark 2 This corollary shows that condition prof F ≥ 2 alone in Theorem 1 does not

guarantee the coherent extension. (Take K = {0} and L an invertible sheaf of over C
2 \ {0}

that is not holomorphically trivial. If L would extend coherently, then the extension can be

chosen to be an invertible sheaf over C
2

which would be trivial. See [10].)

Proposition 1 Let X be a complex space, K ⊂ X a Stein compact set and F a coherent
sheaf on X \ K such that F = F [1]. Then there exists a coherent sheaf ̂F on X that extends
F , i.e. ̂F |X\K = F .

Corollary 2 Let X be a Stein space, K ⊂ X a Stein compact set and F a coherent analytic
sheaf on X \ K such that F = F [1]. Then H1(X \ K ,F) is separated.

In order to put our results in a larger context, we note that one recurring theme in Com-
plex Analysis is “Hartogs type extension theorems.” Specifically, let X be a complex space,
S ⊂ X a closed subset and F a coherent analytic sheaf on X \ S. Find reasonable conditions
such that F admits a coherent extension to the whole space X . In particular, if ι : X \S −→ X
is the inclusion map, the sheaf ι�(F) is an analytic extension and one looks for conditions
such that ι�(F) is coherent.

The found necessary conditions are local and stated in terms of the absolute or relative
gap sheaves and require either (i) that S is analytic [7,10,12–14] or (ii) that S is a holo-
morphically convex compact set (or, more generally, a Stein compact set) (as in [5]), or (iii)
that S is the complement of an open set fulfilling certain generalized pseudoconvexity at the
boundary (see [11] and [12] for more details).

The extension stated above in Proposition 1 is complementary to results around 1970 and,
perhaps, it has been essentially known, but we did not found an appropriate reference. In the
same vein (see [11]), an extension is done for K a closed set of a complex space X admitting
a smooth proper function ϕ : X −→ (0,∞) that is q-convex on X (the normalization is such
that 1-convex ≡ strictly plurisubharmonic), K = {x ∈ X ; ϕ(x) ≤ c} for some c > 0 and
F = F [q]. However, our proposition is not a consequence of this result for q = 1 because a
Stein compact set does not necessarily have a Stein open neighborhood with respect to which
it becomes holomorphically convex. A straightforward example in C is given by the Stein
compact set

K = {0} ∪
⋃

n≥1

∂�(1/n),

where for r > 0 we set �(r) := {z ∈ C ; |z| < r}. (Use the subsequent Lemma 1 and the
maximum principle for subbarmonic functions.)
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An extension of coherent sheaves 713

2 Preliminaries

Throughout this paper, complex spaces, whose structural sheaves might have nilpotents, are
such that their underlying topology admits a countable base of open sets.

Let X = (X,OX ) be a complex space and F a coherent sheaf on X . For each point x ∈ X

there exists an holomorphic embedding ι : U −→ ̂U ⊂ C
m(x)

of an open neighborhood

U 
 x into the Zariski tangent space C
m(x)

of X at x . Let ̂F be the trivial extension of
ι�(F |U ); it is a coherent sheaf on ̂U . Let

0 −→ O pd −→ O pd−1 −→ · · · −→ O p0 −→ ̂F −→ 0

be a resolution of ̂F on a neighborhood of ι(x) of minimal length. It can be shown that
d ≤ m(x) and the number prof Fx := m(x) − d does not depend on the embedding ι. If
Fx = 0, then we set prof Fx = ∞. We let profX F := infx∈X prof Fx ; if X is clearly
understood from the context, we write prof F instead of profX F .

(Note that prof F can be larger than prof OX . Take X the image of the holomorphic

mapping h : C
2 −→ C

4
, (z, w) �→ (z2, z3, w, zw); X is an analytic subset of C

4
of

dimension 2, it has only one singularity at the origin and X \ {0} is connected (so that X is
irreducible). The map h is the normalization of X, prof OX = 1 and prof ˜OX = 2, where
˜OX is the coherent sheaf of germs of weakly holomorphic functions in X .)

For a non-negative integer q the set Sq(F) := {x ∈ X ; prof Fx ≤ q} is analytic in X of
dimension ≤ q; these are called the singular sets of F .

Also the qth-absolute gap sheaf of F , denoted by F [q], is the canonical sheaf associated
to the presheaf which to an open subset U of X associated lim 	(U \ A,F), where in the
inductive limit A runs over all analytic subsets of U of dimension ≤ q , and with the natural
restrictions mappings. One has a canonical morphism F −→ F [q]. This is an isomorphism,
and in that case, we write F = F [q] if, and only if,

dim Sk+2(F) ≤ k for k = −1, 0, . . . , q − 1.

Thus, F = F [1] means precisely that prof F ≥ 2 and {x ∈ X ; prof Fx = 2} is a discrete
set; a fortiori F = F [1] whenever prof F ≥ 3.

