An extension of coherent sheaves defined outside holomorphically convex compact sets

Viorel Vâjâitu

Received: 28 June 2010 / Accepted: 4 April 2011 / Published online: 20 April 2011 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2011

Abstract We show that a coherent analytic sheaf \mathcal{F} with prof $\mathcal{F} \ge 2$ defined outside a holomorphically convex compact set *K* in a 1-convex space *X* admits a coherent extension to the whole space *X* if, and only if, the canonical topology on $H^1(X \setminus K, \mathcal{F})$ is separated.

Keywords Coherent sheaf · Coherent extension · Holomorphically convex compact set · 1-convex space · Remmert reduction

Mathematics Subject Classification (2000) 32L10 · 32E05 · 32C35 · 32F10 · 32E10

1 Introduction

Let X be a Stein space and $K \subset X$ a Stein compact set, i.e., K admits a neighborhood system of Stein open sets.

A theorem due to Bănică [4] states that, for any coherent analytic sheaf $\widehat{\mathcal{F}}$ on X and any positive integer q, the canonical topology (defined via the Čech cohomology) on $H^q(X \setminus K, \widehat{\mathcal{F}})$ is separated.

On the other hand, it is shown in [5] that if \mathcal{F} is a coherent analytic sheaf on $X \setminus K$ and prof $\mathcal{F} \geq 3$, then \mathcal{F} admits a coherent extension to X, namely there is a coherent analytic sheaf $\widehat{\mathcal{F}}$ on X such that $\widehat{\mathcal{F}}|_{X\setminus K} = \mathcal{F}$ (equality means $\mathcal{O}_{X\setminus K}$ -module isomorphism). If, moreover, K is holomorphically convex, then $\mathcal{F} = \mathcal{F}^{[1]}$ is sufficient for a coherent extension, see [3]; this will be improved in the subsequent Proposition 1. The gap condition is equivalent to saying that prof $\mathcal{F} \geq 2$ and the set $\{x \in X \setminus K; \text{ prof } \mathcal{F}_x = 2\}$ is discrete in $X \setminus K$.

In this circle of ideas, we prove:

Theorem 1 Let X be a 1-convex space and $K \subset X$ a holomorphically convex compact set. Let \mathcal{F} be a coherent analytic sheaf on $X \setminus K$ with prof $\mathcal{F} \geq 2$. Then \mathcal{F} admits a coherent extension $\widehat{\mathcal{F}}$ to X if, and only if, $H^1(X \setminus K, \mathcal{F})$ is separated.

V. Vâjâitu (🖂)

Bât. M2, 59655 Villeneuve d'Ascq Cedex, France

Université des Sciences et Technologies de Lille 1, Laboratoire Paul Painlevé,

e-mail: viorel.vajaitu@math.univ-lille1.fr

Remark 1 If *X* is Stein, then the extension $\widehat{\mathcal{F}}$ can be chosen such that prof $\widehat{\mathcal{F}} \ge 2$; moreover such an $\widehat{\mathcal{F}}$ is unique (up to an isomorphism). However, the unicity fails in the 1-convex case. For instance, if $\pi : X \longrightarrow \mathbb{C}^2$ is the blowing-up of the origin in \mathbb{C}^2 , then *X* is 1-convex and its exceptional set *S* is a rational curve; its canonically associated invertible sheaf is holomorphically trivial on $X \setminus S$. Therefore, $\mathcal{O}_{X \setminus S}$ admits two non isomorphic coherent extensions. Note also that, if $\iota : X \setminus S \hookrightarrow X$ is the canonical inclusion, then $\iota_*(\mathcal{O}_{X \setminus S})$ is not coherent.

Corollary 1 Let $K \subset \mathbb{C}^2$ be a polynomially convex set and \mathcal{L} an invertible sheaf on $\mathbb{C}^2 \setminus K$. Then $H^1(\mathbb{C}^2 \setminus K, \mathcal{L})$ is separated if, and only if, \mathcal{L} is the trivial invertible sheaf.

Remark 2 This corollary shows that condition prof $\mathcal{F} \geq 2$ alone in Theorem 1 does not guarantee the coherent extension. (Take $K = \{0\}$ and \mathcal{L} an invertible sheaf of over $\mathbb{C}^2 \setminus \{0\}$ that is not holomorphically trivial. If \mathcal{L} would extend coherently, then the extension can be chosen to be an invertible sheaf over \mathbb{C}^2 which would be trivial. See [10].)

Proposition 1 Let X be a complex space, $K \subset X$ a Stein compact set and \mathcal{F} a coherent sheaf on $X \setminus K$ such that $\mathcal{F} = \mathcal{F}^{[1]}$. Then there exists a coherent sheaf $\widehat{\mathcal{F}}$ on X that extends \mathcal{F} , i.e. $\widehat{\mathcal{F}}|_{X\setminus K} = \mathcal{F}$.

Corollary 2 Let X be a Stein space, $K \subset X$ a Stein compact set and \mathcal{F} a coherent analytic sheaf on $X \setminus K$ such that $\mathcal{F} = \mathcal{F}^{[1]}$. Then $H^1(X \setminus K, \mathcal{F})$ is separated.

In order to put our results in a larger context, we note that one recurring theme in Complex Analysis is "Hartogs type extension theorems." Specifically, let X be a complex space, $S \subset X$ a closed subset and \mathcal{F} a coherent analytic sheaf on $X \setminus S$. Find reasonable conditions such that \mathcal{F} admits a coherent extension to the whole space X. In particular, if $\iota : X \setminus S \longrightarrow X$ is the inclusion map, the sheaf $\iota_*(\mathcal{F})$ is an analytic extension and one looks for conditions such that $\iota_*(\mathcal{F})$ is coherent.

The found necessary conditions are *local* and stated *in terms of the absolute or relative gap sheaves* and require either (i) that *S* is analytic [7, 10, 12-14] or (ii) that *S* is a holomorphically convex compact set (or, more generally, a Stein compact set) (as in [5]), or (iii) that *S* is the complement of an open set fulfilling certain generalized pseudoconvexity at the boundary (see [11] and [12] for more details).

The extension stated above in Proposition 1 is complementary to results around 1970 and, perhaps, it has been essentially known, but we did not found an appropriate reference. In the same vein (see [11]), an extension is done for *K* a closed set of a complex space *X* admitting a smooth proper function $\varphi : X \longrightarrow (0, \infty)$ that is *q*-convex on *X* (the normalization is such that 1-*convex* \equiv *strictly plurisubharmonic*), $K = \{x \in X; \varphi(x) \le c\}$ for some c > 0 and $\mathcal{F} = \mathcal{F}^{[q]}$. However, our proposition is not a consequence of this result for q = 1 because a Stein compact set does not necessarily have a Stein open neighborhood with respect to which it becomes holomorphically convex. A straightforward example in \mathbb{C} is given by the Stein compact set

$$K = \{0\} \cup \bigcup_{n \ge 1} \partial \Delta(1/n),$$

where for r > 0 we set $\Delta(r) := \{z \in \mathbb{C}; |z| < r\}$. (Use the subsequent Lemma 1 and the maximum principle for subbarmonic functions.)

2 Preliminaries

Throughout this paper, complex spaces, whose structural sheaves might have nilpotents, are such that their underlying topology admits a countable base of open sets.

