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Abstract Consider the Emden-Fowler dynamic equation

x��(t) + p(t)xα(t) = 0, α > 0, (0.1)

where p ∈ Crd([t0,∞)T, R), α is the quotient of odd positive integers, and T denotes a time
scale which is unbounded above and satisfies an additional condition (C) given below. We
prove that if

∫ ∞
t0

tα|p(t)|�t < ∞ (and when α = 1 we also assume limt→∞ tp(t)μ(t) = 0),
then (0.1) has a solution x(t) with the property that

lim
t→∞

x(t)

t
= A �= 0.

Keywords Asymptotic behavior · Emden-Fowler equation · Generalized Gronwall’s
Inequality
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1 Introduction

Consider the second-order Emden–Fowler dynamic equation

x��(t) + p(t)xα(t) = 0, (1.1)
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206 L. Erbe et al.

where p : [t0,∞)T → R is rd-continuous (defined below), α > 0, α is the quotient of odd
positive integers.

When T = R, the dynamic Eq. (1.1) is the second-order Emden–Fowler differential
equation

x ′′(t) + p(t)xα(t) = 0. (1.2)

The Emden–Fowler Eq. (1.2) has several interesting physical applications in astrophysics
(cf. Bellman [8] and Fowler [13]). Moore and Nehari [14] established the following: If p(t)
is positive and continuous and α ≥ 1, then (1.1) has solutions for which

lim
t→∞

x(t)

t
= A > 0

if and only if

∞∫
tα p(t)dt < ∞. (1.3)

This is related to results of Atkinson [1] who showed that if α > 1, p(t) ≥ 0 and is non-
increasing, then (1.3) implies that all solutions of (1.1) are nonoscillatory. We refer to [3,6]
and [7] for additional results for the oscillation of (1.1). Wong [15, Theorem 2] established
the sufficiency part of the above Moore–Nehari theorem without an assumption as to the sign
of p(t).

In this paper, by using a generalized Gronwall’s inequality on time scales and an idea used
by Wong [15], we prove that if

∞∫
tα|p(t)|�t < ∞,

(and when α = 1 we assume limt→∞ tp(t)μ(t) = 0), then Eq. (1.1) has a solution for which

lim
t→∞

x(t)

t
= A > 0.

Since we do not make an assumption concerning the sign of the coefficient p, a fixed point
approach is not of use.

For completeness (see [9] and [10] for elementary results for the time scale calculus), we
recall some basic results for dynamic equations and the calculus on time scales. Let T be a
time scale (i.e., a closed nonempty subset of R) with sup T = ∞. The forward jump operator
is defined by

σ(t) = inf{s ∈ T : s > t},
and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t},
where sup ∅ = inf T, where ∅ denotes the empty set. If σ(t) > t , we say t is right-scattered,
while if ρ(t) < t we say t is left-scattered. If σ(t) = t we say t is right-dense, while if ρ(t) = t
and t �= inf T we say t is left-dense. Given a time scale interval [c, d]T := {t ∈ T : c ≤ t ≤ d}
in T the notation [c, d]Tκ denotes the interval [c, d]T in case ρ(d) = d and denotes the inter-
val [c, d)T in case ρ(d) < d . The graininess function μ for a time scale T is defined by
μ(t) = σ(t) − t , and for any function f : T → R the notation f σ (t) denotes f (σ (t)).
We say p : [t0,∞)T → R is rd-continuous and write p ∈ Crd([t0,∞)T, R) provided p is
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On the asymptotic behavior of solutions 207

continuous at each right-dense point in [t0,∞)T and at each left-dense point in (t0,∞)T the
left hand limit of p exists (finite). We say that x : T → R is (delta) differentiable at t ∈ T

provided

x�(t) := lim
s→t

x(t) − x(s)

t − s
,

exists when σ(t) = t (here by s → t it is understood that s approaches t in the time scale)
and when x is continuous at t and σ(t) > t

x�(t) := x(σ (t)) − x(t)

μ(t)
.

