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Abstract Two homogeneous measures of noncompactness β and γ on an infinite dimen-
sional Banach space X are called “equivalent” if there exist positive constants b and c such
that bβ(S) ≤ γ (S) ≤ cβ(S) for all bounded sets S ⊂ X . If such constants do not exist, the
measures of noncompactness are “inequivalent.” We ask a foundational question which appar-
ently has not previously been considered: For what infinite dimensional Banach spaces do
there exist inequivalent measures of noncompactness on X? We provide here the first exam-
ples of inequivalent measures of noncompactness. We prove that such inequivalent measures
exist if X is a Hilbert space; or if (�,�,μ) is a general measure space, 1 ≤ p ≤ ∞, and
X = L p(�,�,μ); or if K is a compact Hausdorff space and X = C(K ); or if K is a com-
pact metric space, 0 < λ ≤ 1, and X = C0,λ(K ), the Banach space of Hölder continuous
functions with Hölder exponent λ. We also prove the existence of such inequivalent measures
of noncompactness if � is an open subset of R

n and X is the Sobolev space W m,p(�). Our
motivation comes from questions about existence of eigenvectors of homogeneous, continu-
ous, order-preserving cone maps f : C→C and from the closely related issue of giving the
proper definition of the “cone essential spectral radius” of such maps. These questions are
considered in the companion paper [28]; see, also, [27].
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454 J. Mallet-Paret, R. D. Nussbaum

1 Introduction

If (X, d) is a metric space and S is a bounded subset of X , then K. Kuratowski [22] has
defined α(S), the Kuratowski measure of noncompactness (or MNC) of S, by

α(S) := inf{δ > 0 | S =
n⋃

i=1

Si for some Si with diam(Si ) ≤ δ, for 1 ≤ i ≤ n < ∞}.

As usual, the diameter of a bounded set T ⊂ X is defined by

diam(T ) := sup{d(x, y) | x, y ∈ T }.
If (X, d) is a complete metric space, then one easily verifies the following fundamental fact:

(A1) α(S) = 0 if and only if S is compact, for all bounded sets S ⊂ X .

Property (A1) explains the terminology “measure of noncompactness.” It is also straightfor-
ward to verify the following properties, which hold whether or not (X, d) is complete:

(A2) α(S) ≤ α(T ) for all bounded sets S ⊂ T ⊂ X ;
(A3) α(S ∪ {x0}) = α(S) for all bounded sets S ⊂ X and all x0 ∈ X ; and
(A4) α(S) = α(S) for all bounded sets S ⊂ X .

If (X, ‖ · ‖) is a normed linear space and S and T are bounded subsets of X , we shall
denote by co(S), the convex hull of S, namely the smallest convex set containing S, and we
shall write

S + T := {s + t | s ∈ S and t ∈ T }, λS := {λs | s ∈ S},
where λ is any scalar. If d(x, y) := ‖x − y‖ for x, y ∈ X and α denotes the Kuratowski
MNC on X , then G. Darbo [12] observed the following properties also hold:

(A5) α(co(S)) = α(S) for all bounded sets S ⊂ X ;
(A6) α(S + T ) ≤ α(S)+ α(T ) for all bounded sets S, T ⊂ X ; and
(A7) α(λS) = |λ|α(S) for all bounded sets S ⊂ X and all scalars λ.

Property (A7) is sometimes referred to as the “homogeneity of α.” Note that properties (A4)
and (A5), along with (A1), already imply a classical theorem of Mazur (see [29], and [11]
page 180): If X is a Banach space and S ⊂ X is compact, then co(S), the closure of co(S),
is compact.

One further property satisfied by the Kuratowski MNC is the so-called “set-additivity
property,” namely

(A8) α(S ∪ T ) = max{α(S), α(T )} for all bounded sets S, T ⊂ X .

Although the Kuratowski MNC is a useful tool in analysis, it is not nearly as widely known
as it should be. The utility of the Kuratowski MNC is particularly apparent in fixed point
theory. To illustrate we recall Darbo’s fixed point theorem [12].

Theorem 1.1 (Darbo [12]). Let G be a closed, bounded, convex set in a Banach space X and
f : G→G a continuous map. Assume that there is a constant c<1 such thatα( f (S)) ≤ cα(S)
for all S ⊂ G, where α denotes the Kuratowski MNC. Then f has a fixed point in G and the
set of fixed points of f in G is compact.
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Inequivalent measures of noncompactness 455

Corollary 1.2 (Darbo [12]). Let G be a closed, bounded convex set in a Banach space X.
Assume that U : G→X satisfies ‖U (x)− U (y)‖ ≤ c‖x − y‖ for all x, y ∈ G, where c < 1.
Assume that C : G→X is a compact, continuous map. Define f (x) := U (x) + C(x) and
assume that f (x) ∈ G for all x ∈ G. Then f has a fixed point in G and the set of fixed points
of f in G is compact.

The above corollary generalizes both the Schauder fixed point theorem and, in a weak
sense, the contraction mapping principle. It is striking that there is no known proof of the
corollary (in the stated generality) which does not use the Kuratowski MNC.

If (X, ‖ · ‖) is a Banach space, we shall denote by B(X) the set of all bounded subsets
of X . We say a map β : B(X)→[0,∞) is a homogeneous measure of noncompactness
on X or homogeneous MNC if β satisfies properties (A1)–(A7) with β replacing α in these
formulas. Many authors (see [2,4,5]) place a more restrictive condition in their definition
and additionally require the set-additivity property (A8). Clearly, if β satisfies properties
(A1) and (A8), then it satisfies properties (A2) and (A3), but the converse is false. Most
authors (see [2,4,5]) say that a map β : B(X)→[0,∞) is a “measure of noncompactness”
(homogeneity is understood) if β satisfies properties (A1) and (A4)–(A8). However, we shall
not demand that our homogeneous MNC’s satisfy property (A8). We are aware of few appli-
cations in analysis which require the use of property (A8) as opposed to properties (A2)
and (A3). Furthermore, as we shall discuss in Sect. 2, there are important examples of maps
β : B(X)→[0,∞) which satisfy properties (A1)–(A7) but not necessarily property (A8).
A more flexible axiomatic treatment of measures of noncompactness, closer in spirit to our
approach here, is given by Banaś and Goebel in [7]. See, also, [40] for a related discussion.

For the purposes of this paper, the issue of set-additivity will be unimportant. We shall
prove in Sect. 2 that there is a canonical procedure which assigns to each homogeneous MNC
β (in our sense) a homogeneous MNC ξ which satisfies property (A8). Furthermore, β = ξ if
β already satisfies property (A8). Moreover, in all of our constructions, whenever we obtain
inequivalent homogeneous MNC’s β1 and β2, our canonical construction will give inequiv-
alent homogeneous MNC’s ξ1 and ξ2 which satisfy the set-additivity property of property
(A8).

There are many examples of homogeneous MNC’s; see [2,4,5,7] and references there.
For the reader’s convenience, we recall two examples. If (X, d) is a metric space and r > 0,
we shall always write

Br (x) := {y ∈ X | d(y, x) < r}. (1.1)

If (X, ‖ · ‖) is a Banach space and S ∈ B(X), we define α̃(S), the so-called “ball MNC” or
“Hausdorff MNC” of S, by

α̃(S) := inf{r > 0 | S ⊂
n⋃

i=1

Br (xi ) for some xi ∈ X, for 1 ≤ i ≤ n < ∞}.

One can check that α̃ satisfies properties (A1)–(A8) and that for all S ∈ B(X),
α̃(S) ≤ α(S) ≤ 2α̃(S),

where α is the Kuratowski MNC on X . However, one should note that, for applications in
fixed point theory, there are important differences between α and α̃; see Section 3 of [34]
and [31].

For our second example, let (K , d) be a compact metric space and let C(K ) denote the
usual Banach space of continuous maps f : K→R with norm ‖ f ‖ := supx∈K | f (x)|. If S
is a bounded subset of C(K ) and δ > 0, we define
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456 J. Mallet-Paret, R. D. Nussbaum

ωδ(S) := sup{| f (x)− f (y)| | f ∈ S and x, y ∈ K satisfy d(x, y) ≤ δ},

ω(S) := lim
δ→0+ ωδ(S).

One can prove that ω is a homogeneous MNC on C(K ) and ω satisfies property (A8).
Furthermore, it is a special case of results in [32] (see, also, [3] for related theorems) that for
every bounded S ⊂ C(K ) we have

ω(S)

2
≤ α(S) ≤ ω(S),

where α denotes the Kuratowski MNC. Note that property (A1) for ω implies the Ascoli-
Arzelà theorem. The homogeneous MNC ω plays an important role in [24,36,37].

The restriction of ω to any closed linear subspace Y of C(K ) also gives a homogeneous
MNC on Y . An old result of Banach [6] implies that for any separable Banach space Z , there
is a linear isometry L : Z→Y ⊂ C([0, 1]) which maps Z onto a closed linear subspace Y of
C([0, 1]). Using L , one can define a homogeneous MNC ω̃ on Z by

ω̃(S) := ω(L S).

If, abusing notation, α denotes the Kuratowski MNC on Z , one has, for all bounded sets
S ⊂ Z ,

ω̃(S)

2
≤ α(S) ≤ ω̃(S).

In general, if β and γ are homogeneous MNC’s on a Banach space (X, ‖ · ‖), we shall
say that β dominates γ if there exists c > 0 such that

γ (S) ≤ cβ(S)

for all S ∈ B(X). We shall say that β and γ are equivalent if β dominates γ and γ dominates
β, that is, if there exist positive constants b and c such that, for all S ∈ B(X),

bβ(S) ≤ γ (S) ≤ cβ(S). (1.2)

If β and γ are not equivalent, we shall say they are inequivalent. A great deal of effort has
been expended in proving that various measures of noncompactness are equivalent and in
finding the optimal constants b and c in Eq. (1.2). Here, we raise the following basic problem:

Fundamental Question For what infinite dimensional Banach spaces (X, ‖ · ‖), do there
exist inequivalent homogeneous measures of noncompactness β1 and β2 on X?

Despite its basic nature, it seems that the Fundamental Question has not been raised before
and poses significant difficulties.

We believe that the Fundamental Question is of considerable intrinsic interest, and we
shall study the question in its own right here. However, our original motivation comes from
problems in nonlinear analysis, in particular, from the problem of generalizing the classical
linear Krein-Rutman theorem (see [10,21,24,35–38,41,42] and references there) to the case
of continuous, homogeneous, order-preserving maps f which take a closed cone C into itself.
Such maps arise in numerous applications, for example, in the study of max-plus operators,
which in turn arise in problems in delay-differential equations; see [24–26]. Moreover, such
maps typically are not compact, and this gives rise to significant difficulties in their analysis.
Often one wants to find an eigenvector of f with eigenvalue equal to rC ( f ) = r , the so-called
“cone spectral radius of f .” This problem (see [24,35,36]) is closely related to measures of
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Inequivalent measures of noncompactness 457

noncompactness and to correctly defining the “(cone) essential spectral radius of f ,” denoted
ρC ( f ). In [28], we explore these issues further, and in particular, our explicit construction of
inequivalent MNC’s in the present paper plays a significant role in the analysis in [28]. See
also [35] and [36] for definitions, references to the literature and related theorems.

If X is an infinite dimensional complex Banach space and L : X→X is a bounded linear
map, there are several definitions of ess(L), the essential spectrum of L; and these defini-
tions are, in general, inequivalent. See [19] for one definition. However, it is known that the
essential spectral radius of L , namely the quantity ρ(L) defined by

ρ(L) := sup{|λ| | λ ∈ ess(L)},
is independent of the particular definition of ess(L). If β is any homogeneous MNC on X
(for example, if β = α) one can define

β(L) := inf{c ≥ 0 | β(L S) ≤ cβ(S) for all bounded S ⊂ X}.
More generally if C is a closed cone in a Banach space X and f : C→C is continuous,
homogeneous and order-preserving, one can define

βC ( f ) := inf{c ≥ 0 | β( f (S)) ≤ cβ(S) for all bounded S ⊂ C}.
It is proved in [30] that for the Kuratowski MNC α,

ρ(L) = lim
n→∞α(L

n)1/n = inf
n≥1

α(Ln)1/n,

and it follows easily that if β is a homogeneous MNC equivalent to α, then

ρ(L) = lim
n→∞β(L

n)1/n .

See, also, [15] for related results. For a general continuous, homogeneous, and order-pre-
serving map f : C→C , where C is a cone in a Banach space X , and for a homogeneous
MNC β on X , one can follow the approach in [24,35,36] and try to define ρC ( f ), the cone
essential spectral radius of f , by

ρC ( f ) = lim
n→∞βC ( f n)1/n . (1.3)

One would hope that for such a definition one would have that (a) ρC ( f ) is independent of
β; (b) ρC ( f ) ≤ rC ( f ); and (c) ρC ( f ) is always defined and finite. However, with the aid
of results in this paper, it is shown in [28] (see also [27]) that, in general, the definition of
Eq. (1.3) has serious failings and that properties (a), (b) and (c) may fail even for continuous
maps f which are linear on C where C is a total cone. Indeed, we prove in [28] that for a
general homogeneous MNC β, even the inequality (b) above may fail. Revised definitions
of the cone essential spectral radius and new theorems about existence of eigenvectors are
given in [28].

A brief outline of this paper may be helpful. In Sect. 2, we give some general theorems
which provide methods for finding inequivalent homogeneous MNC’s which satisfy the set-
additivity property (A8). In Sects. 3–6, we apply the results of Sect. 2 to various special
cases. Our generic theorem is the following: For a “suitable” Banach space X , we prove that
there exists a so-called “graded family” of homogeneous, set-additive MNC’s, namely, an
uncountable set {βt }t>0 of homogeneous, set-additive MNC’s which are pairwise inequiva-
lent, and with βs dominating βt if 0 < s < t . The formal definition is given in Sect. 2. In
Sect. 3, we assume that (�,�,μ) is a general measure space and 1 ≤ p < ∞, and we prove
this theorem for X = L p(�,�,μ) provided that X is infinite dimensional. In Sect. 4, we
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458 J. Mallet-Paret, R. D. Nussbaum

assume that K is a compact Hausdorff space with infinitely many points, and we prove the
theorem for X = C(K ). As a corollary, we obtain the theorem for X = L∞(�,�,μ). In
Sect. 5, we assume that (K , d) is a compact, metric space with infinitely many points and
that 0 < λ ≤ 1, and we prove the theorem for X = C0,λ(K ), the Banach space of Hölder
continuous functions with Hölder exponent λ. In Sect. 6, we assume that� is an open subset
of R

n , that m is a positive integer, and that 1 ≤ p ≤ ∞, and we prove the theorem for the
Sobolev space X = W m,p(�).

In fact, using these theorems and results of Sect. 2, one can easily obtain a wide variety
of more general results. Thus, if Y is a Banach space, K is a compact Hausdorff space with
infinitely many points and X = C(K ; Y ) denotes the Banach space of continuous functions
f : K → Y , our generic theorem holds for X . This follows from Theorem 2.12 below and
the fact that C(K ; R) is linearly isomorphic to a closed, complemented linear subspace of
C(K ; Y ).

2 Generating inequivalent measures of noncompactness

In view of our interest in cones and cone mappings [24,35–38], we shall initially define
(weakly) homogeneous MNC’s on “wedges,” although our main interest here will be in
MNC’s on Banach spaces.

Let (X, ‖·‖) be a normed linear space. A set C ⊂ X will be called a wedge if C is a convex
set and λC ⊂ C for all λ ≥ 0. A wedge will be called a cone if additionally C ∩ (−C) = {0}.
A wedge C will be called a complete wedge in (X, ‖ · ‖) if C is a complete metric space in
the metric derived from the norm on X . If C is a wedge in a normed linear space (X, ‖ · ‖),
then B(C)will denote the collection of bounded subsets of C and as before, B(X)will denote
the collection of bounded subsets of X .

If C is a complete wedge in a normed linear space (X, ‖ · ‖), a map β : B(C)→[0,∞)

may satisfy certain properties:

(B1) β(S) = 0 if and only if S is compact, for every S ∈ B(C);
(B2) β(S) ≤ β(T ) for every S, T ∈ B(C) with S ⊂ T ;
(B3) β(S ∪ {x0}) = β(S) for every S ∈ B(C) and x0 ∈ C ;
(B4) β(S) = β(S) for every S ∈ B(C);
(B5) β(co(S)) = β(S) for every S ∈ B(C);
(B6) β(S + T ) ≤ β(S)+ β(T ) for every S, T ∈ B(C); and
(B7w) β(λS) = λβ(S) for every S ∈ B(C) and every λ ≥ 0.

If C = X and (X, ‖ · ‖) is a Banach space over R or C, it may also be true that

(B7) β(λS) = |λ|β(S) for every S ∈ B(X) and every scalar λ.

Definition If C is a complete wedge in a normed linear space (X, ‖ · ‖), a map β :
B(C)→[0,∞)which satisfies properties (B1)–(B7w) will be called a weakly homogeneous
measure of noncompactness on C. If C = X and X is a Banach space and if β satisfies
properties (B1)–(B7), then β will be called a homogeneous measure of noncompactness
on X .

If 0 < r ≤ 1 and β : B(C)→[0,∞) satisfies properties (B1)–(B6), and if γ (S) := β(S)r ,
then γ also satisfies properties (B1)–(B6). Thus, properties (B7w) and (B7) are useful nor-
malizing conditions.
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Inequivalent measures of noncompactness 459

We shall say that a map β : B(C)→[0,∞) satisfies the set-additivity property if

(B8) β(S ∪ T ) = max{β(S), β(T )} for every S, T ∈ B(C).
Of course property (B8), with (B1) for S = {x0}, implies properties (B2) and (B3) and
implies, for n < ∞, that β(

⋃n
i=1 Si ) = max1≤i≤nβ(Si ). For brevity, we shall henceforth

refer to a (weakly) homogeneous MNC which satisfies the set-additivity property (B8) as a
(weakly) homogeneous, set-additive MNC.

The main results of this paper concern the existence of graded families of homogeneous
MNC’s on various spaces, defined as follows.

Definition Let X be a Banach space. By a graded family of homogeneous MNC’s, we
mean an uncountable collection {βt }t>0 of homogeneous MNC’s on X , indexed by t > 0,
such that if 0 < s < t then βs dominates βt but βs is inequivalent to βt . Further, if all
the MNC’s βt are set-additive, we say that {βt }t>0 is a graded family of homogeneous,
set-additive MNC’s.

Recall that for most authors (see [2,4,5]) an MNC is a map β : B(X)→[0,∞) which
satisfies properties (B1) and (B4)–(B8). For us, this is a homogeneous, set-additive MNC.
Unlike most authors [2,4,5], we do not assume that our MNC’s necessarily satisfy property
(B8) because we are aware of few applications in which property (B8), as opposed to prop-
erties (B2) and (B3), plays a crucial role. Furthermore, property (B8) is not preserved by a
variety of simple algorithms which generate homogeneous MNC’s.

For example, suppose that (X, ‖ · ‖) is a normed linear space and C ⊂ X is a com-
plete wedge. Suppose that β is a weakly homogeneous MNC on C and that L : X→X is
a linear map such that LC ⊂ C and L|C is continuous. For n ≥ 1 a fixed integer, define
γ : B(C)→[0,∞) by

γ (S) :=
n∑

j=0

β(L j S). (2.1)

The construction in Eq. (2.1) plays an important role in [35] and [36], and the reader may
easily verify that γ is a weakly homogeneous MNC on C , and also that γ is homogeneous
if C = X and β is homogeneous. However, γ need not satisfy property (B8) even if β is
the Kuratowski MNC. (Note that it is incorrectly claimed in [35] and [36] that γ satisfies
property (B8), but property (B8) is not needed in the proofs there.)

If (X, ‖ · ‖) is a Banach space and β is a homogeneous MNC on X , properties (B1)–(B7)
are not independent, as the following three results show.

Proposition 2.1 Let C be a complete wedge in a normed linear space (X, ‖ · ‖) and assume
that β : B(C)→[0,∞) satisfies properties (B1), (B2) and (B6). Then, for all S, T ∈ B(C)
with β(T ) = 0, we have

β((S ∪ {0}) ∪ T ) = β(S ∪ {0}). (2.2)

In addition, we have that

β(S ∪ T ) = β(S) (2.3)

if C is a linear subspace of X.

Proof The reader can check that

(S ∪ {0}) ∪ T ⊂ (S ∪ {0})+ (T ∪ {0}).
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460 J. Mallet-Paret, R. D. Nussbaum

Property (B1) implies that T is compact so T ∪ {0} has compact closure and (using property
(B1) again), β(T ∪ {0}) = 0. Properties (B2) and (B6) now give

β((S ∪ {0}) ∪ T ) ≤ β(S ∪ {0})+ β(T ∪ {0}) = β(S ∪ {0}).
Property (B2) implies that β(S ∪ {0}) ≤ β((S ∪ {0}) ∪ T ), so we obtain Eq. (2.2).

Of course, if we assume property (B3), Eq. (2.3) follows immediately from Eq. (2.2). The
point is that, if C is a linear subspace, Eq. (2.3) and, of course, property (B3), follow from
our given assumptions. If C is a linear subspace of X , select x0 ∈ S and note that −x0 ∈ C .
The reader can verify that

S ∪ T ⊂ S + (T ∪ {x0})+ {−x0}
It follows from properties (B1), (B2) and (B6) that

β(S ∪ T ) ≤ β(S)+ β((T ∪ {x0})+ {−x0})
≤ β(S)+ β(T ∪ {x0})+ β({−x0}) = β(S).

Property (B2) implies that β(S) ≤ β(S ∪ T ), so β(S ∪ T ) = β(S). ��
Proposition 2.2 Let (X, ‖ · ‖) be a Banach space and let β : B(X)→[0,∞) be a map which
satisfies properties (B1), (B2), (B6) and (B7w). Then for all S ∈ B(X) and for all T ∈ B(X)
with β(T ) = 0 we have

β(S) = β(S), β(S + T ) = β(S).

Furthermore, if α denotes the Kuratowski measure of noncompactness on X, there exists
c ≥ 0 such that

β(S) ≤ cα(S)

for all S ∈ B(X), and so α dominates β.

Proof First, property (B2) implies that β(S) ≤ β(S). If ε > 0 and Bε(0) is as in Eq. (1.1),
we have that S ⊂ S+ Bε(0), so property (B6) implies that β(S) ≤ β(S)+β(Bε(0)). Because
Bε(0) = εB1(0), property (B7w) implies that

β(S) ≤ β(S)+ εβ(B1(0)).

Since ε is arbitrary, we see that β(S) ≤ β(S), hence β(S) = β(S).
If β(T ) = 0, property (B1) implies that β(−T ) = 0. It follows from property (B6) that

β(S + T ) ≤ β(S)+ β(T ) = β(S). Since S ⊂ (S + T )+ (−T ), we see that

β(S) ≤ β((S + T )+ (−T )) ≤ β(S + T )+ β(−T ) = β(S + T ),

so β(S + T ) = β(S).
Define c := β(B1(0)). Let S ∈ B(X), denote d := α(S), and let ε > 0. Then there exist

sets Si for 1 ≤ i ≤ n < ∞, with S = ⋃n
i=1 Si and diam(Si ) < d + ε. Select xi ∈ Si for

each 1 ≤ i ≤ n, define T := {xi | 1 ≤ i ≤ n} and note that S ⊂ T + Bd+ε(0). It follows that

β(S) ≤ β(T )+ β(Bd+ε(0)) = (d + ε)β(B1(0)) = (α(S)+ ε)c.

Since ε > 0 is arbitrary, β(S) ≤ cα(S). ��
Corollary 2.3 If (X, ‖ · ‖) is a Banach space, then β : B(X)→[0,∞) is a homogeneous
MNC if and only if β satisfies properties (B1), (B2), (B5), (B6) and (B7). Furthermore, if this
is the case then β is dominated by the Kuratowski MNC α.
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Inequivalent measures of noncompactness 461

Proof This follows directly from Propositions 2.1 and 2.2. ��
In contrast to the case of a Banach space, if C is a complete cone in a normed linear

space and β is a weakly homogeneous MNC on C , then the interdependence of properties
(B1)–(B7w) is unclear, and one can prove [28] that β is not necessarily dominated by the
Kuratowski MNC.

We now suppose that (Z , ‖ · ‖) and (Z1, ‖ · ‖1) are Banach spaces with Z ⊂ Z1. We
assume that the inclusion map i : Z→Z1 is continuous, so there exists a constant M with

(C1) ‖x‖1 ≤ M‖x‖ for all x ∈ Z .

We also assume that there exist continuous linear maps Pn : Z→Z , indexed by integers
n ≥ 1, with the following properties:

(C2) there exists a constant C with ‖Pn x‖ ≤ C‖x‖ for all x ∈ Z and all n ≥ 1;
(C3) there exists a constant C1 with ‖Pn x‖1 ≤ C1‖x‖1 for all x ∈ Z and all n ≥ 1; and
(C4) for every n ≥ 1 there exists a constant cn with ‖Pn x‖ ≤ cn‖Pn x‖1 for all x ∈ Z .

The following theorem provides the basic construction which will be used to obtain
inequivalent homogeneous MNC’s. While the hypotheses of this result may seem unnat-
ural, we shall see that it can be applied to many important examples of Banach spaces Z .

Theorem 2.4 Let (Z , ‖ · ‖) and (Z1, ‖ · ‖1) be Banach spaces with Z ⊂ Z1 such that prop-
erty (C1) holds for some M. Also assume there exist linear maps Pn : Z → Z, for n ≥ 1,
for which properties (C2)–(C4) are satisfied. Let α (respectively, α1) denote the Kuratowski
MNC on Z (respectively, on Z1). With B(Z) denoting the collection of bounded subsets of
Z, define A(Z) ⊂ B(Z) by

A(Z) := {S ∈ B(Z) | lim
n→∞α((I − Pn)S) = 0}. (2.4)

For M as in property (C1) and S ∈ B(Z), define

β(S) := inf{α1(A)+ Mα(B) | S ⊂ A + B, for some A ∈ A(Z) and B ∈ B(Z)}. (2.5)

Then β is a homogeneous MNC on Z, with β(S) = α1(S) for all S ∈ A(Z) and β(S) ≤
Mα(S) for all S ∈ B(Z). If additionally there exists a sequence of sets Sn ∈ A(Z) for n ≥ 1
such that α(Sn) > 0 for all n ≥ 1 and

lim
n→∞

(
α1(Sn)

α(Sn)

)
= 0, (2.6)

then β is inequivalent to α.

Proof For convenience, we shall denote A := A(Z) and B := B(Z). The reader can verify,
using the linearity of the maps Pn , that (a) if α(S) = 0, then S ∈ A; (b) if A1 ∈ A and
A2 ∈ A, then A1 + A2 ∈ A; (c) if A ∈ A, then co(A) ∈ A; and (d) if A ∈ A and λ is a
scalar, then λA ∈ A. In particular, {0} ∈ A, and for S ∈ B we obtain from Eq. (2.5) that

β(S) ≤ α1({0})+ Mα(S) = Mα(S). (2.7)

We next show that β(S) = α1(S) for all S ∈ A. If we take A = S and B = {0} in Eq. (2.5),
we see that β(S) ≤ α1(S). Conversely, suppose that S ⊂ A + B, where A ∈ A and B ∈ B.
Using property (C1), it follows that

α1(S) ≤ α1(A)+ α1(B) ≤ α1(A)+ Mα(B),

and this, with Eq. (2.5), implies that α1(S) ≤ β(S). Thus, α1(S) = β(S).
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To prove that β is a homogeneous MNC on Z , by Corollary 2.3 it is enough to prove
that β satisfies properties (B1), (B2), (B5), (B6) and (B7). We begin with property (B1). If
S is compact, then (2.7) implies that β(S) = 0. Conversely, suppose that β(S) = 0. We
have to prove that α(S) = 0. Given ε > 0, Eq. (2.5) implies that there exist A ∈ A and
B ∈ B with S ⊂ A + B and α1(A)+ Mα(B) < ε. Because A ∈ A, there exists N such that
α((I − Pn)A) < ε for all n ≥ N . Because we have

(I − PN )S ⊂ (I − PN )A + (I − PN )B,

it follows that

α((I − PN )S) ≤ α((I − PN )A)+ α((I − PN )B) < ε + α((I − PN )B).

Using property (C2), we deduce that α((I − PN )B) ≤ α(B)+α(PN B) ≤ (1 + C)α(B) and
so

α((I − PN )S) < ε + (1 + C)α(B) < ε + (1 + C)ε

M
.

Let N be as above and let cN be as in property (C4), where we can assume that cN ≥ 1.
Since β(S) = 0, select A′ ∈ A and B ′ ∈ B with S ⊂ A′ + B ′ and

α1(A
′)+ Mα(B ′) < ε

cN
.

Using property (C3) we see that

α1(PN A′) ≤ C1α1(A
′) < C1ε

cN
,

and using (C4), we derive from this that

α(PN A′) ≤ cNα1(PN A′) < C1ε.

Property (C2) yields that

α(PN B ′) ≤ Cα(B ′) < Cε

McN
≤ Cε

M
.

Since PN S ⊂ PN A′ + PN B ′, we see that

α(PN S) ≤ α(PN A′)+ α(PN B ′) <
(

C1 + C

M

)
ε.

Finally, because S ⊂ PN S + (I − PN )S we conclude that

α(S) ≤ α(PN S)+ α((I − PN )S) <

(
C1 + C

M

)
ε +
(

1 + 1 + C

M

)
ε.

Since ε > 0 is arbitrary, we obtain that α(S) = 0 and β satisfies property (B1).
The fact that β satisfies property (B2) is straightforward and is left to the reader.
To verify property (B5), note that property (B2) implies that β(S) ≤ β(co(S)). On the

other hand, given ε > 0 and S ∈ B, select A ∈ A and B ∈ B with S ⊂ A + B and

α1(A)+ Mα(B) < β(S)+ ε.

Recall that co(A) ∈ A. It is well known that the sum of convex sets is convex so co(A)+co(B)
is convex and thus co(S) ⊂ co(A)+ co(B). It follows that
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β(co(S)) ≤ α1(co(A))+ Mα(co(B)) = α1(A)+ Mα(B) < β(S)+ ε.

Since ε > 0 is arbitrary, β(co(S)) ≤ β(S) and hence β(co(S)) = β(S).
To prove property (B6), let S, T ∈ B and ε > 0. Then there exist A, A′ ∈ A and B, B ′ ∈ B

with S ⊂ A + B and T ⊂ A′ + B ′, and both

α1(A)+ Mα(B) < β(S)+ ε, α1(A
′)+ Mα(B ′) < β(T )+ ε.

Recall that A + A′ ∈ A and note that S + T ⊂ (A + A′)+ (B + B ′). It follows that

β(S + T ) ≤ α1(A + A′)+ Mα(B + B ′)

≤ (α1(A)+ Mα(B))+ (α1(A
′)+ Mα(B ′)) < β(S)+ β(T )+ 2ε.

Since ε > 0 is arbitrary, we see that β(S + T ) ≤ β(S)+ β(T ).
The proof that β is homogeneous (property (B7)) is straightforward and is left to the

reader.
Finally, if there exists a sequence of sets Sn ∈ A for n ≥ 1, as in the statement of the

theorem, we have

lim
n→∞

(
β(Sn)

α(Sn)

)
= lim

n→∞

(
α1(Sn)

α(Sn)

)
= 0,

so β and α are inequivalent. ��
We shall show below that, in general, the homogeneous MNCβ constructed in Theorem 2.4

need not satisfy the set-additivity property. However, because α and α1 in Theorem 2.4 do
satisfy the set-additivity property, β as constructed in this theorem “almost satisfies” this
property. More precisely, we have the following result.

Proposition 2.5 With the notation and assumptions of Theorem 2.4, let Si ∈ B(Z) for
1 ≤ i ≤ n and S :=⋃n

i=1 Si . Then

β(S)

2
≤ max

1≤i≤n
β(Si ) ≤ β(S) (2.8)

where β is the homogeneous MNC given by (2.5).

Proof Because Si ⊂ S for 1 ≤ i ≤ n and β is a homogeneous MNC, it holds that β(Si ) ≤
β(S) for 1 ≤ i ≤ n. This gives the second inequality in (2.8).

To prove the first inequality in (2.8), fix ε > 0 and for each i with 1 ≤ i ≤ n select
Ai ∈ A(Z) and Bi ∈ B(Z) such that Si ⊂ Ai + Bi and

α1(Ai )+ Mα(Bi ) < β(Si )+ ε.

Such Ai and Bi exist from the definition (2.5) of β. Let A := ⋃n
i=1 Ai and B := ⋃n

i=1 Bi .
Then the reader can easily verify that A ∈ A(Z) and B ∈ B(Z), and that S ⊂ A + B, and so

β(S) ≤ α1(A)+ Mα(B), (2.9)

again using (2.5). Nowα1(A) = max1≤i≤n α1(Ai ) andα(B) = max1≤i≤n α(Bi ), and so there
exist j and k, with 1 ≤ j, k ≤ n, such that α1(A) = α1(A j ) and α(B) = α(Bk). Therefore,

α1(A)+ Mα(B) ≤
⎧
⎨

⎩

2(α1(Ak)+ Mα(B)) < 2(β(Sk)+ ε), if α1(A) ≤ Mα(B),

2(α1(A)+ Mα(B j )) < 2(β(S j )+ ε), if α1(A) ≥ Mα(B).
(2.10)
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Combining (2.9) and (2.10), we have that

β(S) < 2

(
max

1≤i≤n
β(Si )+ ε

)
,

and as ε is arbitrary, the proposition is proved. ��
To prove that, in general, the homogeneous MNC β constructed in Theorem 2.4 is not

set-additive, we shall need to construct Banach spaces which are infinite direct sums of other
Banach spaces. This general construction will also be used later, in Theorem 2.13, to obtain
Banach spaces which possess graded families of homogeneous MNC’s.

Let (Yn, ‖ · ‖n), for n ≥ 1, be a sequence of infinite dimensional Banach spaces over the
same scalar field K, where K = R or K = C. Let Z denote the space of all infinite sequences
y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such that limn→∞ ‖yn‖n = 0, and let

|||y||| := sup
n≥1

‖yn‖n (2.11)

denote the norm on Z . One easily checks that (Z , ||| · |||) is a Banach space, and we sometimes
denote Z = (⊕∞

n=1Yn)c0 for this space.
Alternatively, an p direct sum can also be defined as follows. With (Yn, ‖ · ‖n) as above,

let p be fixed satisfying 1 ≤ p ≤ ∞. Let Z denote the space of all infinite sequences
y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such that |||y||| < ∞, where

|||y||| :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( ∞∑

n=1

‖yn‖p
n

)1/p

, if 1 ≤ p < ∞,

sup
n≥1

‖yn‖n, if p = ∞,

(2.12)

denotes the norm on Z . Again one easily checks that (Z , ||| · |||) is a Banach space, and we
sometimes denote Z = (⊕∞

n=1Yn)p for this space. As will be noted in Sect. 3, the space
p(N) is an example of such a space Z .

We also consider the following variation on the above constructions. With (Yn, ‖ · ‖n)

as before, fix a nonincreasing sequence an of positive reals satisfying an ≤ 1 for n ≥ 1.
(Later we shall additionally assume that limn→∞an = 0, although we do not need this con-
dition at present.) If Z = (⊕∞

n=1Yn)c0 then let Z1 denote the space of infinite sequences
y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such that limn→∞ an‖yn‖n = 0, and let

|||y|||1 := sup
n≥1

an‖yn‖n (2.13)

denote the norm on Z1. If on the other hand Z = (⊕∞
n=1Yn)p , then let Z1 denote the space of

infinite sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such that |||y|||1 < ∞,
where

|||y|||1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( ∞∑

n=1

a p
n ‖yn‖p

n

)1/p

, if 1 ≤ p < ∞,

sup
n≥1

an‖yn‖n, if p = ∞,

(2.14)

denotes the norm on Z1. In any case, it is easily verified that (Z1, ||| · |||1) is a Banach space.
Clearly |||y|||1 ≤ |||y||| for all y ∈ Z , and so we have the continuous inclusion Z ⊂ Z1.
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With Z and Z1 as above, define continuous linear projections Pn : Z → Z and Qn : Z →
Z by

(Pn y) j :=
⎧
⎨

⎩

y j , for 1 ≤ j ≤ n,

0, for j > n,
(Qn y) j :=

⎧
⎨

⎩

y j , for j = n,

0, for j �= n.
(2.15)

Note that

|||Pn y||| ≤ |||y|||, |||Pn y|||1 ≤ |||y|||1, |||Pn y||| ≤ a−1
n |||Pn y|||1,

hold for every y ∈ Z and n ≥ 1. Thus, the hypotheses (C1)–(C4) of Theorem 2.4 hold with
M = 1 as in the statement of that result, and so it follows upon defining

β(S) := inf{α1(A)+ α(B) | S ⊂ A + B, for some A ∈ A(Z) and B ∈ B(Z)}, (2.16)

that β is a homogeneous MNC on Z .

Lemma 2.6 With (Z , ||| · |||) and (Z1, ||| · |||1) the sequence spaces as above, and with the
norms (2.11) and (2.13), or else (2.12) and (2.14), let m ≥ 1 be any integer and let c and d
be real numbers satisfying 0 < d < c. Define the set

S(c, d; m) := {y ∈ Qm Z | |||y||| ≤ c} ∪ {y ∈ Z | |||y||| ≤ d},
with Qm as in (2.15). Then

β(S(c, d; m)) = 2(am(c − d)+ d)

for the homogeneous MNC β given by (2.16).

Proof Let us make several observations before proceeding with the proof. First note that

α((I − Pn)T ) ≤ α(T ), α(QnT ) ≤ α(T ), α1(QnT ) ≤ α1(T ), (2.17)

hold for every T ∈ B(Z) and n ≥ 1, for the projections Pn and Qn in (2.15). These are a
consequence of the inequalities |||(I − Pn)y||| ≤ |||y|||, |||Qn y||| ≤ |||y|||, and |||Qn y|||1 ≤ |||y|||1,
which hold for every y ∈ Z . Also note that

α1(T ) = anα(T ), if T ⊂ Qn Z and T ∈ B(Z), (2.18)

which holds because |||y|||1 = an |||y||| for every y ∈ Qn Z .
For simplicity, let us write S := S(c, d; m). We first prove that

β(S) ≤ 2(am(c − d)+ d). (2.19)

Let

A := {y ∈ Qm Z | |||y||| ≤ c − d}, B := {y ∈ Z | |||y||| ≤ d}.
Then the reader can verify that A ∈ A(Z) and B ∈ B(Z), and further that S ⊂ A + B. Also,
α1(A) = amα(A) from (2.18), as A ⊂ Qm Z . Thus

β(S) ≤ α1(A)+ α(B) = amα(A)+ α(B). (2.20)

Recall (see Proposition 5, Section A, in [33], or [14]) that if T is a ball of radius r in an
infinite dimensional Banach space (W, ‖ · ‖) and αW denotes the Kuratowski MNC on W ,
then αW (T ) = 2r . Since Qm Z and Z are both infinite dimensional Banach spaces, we have
that α(A) = 2(c − d) and α(B) = 2d , and with (2.20) this gives (2.19).
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We now prove that

β(S) ≥ 2(am(c − d)+ d). (2.21)

Fix any ε > 0. Then there exist A′ ∈ A(Z) and B ′ ∈ B(Z) such that S ⊂ A′ + B ′ and

α1(A
′)+ α(B ′) < β(S)+ ε. (2.22)

Define sets A′′ and B ′′ by

A′′ := (Qm A′) ∪ {0}, B ′′ := (Qm B ′) ∪ {y ∈ Z | |||y||| ≤ d},
noting that A′′ ∈ A(Z) and B ′′ ∈ B(Z), with S ⊂ A′′ + B ′′. We claim that the chain of
inequalities

amα(A
′′)+ α(B ′′) ≤ amα(A

′′)+ α(B ′) = α1(A
′′)+ α(B ′) ≤ α1(A

′)+ α(B ′) (2.23)

holds. First note that the equality in (2.23) follows from (2.18) applied to the set A′′ ⊂ Qm Z .
The final inequality in (2.23) follows from the final inequality in (2.17) applied to the set A′.
The first inequality in (2.23) will hold once we have proved that

α(B ′′) ≤ α(B ′). (2.24)

To establish (2.24), we first note that

(I − Pn)S ⊂ (I − Pn)A
′ + (I − Pn)B

′ (2.25)

for every n ≥ 1. As (I − Pn)Z is an infinite dimensional Banach space, and as

(I − Pn)S = {y ∈ (I − Pn)Z | |||y||| ≤ d}
for n ≥ m, it follows that α((I − Pn)S) = 2d for n ≥ m. Also, limn→∞ α((I − Pn)A′) = 0
because A′ ∈ A(Z). Additionally, α((I − Pn)B ′) ≤ α(B ′) for all n from the first inequality
in (2.17). Thus, it follows from (2.25) with these observations that

2d ≤ α(B ′). (2.26)

From the definition of B ′′, we now have that

α(B ′′) = max{α(Qm B ′), 2d} ≤ max{α(B ′), 2d} = α(B ′),

where we have used the second inequality in (2.17) and the inequality (2.26). This proves
(2.24) and establishes (2.23). Upon combining (2.22) with (2.23), we obtain

amα(A
′′)+ α(B ′′) < β(S)+ ε. (2.27)

Let us now establish the two inequalities

2c ≤ α(A′′)+ α(B ′′), 2d ≤ α(B ′′). (2.28)

The first inequality in (2.28) holds because Qm S ⊂ Qm A′′ + Qm B ′′ and α(Qm S) = 2c.
The second inequality in (2.28) holds because {y ∈ Z | |||y||| ≤ d} ⊂ B ′′. With this, it follows
immediately from (2.27) and (2.28), that

inf{amu + v | u ≥ 0, v ≥ 2d, and u + v ≥ 2c} < β(S)+ ε.

However, it is a simple exercise to prove that

inf{amu + v | u ≥ 0, v ≥ 2d, and u + v ≥ 2c} = 2(am(c − d)+ d),
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with the infimum achieved at u = 2(c − d) and v = 2d . This proves that

2(am(c − d)+ d) < β(S)+ ε.

Since ε > 0 is arbitrary, (2.21) holds, which completes the proof of the lemma. ��
The next result shows that the homogeneous MNC β constructed in Theorem 2.4 need

not satisfy the set-additivity property. Also, this result shows that the first inequality in (2.8)
is sharp in the sense that the denominator 2 in the first term cannot, in general, be decreased.

Proposition 2.7 Let (Z , ||| · |||) and (Z1, ||| · |||1) be as in Lemma 2.6, with the notation as in
the statement of that result.

(1) Let m ≥ 1 be any integer for which am < 1 and let ci and di be real numbers satisfying
0 < di < ci , for i = 1, 2, and also c2 < c1 and d1 < d2. Also let Si = S(ci , di ; m) for
i = 1, 2, and S = S1 ∪ S2. Then

β(S) > max{β(S1), β(S2)}. (2.29)

(2) Let m ≥ 1 be any integer for which am < 1 and fix a real number θ satisfying
am < θ < 1. Then there exist ci and di , and sets Si and S as in (1) above, such that

β(S)

2 − θ
= β(S1) = β(S2) (2.30)

holds.

Proof (1) It is easy to see that S = S(c1, d2; m). It follows from Lemma 2.6 that

β(S)=2(am(c1−d2)+d2), β(S1)=2(am(c1−d1)+d1), β(S2)=2(am(c2−d2)+d2).

From this, using the properties of ci and di , one easily verifies (2.29).
(2) Now with θ as in the statement of the proposition, fix any c1 > 0. With ε > 0 a small

parameter, let

d1 := ε, c2 := c1θ −
(
(1 − θ)(1 − am)

am

)
ε, d2 := (1 − θ)amc1

1 − am
+ (2 − θ)ε.

By choosing ε sufficiently small, one easily verifies that all the required conditions are sat-
isfied and that (2.30) holds. ��

Although the homogeneous MNC β constructed in Theorem 2.4 need not satisfy the
set-additivity property, our next theorem shows that there is a canonical construction which
assigns to a general homogeneous MNC β on a Banach space X a homogeneous, set-additive
MNC γ on X , and for which β dominates γ . In the particular case that β arises from the
construction in Theorem 2.4, we have in fact that β and γ are equivalent.

Theorem 2.8 Let C be a complete wedge in a normed linear space (X, ‖ · ‖) and let β be a
weakly homogeneous MNC on C. If S ∈ B(C), define γ (S) by

γ (S) := inf

{
max

1≤i≤n
β(Si ) | S =

n⋃

i=1

Si for some Si with 1 ≤ i ≤ n < ∞
}
. (2.31)

Then γ is a weakly homogeneous, set-additive MNC on C, and γ (S) ≤ β(S) for all S ∈ B(C).
If C = X and β is homogeneous, then γ is homogeneous.
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Suppose additionally that we are in the setting of Theorem 2.4, with β given by Eq. (2.5)
in the statement of that result, and with X = Z a Banach space. Then it is the case that

β(S)

2
≤ γ (S) ≤ β(S) (2.32)

for every S ∈ B(Z), and so β and γ are equivalent MNC’s. Also,

γ (S) = β(S) = α1(S) (2.33)

for every S ∈ A(Z).

Remark In the Fundamental Question posed in the Introduction, we asked whether there
exist inequivalent homogeneous MNC’s β1 and β2 on a given infinite dimensional Banach
space X . If such MNC’s exist, then we may take one of them to be the Kuratowski MNC
on X , say β2 = α. Then, α dominates β1 by Proposition 2.2, and Theorem 2.8 implies
that there is a homogeneous, set-additive MNC γ1 on X with β1 dominating γ1. It follows
that γ1 and α are inequivalent homogeneous, set-additive MNC’s on X . Thus, whenever
there exist inequivalent homogeneous MNC’s on a Banach space X , there exist inequivalent
homogeneous, set-additive MNC’s on X .

Proof of Theorem 2.8 If S =⋃n
i=1 Si , it is immediate from property (B2) that β(Si ) ≤ β(S)

for 1 ≤ i ≤ n, so γ (S) ≤ β(S) and β dominates γ .
We now verify that γ satisfies the properties (B1)–(B6), along with (B7w) or (B7), and

(B8), as claimed. We begin with (B1). First, if S ⊂ C and S is compact, then β(S) = 0,
and thus γ (S) = 0 since β dominates γ . Now assume that γ (S) = 0. We must prove that
S is compact. To this end, let xk ∈ S for k ≥ 1 be any sequence in S. Then, it suffices to
prove that this sequence has a convergent subsequence. If the set A := {xk | k ≥ 1} has only
finitely many distinct elements, then certainly a convergent subsequence exists, so assume
that A has infinitely many distinct elements. Since γ (S) = 0, for each n ≥ 1, there exist a
finite collection of sets Si,n , for 1 ≤ i ≤ N (n), such that S = ⋃N (n)

i=1 Si,n and β(Si,n) <
1
n

for each i . For n = 1, it follows that there exists an integer i1 with 1 ≤ i1 ≤ N (1) such that
T1 := Si1,1 contains infinitely many elements of A. Let us define sets Tj for j ≥ 1, induc-
tively as follows. Suppose, for some m > 1, that we have found sets T1 ⊃ T2 ⊃ · · · ⊃ Tm−1

such that for 1 ≤ j ≤ m − 1 it is the case that Tj ⊂ Si j , j for some i j with 1 ≤ i j ≤ N ( j),
and that Tj contains infinitely many elements of A. If we note that

Tm−1 =
N (m)⋃

i=1

(Si,m ∩ Tm−1),

it follows that there exists an integer im satisfying 1 ≤ im ≤ N (m), such that Sim ,m ∩ Tm−1

contains infinitely many elements of A. If we define Tm := Sim ,m ∩ Tm−1, then Tm ⊂ Tm−1

and Tm ⊂ Sim ,m , and Tm contains infinitely many elements of A. We have thus defined Tj

inductively for all j ≥ 1.
Since each Tj contains infinitely many elements of A, we can choose a strictly increasing

sequence of integers k j for j ≥ 1, such that y j := xk j ∈ Tj . We define the set B :={y j | j ≥1}.
Repeated application of property (B3) for β shows that if we define Bn := {y j | j ≥ n} for
positive integers n, then β(B) = β(Bn). Since Bn ⊂ Tn and β(Tn) <

1
n , we see that

β(B) < 1
n for all n ≥ 1. Thus, β(B) = 0 and B is compact. It follows that the sequence y j ,

for j ≥ 1, has a convergent subsequence, which is thus a convergent subsequence of xk , as
desired. Thus S is compact.

123



Inequivalent measures of noncompactness 469

To prove property (B2) for γ , suppose that S, T ∈ B(C) and S ⊂ T . Given ε > 0, there
exist sets Tj , for 1 ≤ j ≤ m < ∞, with

T =
m⋃

j=1

Tj , max
1≤ j≤m

β(Tj ) < γ (T )+ ε. (2.34)

Property (B2) for β implies that β(Tj ∩ S) ≤ β(Tj ), and since S =⋃m
j=1(Tj ∩ S)we obtain

that

γ (S) ≤ max
1≤ j≤m

β(Tj ∩ S) ≤ max
1≤ j≤m

β(Tj ) < γ (T )+ ε.

Since ε > 0 is arbitrary, γ (S) ≤ γ (T ).
Next, we prove that γ satisfies the set-additivity property (B8). If S, T ∈ B(C), then γ

satisfies property (B2), so

max{γ (S), γ (T )} ≤ γ (S ∪ T ).

Given ε > 0, there exist sets Si , for 1 ≤ i ≤ n < ∞, with

S =
n⋃

i=1

Si , max
1≤i≤n

β(Si ) < γ (S)+ ε. (2.35)

Similarly, there exist sets Tj , for 1 ≤ j ≤ m < ∞ satisfying (2.34). Thus S ∪ T =
(⋃n

i=1 Si
) ∪
(⋃m

j=1 Tj

)
and

γ (S ∪ T ) ≤ max

{
max

1≤i≤n
β(Si ), max

1≤ j≤m
β(Tj )

}
< max{γ (S)+ ε, γ (T )+ ε}.

Since ε > 0 is arbitrary, we conclude that

γ (S ∪ T ) ≤ max{γ (S), γ (T )},
which proves property (B8) for γ .

Property (B3) holds for γ , as it is a special case of property (B8), using (B1).
To prove property (B4) for γ , we have to show that γ (S) = γ (S) for all S ∈ B(C). Prop-

erty (B2) implies that γ (S) ≤ γ (S). Given ε > 0, there exist sets Si , for 1 ≤ i ≤ n < ∞
satisfying (2.35). Since n is finite, S =⋃n

i=1 Si and

γ (S) ≤ max
1≤i≤n

β(Si ) = max
1≤i≤n

β(Si ) < γ (S)+ ε.

Since ε > 0 is arbitrary, we obtain that γ (S) ≤ γ (S), so γ (S) = γ (S).
We next show that γ satisfies property (B5). We have to prove that γ (co(S)) = γ (S), and

since S ⊂ co(S) and γ (S) ≤ γ (co(S)), it suffices to prove that γ (co(S)) ≤ γ (S). Given
ε > 0, there exist sets Si , for 1 ≤ i ≤ n < ∞ satisfying (2.35). Define � ⊂ R

n to be the
simplex given by

� :=
{
λ = (λ1, λ2, . . . , λn) ∈ R

n | λi ≥ 0 for 1 ≤ i ≤ n and
n∑

i=1

λi = 1

}

and define Ti := co(Si ). If we define a set T by

T :=
{

n∑

i=1

λi xi | (λ1, λ2, . . . , λn) ∈ � and xi ∈ Ti for 1 ≤ i ≤ n

}
,
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we leave to the reader the exercise of proving that S ⊂ T ⊂ co(S) and that T is convex, and
so T = co(S). Let ‖ · ‖∞ denote the sup norm on R

n , so ‖λ‖∞ := max1≤i≤n |λi |, where
λ = (λ1, λ2, . . . , λn). Select κ with 0 < κ < ε

n and for λ ∈ � define

Bκ (λ) := {μ ∈ � | ‖μ− λ‖∞ < κ}.
Let Bκ (λ j ), for 1 ≤ j ≤ p, be a finite covering of the compact set �, where λ j :=
(λ

j
1, λ

j
2, . . . , λ

j
n) ∈ � for each j . Define �i := co(Ti ∪ {0}) and note that

(λ
j
i + κ)�i ⊃ {sy | 0 ≤ s ≤ λ

j
i + κ and y ∈ Ti }.

It follows that

co(S) = T ⊂
p⋃

j=1

(
n∑

i=1

(λ
j
i + κ)�i

)
,

so

co(S) =
p⋃

j=1

((
n∑

i=1

(λ
j
i + κ)�i

)
∩ co(S)

)
. (2.36)

Using the properties of β, we see that

β(�i ) = β(Ti ∪ {0}) = β(Ti ) = β(Si ),

so

β

((
n∑

i=1

(λ
j
i + κ)�i

)
∩ co(S)

)
≤ β

(
n∑

i=1

(λ
j
i + κ)�i

)

≤
n∑

i=1

(λ
j
i + κ)β(�i ) =

n∑

i=1

(λ
j
i + κ)β(Si ) ≤

n∑

i=1

(λ
j
i + κ)(γ (S)+ ε)

= (1 + nκ)(γ (S)+ ε) < (1 + ε)(γ (S)+ ε).

The above estimate and Eq. (2.36) imply that γ (co(S)) < (1+ε)(γ (S)+ε), and since ε > 0
is arbitrary, we obtain that γ (co(S)) ≤ γ (S), as desired.

We now prove that γ satisfies property (B6). If S, T ∈ B(C), then given ε > 0, there exist
sets Tj , for 1 ≤ j ≤ m < ∞, and sets Si , for 1 ≤ i ≤ n < ∞, satisfying (2.34) and (2.35),
respectively. We then have S + T = ⋃n

i=1
⋃m

j=1(Si + Tj ). Furthermore, since β satisfies
property (B6), we obtain

β(Si + Tj ) ≤ β(Si )+ β(Tj ) < γ (S)+ γ (T )+ 2ε

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. It follows that γ (S + T ) < γ (S)+ γ (T )+ 2ε. Since ε > 0
is arbitrary, we conclude that γ (S + T ) ≤ γ (S)+ γ (T ).

The proof of weak homogeneity (property (B7w)) of γ follows easily from Eq. (2.31)
using the weak homogeneity of β. Similarly, if C = X and β is homogeneous (property
(B7)), one easily sees that γ is also homogeneous. We leave the details to the reader.

Lastly, we prove the claims in the final paragraph of the statement of the theorem, where
β is given by Theorem 2.4. For any S ∈ B(Z), we have (2.32) by Proposition 2.5. Now, let
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Inequivalent measures of noncompactness 471

S ∈ A(Z), and suppose that S = ⋃n
i Si for some Si , for 1 ≤ i ≤ n < ∞. Then Si ∈ A(Z)

for each i , and so β(S) = α1(S) and β(Si ) = α1(Si ) for every i , by Theorem 2.4. Thus

β(S) = α1(S) = max
1≤i≤n

α1(Si ) = max
1≤i≤n

β(Si ).

From this and from (2.31), one easily sees that (2.33) holds, as claimed. ��
With the aid of Theorem 2.8, we can give a refinement of Theorem 2.4.

Theorem 2.9 Let the assumptions and notation of the statement of Theorem 2.4 hold, includ-
ing the existence of sets Sn ∈ A(Z) for n ≥ 1 with α(Sn) > 0 such that the limit (2.6) holds.
Then there exists a homogeneous, set-additive MNC γ on Z such that γ is inequivalent to α,
and for which γ (S) = α1(S) for all S ∈ A(Z). Moreover, γ (S) ≤ Mα(S) for all S ∈ B(Z)
where M is as in condition (C1).

Proof Theorem 2.4 implies that the homogeneous MNC β given by Eq. (2.5) is inequivalent
to α, and that β(S) = α1(S) for all S ∈ A(Z). Theorem 2.8 implies that if γ is defined by
Eq. (2.31), then γ is a homogeneous, set-additive MNC on Z which is equivalent to β, and is
thus inequivalent to α. Also, γ (S) = β(S) = α1(S) for all S ∈ A(Z), again by Theorem 2.8.
Finally, γ (S) ≤ β(S) ≤ Mα(S) for all S ∈ B(Z) by Theorems 2.4 and 2.8. ��

In our applications, we shall actually have more information. For the reader’s convenience,
in Theorems 2.10 and 2.12 we explicitly describe two situations we shall encounter.

Theorem 2.10 Let Z be a Banach space with norm ‖ · ‖ and let α denote the Kuratowski
MNC on Z. Suppose for each t > 0 that (Zt , ‖ · ‖t ) is a Banach space with Kuratowski
MNC αt , and that Z ⊂ Zt with the inclusion map continuous. Assume further that for each
integer n ≥ 1, there is a continuous linear map Pn : Z→Z, and that for each t ≥ 0 there is
a constant C(t), such that

‖Pn x‖t ≤ C(t)‖x‖t

for every x ∈ Z, where for t = 0 we denote (Z0, ‖ · ‖0) := (Z , ‖ · ‖). Also assume that for
each n ≥ 1 and t > 0, there is a constant cn(t) with

‖Pn x‖ ≤ cn(t)‖Pn x‖t

for every x ∈ Z. Define A(Z) as in Eq. (2.4). For each ordered pair (s, t) with 0 < s < t ,
assume that there exists a sequence Sn ∈ A(Z), for n ≥ 1, with αs(Sn) > 0 for every n ≥ 1
and

lim
n→∞

(
αt (Sn)

αs(Sn)

)
= 0. (2.37)

Then for each t > 0, there exists a homogeneous, set-additive MNC γt on Z such that γs

and γt are inequivalent whenever 0 < s < t . Furthermore, if Zs ⊂ Zt whenever 0 < s < t
and if the inclusion map is continuous, then {γt }t>0 is a graded family of homogeneous,
set-additive MNC’s on Z.

Proof If, for fixed t > 0, we let Zt take the role of Z1 in Theorem 2.4, Eq. (2.5) gives a
homogeneous MNC βt on Z . If we then apply Theorem 2.8 to βt , we obtain from Eq. (2.31) a
homogeneous, set-additive MNC γt on Z such that γt (S) = βt (S) = αt (S) for all S ∈ A(Z).
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If, whenever 0 < s < t , there exists a sequence of sets Sn ∈ A(Z) for n ≥ 1 as in the
statement of the theorem, it follows that

lim
n→∞

(
γt (Sn)

γs(Sn)

)
= lim

n→∞

(
αt (Sn)

αs(Sn)

)
= 0,

so γt and γs are inequivalent. Finally, if Zs ⊂ Zt with a continuous inclusion map whenever
0 < s < t , it follows easily from the explicit formula (2.5) that βs dominates βt . Further, as
γs is equivalent to βs and γt is equivalent to βt by Theorem 2.8, it follows that γs dominates
γt . Thus, {γt }t>0 is a graded family of homogeneous, set-additive MNC’s on Z , as desired. ��

Our next proposition is straightforward, but it will prove useful in our subsequent work.

Proposition 2.11 Let (X, ‖ · ‖) be a Banach space and let P : X→X be a continuous
linear projection. Define X1 = P X and X2 = (I − P)X, so X1 and X2 are closed lin-
ear subspaces of X, and let γ j and β j , for j = 1, 2, be homogeneous MNC’s on X j . If
β(S) := β1(P S)+ β2((I − P)S) and γ (S) := γ1(P S)+ γ2((I − P)S) for S ∈ B(X), then
γ and β are homogeneous MNC’s on X. Further, if β1 and γ1 are inequivalent MNC’s on
X1, then β and γ are inequivalent MNC’s on X.

Proof The fact that β and γ satisfy properties (B2), (B5), (B6) and (B7) follows easily from
the linearity and continuity of P and the fact that β j and γ j are homogeneous MNC’s. If
S ∈ B(X) and S is compact, then, by the continuity of P , the sets P S and (I − P)S are
compact, so β1(P S) = 0 = β2((I − P)S). It follows that β1(P S) = 0 = β2((I − P)S) and
β(S) = 0. Conversely, if β(S) = 0, then β1(P S) = 0 and β2((I − P)S) = 0, so P S and
(I − P)S are compact. It follows that T := P S+(I − P)S is compact; and since S ⊂ T , the
set S has compact closure. Using Corollary 2.3, we conclude that β and γ are homogeneous
MNC’s.

If β1 and γ1 are inequivalent, then, because β(S) = β1(S) and γ (S) = γ1(S) for every
S ⊂ X1, it follows that β and γ must be inequivalent. (This is the only part of the proof
which uses that P is a projection.) ��

If X0 is a closed linear subspace of a Banach space (X, ‖ · ‖), recall that X0 is called
complemented if there exists a continuous linear projection P of X onto X0. It sometimes
happens that for each t > 0 we have a homogeneous, set-additive MNC ξt on X0 such that
ξs is inequivalent to ξt whenever 0 < s < t . Our next theorem shows that in this situation
we obtain homogeneous, set-additive MNC’s γt on X for t > 0 such that γs is inequivalent
to γt whenever 0 < s < t .

Theorem 2.12 Let (X, ‖ · ‖) be a Banach space and X0 a closed, complemented linear
subspace of X. Assume that for each t > 0, there exists a homogeneous, set-additive MNC
ξt on X0 such that ξs is inequivalent to ξt whenever 0 < s < t . Then, for each t > 0, there
exists a homogeneous, set-additive MNC γt on X such that γs is inequivalent to γt whenever
0 < s < t .

Furthermore, if ξs dominates ξt for some s and t, then γs dominates γt . Thus, if {ξt }t>0 is
a graded family of homogeneous, set-additive MNC’s on X0, then {γt }t>0 is a graded family
of homogeneous, set-additive MNC’s on X.

Proof Let P : X→X0 be a continuous linear projection of X onto X0 and let α denote the
Kuratowski MNC on X . If S ∈ B(X) and t > 0, define

ηt (S) := ξt (P S)+ α((I − P)S).
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Inequivalent measures of noncompactness 473

Proposition 2.11 implies that ηt is a homogeneous MNC on X , but ηt does not necessarily
satisfy the set-additivity property. Thus, we use Theorem 2.8 and define γt (S) by

γt (S) := inf

{
max

1≤i≤n
ηt (Si ) | S =

n⋃

i=1

Si for some Si with 1 ≤ i ≤ n < ∞
}
.

Theorem 2.8 implies that γt is a homogeneous, set-additive MNC on X . If S ⊂ X0 = P X ,
note that ηt (S) = ξt (S). Since ξt satisfies the set-additivity property, it follows that for such
S that

γt (S) = ηt (S) = ξt (S). (2.38)

Since ξs is inequivalent to ξt whenever 0 < s < t , it follows from Eq. (2.38) that γs is
inequivalent to γt . The proof that γs dominates γt if ξs dominates ξt follows from our explicit
formulas for ηt and γt . Details are left to the reader. ��

With the aid of the theorems of this section, we can now describe some large classes of
Banach spaces which possess many inequivalent homogeneous measures of noncompactness.

Theorem 2.13 Let (Yn, ‖ · ‖n), for n ≥ 1, be a sequence of infinite dimensional Banach
spaces over the same scalar field K, where K = R or K = C. Either let Z := (⊕∞

n=1Yn)c0 ,
namely the Banach space of all infinite sequences y = (y1, y2, y3, . . .), where yn ∈ Yn

for each n ≥ 1 and lim
n→∞‖yn‖n = 0, and with the norm ||| · ||| given by (2.11); or let

Z := (⊕∞
n=1Yn)p for some p with 1 ≤ p ≤ ∞, namely the Banach space of all infinite

sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1 and |||y||| < ∞, where ||| · |||
is the norm given by (2.12). Then there exists a graded family of homogeneous, set-additive
MNC’s {γt }t>0 on Z.

Proof Let an , for n ≥ 1, be a nonincreasing sequence of positive reals with an ≤ 1 for
n ≥ 1 and lim

n→∞an = 0. For t > 0, let (Zt , ‖ · ‖t ) denote the space of infinite sequences

y = (y1, y2, y3, . . .) with yn ∈ Yn for each n ≥ 1, and which satisfies the following proper-
ties. If Z = (⊕∞

n=1Yn)c0 then lim
n→∞at

n‖yn‖n = 0 and

|||y|||t := sup
n≥1

at
n‖yn‖n .

If Z = (⊕∞
n=1Yn)p then |||y|||t < ∞, where

|||y|||t :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( ∞∑

n=1

atp
n ‖yn‖p

n

)1/p

, if 1 ≤ p < ∞,

sup
n≥1

at
n‖yn‖n, if p = ∞.

In any case, with ||| · |||t the norm on Zt , the reader can easily verify that (Zt , ||| · |||t ) is a
Banach space. Also, Z ⊂ Zt for all t > 0, with Zs ⊂ Zt whenever 0 < s < t , and all the
inclusions are continuous, having norm less than or equal to 1.

Let us also define linear maps Pn : Z → Z and Qn : Z → Z by the formulas (2.15).
Then

|||Pn y||| ≤ |||y|||, |||Pn y|||t ≤ |||y|||t , |||Pn y||| ≤ a−t
n |||Pn y|||t ,
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for all n ≥ 1 and y ∈ Z , and every t > 0. Define Sn ⊂ Z by

Sn := {y ∈ Qn Z | |||y||| ≤ 1}
for n ≥ 1, and note that Sn ∈ A(Z), where A(Z) is defined by Eq. (2.4). The set Sn can
be considered as a subset of Zt , and in the norm in this space, Sn is isometric to the closed
ball of radius at

n , centered at 0, in the infinite dimensional Banach space Yn with norm
at

n‖ · ‖n . Thus, αt (Sn) = 2at
n where αt denotes the Kuratowski MNC on Zt . It follows that if

0 < s < t , then the limit (2.37) holds. We have thus verified the hypotheses of Theorem 2.10,
and Theorem 2.13 follows directly. ��

3 Inequivalent measures of noncompactness on Lp spaces

Throughout this section, (�,�,μ) will denote a general measure space. Thus,� is a set, �
is a σ -algebra of subsets of � with � ∈ � and μ is a measure on �, with measurable sets
being the elements of �. We shall denote by L p(�,�,μ), where 1 ≤ p ≤ ∞, the usual
Banach space whose elements are equivalence classes of measurable functions. For the most
part we consider the case of p < ∞. Discussion of the case p = ∞ will be deferred to the
next section; see Corollary 4.7.

The main result of this section is the following theorem.

Theorem 3.1 Let (�,�,μ) be a measure space and assume that 1 ≤ p < ∞. If the space
L p := L p(�,�,μ) is infinite dimensional, then there exists a graded family of homoge-
neous, set-additive MNC’s {γt }t>0 on L p.

A necessary and sufficient condition for the space L p(�,�,μ) to be infinite dimensional
is given below in Lemma 3.3.

Remark Theorem 3.1 can be stated in a more elegant way. Suppose that 1 ≤ p < ∞, and
recall that a Banach lattice X for which ‖x + y‖p = ‖x‖p + ‖y‖p whenever x ∧ y = 0, is
called an abstract L p space. We refer to pages 1–15 of [23] for further details and defini-
tions. A classical result of S. Kakutani (see [17] or Theorem 1.b.2 on page 15 of [23]) implies
that an abstract L p space X , where 1 ≤ p < ∞, is linearly isometric to L p(�,�,μ) for
some measure space (�,�,μ). Furthermore, the linear isometry� : X→L p(�,�,μ) can
be chosen so that� and�−1 respect the partial orderings on X and L p(�,�,μ). It follows
from Theorem 3.1 that on an infinite dimensional abstract L p space X , where 1 ≤ p < ∞,
there exists a graded family of homogeneous, set-additive MNC’s {γt }t>0.

Let us begin by treating the special case of the space p(N), namely, the case where� = N

is the set of positive integers and μ is the counting measure on N. Thus for 1 ≤ p < ∞, the
set p(N) is the collection of maps x : N→R such that ‖x‖p := (

∑∞
i=1 |x(i)|p)1/p is finite,

where here ‖ · ‖p denotes the norm. We shall also consider the Banach space p(N × N) of
maps y : N×N→R in the norm ‖y‖p := (

∑∞
i=1
∑∞

j=1 |y(i, j)|p)1/p . The analogous spaces
for p = ∞ are also considered.

Proposition 3.2 Let 1 ≤ p ≤ ∞. Then there exists a graded family of homogeneous, set-
additive MNC’s {γt }t>0 on p(N).

Proof There is a one-one map σ of N × N onto N. Fixing such a map σ , define a linear map
Lσ : p(N)→p(N × N) by Lσ x = y, where y(i, j) = x(σ (i, j)). One can check that Lσ
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Inequivalent measures of noncompactness 475

is an isometry of p(N) onto p(N × N). Next note that p(N × N) is linearly isometric to
(⊕∞

n=1Yn)p where Yn := p(N) for all n ≥ 1. Thus, we are in the situation of Theorem 2.13,
from which Proposition 3.2 follows. ��

Let us now recall a few measure theoretic generalities. For a measure space (�,�,μ), a
set E ∈ � is an atom if bothμ(E) > 0 and there do not exist disjoint measurable sets E ′ and
E ′′ with E = E ′ ∪ E ′′ and bothμ(E ′) > 0 andμ(E ′′) > 0. If E1 and E2 are atoms, it follows
that either μ(E1 ∩ E2) = 0 or else both μ(E1\(E1 ∩ E2)) = 0 and μ(E2\(E1 ∩ E2)) = 0
hold. We shall say that E1 and E2 are equivalent atoms if μ(E1 ∩ E2) > 0. It is easy to see
that this is an equivalence relation on the set E of all atoms.

If f : �→R is measurable, one defines (see [39], page 73) the essential range of f ,
denoted R( f ), as follows: r ∈ R is an element of R( f ) if and only if, for every ε > 0,
the set f −1((r − ε, r + ε)) has positive measure. If [c, d] is a compact interval such that
μ( f −1([c, d])) > 0, one can prove by repeated bisections of [c, d] that [c, d] ∩ R( f ) �= ∅.
It follows, by taking [c, d] = [−n, n] with n sufficiently large, that R( f ) �= ∅ must always
hold. (We avoid the trivial case of μ(�) = 0.) We further claim that if E ⊂ � is an atom
then there exists some r ∈ R such that f (x) = r for almost every x ∈ E . Indeed, take any
r ∈ R( f |E), where R( f |E) denotes the essential range of the restriction of f to E . Then
for every ε > 0, the set f −1((r − ε, r + ε)) ∩ E has positive measure, and thus the set
E\ f −1((r − ε, r + ε)) has measure zero. It follows that | f (x) − r | < ε for almost every
x ∈ E , and as ε is arbitrary, that f (x) = r almost everywhere on E .

Our next lemma is obvious for most measure spaces, but we have not found a reference
for the general case. We are indebted to Shelley Goldstein for a suggestion which simplified
our original argument.

Lemma 3.3 Let (�,�,μ) be a measure space and assume that 1 ≤ p < ∞. Then
L p(�,�,μ) is infinite dimensional if and only if there exist infinitely many pairwise disjoint
measurable sets �n, for n ≥ 1, with 0 < μ(�n) < ∞ for all n.

Proof Denote L p := L p(�,�,μ) for simplicity of notation. If sets�n , for n ≥ 1, as in the
statement of the lemma exist and if χ�n is the characteristic function of �n , then any finite
subcollection of {χ�n | n ≥ 1} is linearly independent and χ�n ∈ L p for 1 ≤ p ≤ ∞. Thus,
L p is infinite dimensional.

Conversely, suppose that 1 ≤ p < ∞ and L p is infinite dimensional. With E denoting
the set of all atoms in �, recall the equivalence relation on E described above. Note that two
atoms E1 and E2 are equivalent if and only if their characteristic functions χE1 and χE2 are
equal almost everywhere. Now let E0 ⊂ E denote the set of all atoms E for whichμ(E) < ∞
and consider this equivalence relation restricted to E0. If the number of equivalence classes in
E0 is infinite, there exist atoms Ek ∈ E0 for k ≥ 1 with μ(E j ∩ Ek) = 0 whenever j �= k. If
we define �1 = E1, and �n = En\(⋃n−1

k=1 Ek) for n ≥ 2, the sets �n satisfy the conditions
of the lemma and we are done.

Thus, we can assume that the number of equivalence classes in E0 is finite. If there
are N equivalence classes, select an atom Ek from each equivalence class, and define F =
�\⋃N

k=1 Ek . Now suppose there exists a measurable set G1 ⊂ F such that 0 < μ(G1) < ∞.
Then G1 is not an atom, being disjoint from each Ek , and so there exists a measurable set
G2 ⊂ G1 such that 0 < μ(G2) < μ(G1). Continuing in this fashion, we obtain a sequence
of measurable sets G1 ⊃ G2 ⊃ G3 ⊃ · · · such that 0 < μ(Gn+1) < μ(Gn) < ∞ for every
n ≥ 1. Upon setting �n = Gn\Gn+1, we again see that we are done.

Thus we may assume that whenever G ⊂ F is a measurable set then either μ(G) = 0
or μ(G) = ∞. It follows that if f ∈ L p and Qε := {r ∈ R | |r | > ε} for ε > 0, then
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μ( f −1(Qε) ∩ F) = 0; otherwise we would contradict
∫
�

| f |p dμ < ∞. Thus | f (x)| ≤ ε

almost everywhere on F , and since ε > 0 is arbitrary it follows that f (x) = 0 almost every-
where on F . Further, since Ek is an atom for each k, with 1 ≤ k ≤ N , there exists rk ∈ R, with
rk dependent on f , such that f (x) = rk almost everywhere on Ek . We have thus shown that
for every f ∈ L p , there exist real numbers rk , for 1 ≤ k ≤ N , such that f = ∑N

k=1 rkχEk

in L p , where χEk denotes the characteristic function of Ek . This contradicts the assumption
that L p is infinite dimensional, and completes the proof. ��
Lemma 3.4 Assume that 1 ≤ p ≤ ∞ and that (�,�,μ) is a measure space, and denote
L p := L p(�,�,μ). Assume that for each integer n ≥ 1, there is a measurable set �n such
that 0 < μ(�n) < ∞ for all n ≥ 1 and�m ∩�n is empty whenever m �= n. Define a linear
map P : L p→L p by

(P f )(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

μ(�n)

∫

�n

f dμ, for x ∈ �n,

0, for x ