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Abstract By means of a recent variational technique, we prove the existence of radially
monotone solutions to a class of nonlinear problems involving the p-Laplace operator. No
subcriticality condition (in the sense of Sobolev spaces) is required.
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1 Introduction

Variational methods are a powerful tool for solving partial differential equations. Not only do
they provide existence theorems, but they can often provide solutions with additional prop-
erties. For instance, by Palais’ Principle of Symmetric Criticality (see [10]) it is well known
that radial symmetry is a natural constraint in Critical Point Theory. Roughly speaking, if
a variational equation is invariant under rotation, then we can look for radially symmetric
weak solutions (i.e. weak solutions found as critical points of a suitable functional) by simply
restricting the variational framework to the smaller subspace of radial functions.

Once we have a radial solution, a natural question is whether this must be a monotone
function. Although many tools for proving the monotonicity of radial solutions are available
(the Gidas–Ni–Nirenberg theory [5], or the use of some kind of symmetrization), this is not
a natural constraint.

In a recent paper [12], Serra et al. introduced a new and interesting variational scheme to
find increasing positive and radial solutions to a semilinear elliptic equation with Neumann
boundary conditions on a ball in R

N . More precisely, they studied the problem
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470 S. Secchi

⎧
⎨

⎩

−Δu + u = a(|x |) f (u) in BR

u > 0 in B
∂u
∂ν

= 0 on ∂BR,

where a : [0,+∞) → R and f : R → R are regular functions which satisfy very mild
assumptions. In particular, no growth condition like f (u) ≤ Cuq with a subcritical exponent
q < (N +2)/(N −2) is required. Semilinear problems like this appear in some applications:
we refer to [1–3,7,8] and to the references therein. In some situations, the structure of the
equation or numerical experiments suggest the existence of increasing radial solutions: this
happens for the Hénon equation with Neumann boundary conditions, where a(x) = |x |α
for some α > 0. It is difficult to embed this monotonicity in the variational setting, and yet
these solutions do exist, as proved in [3] by means of the shooting method. The variational
approach developed in [12] allows us to deal with these solutions in a clean and elementary
way.

The purpose of our note is to find radially increasing solutions to a class of quasilinear
equations involving the p-Laplace operator.

In the first part, we will deal with the nonlinear eigenvalue problem for the p–Laplace
operator

⎧
⎨

⎩

−Δpu + |u|p−2u = λa(|x |) f (u) in B
u > 0 in B
∂u
∂ν

= 0 on ∂B,
(1)

where B = {x ∈ R
N : |x | < 1} and N ≥ 3. Here, we want λ ∈ R and a positive u ∈ W 1,p(B)

such that (1) is solved in the usual weak sense. We will borrow some ideas from [12] to solve
a constrained optimization problem.

In the second part, we will look for solutions of (1) when λ is fixed, i.e. it is not an unknown.

Remark 1 Since a is non-constant and we do not suppose that f is a homogeneous function,
the nonlinear eigenvalue problem is not equivalent to the problem with a fixed λ.

Notation – The p-Laplace operator is formally defined by Δpu = div(|∇u|p−2∇u). We
will always assume that 1 < p < ∞.

– W 1,p(B) is the usual Sobolev space endowed with the norm ‖u‖ = (∫

B |∇u|p + |u|p
)1/p.

If u ∈ W 1,p(B), its positive part u+ = max{u, 0} belongs to W 1,p(B).
– ν is the outer normal vector.
– By a useful abuse of notation, we will often identify a radial function in R

N with its radial
representative. If u is a radial function in R

N , we will often write u(x) = u(|x |) = u(r),
where r = |x |.

– In some formulæ, we will often write |u|p instead of u p even when u ≥ 0. This choice
preserves some symmetry in the equations.

– The notation |SN−1| is used for the Lebesgue measure of the sphere SN−1.
– The abbreviation “a.e.” stands for “almost everywhere”.

2 The nonlinear eigenvalue problem

In the rest of this section, we will retain some assumptions on a and f in (1):

(A) a ∈ L1(B) is a non-costant radially increasing function, satisfying a(r) > 0 for almost
every r ∈ [0, 1];
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Increasing variational solutions for a nonlinear p-laplace equation 471

(F) f ∈ C1([0,+∞)) is a positive function that satisfies f (0) = 0; moreover t 	→
f (t)/t p−1 is strictly increasing on (0,+∞).

Remark 2 Condition (F) implies that f is strictly increasing. Being positive away from t = 0,
the primitive F(t) = ∫ r

0 f (s) ds is strictly increasing as well.

Remark 3 By inspecting the rest of this paper, one will notice that the integrability
assumption on a could be slightly weakened. We required in (A) that

∫

B a(|x |) dx =
|SN−1| ∫ 1

0 a(r)r N−1 dr < ∞, but it suffices to assume that
∫ 1

0 a(r) dr < ∞ as in [12].