Note that if T = R , then the delta derivative is just the standard derivative, and when T = Z

the delta derivative is just the forward difference operator. Hence, our results contain the
discrete and continuous cases as special cases and generalize these results to many other time
scales. Section 2 is devoted to a few preliminary results, the main result is in Sect. 3 and we
include several examples in Sect. 4. We remark also that many results dealing with Sturmian
Theory for the dynamic Eq. (1.1) consider the case when the term p(t)xα(t) is replaced by
p(t)xα(σ (t)). In this regard, a comprehensive analysis of the linear and half-linear equation
may be found in the book of Došlý and Řehák [12], where there are also many references to
the literature.

2 Preliminary lemmas

Let T̂ := {t ∈ T : μ(t) > 0} and let χ denote the characteristic function of T̂. The following
condition, which will be needed later, imposes a lower bound on the graininess function μ(t),
for t ∈ T̂. More precisely, we introduce the following (see [11] and [5]).

Condition (C) We say that T satisfies condition (C) if there is an M > 0 such that

χ(t) ≤ Mμ(t), t ∈ T.

We note that if T satisfies condition (C), then the set

Ť = {t ∈ T| t > 0 is isolated or right-scattered or left-scattered}
is necessarily countable.

We let R denote the set of rd-continuous functions p on T satisfying the regressivity con-
dition 1 + μ(t)p(t) �= 0 on T. Recall the definition of the generalized exponential function
ep(t, t0) ([9], Page 57)

ep(t, t0) = exp

⎛

⎝
t∫

t0

ξμ(τ)(p(τ ))�τ

⎞

⎠ , (2.1)

where

ξh(p(τ )) =
{ 1

h Log(1 + hp(τ )), h > 0

p(τ ), h = 0,
(2.2)

and Log is the principal logarithm function. We will use this representation in the proof of
Lemma 2.1 below.

The following lemma is [9, Corollary 6.7].
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208 L. Erbe et al.

Lemma 2.1 Suppose that y(t) and p(t) are rd-continuous and p ≥ 0. Then,

y(t) ≤ y0 +
t∫

t0

p(s)y(s)�s for all t ≥ t0, (2.3)

implies

y(t) ≤ y0ep(t, t0) for all t ≥ t0.

Lemma 2.2 Suppose that p ∈ R and limt→∞ p(t)μ(t) = 0. Then, there is a T ∈ [t0,∞)T

such that

|ep(t, T )| ≤ exp

⎡

⎣
t∫

T

2|p(τ )|�τ

⎤

⎦

for t ∈ [T,∞)T. If, in addition,
∫ ∞

t0
|p(s)|�s < ∞, then ep(t, t0) is bounded on [t0,∞)T.

Proof Since limx→0
log(1+x)

x = 1, there is a δ > 0 such that | log(1+ x)| ≤ 2|x |, for |x | < δ.
Using the hypothesis limt→∞ p(t)μ(t) = 0, there is a T ∈ [t0,∞)T such that

|p(t)μ(t)| < δ, t ∈ [T,∞)T.

Assume τ ∈ [T,∞)T. If, in addition, μ(τ) > 0, we have that

∣
∣ξμ(τ)(p(τ ))

∣
∣ =

∣
∣
∣
∣

Log[1 + μ(τ)p(τ )]
μ(τ)

∣
∣
∣
∣

= | log(1 + μ(τ)p(τ ))|
μ(τ)

≤ 2|p(τ )|.

On the other hand, if μ(τ) = 0, we have

|ξμ(τ)(p(τ ))| = |p(τ )| ≤ 2|p(τ )|.
Hence, for all τ ∈ [T,∞)T, we have

|ξμ(τ)(p(τ ))| ≤ 2|p(τ )|.
Therefore, by (2.1) and (2.2), we get that for t ∈ [T,∞)T

|ep(t, T )| = |e
∫ t

T ξμ(τ)(p(τ ))�τ |

≤
∣
∣
∣
∣
∣
∣
exp

⎡

⎣
t∫

T

2|p(τ )|�τ

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ exp

⎡

⎣
t∫

t0

2|p(τ )|�τ

⎤

⎦ .

The last statement in this lemma follows from this last inequality and the semi group property
[9, Theorem 2.36] ep(t, t0) = ep(t, T )ep(T, t0). 	

Lemma 2.3 Suppose that [t0,∞)T satisfies condition (C), x�(t) is rd-continuous, and f :
(0,∞) → (0,∞) is continuous and nonincreasing with F ′(x) = f (x), x ∈ R. Then,we
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On the asymptotic behavior of solutions 209

have that

t∫

t0

f (x(s))x�(s)�s ≥ F(x(t)) − F(x(t0)), t ∈ [t0,∞)T.

Proof Since [t0,∞)T satisfies property (C), [t0,∞)T = ∪∞
i=0[ti , ti+1]T, where for each

i ≥ 0 either σ(ti ) = ti+1 > ti or [ti , ti+1]T = [ti , ti+1]R. From the additivity of the integral,
it suffices to show that

ti+1∫

ti

f (x(s))x�(s)�s ≥ F(x(ti+1)) − F(x(ti )) (2.4)

for each i ≥ 0. First consider the case σ(ti ) = ti+1 > ti and consider the subcase x(ti ) ≤
x(ti+1). Using the fact that f is nonincreasing, we have

ti+1∫

ti

f (x(s))x�(s)�s =
σ(ti )∫

ti

f (x(s))x�(s)�s

= f (x(ti ))x�(ti )μ(ti )

= f (x(ti ))[x(ti+1) − x(ti )]

≥
x(ti+1)∫

x(ti )

f (x)dx

= F(x(ti+1)) − F(x(ti ))

and so (2.4) holds in this case. Next consider the subcase x(ti ) > x(ti+1). In this case,

ti+1∫

ti

f (x(s))x�(s)�s =
σ(ti )∫

ti

f (x(s))x�(s)�s

= f (x(ti ))x�(ti )μ(ti )

= − f (x(ti ))[x(ti ) − x(ti+1)]

≥ −
x(ti )∫

x(ti+1)

f (x)dx

= F(x(ti+1)) − F(x(ti ))

and so also in the subcase x(ti ) > x(ti+1), it follows that (2.4) holds.
Finally, if [ti , ti+1]T = [ti , ti+1]R then

ti+1∫

ti

f (x(t))x�(t)�t =
ti+1∫

ti

f (x(t))x ′(t)dt = F(x(ti+1)) − F(x(ti ))

and so (2.4) holds in this case as well. 	

Our next lemma is a sublinear analogue of the Gronwall inequality.
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Lemma 2.4 Assume [t0,∞)T satisfies condition (C), p(t) ≥ 0, q(t) ≥ 0 are rd-continuous,
y0 > 0, and 0 < α < 1. If y(t) ≥ 0, satisfies

y(t) ≤ y0 +
t∫

t0

p(s)y(s)�s +
t∫

t0

q(s)yα(s)�s

for t ∈ [t0,∞)T, then

y(t) ≤ ep(t, t0)

⎧
⎨

⎩
y1−α

0 + (1 − α)

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s

⎫
⎬

⎭

1
1−α

for t ∈ [t0,∞)T.

Proof Let

z(t) := y0 +
t∫

t0

p(s)y(s)�s +
t∫

t0

q(s)yα(s)�s > 0

for t ∈ [t0,∞)T. Then, by hypothesis y(t) ≤ z(t) on [t0,∞)T and

z�(t) = p(t)y(t) + q(t)yα(t)

≤ p(t)z(t) + q(t)zα(t)

= p(t)[zσ (t) − μ(t)z�(t)] + q(t)zα(t).

It follows that

z�(t) − p(t)

1 + μ(t)p(t)
zσ (t) ≤ q(t)

1 + μ(t)p(t)
zα(t).

Hence,

z�(t) + (�p)(t)zσ (t) ≤ q(t)

1 + μ(t)p(t)
zα(t).

Multiplying by the integrating factor e�p(t, t0), we get

[
e�p(t, t0)z(t)

]� ≤ e�p(t, t0)
q(t)

1 + μ(t)p(t)
zα(t)

= e1−α�p (t, t0)
q(t)

1 + μ(t)p(t)
[e�p(t, t0)z(t)]α.

Letting

v(t) := e�p(t, t0)z(t) > 0,

we have

v�(t)

vα(t)
≤ e1−α�p (t, t0)

q(t)

1 + μ(t)p(t)
.

Integrating from t0 to t , we obtain

t∫

t0

v�(s)

vα(s)
�s ≤

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s.
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Applying Lemma 2.3 (with f (x) = 1
xα ) to the left-hand side of this last inequality gives

t∫

t0

v�(s)

vα(s)
�s ≥ v1−α(t)

1 − α
− v1−α(t0)

1 − α
.

It then follows that

v1−α(t)

1 − α
− v1−α(t0)

1 − α
≤

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s (2.5)

and consequently

v1−α(t) ≤ y1−α
0 + (1 − α)

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s.

Then,

v(t) = e�p(t, t0)z(t) ≤
⎧
⎨

⎩
y1−α

0 + (1 − α)

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s

⎫
⎬

⎭

1
1−α

which gives us the desired result

y(t) ≤ z(t) ≤ ep(t, t0)

⎧
⎨

⎩
y1−α

0 + (1 − α)

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s

⎫
⎬

⎭

1
1−α

.

	


Remark 2.5 When p(t) ≡ 0 in Lemma 2.4 we have that

y(t) ≤ y0 +
t∫

t0

q(s)yα(s)�s for all t ∈ [t0,∞)T

implies

y(t) ≤
⎧
⎨

⎩
y1−α

0 + (1 − α)

t∫

t0

q(s)�s

⎫
⎬

⎭

1
1−α

,

for t ∈ [t0,∞)T.

The superlinear analogue of Lemma 2.4 is the following result:
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212 L. Erbe et al.

Lemma 2.6 Assume in Lemma 2.4 we replace 0 < α < 1 by α > 1 and that we can pick
y0 > 0 such that

y1−α
0 > (α − 1)

t∫

t0

e1−α�p (s, t0)
q(s)

1 + μ(s)p(s)
�s

for t ∈ [t0,∞)T. Suppose y(t) ≥ 0, satisfies

y(t) ≤ y0 +
t∫

t0

p(s)y(s)�s +
t∫

t0

q(s)yα(s)�s

for t ∈ [t0,∞)T. Then we have

y(t) ≤ ep(t, t0)
{

y1−α
0 − (α − 1)

∫ t
t0

e1−α�p (s, t0)
q(s)

1+μ(s)p(s)�s
} 1

α−1

for t ∈ [t0,∞)T.

Proof The proof starts out the same as in the proof of Lemma 2.4 until we get (2.5). Solving
this equation for v(t), we get (here we use the assumption y1−α

0 > (α − 1)
∫ t

t0
e1−α�p (s, t0)

q(s)
1+μ(s)p(s)�s)

v(t) ≤ 1
{

y1−α
0 − (α − 1)

∫ t
t0

e1−α�p (s, t0)
q(s)

1+μ(s)p(s)�s
} 1

α−1

.

Since v(t) = e�p(t, t0)z(t) and e�p(t, t0) = 1
ep(t,t0)

we have that

y(t) ≤ z(t) ≤ ep(t, t0)
{

y1−α
0 − (α − 1)

∫ t
t0

e1−α�p (s, t0)
q(s)

1+μ(s)p(s)�s
} 1

α−1

.

	


3 Asymptotic behavior of solutions

We now prove our main result

Theorem 3.1 Assume [t0,∞)T satisfies condition (C), α > 0 is the quotient of odd positive
integers, and

∞∫

t0

tα|p(t)|�t < ∞,

(and if α = 1 we assume limt→∞ tp(t)μ(t) = 0). Then

x�� + p(t)xα(t) = 0, (3.1)

has a solution satisfying limt→∞ x(t)
t = A �= 0.
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On the asymptotic behavior of solutions 213

Proof Without loss of generality we can assume t0 ≥ 1. Assume x(t) is a solution of (3.1)
with x(t0) �= 0 and let

k(t0) := |x(t0)| + |x�(t0)| > 0.

Now Eq. (3.1) is equivalent to the integral equation

x(t) = x(t0) + x�(t0)(t − t0) −
t∫

t0

(t − σ(s))p(s)xα(s)�s. (3.2)

Thus for t ∈ [t0,∞)T, we have

|x(t)| ≤ |x(t0)| + |x�(t0)|t + t

t∫

t0

|p(s)xα(s)|�s

≤ k(t0)t + t

t∫

t0

|p(s)xα(s)|�s, (using t ≥ 1)

= k(t0)t + t

t∫

t0

sα|p(s)|
( |x(s)|

s

)α

�s.

Letting y(t) := |x(t)|
t , we obtain

y(t) ≤ k(t0) +
t∫

t0

sα|p(s)|yα(s)�s, t ∈ [t0,∞)T. (3.3)

Consider first the case 0 < α < 1. By Remark 2.5, we get

y(t) ≤
⎧
⎨

⎩
k1−α(t0) + (1 − α)

t∫

t0

sα|p(s)|�s

⎫
⎬

⎭

1
1−α

≤
⎧
⎨

⎩
k1−α(t0) + (1 − α)

∞∫

t0

sα|p(s)|�s

⎫
⎬

⎭

1
1−α

=: B. (3.4)

So we have y(t) ≤ B, that is |x(t)| ≤ Bt . Since

x�(t) = x�(t0) −
t∫

t0

p(s)xα(s)�s (3.5)

and
t∫

t0

∣
∣p(s)xα(s)

∣
∣ �s ≤ Bα

∞∫

t0

|p(s)|sα�s < ∞, (3.6)

we have that limt→∞ x�(t) = A exists. Therefore if ε > 0 is given, then there exists a
T ∈ [t0,∞)T, such that A − ε < x�(t) < A + ε, for t ∈ [T,∞)T. By the time scales
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214 L. Erbe et al.

Mean Value Theorem [10, Theorem 1.14], we get that if t ∈ [T,∞)T with t > T there exist
τt , ξt ∈ [T, t)T such that

A − ε < x�(τt ) ≤ x(t) − x(T )

t − T
≤ x�(ξt ) < A + ε.

This implies for all sufficiently large t ∈ [T,∞)T that

(A − ε)

(

1 − T

t

)

+ x(T )

t
<

x(t)

t
< (A + ε)

(

1 − T

t

)

+ x(T )

t
.

Therefore we get that

lim
t→∞

x(t)

t
= A. (3.7)

From (3.5) and (3.6), we have

|x�(t)| ≥ |x�(t0)| − Bα

∞∫

t0

sα|p(s)|�s. (3.8)

We want to show that we can find a solution x(t) so that the constant A in (3.7) is nonzero.
To see this, we still assume t0 ≥ 1 let t1 ∈ [t0,∞)T be fixed but arbitrary and let xt1(t) be a
family of solutions of (1.1) whose initial conditions satisfy

|xt1(t1)| = C > 0, |x�
t1 (t1)| = D > 0, t1 ∈ [t0,∞)T,

where C and D are constants (do not depend on t1). Then by the proof of (3.8) we obtain

|x�
t1 (t)| ≥ |x�

t1 (t1)| − Bα(t1)

∞∫

t1

sα|p(s)|�s

= D − Bα(t1)

∞∫

t1

sα|p(s)|�s (3.9)

where

B(t1) :=
⎧
⎨

⎩
(C + D)1−α + (1 − α)

∞∫

t1

sα|p(s)|�s

⎫
⎬

⎭

1
1−α

.

Since

lim
t1→∞ Bα(t1)

∞∫

t1

sα|p(s)|�s = 0

we can pick t1 ∈ [t0,∞)T sufficiently large so that (using (3.9)) we have that

|x�
t1 (t)| ≥ 1

2
D > 0, t ∈ [t1,∞)T.

It is then easy to see that for such a t1 we have that

lim
t→∞

xt1(t)

t
= A �= 0.

This completes the proof when 0 < α < 1.
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Now consider the case when α = 1. The proof is the same as the above proof up to (3.3).
That is we get (3.3) with α = 1, namely

y(t) ≤ k(t0) +
t∫

t0

s|p(s)|y(s)�s, t ∈ [t0,∞)T.

Then we use Lemma 2.1 to obtain

y(t) ≤ k(t0)er (t, t0), where r = r(t) := t |p(t)|. (3.10)

Since
∫ ∞

t0
r(t)�t < ∞ and limt→∞ r(t)μ(t) = 0 we get from Lemma 2.2 that er (t, t0)

is bounded and hence there is a constant B > 0 such that y(t) ≤ B for t ∈ [t0,∞)T. The
rest of the proof is the same as in the case 0 < α < 1 after (3.4).