From ([5], pp. 356 and 357), we quote the following two propositions:

Proposition 2 Let X a Stein space and K ⊂ X a Stein compact set. Let F be a coherent
sheaf on X with prof F ≥ 2. Then for every coherent sheaf G on X the natural map

HomO(G,F) −→ HomO(G|X\K ,F |X\K )

is bijective.

Remark 3 The proposition fails if X is 1-convex and K ⊂ X is holomorphically convex; see
Remark 1.

Proposition 3 Let X be a complex space and 
 ⊂ X a discrete subset. Let E be a coherent
sheaf on X \
 with prof E ≥ 2. If E admits a coherent extension to X, then ι�(E) is coherent
on X and profι�(E) ≥ 2.

(Here ι : X \ A −→ X is the inclusion map.)
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714 V. Vâjâitu

3 Holomorphic convexity in 1-convex spaces

Here, we recall that a complex space X is said to be 1-convex if it satisfies one of the following
four equivalent conditions, see [9]:

• There exists a continuous function ϕ : X −→ R such that ϕ is exhaustive, i.e., for
every c ∈ R the set {x ∈ X ;ϕ(x) < c} is relatively compact in X and ϕ strictly
plurisubharmonic outside a compact subset of X .

• The space X is cohomologically 1-convex, that is, for every coherent analytic sheaf F on
X , the cohomology groups Hq(X,F), q = 1, 2, . . ., have finite dimension (as complex
vector spaces);

• The space X is holomorphically convex and admits a maximally compact analytic set S,
called the exceptional set.

• The space X is a proper modification of a Stein space at a finite number of points, i.e.,
there is a Stein space Y , a proper holomorphic map ρ : X −→ Y with ρ�(OX ) � OY

(in particular ρ is surjective and has connected fibers) and a finite set B ⊂ Y such that
ρ induces a biholomorphism between X \ ρ−1(B) and Y \ B.

The mapρ is called the Remmert’s reduction of X . The exceptional set of X is S = ρ−1(B).
A compact set K ⊂ X is “saturated” with respect to ρ, which means that K = ρ−1(ρ(K )),

if, and only if, every irreducible component of S meeting K lies entirely in K . For instance,
any holomorphically convex compact set in X is saturated.

Notice that Stein spaces are considered as 1-convex with empty exceptional set.
The following result, which in particular shows that 1-convexity is stable under normali-

zation, can be immediately deduced from [16].

Proposition 4 Let π : X −→ Y be a holomorphic map of complex spaces that is finite and
surjective. Then X is 1-convex if, and only if, Y is 1-convex.

Lemma 1 Let K be a holomorphically convex compact set in a 1-convex space X with
exceptional set S. Then there is a C∞-smooth, proper function ϕ : X −→ [0,∞) such that
K = {ϕ = 0} and ϕ is strictly plurisubharmonic on X \ (K ∪ S).

Proof Observe that ϕ as above results immediately plurisubharmonic on X .
Let ρ : X −→ Y be the Remmert’s reduction. Then L = ρ(K ) is holomorphically convex

in Y and ρ(S) is a finite set. Therefore, it will be enough to produce ϕ when X is Stein and
S = ∅. To this purpose, we letψ : X −→ [0,∞) be a C∞-smooth strictly plurisubharmonic
proper function. Let r > maxK ψ . Since K is holomorphically convex, there is a sequence
of holomorphic functions { fn}n on X such that | fn | ≤ 1 on K for all n and for any point
x0 ∈ X \ K there is an index n0 with | fn0(x0)| ≥ √

1 + r . Select ρ : [0,∞) −→ [0,∞) be
smooth of class C∞ and convex such that {ρ = 0} = [0, 1 + r ] and ρ be strictly increasing
on [1 + r,∞). Then, we define ϕ : X −→ [0,∞) by setting

ϕ(x) :=
∑

εnρ(| fn(x)|2 + ψ(x)), x ∈ X,

where {εν}ν is a sequence of positive numbers that decreases fast enough to zero. This ϕ has
the required properties. ��
Lemma 2 Let X be a 1-convex space and K ⊂ X a compact set. Let A ⊂ X be a compact
analytic set that does not meet K . Then K is holomorphically convex if, and only if, K ∪ A
is holomorphically convex.
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An extension of coherent sheaves 715

Proof First notice the following fact. Let Y be a Stein space, L ⊂ X a compact set and F a
finite set of points in Y \ K . Then L and L ∪ F are simultaneously holomorphically convex or
not. (If L is holomorphically convex, and y0 ∈ Y \(L ∪ F), then there is f and g holomorphic
functions on Y such that | f (y0)| > ‖ f ‖L and {g = 0} = F . It follows that F := f N g for
N positive integer large enough is such that |F(y0)| > ‖F‖L∪F . For the other implication,
we choose ψ : Y −→ [0,∞) that is proper, smooth of class C∞, plurisubharmonic on Y
and strictly plurisubharmonic on Y \ (L ∪ F) and such that {ψ = 0} = L ∪ F . It follows
that the union of the connected components of {ψ < ε} (ε > 0) meeting K form a Runge
neighborhoods system for L so that L follows holomorphically convex.)

Now let ρ : X −→ Y be the Remmert’s reduction and S the exceptional set of X . Since a
compact set T ⊂ X is holomorphically convex in X if, and only if, T is saturated and ρ(T )
is holomorphically convex in Y , the proof of the lemma follows easily. ��
Proposition 5 Let X be a Stein space, K ⊂ X a holomorphically convex set and F a
coherent analytic sheaf on X \ K .

(a) If prof F ≥ 3, then H1(X \ K ,F) has finite dimension.
(b) Let L ⊂ X be another holomorphically convex compact set, K ⊂ L. If prof F ≥ 2,

then the restriction map 	(X \ K ,F) −→ 	(X \ L ,F) is bijective.

Proof This is only a reformulation of some results from [2]. First select ϕ : X −→ [0,∞)

that is proper, smooth of class C∞, plurisubharmonic on X and strictly plurisubharmon-
ic on Y \ K and such that K = { ϕ = 0}. Let 0 < a < b and D := {a < ϕ < b},
which is relatively compact in X \ K . The bumping technique gives that the restriction map
H1(X \ K ,F) −→ H1(D,F) is bijective. So one concludes by using the classical finiteness
lemma.

To verify the second statement, we deal first with the surjectivity. Let σ ∈ 	(X \ L ,F).
Let also ψ : Y −→ [0,∞) be proper, smooth of class C∞, plurisubharmonic on Y and
strictly plurisubharmonic on Y \ L and such that L = {ψ = 0}. Then for c > 0 large enough,
the restriction of σ to {c < ϕ} extends to σ̂ ∈ 	(X \ K ,F). Then σ̂ |X\L −σ vanishes on the
set {c1 < ψ} for c1 > 0 sufficiently large such that the set {c1 < ψ} is contained in {c < ϕ}.
Then it vanishes on X \ L . The injectivity of the said restriction is similar so it is omitted.

��
For the sake of completeness we mention (cf. Proposition 2)

Proposition 6 Let π : X −→ Y be a finite holomorphic surjection map between 1-convex
spaces X and Y . Let K ⊂ Y be a compact set. Then π−1(K ) is holomorphically convex if,
and only if, K is holomorphically convex.

Toward the proof we prepare:

Lemma 3 Let Z be a 1-convex space and K ⊂ Z a compact set. Then K is holomorphically
convex if, and only if, for any coherent analytic sheaf F on Z, the restriction map

	(Z ,F) −→ 	(K ,F)
has dense image.1

1 For a compact set K in a complex space Z and F a coherent analytic sheaf on Z , then 	(K ,F) is the
inductive limit of 	(Uν ,F) where (Uν) forms a neighborhood system of open sets of K and has a structure
of L F topological vector space that is separated as the continuous map

	(X,F) −→
∏

x∈K

∏

ν≥0

Fx/m
ν
x Fx

is injective according to Krull’s theorem.
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716 V. Vâjâitu

As a matter of fact, it is enough to take F only coherent ideal subsheaves of OX (or more
simply ideal sheaves Ia, a ∈ X ).

Proof Indeed, for the “if” part, we consider F the ideal sheaf defined by some point x0

outside K . For the “only if”, let ρ : X −→ Y be the Remmert’s reduction. Since ρ(K ) is
holomorphically convex in Y , thanks to Grauert’s coherence theorem ρ�(F) is coherent on
Y and since 	(Y, π�F) = 	(X,F) and 	(ρ(K ), π�F) = 	(K ,F) the lemma results easily.

��

Lemma 4 Let π : X −→ Y be a finite holomorphic surjection map between normal
1-convex spaces X and Y . Let K ⊂ Y be a compact set. Then the holomorphically con-
vex hull of π−1(K ) equals π−1(̂K ).

Proof A sketch of the proof is as follows. First there is no loss in generality to assume
that X and Y are connected so that there is a nowhere dense analytic set B ⊂ Y such that
A := π−1(B) is nowhere dense in X and π induces an holomorphic covering map between
X \ A and Y \ B, say with n sheets. Also, we may take K = U , where U ⊂ Y is open so
that the closure of K \ B equals K and, consequently, for any holomorphic function g on
Y, supK |g| = supK\B |g|.