We state our main result.

Theorem 1 The nonlinear eigenvalue problem (1) has at least one radially symmetric solu-
tion, and this solution is a monotone increasing function.

In the particular case of the pure-power nonlinearity f (u) = uq , our existence theorem
reads as follows.

Corollary 1 For any q > 1, the nonlinear eigenvalue problem
⎧
⎨

⎩

−Δpu + |u|p−2u = λa(|x |)|u|q in B
u > 0 in B
∂u
∂ν

= 0 on ∂B

has at least one radially symmetric solution, and this solution is a monotone increasing
function.

2.1 Introducing a variational problem

Since we are looking for radially symmetric increasing solutions, we define the set

M = {
u ∈ W 1,p(B) | u is a radially increasing function, u ≥ 0 a.e.

}
.

More explicitly, the elements of M are those functions u from W 1,p(B) that are invariant
under any rotation in R

N and u(|x |) ≤ u(|y|) whenever |x | < |y|.
A reasonable attempt to solve the nonlinear eigenvalue problem (1) is to find a solution

for the variational problem

S = sup

⎧
⎨

⎩

∫

B

a(|x |)F(u) dx | u ∈ M, ‖u‖p = 1

⎫
⎬

⎭
, (2)

where F(r) = ∫ r
0 f (s) ds. If M were a smooth submanifold of codimension one, then we

could refer to the classical theory of Lagrange multipliers, and conclude. Since this is not the
case, in Sect. 2.2 we will prove directly that any solution of (2) gives rise to a solution of (1).

Turning back to the definition of the set M, we notice that any u ∈ M is (identified with)
a continuous function on [0, 1]; indeed, by monotonicity, we can set u(0) = limr→0+ u(r).

Remark 4 The set M is indeed a (closed) cone in W 1,p(B). It is tempting to solve (1) by
applying some Critical Point Theory on metric spaces to the free functional

u 	→ 1

p

∫

B

(|∇u|p + |u|p)−
∫

B

a(|x |)F(u) dx .

However, we are unable to pursue this idea further.
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472 S. Secchi

The main advantage of working with M is that it consists of bounded functions.

Proposition 1 There exists a positive constant CM such that ‖u‖L∞ ≤ C‖u‖ for any
u ∈ M. In particular, strong convergence in M implies uniform convergence.

Proof For any 0 < r < 1, the fact that u is non-negative and increasing implies that
maxx∈B |u(x)| = maxx∈B\B(0,r) |u(x)|. By a straightforward modification of the radial
Lemma 2.1 proved in [4], there exists a positive constant, independent of u, such that

max
x∈B\B(0,r)

|u(x)| ≤ C‖u‖W 1,p(B\B(0,r)) ≤ C‖u‖.

The proof is complete. 
�

We define the functional

I (u) =
∫

B

a(|x |)F(u) dx,

and we notice that, since F is increasing,

I (u) =
∫

B

a(|x |)F(u) dx ≤
∫

B

a(|x |)F(‖u‖L∞) dx = F(‖u‖L∞)‖a‖L1(B),

for any u ∈ M. Therefore, I is well defined on M.

Remark 5 We do not really need the monotonicity of F , since F is a continuous function and
u is in L∞(B). However, we highlight that I cannot be defined on the whole space W 1,p(B),
since we have no growth limitation on F .

Lemma 1 The quantity S is a finite positive number.

Proof Indeed, for any u ∈ M such that ‖u‖p = 1, we can use Proposition 1
∫

B

a(|x |)F(u) dx ≤
∫

B

a(|x |)F(‖u‖L∞) dx = F(‖u‖L∞)‖a‖L1(B)

≤ F(CM)‖a‖L1(B).

The fact that S > 0 is a trivial consequence of the definition of S and of the strict positivity
of a and F away from zero. 
�

Proposition 2 The value S is attained.

Proof We take any sequence {un}∞n=1 in M such that ‖un‖p = 1 for each n ≥ 1 and
I (un) → S. In particular, this sequence is bounded in W 1,p(B), a reflexive Banach space.
We can assume, up to a subsequence, that un converges weakly in W 1,p(B) and point-
wise almost everywhere to some u ∈ W 1,p(B). It is easily checked that u ∈ M. Since
supn ‖un‖L∞ < +∞ by Proposition 1, by Lebesgue’s theorem on dominated convergence,
S = limn I (un) = ∫

B a(|x |)F(u) dx . Now, if ‖u‖p = 1, we are done: S is attained at u. By
the weak lower semicontinuity of the norm, ‖u‖p ≤ lim infn ‖un‖p = 1. The case u = 0
is excluded, since {un} would then converge strongly to zero, and therefore S = 0. Assume
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Increasing variational solutions for a nonlinear p-laplace equation 473

that 0 < ‖u‖p < 1. Then ũ = u/‖u‖p lies in M and ‖ũ‖p = 1. Therefore, the strict
monotonicity of F implies

I (ũ) =
∫

B

a(|x |)F (‖u‖−pu(|x |)) dx >
∫

B

a(|x |)F(u(|x |)) dx = S.