Let $X = (X, \mathcal{O}_X)$ be a complex space and \mathcal{F} a coherent sheaf on X. For each point $x \in X$ there exists an holomorphic embedding $\iota : U \longrightarrow \widehat{U} \subset \mathbb{C}^{m(x)}$ of an open neighborhood $U \ni x$ into the Zariski tangent space $\mathbb{C}^{m(x)}$ of X at x. Let $\widehat{\mathcal{F}}$ be the trivial extension of $\iota_{\star}(\mathcal{F}|_U)$; it is a coherent sheaf on \widehat{U} . Let

$$0 \longrightarrow \mathcal{O}^{p_d} \longrightarrow \mathcal{O}^{p_{d-1}} \longrightarrow \cdots \longrightarrow \mathcal{O}^{p_0} \longrightarrow \widehat{\mathcal{F}} \longrightarrow 0$$

be a resolution of $\widehat{\mathcal{F}}$ on a neighborhood of $\iota(x)$ of minimal length. It can be shown that $d \leq m(x)$ and the number prof $\mathcal{F}_x := m(x) - d$ does not depend on the embedding ι . If $\mathcal{F}_x = 0$, then we set prof $\mathcal{F}_x = \infty$. We let $\operatorname{prof}_X \mathcal{F} := \inf_{x \in X} \operatorname{prof} \mathcal{F}_x$; if X is clearly understood from the context, we write prof \mathcal{F} instead of $\operatorname{prof}_X \mathcal{F}$.

(Note that prof \mathcal{F} can be larger than prof \mathcal{O}_X . Take X the image of the holomorphic mapping $h : \mathbb{C}^2 \longrightarrow \mathbb{C}^4$, $(z, w) \mapsto (z^2, z^3, w, zw)$; X is an analytic subset of \mathbb{C}^4 of dimension 2, it has only one singularity at the origin and $X \setminus \{0\}$ is connected (so that X is irreducible). The map h is the normalization of X, prof $\mathcal{O}_X = 1$ and prof $\widetilde{\mathcal{O}}_X = 2$, where $\widetilde{\mathcal{O}}_X$ is the coherent sheaf of germs of weakly holomorphic functions in X.)

For a non-negative integer q the set $S_q(\mathcal{F}) := \{x \in X ; \text{ prof } \mathcal{F}_x \leq q\}$ is analytic in X of dimension $\leq q$; these are called the singular sets of \mathcal{F} .

Also the *qth-absolute gap sheaf* of \mathcal{F} , denoted by $\mathcal{F}^{[q]}$, is the canonical sheaf associated to the presheaf which to an open subset U of X associated $\lim \Gamma(U \setminus A, \mathcal{F})$, where in the inductive limit A runs over all analytic subsets of U of dimension $\leq q$, and with the natural restrictions mappings. One has a canonical morphism $\mathcal{F} \longrightarrow \mathcal{F}^{[q]}$. This is an isomorphism, and in that case, we write $\mathcal{F} = \mathcal{F}^{[q]}$ if, and only if,

dim
$$S_{k+2}(\mathcal{F}) \le k$$
 for $k = -1, 0, \dots, q-1$.

Thus, $\mathcal{F} = \mathcal{F}^{[1]}$ means precisely that prof $\mathcal{F} \ge 2$ and $\{x \in X; \text{ prof } \mathcal{F}_x = 2\}$ is a discrete set; *a fortiori* $\mathcal{F} = \mathcal{F}^{[1]}$ whenever prof $\mathcal{F} \ge 3$.

From ([5], pp. 356 and 357), we quote the following two propositions:

Proposition 2 Let X a Stein space and $K \subset X$ a Stein compact set. Let \mathcal{F} be a coherent sheaf on X with prof $\mathcal{F} \ge 2$. Then for every coherent sheaf \mathcal{G} on X the natural map

 $\operatorname{Hom}_{\mathcal{O}}(\mathcal{G}, \mathcal{F}) \longrightarrow \operatorname{Hom}_{\mathcal{O}}(\mathcal{G}|_{X \setminus K}, \mathcal{F}|_{X \setminus K})$

is bijective.

Remark 3 The proposition fails if X is 1-convex and $K \subset X$ is holomorphically convex; see Remark 1.

Proposition 3 Let X be a complex space and $\Lambda \subset X$ a discrete subset. Let \mathcal{E} be a coherent sheaf on $X \setminus \Lambda$ with prof $\mathcal{E} \geq 2$. If \mathcal{E} admits a coherent extension to X, then $\iota_{\star}(\mathcal{E})$ is coherent on X and prof $\iota_{\star}(\mathcal{E}) \geq 2$.

(Here $\iota : X \setminus A \longrightarrow X$ is the inclusion map.)

3 Holomorphic convexity in 1-convex spaces

Here, we recall that a complex space *X* is said to be 1-convex if it satisfies one of the following four equivalent conditions, see [9]:

- There exists a continuous function φ : X → ℝ such that φ is exhaustive, i.e., for every c ∈ ℝ the set {x ∈ X; φ(x) < c} is relatively compact in X and φ strictly plurisubharmonic outside a compact subset of X.
- The space X is *cohomologically 1-convex*, that is, for every coherent analytic sheaf \mathcal{F} on X, the cohomology groups $H^q(X, \mathcal{F}), q = 1, 2, ...$, have finite dimension (as complex vector spaces);
- The space *X* is holomorphically convex and admits a maximally compact analytic set *S*, called the *exceptional set*.
- The space X is a proper modification of a Stein space at a finite number of points, i.e., there is a Stein space Y, a proper holomorphic map $\rho : X \longrightarrow Y$ with $\rho_{\star}(\mathcal{O}_X) \simeq \mathcal{O}_Y$ (in particular ρ is surjective and has connected fibers) and a finite set $B \subset Y$ such that ρ induces a biholomorphism between $X \setminus \rho^{-1}(B)$ and $Y \setminus B$.

The map ρ is called the *Remmert's reduction* of *X*. The exceptional set of *X* is $S = \rho^{-1}(B)$. A compact set $K \subset X$ is "saturated" with respect to ρ , which means that $K = \rho^{-1}(\rho(K))$, if, and only if, every irreducible component of *S* meeting *K* lies entirely in *K*. For instance, any holomorphically convex compact set in *X* is saturated.

Notice that Stein spaces are considered as 1-convex with empty exceptional set.

The following result, which in particular shows that 1-convexity is stable under normalization, can be immediately deduced from [16].

Proposition 4 Let $\pi : X \longrightarrow Y$ be a holomorphic map of complex spaces that is finite and surjective. Then X is 1-convex if, and only if, Y is 1-convex.

Lemma 1 Let K be a holomorphically convex compact set in a 1-convex space X with exceptional set S. Then there is a C^{∞} -smooth, proper function $\varphi : X \longrightarrow [0, \infty)$ such that $K = \{\varphi = 0\}$ and φ is strictly plurisubharmonic on $X \setminus (K \cup S)$.

Proof Observe that φ as above results immediately plurisubharmonic on X.

Let $\rho : X \longrightarrow Y$ be the Remmert's reduction. Then $L = \rho(K)$ is holomorphically convex in Y and $\rho(S)$ is a finite set. Therefore, it will be enough to produce φ when X is Stein and $S = \emptyset$. To this purpose, we let $\psi : X \longrightarrow [0, \infty)$ be a C^{∞} -smooth strictly plurisubharmonic proper function. Let $r > \max_K \psi$. Since K is holomorphically convex, there is a sequence of holomorphic functions $\{f_n\}_n$ on X such that $|f_n| \le 1$ on K for all n and for any point $x_0 \in X \setminus K$ there is an index n_0 with $|f_{n_0}(x_0)| \ge \sqrt{1+r}$. Select $\rho : [0, \infty) \longrightarrow [0, \infty)$ be smooth of class C^{∞} and convex such that $\{\rho = 0\} = [0, 1+r]$ and ρ be strictly increasing on $[1+r, \infty)$. Then, we define $\varphi : X \longrightarrow [0, \infty)$ by setting

$$\varphi(x) := \sum \epsilon_n \rho(|f_n(x)|^2 + \psi(x)), \ x \in X,$$

where $\{\epsilon_{\nu}\}_{\nu}$ is a sequence of positive numbers that decreases fast enough to zero. This φ has the required properties.

Lemma 2 Let X be a 1-convex space and $K \subset X$ a compact set. Let $A \subset X$ be a compact analytic set that does not meet K. Then K is holomorphically convex if, and only if, $K \cup A$ is holomorphically convex.

Proof First notice the following fact. Let *Y* be a Stein space, $L \,\subset X$ a compact set and *F* a finite set of points in $Y \setminus K$. Then *L* and $L \cup F$ are simultaneously holomorphically convex or not. (If *L* is holomorphically convex, and $y_0 \in Y \setminus (L \cup F)$, then there is *f* and *g* holomorphic functions on *Y* such that $|f(y_0)| > ||f||_L$ and $\{g = 0\} = F$. It follows that $F := f^N g$ for *N* positive integer large enough is such that $|F(y_0)| > ||F||_{L \cup F}$. For the other implication, we choose $\psi : Y \longrightarrow [0, \infty)$ that is proper, smooth of class C^{∞} , plurisubharmonic on *Y* and strictly plurisubharmonic on $Y \setminus (L \cup F)$ and such that $\{\psi = 0\} = L \cup F$. It follows that the union of the connected components of $\{\psi < \epsilon\}$ ($\epsilon > 0$) meeting *K* form a Runge neighborhoods system for *L* so that *L* follows holomorphically convex.)

Now let $\rho : X \longrightarrow Y$ be the Remmert's reduction and *S* the exceptional set of *X*. Since a compact set $T \subset X$ is holomorphically convex in *X* if, and only if, *T* is saturated and $\rho(T)$ is holomorphically convex in *Y*, the proof of the lemma follows easily.

Proposition 5 Let X be a Stein space, $K \subset X$ a holomorphically convex set and \mathcal{F} a coherent analytic sheaf on $X \setminus K$.

- (a) If prof $\mathcal{F} \geq 3$, then $H^1(X \setminus K, \mathcal{F})$ has finite dimension.
- (b) Let $L \subset X$ be another holomorphically convex compact set, $K \subset L$. If prof $\mathcal{F} \geq 2$, then the restriction map $\Gamma(X \setminus K, \mathcal{F}) \longrightarrow \Gamma(X \setminus L, \mathcal{F})$ is bijective.

Proof This is only a reformulation of some results from [2]. First select $\varphi : X \longrightarrow [0, \infty)$ that is proper, smooth of class C^{∞} , plurisubharmonic on X and strictly plurisubharmonic on $Y \setminus K$ and such that $K = \{\varphi = 0\}$. Let 0 < a < b and $D := \{a < \varphi < b\}$, which is relatively compact in $X \setminus K$. The bumping technique gives that the restriction map $H^1(X \setminus K, \mathcal{F}) \longrightarrow H^1(D, \mathcal{F})$ is bijective. So one concludes by using the classical finiteness lemma.

To verify the second statement, we deal first with the surjectivity. Let $\sigma \in \Gamma(X \setminus L, \mathcal{F})$. Let also $\psi : Y \longrightarrow [0, \infty)$ be proper, smooth of class C^{∞} , plurisubharmonic on Y and strictly plurisubharmonic on $Y \setminus L$ and such that $L = \{\psi = 0\}$. Then for c > 0 large enough, the restriction of σ to $\{c < \varphi\}$ extends to $\widehat{\sigma} \in \Gamma(X \setminus K, \mathcal{F})$. Then $\widehat{\sigma}|_{X \setminus L} - \sigma$ vanishes on the set $\{c_1 < \psi\}$ for $c_1 > 0$ sufficiently large such that the set $\{c_1 < \psi\}$ is contained in $\{c < \varphi\}$. Then it vanishes on $X \setminus L$. The injectivity of the said restriction is similar so it is omitted.

For the sake of completeness we mention (cf. Proposition 2)

Proposition 6 Let $\pi : X \longrightarrow Y$ be a finite holomorphic surjection map between 1-convex spaces X and Y. Let $K \subset Y$ be a compact set. Then $\pi^{-1}(K)$ is holomorphically convex if, and only if, K is holomorphically convex.

Toward the proof we prepare:

Lemma 3 Let Z be a 1-convex space and $K \subset Z$ a compact set. Then K is holomorphically convex if, and only if, for any coherent analytic sheaf \mathcal{F} on Z, the restriction map

$$\Gamma(Z,\mathcal{F})\longrightarrow \Gamma(K,\mathcal{F})$$

has dense image.¹

$$\Gamma(X,\mathcal{F}) \longrightarrow \prod_{x \in K} \prod_{\nu \ge 0} \mathcal{F}_x / m_x^{\nu} \mathcal{F}_x$$

is injective according to Krull's theorem.

¹ For a compact set *K* in a complex space *Z* and \mathcal{F} a coherent analytic sheaf on *Z*, then $\Gamma(K, \mathcal{F})$ is the inductive limit of $\Gamma(U_{\nu}, \mathcal{F})$ where (U_{ν}) forms a neighborhood system of open sets of *K* and has a structure of *LF* topological vector space that is separated as the continuous map

As a matter of fact, it is enough to take \mathcal{F} only coherent ideal subsheaves of \mathcal{O}_X (or more simply ideal sheaves $\mathcal{I}_a, a \in X$).

Proof Indeed, for the "if" part, we consider \mathcal{F} the ideal sheaf defined by some point x_0 outside K. For the "only if", let $\rho : X \longrightarrow Y$ be the Remmert's reduction. Since $\rho(K)$ is holomorphically convex in Y, thanks to Grauert's coherence theorem $\rho_{\star}(\mathcal{F})$ is coherent on Y and since $\Gamma(Y, \pi_{\star}\mathcal{F}) = \Gamma(X, \mathcal{F})$ and $\Gamma(\rho(K), \pi_{\star}\mathcal{F}) = \Gamma(K, \mathcal{F})$ the lemma results easily.

Lemma 4 Let $\pi : X \longrightarrow Y$ be a finite holomorphic surjection map between normal 1-convex spaces X and Y. Let $K \subset Y$ be a compact set. Then the holomorphically convex hull of $\pi^{-1}(K)$ equals $\pi^{-1}(\widehat{K})$.

Proof A sketch of the proof is as follows. First there is no loss in generality to assume that *X* and *Y* are connected so that there is a nowhere dense analytic set $B \subset Y$ such that $A := \pi^{-1}(B)$ is nowhere dense in *X* and π induces an holomorphic covering map between $X \setminus A$ and $Y \setminus B$, say with *n* sheets. Also, we may take $K = \overline{U}$, where $U \subset Y$ is open so that the closure of $K \setminus B$ equals *K* and, consequently, for any holomorphic function *g* on *Y*, sup_{*K*} $|g| = \sup_{K \setminus B} |g|$.

Now, any holomorphic function f on X satisfies a polynomial equation of the form

$$f^{n} + \sum_{\nu=1}^{n} (a_{\nu} \circ \pi) f^{n-\nu} = 0,$$

where a_1, \ldots, a_n are holomorphic on Y. In fact, on $Y \setminus B$, one has:

$$a_{\nu}(y) = \sum_{1 \le i_1 < \dots < i_{\nu} \le n} f(x_{i_1}) \cdots f(x_{i_{\nu}}),$$

where $\pi^{-1}(y) = \{x_1, \dots, x_n\}$. Thus, for all $x \in X$, if $y = \pi(x)$, then

 $|f(x)| \le \max(1, |a_1(y)| + \dots + |a_n(y)|).$

Then, we conclude in a standard manner.

Proof of Proposition 6 Let $n = \dim(X) = \dim(Y)$. By Lemma 4 and straightforward arguments, we reduce ourselves to show that holomorphic convexity of $\pi^{-1}(K)$ implies that of K when $\pi : X \longrightarrow Y$ is the normalization map of Y and assuming the proposition holds true for complex spaces of dimension $\leq n - 1$.

Let *S* be the exceptional set of *Y*. Then $\pi^{-1}(S)$ is the exceptional set of *X*. Thanks to Lemma 6, we may assume that *S* lies in *K*. Now, we follow the technique of Narasimhan for the Stein setting [8]. Let $\mathcal{I} \subset \mathcal{O}_Y$ be a coherent ideal sheaf. We want to check that $\Gamma(Y, \mathcal{I}) \longrightarrow \Gamma(K, \mathcal{I})$ has dense image.

Let \mathcal{A} be the subsheaf of \mathcal{O}_Y given as the sheaf of universal denominators of $\pi_*(\mathcal{O}_X)$, which is the coherent sheaf of weakly holomorphic functions on Y in \mathcal{O}_Y . Thus, $\mathcal{A} \cdot \pi_*(\mathcal{O}_X) \subset \mathcal{O}_Y$. Let $\mathcal{B} = \pi_*(\widetilde{\mathcal{B}})$, where $\widetilde{\mathcal{B}} = \pi^*(\mathcal{A} \cdot \mathcal{I}) \cdot \mathcal{O}_X$. Thus, \mathcal{B} is a coherent subsheaf of \mathcal{I} and \mathcal{I}/\mathcal{B} has the support of dimension $\leq n-1$. Furthermore, $H^1(Y, \mathcal{B}) \longrightarrow H^1(K, \mathcal{B})$ is an isomorphism (because π is finite and $H^1(Y, \mathcal{B}) = H^1(X, \widetilde{\mathcal{B}})$, the last being isomorphic due to 1-convexity

of X to $H^1(\pi^{-1}(K), \widetilde{\mathcal{B}}) = H^1(K, \mathcal{B})$). From the commutative diagram with exact rows,

$$\begin{array}{cccc} 0 & \longrightarrow & \Gamma(Y,\mathcal{B}) & \longrightarrow & \Gamma(Y,\mathcal{I}) & \longrightarrow & \Gamma(Y,\mathcal{I}/\mathcal{B}) & \longrightarrow & H^{1}(Y,\mathcal{B}) \\ & & & & & \downarrow^{u} & & & \downarrow^{w} & & \downarrow^{\theta} \\ 0 & \longrightarrow & \Gamma(K,\mathcal{B}) & \longrightarrow & \Gamma(K,\mathcal{I}) & \longrightarrow & \Gamma(K,\mathcal{I}/\mathcal{B}) & \longrightarrow & H^{1}(K,\mathcal{B}) \end{array}$$

since *u* has dense image (because $\Gamma(Y, \mathcal{B}) = \Gamma(X, \widetilde{\mathcal{B}}), \Gamma(K, \mathcal{B}) = \Gamma(\pi^{-1}(K), \widetilde{\mathcal{B}})$ and $\pi^{-1}(K)$ is holomorphically convex in *X*), *w* has dense image by the induction hypothesis, we conclude easily by diagramm chasing the density of *v*, so that *K* results holomorphically convex in *Y* from Lemma 3, whence the proposition.

4 Decoding separatedness

Below, we give a key fact encapsuled in the separation assumption, namely:

Proposition 7 Let X be a Stein space and $K \subset X$ a holomorphically convex compact set. Let \mathcal{F} be a coherent sheaf on $X \setminus K$ such that $H^1(X \setminus K, \mathcal{F})$ is separated.

Then \mathcal{F} satisfies Theorem A, that is, for every $x \in X \setminus K$, the sections of $\Gamma(X \setminus K, \mathcal{F})$ generates \mathcal{F}_x over $\mathcal{O}_{X,x}$.

For the proof of this, we first prepare a few lemmata. From [6], we deduce in a straightforward way:

Lemma 5 Let Z be complex space that is exhausted by an increasing sequence of open sets $\{Z_n\}_n$ and let \mathcal{F} be a coherent analytic sheaf on Z. Suppose that for some integer $q \ge 1$ the following conditions are satisfied:

- (a) $H^q(Z, \mathcal{F})$ is separated.
- (b) Each restriction $H^q(Z_{n+1}, \mathcal{F}) \longrightarrow H^q(Z_n, \mathcal{F})$ is surjective and induces a bijection between the associated separated spaces.

Then, for each n = 1, 2, ..., the topology on $H^q(\mathbb{Z}_n, \mathcal{F})$ is separated.

The following statement is easy and is left to the reader.

Lemma 6 Let Z be a complex space and \mathcal{F} a coherent analytic sheaf on Z such that for some integer $q \ge 1$ the topology on $H^q(Z, \mathcal{F})$ is separated. Let \mathcal{I} be a coherent ideal subsheaf of \mathcal{O}_Z such that $\text{Supp}(\mathcal{O}_Z/\mathcal{I})$ is a finite set. Then $H^q(Z, \mathcal{I}\mathcal{F})$ is separated.

Lemma 7 Let Z be a complex space which is the union of two open sets Y and U such that the pair $(Y \cap U, U)$ is Runge.² Then for each coherent analytic sheaf \mathcal{F} on Z the restriction $H^1(Z, \mathcal{F}) \longrightarrow H^1(Y, \mathcal{F})$ induces a bijection between the associated separated parts. Besides, if $H^1(Z, \mathcal{F})$ is separated, then the mapping $H^0(Z, \mathcal{F}) \longrightarrow H^0(Y, \mathcal{F})$ has dense image and $H^1(Z, \mathcal{F}) \simeq H^1(Y, \mathcal{F})$.

Proof Consider the exact portion of the Mayer-Vietoris sequence with coefficients in \mathcal{F} (which we omit for practical purposes) associated to $Z = U \cup Y$,

 $H^0(Z) \longrightarrow H^0(Y) \oplus H^0(U) \longrightarrow H^0(Y \cap U) \longrightarrow H^1(Z) \longrightarrow H^1(Y) \longrightarrow 0,$

² This means that U and $Y \cap U$ are Stein and $\mathcal{O}(U) \longrightarrow \mathcal{O}(Y \cap U)$ has dense range.

where we used Theorem B for vanishing of cohomology of coherent sheaves on Stein spaces. It is known that in the above diagram the canonical maps are continuous for the natural topologies.

Let $\mathcal{W} = \{W_m\}_{m=0,1,\dots}$ be a Stein open covering of Z with $W_0 = U$ and $W_m \subset Y$ for m > 0. Let $\mathcal{V} = \{V_m\}_m$, where $V_m := U_m \cap Y$ for $m \ge 0$. Clearly, \mathcal{V} is a Stein covering of Y.

Then, since $W_k \cap W_m = V_k \cap V_m$ for $k \neq m$ and $\mathcal{F}(U) \longrightarrow \mathcal{F}(U \cap Y)$ has dense image, it results that $C^i(\mathcal{W}, \mathcal{F}) = C^i(\mathcal{V}, \mathcal{F})$ for i > 0 and the canonical map $C^0(\mathcal{W}, \mathcal{F}) \longrightarrow C^0(\mathcal{V}, \mathcal{F})$ has dense image. The lemma follows readily using the Čech definition of cohomology with alternate cycles.

Now, the additional statement results in the following way. Because the restriction map $H^0(U, \mathcal{F}) \longrightarrow H^0(Y \cap U, \mathcal{F})$ has dense image, it follows that the natural map $u : H^0(Y, \mathcal{F}) \oplus H^0(U, \mathcal{F}) \longrightarrow H^0(Y \cap U, \mathcal{F})$ has dense image, too. But Im u is the kernel of the continuous map $H^0(Y \cap U, \mathcal{F}) \longrightarrow H^1(Z, \mathcal{F})$ which is closed since {0} is closed in $H^1(Z, \mathcal{F})$. Therefore, the map u is surjective and the proof finishes easily by diagram chasing from the following simple fact.

Let

 $0 \longrightarrow E' \stackrel{u}{\longrightarrow} E_1 \oplus E_2 \stackrel{v}{\longrightarrow} E'' \longrightarrow 0$

be an exact sequence of Fréchet spaces where $u = (u_1, u_2), u_1 : E' \longrightarrow E_1, u_2 : E' \longrightarrow E_2$, and $v = v_1 - v_2$ where $v_1 : E_1 \longrightarrow E'', v_2 : E_2 \longrightarrow E''$ are all continuous linear mappings. Then v_2 has dense range if, and only if, u_1 has dense range, too.

Putting these together, we obtain in a standard way a "bumping lemma":

Proposition 8 Let Z be a complex space and \mathcal{F} a coherent sheaf on Z. Assume that Z is exhausted by an increasing sequence $\{Z_n\}_n$ of open sets such that $Z_{n+1} = Z_n \cup U_{n+1}$ and each pair $(U_{n+1}, Z_n \cap U_{n+1})$ is Runge. Then the following statements hold true:

- (a) Each restriction $H^1(Z, \mathcal{F}) \longrightarrow H^1(Z_n, \mathcal{F})$ induces a bijection between their separated spaces.
- (b) If H¹(Z, F) is separated, then H¹(Z_n, F) is separated for all n and each restriction H¹(Z, F) → H¹(Z_n, F) is bijective. Moreover, each mapping H⁰(Z, F) → H⁰(Z_n, F) has dense image.

Proof of Proposition 7 The assertion results immediately from Nakayama's lemma and the following more general fact that will be proved subsequently:

(*) For any coherent ideal sheaf $\mathcal{I} \subset \mathcal{O}_X$ such that $\Lambda := \text{Supp}(\mathcal{O}_X/\mathcal{I})$ is discrete and does not meet K, the restriction map

$$H^0(X \setminus K, \mathcal{F}) \longrightarrow H^0(X \setminus K, \mathcal{F}/\mathcal{IF})$$

is surjective.

(For instance, one may take \mathcal{I} be defined by a suitable chosen sequence $\{x_k\}$ of X.)

To start the proof, let φ be as in Lemma 1 (with $S = \emptyset$) and set $c_0 := \inf_{\Lambda} \varphi > 0$. Let $\{X_n\}$ be an exhaustion of X by increasing open subsets obtained by the bumping method in [2] such that $X_0 = \{\varphi < c\}$ with $c \in (0, c_0)$. For the sake of simplicity, let us adopt the following *ad-hoc* notation: For a subset T of X containing K, we denote by T' the set $T \setminus K$.

These $\{X'_n\}$ fulfill the hypothesis of Proposition 8 corresponding to X'. Besides, it is easily seen that, for all $n, \Lambda \cap X_n$ is a finite set of points (possibly the empty set).

By Proposition 8, for any n, $H^1(X'_n, \mathcal{F})$ is separated, the restriction $H^1(X'_{n+1}, \mathcal{F}) \longrightarrow H^1(X'_n, \mathcal{F})$ is bijective and $H^0(X'_{n+1}, \mathcal{F}) \longrightarrow H^0(X'_n, \mathcal{F})$ have dense images. Therefore,

$$H^1(X', \mathcal{F}) \longrightarrow H^1(X'_0, \mathcal{F})$$

is bijective.

From Lemma 6 all cohomological vector spaces $H^1(X'_n, \mathcal{IF})$ are separated. Thanks to Lemma 7, the restrictions $H^1(X'_{n+1}, \mathcal{IF}) \longrightarrow H^1(X'_n, \mathcal{IF})$ are bijective and $H^0(X'_{n+1}, \mathcal{IF}) \longrightarrow H^0(X'_n, \mathcal{IF})$ have dense images. Thus,

$$H^1(X', \mathcal{IF}) \longrightarrow H^1(X'_0, \mathcal{IF})$$

is also bijective. Consider now the following canonical commutative diagram

$$\begin{split} H^0(X',\mathcal{F}) & \longrightarrow H^0(X',\mathcal{F}/\mathcal{IF}) & \longrightarrow H^1(X',\mathcal{IF}) \xrightarrow{l} H^1(X',\mathcal{F}) \\ & u \bigg| & & & \downarrow^v \\ & H^1(X'_0,\mathcal{IF}) \xrightarrow{w} H^1(X'_0,\mathcal{F}) \end{split}$$

where the mappings u and v are bijective by the above discussion. Because w is obviously bijective, t follows bijective, too. Hence, the restriction $H^0(X \setminus K, \mathcal{F}) \longrightarrow H^0(X \setminus K, \mathcal{F}/\mathcal{IF})$ is surjective, whence the proof of the proposition.

5 Complements and some examples

Let X be a complex space. Let $A \subset X$ be a closed set. We say that A is *pseudoconcave* at a point $x_0 \in A$ if either x_0 is an interior point of A or else x_0 is a boundary point of A and there is a non empty open neighborhood U of x_0 such that $U \setminus A$ is Stein. Therefore, the set A^o of pseudoconcave points of A is open in A.

For instance, the compact set $K := \partial \Delta \times \overline{\Delta}$ in $\mathbb{C}^* \times \mathbb{C}$, which is holomorphically convex in $\mathbb{C}^* \times \mathbb{C}$, is pseudoconcave at every point of $\partial \Delta \times \Delta$. (Here, Δ is the open unit disk in \mathbb{C} .)

Lemma 8 Let A be a complex hypersurface in a complex space X. Then A^o is dense in A.

Proof The question being local, there is no loss in generality to assume that X is Stein. Thus, there is a holomorphic function f on X that vanishes on A and its zero set $Z_f := \{f = 0\}$ is a hypersurface in X. Therefore, A is a union of some irreducible components of Z_f ; let B be the union of the remaining ones. Thus, B is closed in X and $A \setminus B$ is dense in A.

Now, for any point $x_0 \in A \setminus B$ and every Stein open neighborhood V of x_0 such that $V \cap B = \emptyset$, $V \setminus A$ is Stein as it equals $V \setminus \{f = 0\}$, whence $A \setminus B \subset A^o$. The proof follows.

Proposition 9 Let X be a complex space and $A \subset X$ a closed set. Let $\iota : X \setminus A \hookrightarrow X$ be the inclusion map. Then $\iota_*(\mathcal{O}_{X\setminus A})$ is not of finite type at any pseudoconcave boundary point of A.

Proof Since "pseudoconcavity" is an open property as well as "being of finite type", assume, in order to reach a contradiction that there is a point $a \in \partial A$ such that A is pseudoconcave at a and $\mathcal{H} := \iota_{\star}(\mathcal{O}_{X \setminus A})$ is of finite type at a. Thus, there is a Stein open neighborhood W of

a such that $W \setminus A$ is Stein and sections $\sigma_1, \ldots, \sigma_k \in \Gamma(W, \mathcal{H})$ whose germs at *a* generates \mathcal{H}_a . Let $\{x_v\}_v$ be a sequence of points in $W \setminus A$ converging to *a*. Because $W \setminus A$ is Stein we may choose $\sigma \in \mathcal{O}(W \setminus A)$ such that, for all *v* one has:

$$|\sigma(x_{\nu})| > \nu(1 + \max(|\sigma_1(x_{\nu})|, \dots, |\sigma_k(x_{\nu})|)).$$

On the other hand, on a suitable open neighborhood V of a in W, there are $f_1, \ldots, f_k \in \mathcal{O}(V)$, which might be assumed bounded in modulus, say by some C > 0, such that $\sigma = f_1\sigma_1 + \cdots + f_k\sigma_k$ on $V \setminus A$. Therefore, for ν sufficiently large one has $1 \le kC/\nu$ which is absurd!

Corollary 3 Let X be a complex space and A a hypersurface in X. Let $\iota : X \setminus A \hookrightarrow X$ be the inclusion map. Then $\iota_{\star}(\mathcal{O}_{X\setminus A})$ is not of finite type at any point of A, a fortiori, $\iota_{\star}(\mathcal{O}_{X\setminus A})$ is not coherent.

Proof This follows immediately from the above lemma and proposition.

Proposition 10 Let X be a Stein space and $K \subset X$ a holomorphically convex compact set. Let $A \subset X \setminus K$ be a discrete set and \mathcal{I}_A its ideal sheaf, which is coherent on $X \setminus K$. Then $H^1(X \setminus K, \mathcal{I}_A)$ is separated, if, and only if, A has no accumulation point in K.

Proof Let $\varphi : X \longrightarrow [0, \infty)$ be smooth, proper such that $\{\varphi = 0\} = K$ and φ is strictly plurisubharmonic on $X \setminus K$. It is straightforward to find a sequence $\{\epsilon_{\nu}\}_{\nu}$ that strictly decreases to 0 such that $A \cap \{\varphi = \epsilon_{\nu}\} = \emptyset$. Thus, setting $X_{\nu} := \{\varphi > \epsilon_{\nu}\}$ it follows that each $H^{1}(X_{\nu}, \mathcal{I}_{A})$ is separated. Since $\{X_{\nu}\}_{\nu}$ increases to X, granting [6], $H^{1}(X, \mathcal{I}_{A})$ is separated if, and only if, the system $\{H^{0}(X_{\nu}, \mathcal{I}_{A})\}_{\nu}$ satisfies a condition of Mittag–Leffler type and this is readily shown to be equivalent to the fact that A has no accumulation point in K.

Let, we also note the following statement due to Markoe.

Proposition 11 Let X be a complex space and \mathcal{F} a coherent analytic sheaf on X such that $H^1(X, \mathcal{F})$ is separated and $H^0(X, \mathcal{F})$ has finite dimension. Then, for any coherent subsheaf \mathcal{F}' of \mathcal{F} , $H^1(X, \mathcal{F}')$ is separated.

The proof results using a Stein open covering of X and the simple functional analysis fact saying that if $u : E \longrightarrow F$ is a continuous surjective morphism of Fréchet spaces, then, for every closed subspace $E' \subset E$, u(E') is closed in F if, and only if E' + Ker u is closed in E.

For instance, this can be applied for $X = Y \setminus K$, where Y is a compact (connected) normal complex space of dimension ≥ 2 and $K = \{\psi \leq 0\}$, where $\psi : W \longrightarrow \mathbb{R}$ (W an open neighborhood of K) is continuous on W and strictly plurisubharmonic on $W \setminus K$. Then, for any coherent subsheaf \mathcal{I} of \mathcal{O}_X , $H^1(X, \mathcal{I})$ is separated. In particular, for any coherent subsheaf \mathcal{I} of \mathcal{O}_M , where M is the complex manifold of regular points of Y, $H^1(M, \mathcal{I})$ is separated.

Corollary 4 Let A be a complex submanifold of \mathbb{P}^n of pure codimension ≥ 2 . Let \mathcal{F} be a locally free sheaf on $\mathbb{P}^n \setminus A$ of finite rank. Then, for every coherent subsheaf $\mathcal{F}' \subset \mathcal{F}$, $H^1(\mathbb{P}^n \setminus A, \mathcal{F}')$ is separated.

Corollary 5 Let X be a pseudoconcave space and \mathcal{F} a torsion free-coherent sheaf on X such that $H^1(X, \mathcal{F}')$ is separated. Then, for every coherent subsheaf $\mathcal{F}' \subset \mathcal{F}, \mathcal{H}^{\infty}(\mathcal{X}, \mathcal{F}')$ is separated.

Note. Recall that a complex space X is said to be *pseudoconcave* in the sense of Andreotti [1] if there is a relatively compact open subset Y of X such that every point $x_0 \in \partial Y$ admits a neighborhood system of open sets $\{U_v\}_v$ such that x_0 is an interior point of the holomorphically convex hull of $U_v \cap Y$ with respect to $\mathcal{O}(U_v)$. It is shown in [1] that if X is pseudoconcave and \mathcal{F} a torsion-free coherent sheaf on X, then $H^0(X, \mathcal{F})$ has finite dimension.

6 The proofs of theorem 1 and proposition 1

Proof of Theorem 1, *the Stein case* Let *K* be a holomorphically convex compact set in a Stein space *X* and \mathcal{F} a coherent analytic sheaf on $X \setminus K$ such that prof $\mathcal{F} \geq 2$ and $H^1(X \setminus K, \mathcal{F})$ is separated. Since the extension is a question around *K*, there is no loss in generality to consider *X* embedded as a closed analytic subset of some complex number space $\mathbb{C}^n (n \geq 3)$. Let $\iota : X \hookrightarrow \mathbb{C}^n$ be the analytic embedding. Clearly, $\iota_*(\mathcal{F})$ is coherent on \mathbb{C}^n , prof $\iota_*\mathcal{F} = \text{prof } \mathcal{F}$, *K* stays holomorphically convex in \mathbb{C}^n , and $H^{\bullet}(\mathbb{C}^n \setminus K, \iota_*\mathcal{F}) = H^{\bullet}(X \setminus K, \mathcal{F})$. Therefore, there is no loss in generality to take $X = \mathbb{C}^n$ with $n \geq 3$. From Proposition 7, \mathcal{F} satisfies Theorem A on $X \setminus K$.

Let $\varphi : X \longrightarrow [0, \infty)$ proper, smooth, plurisubharmonic on X and strictly plurisubharmonic on $X \setminus K$ such that $\{\varphi = 0\} = K$. Let $L = \{\varphi \le \epsilon\}$ ($\epsilon > 0$) be a compact neighborhood of K and c > 0 such that $L \subset D := \{\varphi < c\}$. Then $D \setminus L$ is relatively compact in $X \setminus K$ and there are sections $s_1, \ldots, s_q \in \Gamma(X \setminus K, \mathcal{F})$ that generates \mathcal{F} on $D \setminus L$; in other words, we have a morphisms of sheaves $\mathcal{O}_X^q \longrightarrow \mathcal{F}$ that is surjective on $D \setminus L$. Let \mathcal{G} be the kernel of the above $\mathcal{O}_{D \setminus L}$ -morphism. One has prof $(\mathcal{G}) \ge 3$. (For the exact sequence, $0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{O}^q \longrightarrow \mathcal{F} \longrightarrow 0$ implies that for every $x \in D \setminus L$ either \mathcal{G}_x is free so that prof $\mathcal{G}_x = n$, or prof $\mathcal{G}_x = 1 + \text{prof } \mathcal{F}_x$. In any case, we deduce prof $\mathcal{G} \ge 3$.)

Because $H^1(D \setminus L, \mathcal{G})$ has finite dimension from Proposition 5, the exact sequence

$$H^0(D \setminus L, \mathcal{O}^q) \longrightarrow H^0(D \setminus L, \mathcal{F}) \longrightarrow H^1(D \setminus L, \mathcal{G}) \longrightarrow H^1(D \setminus L, \mathcal{O}^q)$$

and $H^1(D \setminus L, \mathcal{O}^q) = 0$ implies that $H^0(D \setminus L, \mathcal{F})$ regarded as $H^0(D \setminus L, \mathcal{O})$ -module is of finite type. But since $H^0(D \setminus K, \mathcal{F}) \simeq H^0(D \setminus L, \mathcal{F})$ and $H^0(D \setminus K, \mathcal{O}) \simeq H^0(D \setminus L, \mathcal{O})$ there are sections $\sigma_1, \ldots, \sigma_M \in \Gamma(D \setminus K, \mathcal{F})$ which generates $H^0(D \setminus K, \mathcal{F})$ as an $H^0(D \setminus K, \mathcal{O})$ -module. Because Theorem A is true for \mathcal{F} on $D \setminus K$, we get a surjective morphism $\mu : \mathcal{O}^M \longrightarrow \mathcal{F}$ on $D \setminus K$. For \mathcal{K} , the kernel of μ , we apply again the above discussion (possibly, we shrink D a little bit, as a matter of fact, one may choose a new D given as $\{\varphi < c'\}$ with c' < c close to c. Thus, we obtain an exact sequence

$$\mathcal{O}^N \longrightarrow \mathcal{O}^M \longrightarrow \mathcal{F} \longrightarrow 0$$

on $D \setminus K$. The matrix giving the \mathcal{O} -morphism $\mathcal{O}^N \longrightarrow \mathcal{O}^M$ has as entries holomorphic functions on $D \setminus K$ so that they extend holomorphically D and therefore it gives a morphism $\mathcal{O}^N \longrightarrow \mathcal{O}^M$ over D. Its cokernel is the desired extension \mathcal{H} to D. Furthermore, since the set $\{x \in D; \text{ prof } \mathcal{H}_x \leq 1\}$ is analytic in D and contained in K, thus compact, it is a finite set, say Λ . Finally, we glue $\iota_*(\mathcal{H}|_{D\setminus\Lambda})$ with \mathcal{F} on $D \setminus K$ and get a coherent extension $\widehat{\mathcal{F}}$ of \mathcal{F} with prof $\widehat{\mathcal{F}} \geq 2$.

Remark 4 From Proposition 2, it results that there is a unique (up to an isomorphism) coherent extension $\widehat{\mathcal{F}}$ of \mathcal{F} with prof $\widehat{\mathcal{F}} \geq 2$. Furthermore, in the same vein, we can show the following:

Let X a Stein space, $K \subset X$ a Stein compact set and \mathcal{F} a coherent sheaf on $X \setminus K$ with prof $\mathcal{F} \geq 2$ such that, for every Stein open neighborhood W of K, $H^1(W \setminus K, \mathcal{F})$ is separated. Then \mathcal{F} admits a coherent extension to X.

Proof of Theorem 1, the 1-convex case First, we show the "if" part, which amounts to complement [4] by proving:

Proposition 12 Let X be a 1-convex space and $K \subset X$ a holomorphically convex compact set. Then for any coherent sheaf \mathcal{H} on X, the cohomology groups $H^i(X \setminus K, \mathcal{H})$, $i \ge 0$, are separated.

Indeed, since $\Gamma(X \setminus K, \mathcal{H})$ is separated, it remains to check the assertion for $H^i(X \setminus K, \mathcal{H})$ with $i \ge 1$. Let *S* be the exceptional set of *X* and decompose *S* as union $S' \cup S''$ into disjoint analytic sets such that $S'' \subset K$ and $S' \cap K = \emptyset$. From a standard long exact cohomology sequence, we retain the exact portion

$$H^{i}(X,\mathcal{H}) \longrightarrow H^{i}(X \setminus K,\mathcal{H}) \longrightarrow H^{i+1}_{K}(X,\mathcal{H}) \longrightarrow H^{i+1}(X,\mathcal{H})$$
(\$)

in which the extremes are complex vector spaces of finite dimension.

Let $\rho : X \longrightarrow Y$ be the Remmert's reduction. Then $L := \rho(K)$ is holomorphically convex in Y. Consider L defined by a function ψ as in Lemma 1 and take $V = \{\psi < \epsilon\}$ for $\epsilon > 0$ small enough such that $V \cap \rho(S') = \emptyset$. Let $U := \rho^{-1}(V)$. Now write the exact sequence as in (‡) this time for U; it follows using excision and 1-convexity that the canonical restriction map

$$H^{i}(X \setminus K, \mathcal{H}) \longrightarrow H^{i}(U \setminus K, \mathcal{H}),$$

which is linear and continuous, has finite dimensional kernel and cokernel. On the other hand, as $\rho_{\star}(\mathcal{H})$ is coherent on Y, thanks to Bănică [4] and the isomorphism $H^{i}(U \setminus K, \mathcal{H}) \longrightarrow$ $H^{i}(V \setminus L, \rho_{\star}(\mathcal{H}))$ it follows that $H^{i}(X \setminus K, \mathcal{H})$ is Fréchet by using the following simple functional analysis fact:

Let $u : E \longrightarrow F$ be a continuous linear map between QF-spaces such that Ker u and Coker u are of finite dimension. Then E is separated provided that F is separated.

Lemma 9 Let $\pi : X \longrightarrow Y$ be a holomorphic map of complex spaces X and Y that contracts an analytic subset A of X onto a Stein analytic subset B of Y (e.g. B a finite set of points). Let \mathcal{F} be a coherent analytic sheaf on X. Then the natural map $H^1(Y, \pi_*(\mathcal{F})) \longrightarrow H^1(X, \mathcal{F})$ is injective. Moreover, if $H^1(X, \mathcal{F})$ is separated, then $H^1(Y, \pi_*(\mathcal{F}))$ is separated, too.

Proof Let *V* be a Stein open neighborhood of *B* and $W := \pi^{-1}(V)$. The Mayer–Vietoris sequence induces a commutative diagram with exact rows

$$\begin{aligned} H^{0}(Y \setminus B) \oplus H^{0}(V) &\longrightarrow H^{0}(V \setminus A) \longrightarrow H^{1}(Y) \longrightarrow H^{1}(Y \setminus B) \oplus \{0\} \\ & \downarrow^{u} & \downarrow^{v} & \downarrow^{w} & \downarrow^{\delta} \\ H^{0}(X \setminus A) \oplus H^{0}(W) \longrightarrow H^{0}(W \setminus A) \longrightarrow H^{1}(X) \longrightarrow H^{1}(X \setminus A) \oplus H^{1}(W) \end{aligned}$$

where, the first row has coefficients in $\pi_*\mathcal{F}$ and the second in \mathcal{F} . Since *u* is surjective and *v* and δ are injective, the five lemma shows that *w* is injective. Finally, as *w* is continuous, the additional statements results, too.

To conclude the proof of Theorem 1 in the 1-convex case, keeping the notations from above, because $L := \rho(K)$ is holomorphically convex in Y and granting Lemma 9, using that $H^1(X \setminus K, \mathcal{F})$ is separated, it follows that $H^1(Y \setminus L, \rho_*(\mathcal{F}))$ is separated, too. Consider L defined by a function ψ as in Lemma 1 and take $V = \{\psi < \epsilon\}$ for $\epsilon > 0$ small enough such that $V \cap \rho(S') = \emptyset$. It follows now that $H^1(V \setminus L, \rho_*(\mathcal{F}))$ is separated and prof $\rho_*(\mathcal{F}|_{V \setminus L}) \ge 2$ so that there is a coherent extension \mathcal{B} on V of $\rho_*(\mathcal{F}|_{V \setminus L})$. Then $\rho^*(\mathcal{B})$ can be glued with \mathcal{F} on $\rho^{-1}(V \setminus K)$ to produced the desired coherent extension of \mathcal{F} . \Box

Proof of Proposition 1 We follow an idea from Bănică and Stănaşilă [5]. Let $\Sigma := \{x \in X \setminus K; \text{ prof } \mathcal{F}_x = 2\}$. This set is discrete in $X \setminus K$ and prof $\mathcal{F} \ge 2$ on $X \setminus K$. Then one produces in a standard way a sequence $\{\Omega_\nu\}_\nu$ of Stein open subsets of X and compact neighborhoods K_ν of K in Ω_ν with the following properties:

- (1) $\Omega_{\nu+1} \subset \Omega_{\nu}$ and $\{\Omega\}_{\nu}$ decreases to *K*,
- (2) K_{ν} is holomorphically convex in Ω_{ν} and
- (3) $(\Omega_{\nu} \setminus K_{\nu}) \cap \Sigma = \emptyset$.

It follows that there is a coherent sheaf \mathcal{F}_{ν} on X such that

$$\mathcal{F}_{\nu}|_{X\setminus K_{\nu}}\simeq \mathcal{F}|_{X\setminus K_{\nu}} \tag{(\star)}$$

and prof $\mathcal{F}_{\nu} \geq 2$. For each couple (i, j) and any holomorphically convex compact set L in X containing $\widehat{K}_i \cup \widehat{K}_j$, we obtain from the above fact an isomorphism

$$\xi_i^{-1}\xi_j:\mathcal{F}_j|_{X\setminus L}\simeq \mathcal{F}_i|_{X\setminus L}$$

which, thanks to Proposition 2, induces an isomorphism

$$\xi_{ij}: \mathcal{F}_j \simeq \mathcal{F}_i.$$

Because the bijections in (\star) are functorial, it is easily shown that ξ_{ij} does not depend on L and for each *i* and each triple (*i*, *j*, *k*), we have the relations $\xi_{ii} = \text{id}$ and $\xi_{ij}\xi_{jk}\xi_{ki} = \text{id}$.

Acknowledgments I thank the referee for pertinent remarks on a preliminary version of this paper.

References

- Andreotti, A.: Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. France 91, 1–38 (1963)
- Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)
- Andreotti, A., Siu, Y.-T.: Projective embeddings of pseudoconcave spaces. Ann. Sc. Norm. Sup. Pisa 24, 231–278 (1970)
- Bănică, C.: Un théorème concernant la séparation de certains espaces de cohomologie. C. R. Acad. Sci. Paris Sér. A-B 272, A782–A785 (1971)
- Bănică, C., Stănaşilă, O.: Méthodes algébriques dans la théorie globale des espaces complexes. Vol. 1 and 2. Troisième édition. Traduit du roumain. Collection "Varia Mathematica". Gauthier-Villars, Paris (1977)
- Cassa, A.: The cohomology of an exhaustible complex analytic space. Boll. U.M.I. (6) 4-B, 321–341 (1985)
- 7. Frisch, J., Guenot, G.: Prolongement des faisceux analytiques cohérents. Invent. Math. 7, 321-343 (1969)
- Narasimhan, R.: A note on Stein spaces and their normalizations. Ann. Sc. Norm. Sup. Pisa (3) 16, 195–216 (1962)
- 9. Narasimhan, R.: The Levi problem for complex spaces. II. Math. Ann. 146, 195-216 (1962)
- Serre, J.-P.: Prolongement de faisceaux analitiques cohérents. Ann. Inst. Fourier (Grenoble) 16, 363–374 (1966)

- Siu, Y.-T., Trautmann, G.: Gap-sheaves and extensions of coherent analytic subsheaves, Lecture Notes in Mathematics, vol. 172. Springer, Berlin (1971)
- 12. Siu, Y.-T.: Techniques of Extensions of Analytic Objects. Marcel Dekker Inc., New York (1974)
- Trautmann, G.: Ein kontinuitätssatz für fortsetzung kohärenter analytischer garben. Archiv. Math. 18, 188– 196 (1967)
- Trautmann, G.: Abgeschlossenheit von corandmoduln und fortsetzbarkeit kohärenter analytischer garben. Invent. Math. 5, 216–230 (1968)
- 15. Vâjâitu, V.: Some convexity properties of morphisms of complex spaces. Math. Z. 217, 215-245 (1994)
- Vâjâitu, V.: Invariance of cohomological q-completeness under finite holomorphic surjections. Manuscripta Math. 82, 113–124 (1994)