Next assume α > 1. At the outset of this proof, assume that x(t) is a solution of (1.1),
with x�(t0) = 0 and x0 := x(t0) is chosen so that k(t0) = |x(t0)| > 0 satisfies

|x0|1−α = k1−α(t0) > (α − 1)

∞∫

t0

sα|p(s)|�s

for all t ∈ [t0,∞)T (we can do this because we are assuming
∫ ∞

t0
sα|p(s)|�s < ∞). It

follows that

|x0|1−α = k1−α(t0) > (α − 1)

t∫

t0

sα|p(s)|�s

for all t ∈ [t0,∞)T. Using the fact that (3.4) holds we get from Lemma 2.6 that

y(t) ≤ 1
{
|x0|1−α − (α − 1)

∫ t
t0

sα|p(s)|�s
} 1

α−1

≤ 1
{
|x0|1−α − (α − 1)

∫ ∞
t0

sα|p(s)|�s
} 1

α−1

=: B

for t ∈ [t0,∞)T. It follows that |x(t)| ≤ Bt for t ∈ [t0,∞)T and the proof now proceeds as
in the case 0 < α < 1 following (3.4). 	


4 Examples

We consider in this section several examples to illustrate the results obtained (we deal first
with the more challenging case when p(t) is not of one sign.)

Example 4.1 Let 0 < α ≤ 1, T = N and

p(n) := a(−1)nn−b.

Consider the equation

�2x(n) + p(n)xα(n) = 0, 0 < α < 1. (4.1)
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From Theorem 3.1, we conclude that if b > α + 1, then

∞∑

n0

nα|p(n)| < ∞

and therefore it follows that (4.1) has a solution satisfying

lim
n→∞

x(n)

n
= A �= 0. (4.2)

Note also that (4.2) holds in the case α = 1 since b > 2 implies that limn→∞ np(n) = 0.

Example 4.2 Let α > 1 and let

p(n) := a

(n + 1)nb
+ c(−1)n

nb
, n ∈ N.

We note that (4.1) has a nonoscillatory solution such that (4.2) holds if b > α + 1, since

∞∑

n=1

nα|p(n)| ≤ a
∞∑

n=1

nα−b−1 + c
∞∑

n=1

nα−b < ∞.

We also observe that for the case when the term p(n)xα(n) in (4.1) is replaced by p(n)xα(n+
1), additional oscillation and nonoscillation results can be found in [3] and [4].

Example 4.3 As an example of a different sort, suppose that a population is modeled by a
growth law of the form

x ′′(t) + kn xα(t) = 0, 0 < α, t ∈ [an, bn] (4.3)

where an < bn < an+1, with limn→∞ an = ∞. If an+1 − bn ≥ δ > 0 for some positive
δ, this represents a population growth model with non-overlapping generations and with a
positive length of time between generations. We can write this model as a dynamic equation

x��(t) + p(t)xα(t) = 0, t ∈ T :=
∞⋃

n=1

[an, bn]. (4.4)

With an, bn restricted as above and with p(t) = kn, t ∈ [an, bn], condition (C) clearly holds
and we have for an ≤ t ≤ bn

t∫

a1

sα|p(s)|�s ≤
n∑

j=1

k j
(bα+1

j − aα+1
j )

α + 1
+

n−1∑

j=1

k j b
α
j (a j+1 − b j ).

Also, if bn < t < an+1 then we have

t∫

a1

sα|p(s)|�s ≤
n∑

j=1

k j
(bα+1

j − aα+1
j )

α + 1
+

n∑

j=1

k j b
α
j (a j+1 − b j ).

Consequently, if

∞∑

j=1

k j
(bα+1

j − aα+1
j )

α + 1
+

∞∑

j=1

k j b
α
j (a j+1 − b j ) < +∞,
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then (4.4) has a solution with

lim
t→∞

x(t)

t
= A > 0.

Remark 4.4 It is easy to give additional examples for the q-difference equation case using
related ideas for oscillation and nonoscillation in the references [2–5] and [6]. We note also
that in the case T = R, the differential equation

x ′′ + p(t)xα = 0 (4.5)

has a solution x(t) satisfying

lim
t→∞

x(t)

t
= A �= 0 (4.6)

if 0 < α ≤ 1, where

p(t) = sin t

tb
, t ∈ [1,∞)

and where b > α + 1.

Also, in the superlinear case α > 1 and with

p(t) = a

tb+1 + c sin t

tb
,

then (4.5) has a solution satisfying (4.6) if a > 0, c �= 0 and b > α + 1.
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