This contradiction shows that ‖u‖p = 1, and in particular limn ‖un‖p = ‖u‖p . This means
also that {un} converges to u strongly in W 1,p(B). 
�
2.2 Maximizers are solutions of the differential equation

In the last section, we proved that S is attained by a radially symmetric function u,
non-negative, and monotone increasing. In the standard approach of Critical Point The-
ory, this u would be a critical point of I constrained to M, and there would exist a Lagrange
multiplier. Our situation is different, since we cannot compare I (u) to I (u + εv) for any
(radially symmetric) v ∈ W 1,p(B). Indeed, u + εv need not be positive, nor increasing.

However, u is, in a very weak sense, a solution to a differential inequality.

Proposition 3 If v ∈ W 1,p(B) is a radial function such that u + εv ∈ M for any ε � 1,
then there exists λ = λ(u) > 0 such that

∫

B

|∇u|p−2∇u · ∇v + |u|p−2uv dx ≥ λ

∫

B

a(|x |) f (u)v dx . (3)

Proof By assumption, (u + εv)/‖u + εv‖p is an admissible function for the optimization
problem (2). Therefore, the auxiliary function

G(ε) =
∫

B

a(|x |)F
(

u + εv

‖u + εv‖p

)

dx

attains a maximum at ε = 0. By a direct calculation and recalling that ‖u‖p = 1, we find

0 ≥ G ′(0)

=
∫

B

a(|x |) f (u)

⎛

⎝v −
⎛

⎝

∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv

⎞

⎠ u

⎞

⎠ dx .

We can rewrite this inequality in the form
∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv ≥ 1
∫

B a(|x |) f (u)u

∫

B

a(|x |) f (u)v,

and the conclusion follows by setting λ = 1/
∫

B a(|x |) f (u)u. 
�

Of course, if (3) holds true for any radial element v ∈ W 1,p(B), then we can conclude that u
is a weak supersolution to (2). This is indeed true, but we need some more work. We begin
with a sort of “maximum principle”. This not obvious, since u is not (yet) a solution of an
equation.
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474 S. Secchi

Lemma 2 The function u is strictly positive in B.

Proof Consider the auxiliary function ϕ(x) = e|x |, defined for all x ∈ R
N . It is easy to show

that ϕ ∈ W 1,p(B). It is of course a positive radial function and monotone increasing. We are
going to prove that u(x) ≥ κϕ(x) for all x ∈ B, provided κ > 0 is chosen suitably. Fix an
arbitrary radial functionψ ∈ W 1,p(B)with ψ ≥ 0 and ψ|∂B = 0. Then, denoting by |SN−1|
the Lebesgue measure of the unit sphere in R

N ,
∫

B

|∇ϕ|p−2∇ϕ · ∇ψ dx =
∫

B

e(p−1)|x | x

|x | · ∇ψ dx

= |SN−1|
1∫

0

e(p−1)rψ ′(r)r N−1 dr

= −|SN−1|
1∫

0

(
e(p−1)r r N−1

)′
ψ(r) dr,

so that
∫

B

|∇ϕ|p−2∇ϕ · ∇ψ dx +
∫

B

|ϕ|p−2ϕψ dx

= −|SN−1|
1∫

0

(
e(p−1)r r N−1

)′
ψ(r) dr + |SN−1|

1∫

0

e(p−1)rψ(r) dr

= |SN−1|
1∫

0

e(p−1)r (1 − N + (2 − p)r) dr < 0 (4)

since N ≥ 3. Now, we choose κ > 0 such that κϕ equals u on the boundary. Explicitely,
κ = u(1)/e, where we have denoted by u(1) the constant value of u on ∂B. From now on,
we will write again ϕ instead of κϕ. We now apply (4) to ψ = (ϕ − u)+ ∈ W 1,p

0 (B). This
function is radially symmetric and positive in B. From (3), we get

∫

B

|∇u|p−2∇u · ∇(ϕ − u)+ +
∫

B

|u|p−2u(ϕ − u)+ ≥ λ

∫

B

a(|x |) f (u)(ϕ − u)+, (5)

whereas from (4) we get
∫

B

|∇ϕ|p−2∇ϕ · ∇(ϕ − u)+ dx +
∫

B

|ϕ|p−2ϕ(ϕ − u)+ dx < 0. (6)

Subtracting (6) from (5) we get
∫

B

(|∇u|p−2∇u − |∇ϕ|p−2∇ϕ) · ∇(ϕ − u)+ +
∫

B

(|u|p−2u − |ϕ|p−2ϕ
)
(ϕ − u)+ ≥ 0.

(7)
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Increasing variational solutions for a nonlinear p-laplace equation 475

Applying Lemma 3 below, we deduce that

0 ≤
∫

B

(|∇u|p−2∇u − |∇ϕ|p−2∇ϕ) · ∇(ϕ − u)+

+
∫

B

(|u|p−2u − |ϕ|p−2ϕ
)
(ϕ − u)+

≤ −cp‖(ϕ − u)+‖p if p ≥ 2,

and

0 ≤
∫

B

(|∇u|p−2∇u − |∇ϕ|p−2∇ϕ) · ∇(ϕ − u)+ +
∫

B

(|u|p−2u − |ϕ|p−2ϕ
)
(ϕ − u)+

≤ −cp

⎛

⎝

∫

B

|∇(ϕ − u)+|2
(|∇ϕ| + |∇u|)2−p

+
∫

B

|(ϕ − u)+|2
(|ϕ| + |u|)2−p

⎞

⎠ if 1 < p < 2.

for some constant cp > 0. This implies in both cases that (ϕ − u)+ = 0, and we conclude
that u ≥ ϕ in B. 
�
Lemma 3 [9,13] Given 1 < p < ∞, there exists a universal constant cp > 0 such that

〈|x |p−2x − |y|p−2 y, x − y〉 ≥
{

cp|x − y|p if p ≥ 2

cp
|x−y|2

(|x |+|y|)2−p if 1 < p < 2

for any x, y ∈ R
N .

Remark 6 A slightly different proof of Lemma 2 can be easily obtained by modifying the
ideas of [12, Lemma 6]. Indeed, consider the problem

{−Δpϕ + |ϕ|p−2ϕ = 0 in B
ϕ = u on ∂B.

By standard arguments (see [6]) there is one and only one solution ϕ ∈ W 1,p(B) such
that ϕ − u ∈ W 1,p

0 (B). By the version of Palais’ Principle of Symmetric Criticality for
Banach spaces (see [10]), this solution must coincide with the unique solution of inf{‖ϕ‖p |
ϕ − u ∈ W 1,p

0 (B), ϕ radial}, and thereforeϕ is a radial function. Since u > 0 on ∂B, we have
ϕ ≥ 0 in B, and by the strong maximum principle (see [14]), we actually have u > 0 in B.
Then ϕ solves the ordinary differential equation (r N−1|ϕ′|p−2ϕ′)′ = |ϕ|p−2ϕ for r ∈ [0, 1].
Setting w(r) = |ϕ′|p−2ϕ′ we can check that w(0) = 0 and

w′ + N − 1

r
w = |ϕ|p−2ϕ.

Hence

w(r) = r1−N

r∫

0

|ϕ(s)|p−2ϕ(s)s N−1 ds,

and the strict positivity of ϕ implies that w > 0, i.e. ϕ is a strictly increasing function. In
particular ϕ − u ∈ M, and we can again find that (6) holds true. Then we can proceed as
in the proof of Lemma 2 and conclude that u ≥ ϕ.
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We observe that our maximizer u belongs to M and is therefore a monotone increas-
ing radial function. Actually, u is a.e. strictly increasing, and this will be a useful piece of
information in the next pages.

Lemma 4 Any maximizer u for S satisfies

u′(r) > 0 for almost every r ∈ (0, 1). (8)

Proof Pick a number ρ ∈ (0, 1). For the time being, let μ > 0 a parameter that we will
choose suitably, and let δ > 0. The function vδ : [0, 1] → R, defined by the formula

vδ(r) =
⎧
⎨

⎩

−1 if 0 ≤ r ≤ ρ

−1 − 1+δ
ρ
(r − ρ) if ρ < r ≤ ρ + δ

μ if ρ + δ < r ≤ 1,

is continuous. Clearly, x 	→ vδ(|x |) belongs to W 1,p(B). For every positive and small number
s, we can check that u + svδ ∈ M. By (3),

∫

B

|∇u|p−2∇u · ∇vδ + |u|p−2uvδ dx ≥ λ

∫

B

a(|x |) f (u)vδ dx . (9)

Pointwise and in every Lebesgue space Lq(B)with q < ∞, as δ → 0+ the function vδ tends
to

v(r) =
{−1 if 0 ≤ r ≤ ρ

μ if ρ < r ≤ 1.