Now, any holomorphic function f on X satisfies a polynomial equation of the form

f n +
n

∑

ν=1

(aν ◦ π) f n−ν = 0,

where a1, . . . , an are holomorphic on Y . In fact, on Y \ B, one has:

aν(y) =
∑

1≤i1<···<iν≤n

f (xi1) · · · f (xiν ),

where π−1(y) = {x1, . . . , xn}. Thus, for all x ∈ X , if y = π(x), then

| f (x)| ≤ max(1, |a1(y)| + · · · + |an(y)|).

Then, we conclude in a standard manner. ��

Proof of Proposition 6 Let n = dim(X) = dim(Y ). By Lemma 4 and straightforward argu-
ments, we reduce ourselves to show that holomorphic convexity of π−1(K ) implies that of
K when π : X −→ Y is the normalization map of Y and assuming the proposition holds
true for complex spaces of dimension ≤ n − 1.

Let S be the exceptional set of Y . Then π−1(S) is the exceptional set of X . Thanks to
Lemma 6, we may assume that S lies in K . Now, we follow the technique of Narasimhan
for the Stein setting [8]. Let I ⊂ OY be a coherent ideal sheaf. We want to check that
	(Y, I) −→ 	(K , I) has dense image.

Let A be the subsheaf of OY given as the sheaf of universal denominators ofπ�(OX ), which
is the coherent sheaf of weakly holomorphic functions on Y in OY . Thus, A ·π�(OX ) ⊂ OY .
Let B = π�(˜B), where ˜B = π�(A ·I) ·OX . Thus, B is a coherent subsheaf of I and I/B has
the support of dimension ≤ n −1. Furthermore, H1(Y,B) −→ H1(K ,B) is an isomorphism
(because π is finite and H1(Y,B) = H1(X, ˜B), the last being isomorphic due to 1-convexity
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An extension of coherent sheaves 717

of X to H1(π−1(K ), ˜B) = H1(K ,B)). From the commutative diagram with exact rows,

0 �� 	(Y,B) ��

u

��

�� 	(Y, I)
v

��

�� 	(Y, I/B) ��

w

��

H1(Y,B)
θ

��
0 �� 	(K ,B) �� 	(K , I) �� 	(K , I/B) �� H1(K ,B)

since u has dense image (because 	(Y,B) = 	(X, ˜B), 	(K ,B) = 	(π−1(K ), ˜B) and
π−1(K ) is holomorphicaly convex in X ), w has dense image by the induction hypothesis,
we conclude easily by diagramm chasing the density of v, so that K results holomorphically
convex in Y from Lemma 3, whence the proposition. ��

4 Decoding separatedness

Below, we give a key fact encapsuled in the separation assumption, namely:

Proposition 7 Let X be a Stein space and K ⊂ X a holomorphically convex compact set.
Let F be a coherent sheaf on X \ K such that H1(X \ K ,F) is separated.

Then F satisfies Theorem A, that is, for every x ∈ X \ K , the sections of 	(X \ K ,F)
generates Fx over OX,x .

For the proof of this, we first prepare a few lemmata. From [6], we deduce in a straightforward
way:

Lemma 5 Let Z be complex space that is exhausted by an increasing sequence of open sets
{Zn}n and let F be a coherent analytic sheaf on Z. Suppose that for some integer q ≥ 1 the
following conditions are satisfied:

(a) Hq(Z ,F) is separated.
(b) Each restriction Hq(Zn+1,F) −→ Hq(Zn,F) is surjective and induces a bijection

between the associated separated spaces.

Then, for each n = 1, 2, . . ., the topology on Hq(Zn,F) is separated.

The following statement is easy and is left to the reader.

Lemma 6 Let Z be a complex space and F a coherent analytic sheaf on Z such that for some
integer q ≥ 1 the topology on Hq(Z ,F) is separated. Let I be a coherent ideal subsheaf of
OZ such that Supp(OZ/I) is a finite set. Then Hq(Z , IF) is separated.

Lemma 7 Let Z be a complex space which is the union of two open sets Y and U such that
the pair (Y ∩ U,U ) is Runge.2 Then for each coherent analytic sheaf F on Z the restric-
tion H1(Z ,F) −→ H1(Y,F) induces a bijection between the associated separated parts.
Besides, if H1(Z ,F) is separated, then the mapping H0(Z ,F) −→ H0(Y,F) has dense
image and H1(Z ,F) � H1(Y,F).

Proof Consider the exact portion of the Mayer-Vietoris sequence with coefficients in F
(which we omit for practical purposes) associated to Z = U ∪ Y ,

H0(Z) −→ H0(Y )⊕ H0(U ) −→ H0(Y ∩ U ) −→ H1(Z) −→ H1(Y ) −→ 0,

2 This means that U and Y ∩ U are Stein and O(U ) −→ O(Y ∩ U ) has dense range.
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718 V. Vâjâitu

where we used Theorem B for vanishing of cohomology of coherent sheaves on Stein spaces.
It is known that in the above diagram the canonical maps are continuous for the natural topol-
ogies.

Let W = {Wm}m=0,1,... be a Stein open covering of Z with W0 = U and Wm ⊂ Y for
m > 0. Let V = {Vm}m , where Vm := Um ∩ Y for m ≥ 0. Clearly, V is a Stein covering of
Y .

Then, since Wk ∩ Wm = Vk ∩ Vm for k �= m and F(U ) −→ F(U ∩ Y ) has dense image,
it results that Ci (W,F) = Ci (V,F) for i > 0 and the canonical map C0(W,F) −→
C0(V,F) has dense image. The lemma follows readily using the Čech definition of coho-
mology with alternate cycles.

Now, the additional statement results in the following way. Because the restriction map
H0(U,F) −→ H0(Y∩U,F)has dense image, it follows that the natural map u : H0(Y,F)⊕
H0(U,F) −→ H0(Y ∩ U,F) has dense image, too. But Im u is the kernel of the contin-
uous map H0(Y ∩ U,F) −→ H1(Z ,F) which is closed since {0} is closed in H1(Z ,F).
Therefore, the map u is surjective and the proof finishes easily by diagram chasing from the
following simple fact.

Let

0 �� E ′ u �� E1 ⊕ E2
v �� E ′′ �� 0

be an exact sequence of Fréchet spaces where u = (u1, u2), u1 : E ′ −→ E1, u2 : E ′ −→
E2, and v = v1 − v2 where v1 : E1 −→ E ′′, v2 : E2 −→ E ′′ are all continuous linear
mappings. Then v2 has dense range if, and only if, u1 has dense range, too. ��

Putting these together, we obtain in a standard way a “bumping lemma”:

Proposition 8 Let Z be a complex space and F a coherent sheaf on Z. Assume that Z is
exhausted by an increasing sequence {Zn}n of open sets such that Zn+1 = Zn ∪ Un+1 and
each pair (Un+1, Zn ∩ Un+1) is Runge. Then the following statements hold true:

(a) Each restriction H1(Z ,F) −→ H1(Zn,F) induces a bijection between their sepa-
rated spaces.

(b) If H1(Z ,F) is separated, then H1(Zn,F) is separated for all n and each restric-
tion H1(Z ,F) −→ H1(Zn,F) is bijective. Moreover, each mapping H0(Z ,F) −→
H0(Zn,F) has dense image.

Proof of Proposition 7 The assertion results immediately from Nakayama’s lemma and the
following more general fact that will be proved subsequently:

(�) For any coherent ideal sheaf I ⊂ OX such that 
 := Supp (OX/I) is discrete and
does not meet K , the restriction map

H0(X \ K ,F) −→ H0(X \ K ,F/IF)
is surjective.

(For instance, one may take I be defined by a suitable chosen sequence {xk} of X .)
To start the proof, let ϕ be as in Lemma 1 (with S = ∅) and set c0 := inf
 ϕ > 0. Let

{Xn} be an exhaustion of X by increasing open subsets obtained by the bumping method in
[2] such that X0 = {ϕ < c} with c ∈ (0, c0). For the sake of simplicity, let us adopt the
following ad-hoc notation: For a subset T of X containing K , we denote by T ′ the set T \ K .

These {X ′
n} fulfill the hypothesis of Proposition 8 corresponding to X ′. Besides, it is easily

seen that, for all n,
 ∩ Xn is a finite set of points (possibly the empty set).
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An extension of coherent sheaves 719

By Proposition 8, for any n, H1(X ′
n,F) is separated, the restriction H1(X ′

n+1,F) −→
H1(X ′

n,F) is bijective and H0(X ′
n+1,F) −→ H0(X ′

n,F) have dense images. Therefore,

H1(X ′,F) −→ H1(X ′
0,F)

is bijective.
From Lemma 6 all cohomological vector spaces H1(X ′

n, IF) are separated. Thanks to
Lemma 7, the restrictions H1(X ′

n+1, IF) −→ H1(X ′
n, IF) are bijective and H0(X ′

n+1,

IF) −→ H0(X ′
n, IF) have dense images. Thus,

H1(X ′, IF) −→ H1(X ′
0, IF)

is also bijective. Consider now the following canonical commutative diagram

H0(X ′,F) �� H0(X ′,F/IF) �� H1(X ′, IF) t ��

u

��

H1(X ′,F)
v

��
H1(X ′

0, IF) w �� H1(X ′
0,F)

where the mappings u and v are bijective by the above discussion. Because w is obviously
bijective, t follows bijective, too. Hence, the restriction H0(X\K ,F) −→ H0(X\K ,F/IF)
is surjective, whence the proof of the proposition. ��

5 Complements and some examples

Let X be a complex space. Let A ⊂ X be a closed set. We say that A is pseudoconcave at
a point x0 ∈ A if either x0 is an interior point of A or else x0 is a boundary point of A and
there is a non empty open neighborhood U of x0 such that U \ A is Stein. Therefore, the set
Ao of pseudoconcave points of A is open in A.

For instance, the compact set K := ∂�×� in C
�×C, which is holomorphically convex

in C
� × C, is pseudoconcave at every point of ∂� × �. (Here, � is the open unit disk in

C.)

Lemma 8 Let A be a complex hypersurface in a complex space X. Then Ao is dense in A.

Proof The question being local, there is no loss in generality to assume that X is Stein. Thus,
there is a holomorphic function f on X that vanishes on A and its zero set Z f := { f = 0}
is a hypersurface in X . Therefore, A is a union of some irreducible components of Z f ; let B
be the union of the remaining ones. Thus, B is closed in X and A \ B is dense in A.

Now, for any point x0 ∈ A \ B and every Stein open neighborhood V of x0 such that
V ∩ B = ∅, V \ A is Stein as it equals V \ { f = 0}, whence A \ B ⊂ Ao. The proof follows.

��
Proposition 9 Let X be a complex space and A ⊂ X a closed set. Let ι : X \ A ↪→ X be
the inclusion map. Then ι�(OX\A) is not of finite type at any pseudoconcave boundary point
of A.

Proof Since “pseudoconcavity” is an open property as well as “being of finite type”, assume,
in order to reach a contradiction that there is a point a ∈ ∂A such that A is pseudoconcave at
a and H := ι�(OX\A) is of finite type at a. Thus, there is a Stein open neighborhood W of
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720 V. Vâjâitu

a such that W \ A is Stein and sections σ1, . . . , σk ∈ 	(W,H) whose germs at a generates
Ha . Let {xν}ν be a sequence of points in W \ A converging to a. Because W \ A is Stein we
may choose σ ∈ O(W \ A) such that, for all ν one has:

|σ(xν)| > ν(1 + max(|σ1(xν)|, . . . , |σk(xν)|)).
On the other hand, on a suitable open neighborhood V of a in W , there are f1, . . . , fk ∈ O(V ),
which might be assumed bounded in modulus, say by some C > 0, such that σ = f1σ1 +
· · · fkσk on V \ A. Therefore, for ν sufficiently large one has 1 ≤ kC/ν which is absurd!

��
Corollary 3 Let X be a complex space and A a hypersurface in X. Let ι : X \ A ↪→ X be
the inclusion map. Then ι�(OX\A) is not of finite type at any point of A, a fortiori, ι�(OX\A)

is not coherent.

Proof This follows immediately from the above lemma and proposition. ��
Proposition 10 Let X be a Stein space and K ⊂ X a holomorphically convex compact set.
Let A ⊂ X \ K be a discrete set and IA its ideal sheaf, which is coherent on X \ K . Then
H1(X \ K , IA) is separated, if, and only if, A has no accumulation point in K .

Proof Let ϕ : X −→ [0,∞) be smooth, proper such that {ϕ = 0} = K and ϕ is strictly plu-
risubharmonic on X \K . It is straightforward to find a sequence {εν}ν that strictly decreases to
0 such that A∩{ϕ = εν} = ∅. Thus, setting Xν := {ϕ > εν} it follows that each H1(Xν, IA)

is separated. Since {Xν}ν increases to X , granting [6], H1(X, IA) is separated if, and only
if, the system {H0(Xν, IA)}ν satisfies a condition of Mittag–Leffler type and this is readily
shown to be equivalent to the fact that A has no accumulation point in K . ��

Let, we also note the following statement due to Markoe.

Proposition 11 Let X be a complex space and F a coherent analytic sheaf on X such that
H1(X,F) is separated and H0(X,F) has finite dimension. Then, for any coherent subsheaf
F ′ of F, H1(X,F ′) is separated.

The proof results using a Stein open covering of X and the simple functional analysis fact
saying that if u : E −→ F is a continuous surjective morphism of Fréchet spaces, then, for
every closed subspace E ′ ⊂ E, u(E ′) is closed in F if, and only if E ′ + Ker u is closed
in E .

For instance, this can be applied for X = Y \ K , where Y is a compact (connected) normal
complex space of dimension ≥ 2 and K = {ψ ≤ 0}, where ψ : W −→ R (W an open
neighborhood of K ) is continuous on W and strictly plurisubharmonic on W \ K . Then,
for any coherent subsheaf I of OX , H1(X, I) is separated. In particular, for any coherent
subsheaf I of OM , where M is the complex manifold of regular points of Y, H1(M, I) is
separated.

Corollary 4 Let A be a complex submanifold of P
n

of pure codimension ≥ 2. Let F be a
locally free sheaf on P

n\A of finite rank. Then, for every coherent subsheaf F ′ ⊂ F, H1(P
n\

A,F ′) is separated.

Corollary 5 Let X be a pseudoconcave space and F a torsion free-coherent sheaf on X
such that H1(X,F ′) is separated. Then, for every coherent subsheaf F ′ ⊂ F,H∞(X ,F ′)
is separated.
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Note. Recall that a complex space X is said to be pseudoconcave in the sense of Andreotti
[1] if there is a relatively compact open subset Y of X such that every point x0 ∈ ∂Y admits a
neighborhood system of open sets {Uν}ν such that x0 is an interior point of the holomorphical-
ly convex hull of Uν ∩ Y with respect to O(Uν). It is shown in [1] that if X is pseudoconcave
and F a torsion-free coherent sheaf on X , then H0(X,F) has finite dimension.

6 The proofs of theorem 1 and proposition 1

Proof of Theorem 1, the Stein case Let K be a holomorphically convex compact set in a Stein
space X and F a coherent analytic sheaf on X \ K such that prof F ≥ 2 and H1(X \ K ,F)
is separated. Since the extension is a question around K , there is no loss in generality to con-
sider X embedded as a closed analytic subset of some complex number space C

n
(n ≥ 3).

Let ι : X ↪→ C
n

be the analytic embedding. Clearly, ι�(F) is coherent on C
n
, prof ι�F =

prof F, K stays holomorphically convex in C
n
, and H•(Cn \ K , ι�F) = H•(X \ K ,F).

Therefore, there is no loss in generality to take X = C
n

with n ≥ 3. From Proposition 7, F
satisfies Theorem A on X \ K .

Let ϕ : X −→ [0,∞) proper, smooth, plurisubharmonic on X and strictly plurisub-
harmonic on X \ K such that {ϕ = 0} = K . Let L = {ϕ ≤ ε} (ε > 0) be a compact
neighborhood of K and c > 0 such that L ⊂ D := {ϕ < c}. Then D \ L is relatively
compact in X \ K and there are sections s1, . . . , sq ∈ 	(X \ K ,F) that generates F on
D \ L; in other words, we have a morphisms of sheaves Oq

X −→ F that is surjective on
D \ L . Let G be the kernel of the above OD\L -morphism. One has prof (G) ≥ 3. (For the
exact sequence, 0 −→ G −→ Oq −→ F −→ 0 implies that for every x ∈ D \ L either Gx

is free so that prof Gx = n, or prof Gx = 1 + prof Fx . In any case, we deduce prof G ≥ 3.)
Because H1(D \ L ,G) has finite dimension from Proposition 5, the exact sequence

H0(D \ L ,Oq) −→ H0(D \ L ,F) −→ H1(D \ L ,G) −→ H1(D \ L ,Oq)

and H1(D \ L ,Oq) = 0 implies that H0(D \ L ,F) regarded as H0(D \ L ,O)-mod-
ule is of finite type. But since H0(D \ K ,F) � H0(D \ L ,F) and H0(D \ K ,O) �
H0(D \ L ,O) there are sections σ1, . . . , σM ∈ 	(D \ K ,F)which generates H0(D \ K ,F)
as an H0(D \ K ,O)-module. Because Theorem A is true for F on D \ K , we get a surjective
morphism μ : OM −→ F on D \ K . For K, the kernel of μ, we apply again the above
discussion (possibly, we shrink D a little bit, as a matter of fact, one may choose a new D
given as {ϕ < c′} with c′ < c close to c. Thus, we obtain an exact sequence

ON −→ OM −→ F −→ 0

on D \ K . The matrix giving the O-morphism ON −→ OM has as entries holomorphic
functions on D \ K so that they extend holomorphically D and therefore it gives a morphism
ON −→ OM over D. Its cokernel is the desired extension H to D. Furthermore, since the
set {x ∈ D ; prof Hx ≤ 1} is analytic in D and contained in K , thus compact, it is a finite
set, say 
. Finally, we glue ι�(H|D\
) with F on D \ K and get a coherent extension ̂F of
F with prof ̂F ≥ 2. ��

Remark 4 From Proposition 2, it results that there is a unique (up to an isomorphism) coher-
ent extension ̂F of F with prof ̂F ≥ 2. Furthermore, in the same vein, we can show the
following:
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Let X a Stein space, K ⊂ X a Stein compact set and F a coherent sheaf on X \ K with
prof F ≥ 2 such that, for every Stein open neighborhood W of K , H1(W \ K ,F) is

separated. Then F admits a coherent extension to X.

Proof of Theorem 1, the 1-convex case First, we show the “if” part, which amounts to com-
plement [4] by proving:

Proposition 12 Let X be a 1-convex space and K ⊂ X a holomorphically convex compact
set. Then for any coherent sheaf H on X, the cohomology groups Hi (X \ K ,H), i ≥ 0, are
separated.

Indeed, since	(X \ K ,H) is separated, it remains to check the assertion for Hi (X \ K ,H)
with i ≥ 1. Let S be the exceptional set of X and decompose S as union S′ ∪ S′′ into disjoint
analytic sets such that S′′ ⊂ K and S′ ∩ K = ∅. From a standard long exact cohomology
sequence, we retain the exact portion

Hi (X,H) −→ Hi (X \ K ,H) −→ Hi+1
K (X,H) −→ Hi+1(X,H) (‡)

in which the extremes are complex vector spaces of finite dimension.
Let ρ : X −→ Y be the Remmert’s reduction. Then L := ρ(K ) is holomorphically

convex in Y . Consider L defined by a function ψ as in Lemma 1 and take V = {ψ < ε}
for ε > 0 small enough such that V ∩ ρ(S′) = ∅. Let U := ρ−1(V ). Now write the exact
sequence as in (‡) this time for U ; it follows using excision and 1-convexity that the canonical
restriction map

Hi (X \ K ,H) −→ Hi (U \ K ,H),

which is linear and continuous, has finite dimensional kernel and cokernel. On the other hand,
as ρ�(H) is coherent on Y , thanks to Bănică [4] and the isomorphism Hi (U \ K ,H) −→
Hi (V \ L , ρ�(H)) it follows that Hi (X \ K ,H) is Fréchet by using the following simple
functional analysis fact:

Let u : E −→ F be a continuous linear map between Q F-spaces such that Ker u and
Coker u are of finite dimension. Then E is separated provided that F is separated.

Lemma 9 Letπ : X −→ Y be a holomorphic map of complex spaces X and Y that contracts
an analytic subset A of X onto a Stein analytic subset B of Y (e.g. B a finite set of points). Let
F be a coherent analytic sheaf on X. Then the natural map H1(Y, π�(F)) −→ H1(X,F)
is injective. Moreover, if H1(X,F) is separated, then H1(Y, π�(F)) is separated, too.

Proof Let V be a Stein open neighborhood of B and W := π−1(V ). The Mayer–Vietoris
sequence induces a commutative diagram with exact rows

H0(Y \ B)⊕ H0(V ) ��

u

��

H0(V \ A) ��

v

��

H1(Y )

w

��

�� H1(Y \ B)⊕ {0}
δ

��
H0(X \ A)⊕ H0(W ) �� H0(W \ A) �� H1(X) �� H1(X \ A)⊕ H1(W )

where, the first row has coefficients in π�F and the second in F . Since u is surjective and v
and δ are injective, the five lemma shows that w is injective. Finally, as w is continuous, the
additional statements results, too. ��
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To conclude the proof of Theorem 1 in the 1-convex case, keeping the notations from
above, because L := ρ(K ) is holomorphically convex in Y and granting Lemma 9, using
that H1(X \ K ,F) is separated, it follows that H1(Y \ L , ρ�(F)) is separated, too. Con-
sider L defined by a function ψ as in Lemma 1 and take V = {ψ < ε} for ε > 0 small
enough such that V ∩ ρ(S′) = ∅. It follows now that H1(V \ L , ρ�(F)) is separated and
prof ρ�(F |V \L) ≥ 2 so that there is a coherent extension B on V of ρ�(F |V \L). Then ρ�(B)

can be glued with F on ρ−1(V \ K ) to produced the desired coherent extension of F . ��
Proof of Proposition 1 We follow an idea from Bănică and Stănaşilă [5]. Let � := {x ∈
X \ K ; prof Fx = 2}. This set is discrete in X \ K and prof F ≥ 2 on X \ K . Then
one produces in a standard way a sequence {�ν}ν of Stein open subsets of X and compact
neighborhoods Kν of K in �ν with the following properties:

(1) �ν+1 ⊂⊂�ν and {�}ν decreases to K ,
(2) Kν is holomorphically convex in �ν and
(3) (�ν \ Kν) ∩� = ∅.

It follows that there is a coherent sheaf Fν on X such that

Fν |X\Kν � F |X\Kν (�)

and prof Fν ≥ 2. For each couple (i, j) and any holomorphically convex compact set L in
X containing ̂Ki ∪ ̂K j , we obtain from the above fact an isomorphism

ξ−1
i ξ j : F j |X\L � Fi |X\L

which, thanks to Proposition 2, induces an isomorphism

ξi j : F j � Fi .

Because the bijections in (�) are functorial, it is easily shown that ξi j does not depend on L
and for each i and each triple (i, j, k), we have the relations ξi i = id and ξi jξ jkξki = id.
We, then, obtain the searched sheaf ˜F . ��
Acknowledgments I thank the referee for pertinent remarks on a preliminary version of this paper.
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