Therefore,

lim
δ→0+

∫

B

|u|p−2uvδ = −
∫

B(0,ρ)

|u|p−2u + μ

∫

B\B(0,ρ)

|u|p−2u

and

lim
δ→0+

∫

B

a(|x |) f (u)vδ dx = −
∫

B(0,ρ)

a(|x |) f (u) dx + μ

∫

B\B(0,ρ)

a(|x |) f (u) dx .

On the other hand, since |u′|p−2u′ ∈ L1
loc(0, 1),

∫

B

|∇u|p−2∇u · ∇vδ = |SN−1|
1∫

0

|u′(r)|p−2u′(r)v′
δ(r)r

N−1 dr

= 1 + μ

δ
|SN−1|

ρ+δ∫

ρ

|u′(r)|p−2u′(r)r N−1 dr

≤ |SN−1|(1 + μ)(ρ + δ)N−1 1

δ

ρ+δ∫

ρ

|u′(r)|p−2u′(r) dr

= |SN−1|(1 + μ)ρN−1|u′(ρ)|p−2u′(ρ)+ o(1)

for almost every ρ ∈ (0, 1), as δ → 0+. If we let δ → 0+ in (9) and use the last three
relations, we conclude that
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(1 + μ)ρN−1|u′(ρ)|p−2u′(ρ)

≥
ρ∫

0

|u(r)|p−2u(r)r N−1 dr − μ

1∫

ρ

|u(r)|p−2u(r)r N−1 dr

−λ
ρ∫

0

a(r) f (u)r N−1 dr + λμ

1∫

ρ

a(r) f (u)r N−1 dr. (10)

Since the function s 	→ f (s)/s p−1 is strictly increasing, we can write

a(r) f (u(r)) = a(r)
f (u(r))

u(r)p−1 u(r)p−1 ≤ a(ρ)
f (u(ρ))

u(ρ)p−1 u(r)p−1

for a.e. r ∈ [0, ρ], and

a(r) f (u(r)) = a(r)
f (u(r))

u(r)p−1 u(r)p−1 ≥ a(ρ)
f (u(ρ))

u(ρ)p−1 u(r)p−1

for a.e. r ∈ [ρ, 1]. Hence we obtain

−
ρ∫

0

a(r) f (u)r N−1 dr ≥ −a(ρ)
f (u(ρ))

u(ρ)p−1

ρ∫

0

u(r)p−1r N−1 dr

and

μ

1∫

ρ

a(r) f (u)r N−1 dr ≥ μa(ρ)
f (u(ρ))

u(ρ)p−1

1∫

ρ

u(r)p−1r N−1 dr.

Now, at least one of these two inequalities must be strict. Otherwise, we would deduce that

a(r)
f (u(r))

u(r)p−1 = a(ρ)
f (u(ρ))

u(ρ)p−1

for a.e. r ∈ [0, 1]. Then u would be a constant function, and so would be a. But this is in
contradiction with our assumptions.

Going back to (10), we have proved that

(1 + μ)ρN−1|u′(ρ)|p−2u′(ρ)

>

ρ∫

0

|u(r)|p−2u(r)r N−1 dr − μ

1∫

ρ

|u(r)|p−2u(r)r N−1 dr

+ a(ρ)
f (u(ρ))

u(ρ)p−1

⎛

⎝−
ρ∫

0

u(r)p−1r N−1 dr + μ

1∫

ρ

u(r)p−1r N−1 dr

⎞

⎠ . (11)

If μ solves the equation

ρ∫

0

u(r)p−1r N−1 dr = μ

1∫

ρ

u(r)p−1r N−1 dr,

then (11) becomes u′(r) > 0 for a.e. r ∈ [0, 1]. 
�
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Remark 7 We have seen that the strict monotonicity of u a.e. depends on the assumption
that a is non-constant. On the other hand, suppose that a ≡ 1. If the equation f (s) = s p−1

possesses a solution s0 > 0, then our problem (1) is solved by the constant function u(x) = s0

(with λ = 1). In particular, when f (s) = sq , there always exists a positive solution u that
does not satisfy u′(r) > 0 a.e. We do not know if there exist non-constant increasing solutions
that do not satisfy the strict monotonicity a.e.

We can now prove that the maximizer u is actually a weak solution of our original problem.

Proposition 4 Any maximizer u for S satisfies
∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv = λ

∫

B

a(|x |) f (u)v dx

for any radial function v ∈ W 1,p(B).

Proof We notice that it is enough to prove that
∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv ≥ λ

∫

B

a(|x |) f (u)v dx

for any radial function v ∈ W 1,p(B), because this inequality is odd in v. Moreover, by
density, we can assume that v is (radial and) of class C1.

Then, we can introduce the sets

k = {
r ∈ (0, 1) | u′(r) exists and u′(r) > 1/k

}
, k = 1, 2, . . .

It is easy to check that the Lebesgue measure of [0, 1]\ ⋃
k k is zero by the previous Lemma.

Denote, as usual, by χk the characteristic function of k . For any radial v ∈ C1(0, 1), we
define

vk(r) = v(0)+
r∫

0

v′(s)χk (s) ds,

so that vk ∈ W 1,∞(0, 1) and v′
k(r) = v′(r)χk (r) for a.e. r ∈ [0, 1].

Fix k ≥ 1 and pick a small ε > 0. We claim that

u + εvk ∈ M\{0}. (12)

Indeed, for every r ∈ [0, 1],
u(r)+ εvk(r) ≥ u(0)− ε‖v‖L∞ > 0

provided ε is small enough. Moreover, for almost every r ∈ [0, 1], we have by definition

d

dr
(u + εvk) = u′(r)+ εv′(r)χk (r).

When r ∈ k ,

d

dr
(u + εvk) = u′(r)+ εv′(r)χk (r) = u′(r)+ εv′(r) > 1

k
− ε‖v′‖L∞ > 0

provided ε is small enough. When r /∈ k ,

d

dr
(u + εvk) = u′(r)
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and we know that u′ > 0 almost everywhere. We conclude that the derivative of u + εvk

is almost everywhere strictly positive, and this implies the strict monotonicity of u + εvk .
Hence by (3)

1∫

0

u′(r)p−2u′(r)v′
k(r)r

N−1 dr +
1∫

0

u(r)p−1vk(r)r
N−1 dr

≥ λ

1∫

0

a(r) f (u(r))vk(r)r
N−1 dr

for any k ≥ 1. Since |vk(r)| ≤ |v(0)| + ‖v′‖L∞ and ‖v′
k‖L∞ ≤ ‖v′‖L∞ , by the Ascoli–

Arzelà theorem vk converges uniformly to v on [0, 1]. Since k ⊂ k+1, v
′
k(r) → v′(r) as

k → +∞ for almost every r ∈ (0, 1). An application of Lebesgue’s theorem on Dominated
Convergence implies now

1∫

0

|u′(r)|p−2u′(r)v′(r)r N−1 dr +
1∫

0

u(r)p−1v(r)r N−1 dr

≥ λ

1∫

0

a(r) f (u(r))v(r)r N−1 dr,

and the proof is complete. 
�
Proof of Theorem 1 Since any maximizer u for S satisfies

∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv = λ

∫

B

a(|x |) f (u)v dx

for any radial function v ∈ W 1,p(B), we conclude that u is a positive weak solution of (1).

�

Remark 8 The same approach solves the more general problem
{−Δpu + |u|p−2u = λ f (|x |, u) in B
∂u
∂ν

= 0 on ∂B

under reasonable assumptions on f : [0,+∞) × [0,+∞) → R. For instance, one has to
require that f is continuous, f (0, 0) = 0, f (r, s) is separately monotone in r and in s and
that s 	→ f (r, s)/s p−1 is strictly increasing for every fixed r .

3 Solutions of (1) when λ = 1

As we wrote at the beginning, it is in general impossible to use the weak solution u of the
previous section to construct a solution of the problem

⎧
⎨

⎩

−Δpu + |u|p−2u = a(|x |) f (u) in B
u > 0 in B
∂u
∂ν

= 0 on ∂B.
(13)
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However, following [12], a radially symmetric increasing solution to (13) can be found under
slightly more restrictive conditions on f . Besides (A), we assume

(F’) f ∈ C1([0,+∞)), f (t) = o(t p−1) as t → 0; f ′(t)t − (p − 1) f (t) > 0 for all t > 0;
there exists γ > p such that f (t)t ≥ γ F(t) for all t > 0.

(F”) t 	→ f (t)/t p−1 is strictly increasing on (0,+∞).

Remark 9 It follows from (F’) that

f (t)t ≥ Ctγ and F(t) ≥ Ctγ for all t > 0.

Remark 10 Once more, we could treat the more general equation −Δpu + |u|p−2u =
f (|x |, u) under suitable assumptions on the right-hand side.

Our main theorem about problem (13) is the following.

Theorem 2 Retain assumptions (A), (F’) and (F”). Then there exists a positive, radially
symmetric, and increasing solution to problem (13).

We define the functional J : W 1,p(B) → R by the formula

J (u) = 1

p
‖u‖p −

∫

B

a(|x |)F(u). (14)

We would like to find a critical point of J lying in M, but this functional is unbounded.
Therefore, we introduce the set

N =
⎧
⎨

⎩
u ∈ M\{0} | ‖u‖p =

∫

B

a(|x |) f (u)u

⎫
⎬

⎭
. (15)

Clearly, this set is an imitation of the well-known Nehari manifold in Critical Point Theory.
More precisely, it is the intersection of the standard Nehari manifold with M, and therefore
it is not homeomorphic to the unit sphere of W 1,p(B).

Lemma 5 The constraint N is radially homeomorphic to the ball {u ∈ M | ‖u‖ = 1}.
Proof We claim that for every u ∈ M\{0} there exists a unique t > 0 such that tu ∈ N .
Indeed, we need to find t > 0 that solves

t p‖u‖p =
∫

B

a(|x |) f (tu)tu dx . (16)

Define the auxiliary function σ : [0,+∞) → R by the formula

σ(t) = t p‖u‖p −
∫

B

a(|x |) f (tu)tu dx . (17)

Since f (t) = o(t p−1) as t → 0 and u ∈ L∞(B), for every ε > 0 we can choose δ > 0 with
the property that |tu(x)| ≤ δ implies 0 ≤ f (tu(x)) < ε|tu(x)|p−1. If 0 ≤ t ≤ δ‖u‖−1

L∞ , then

0 ≤
∫

B

a(|x |) f (tu)tu dx ≤ εt p
∫

B

a(|x |)u p dx ≤ εt p‖u‖p
L∞‖a‖L1 = Cεt p.
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Therefore, σ(t) ≥ t p‖u‖p − Cεt p > 0, provided t and ε are small enough. Recalling the
properties of f ,

∫

B

a(|x |) f (tu)tu dx ≥ Ctγ
∫

B

a(|x |)uγ dx,

and then

lim sup
t→+∞

σ(t) ≤ lim sup
t→+∞

⎛

⎝t p‖u‖p − Ctγ
∫

B

a(|x |)uγ dx

⎞

⎠ = −∞.

By the Intermediate Value Theorem, the continuous function σ must vanish at some t0 > 0,
and this means that t0u ∈ N . Since the map t 	→ f (t)/t p−1 is strictly increasing, this
t0 = t0(u) is unique.

Next, we claim that the mapping u 	→ t0(u) is continuous. We proceed as in [11]. Assume
{un}∞n=1 is a sequence in N such that un → u strongly. In particular, u �= 0. Then

t0(un)
p‖un‖p =

∫

B

a(|x |) f (t0(un)un)t0(un)un dx . (18)

Either t0(un) ≤ 1 or t0(un) > 1. In the latter case, we deduce that
∫

B

a(|x |) f (t0(un)un)t0(un)un dx ≥ γ

∫

B

a(|x |)F(t0(un)un) dx

≥ γ t0(un)
γ

∫

B

a(|x |)F(un) dx .

Consequently,

t0(un)
γ−p ≤ 1

γ

‖un‖p
∫

B a(|x |)F(un) dx
= 1

γ

‖u‖p
∫

B a(|x |)F(u) dx
+ o(1).

It follows that {t0(un)}∞n=1 is bounded from above and converges along a subsequence to a
limit t∞. If t∞ = 0, from (18) and from the properties of f , we deduce that u = 0. But this
is impossible since u ∈ N . Thus, t∞ > 0 and again from (18), we get

t p∞‖u‖p =
∫

B

a(|x |) f (t∞u)t∞u dx .

By uniqueness, t∞ = t0(u). By a standard argument, t0(un) → t0(u) along the whole
sequence, and our claim is proved. 
�

We introduce the quantity

c0 = inf
u∈N

J (u). (19)

In the sequel, it may be useful to notice that

J|N (u) = 1

p

∫

B

a(|x |) f (u)u dx −
∫

B

a(|x |)F(u) dx . (20)
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Proposition 5 The level c0 is attained, i.e. there exists u ∈ N such that J (u) = c0.

Proof We claim that c0 > 0. Indeed, from the properties of f and F ,

J (u) = 1

p
‖u‖p −

∫

B

a(|x |)F(u) dx

= 1

p
‖u‖p − 1

γ
‖u‖p + 1

γ
‖u‖p −

∫

B

a(|x |)F(u) dx

=
(

1

p
− 1

γ

)

‖u‖p + 1

γ

∫

B

a(|x |) ( f (u)u − γ F(u)) dx

≥
(

1

p
− 1

γ

)

‖u‖p. (21)

We need to show that infu∈N ‖u‖p > 0. Assume the existence of a sequence {un}∞n=1 ⊂ N
such that un → 0 strongly. Then

‖un‖p =
∫

B

a(|x |) f (un)un dx ≤ f (‖un‖L∞)‖un‖L∞‖a‖L1

≤ f (CM‖un‖)CM‖un‖‖a‖L1 ,

where CM > 0 is the constant of Proposition 1. But f (t) = o(t p−1) as t → 0, and this
leads to a contradiction. Our claim is proved.

Now, let {un}∞n=1 ⊂ N be a minimizing sequence for c0. From (21), it follows that
{un}∞n=1 is bounded in W 1,p(B), and we can assume without loss of generality that un → u
pointwise almost everywhere and weakly in W 1,p(B). It is easy to check that u ∈ M, and
supn ‖un‖L∞ < ∞. By Lebesgue’s theorem on Dominated Convergence,

c0 + o(1) = J (un) = 1

p

∫

B

a(|x |) f (un)un dx −
∫

B

a(|x |)F(un) dx

= 1

p

∫

B

a(|x |) f (u)u dx −
∫

B

a(|x |)F(u) dx + o(1). (22)

We deduce that u �= 0, since c0 > 0. We have two cases:

1. u ∈ N . This implies that
∫

B a(|x |) f (u)u dx = ‖u‖p , and the proof is complete.
2. u /∈ N . By the lower semicontinuity of the norm, we have

‖u‖p <

∫

B

a(|x |) f (u)u dx . (23)

Consider again the auxiliary function σ defined in (17). Since u �= 0, σ (t) > 0 for t
positive and small. By (23), σ(1) < 0, and hence σ vanishes at some t0 ∈ (0, 1). We
know that t0u ∈ N , and the properties of f and F imply that t 	→ (1/p) f (t)t − F(t) is
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strictly increasing: just differentiate and use (F’). Since t0 < 1, we deduce

c0 ≤ J (t0u) =
∫

B

a(|x |)
(

1

p
f (t0u)t0u − F(t0u)

)

dx

<

∫

B

a(|x |)
(

1

p
f (u)u − F(u)

)

dx = c0.

This contradiction proves that (23) cannot hold.

Since we have shown that u ∈ N , the proof is complete. 
�

We are now ready to apply all the arguments of Sect. 2.2 to our minimizer u ∈ N . The
only difference is that we need an analog of Proposition 3.

Proposition 6 Let u be a minimizer of J on N . Assume that v ∈ W 1,p(B) is a radial function
such that u + sv ∈ M for every positive small s. Then

∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv ≥
∫

B

a(|x |) f (u)uv. (24)

Proof Without loss of generality, we assume that u + sv does not vanish identically. By
Lemma 5, to every small s ≥ 0 we can attach some t = t (s) with t (s)(u + sv) ∈ N . Define
G(s, t) = t p‖u + sv‖p − ∫

B a(|x |) f (t (u + sv))t (u + sv) dx . By definition, G(0, 1) = 0
since u ∈ N . In addition,

∂G

∂t
(0, 1) = p‖u‖p −

∫

B

a(|x |) f ′(u)u2 dx −
∫

B

a(|x |) f (u)u dx

= (p − 1)
∫

B

a(|x |) f (u)u dx −
∫

B

a(|x |) f ′(u)u2 dx

=
∫

B

a(|x |) [(p − 1) f (u)− f ′(u)u
]

u dx < 0.

The Implicit Function Theorem yields the existence of some δ > 0 and of a C1 function
t : [0, δ) → R such that t (0) = 1 and

G(s, t (s)) = 0 for all s ∈ [0, δ).
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By definition, this means that t (s)(u + sv) ∈ N for all s ∈ [0, δ). The function H(s) =
J (t (s)(u + sv)), defined on [0, δ), has a local minimum point at s = 0. Therefore,

0 ≤ H ′(0)

= t ′(0)‖u‖p +
∫

B

|∇u|p−2∇u · ∇v

+
∫

B

|u|p−2uv − t ′(0)
∫

B

a(|x |) f (u)u dx −
∫

B

a(|x |) f (u)v dx

= t ′(0)

⎛

⎝‖u‖p −
∫

B

a(|x |) f (u)u dx

⎞

⎠

+
∫

B

|∇u|p−2∇u · ∇v +
∫

B

|u|p−2uv −
∫

B

a(|x |) f (u)v dx .

Since u ∈ N , the big bracket vanishes and (24) is proved. 
�
Proof of Theorem 2 Since we have a function ∈ N that satisfies (24), we can apply to u the
same arguments developed in Sect. 2.2 and conclude that u is a weak solution of (13).

4 Final remarks

As we have seen, the variational technique is rather elementary and can be adapted to more
general equations. In both sections, the crucial point was that the tentative solution u was not
a priori surrounded by a neighborhood contained in M, and it was not clear how to compute
the Gateaux derivative at u.

Anyway, since our solution is a true (constrained) critical point of the associated func-
tional, we may ask ourselves what kind of critical point it is. Its variational characterization
is rather subtle, since is maximizes (or minimizes) a functional only among the set of radially
increasing functions. It could be interesting to look for a more precise description of this
solution.

Acknowledgments The author is grateful to E. Serra for suggesting this problem.
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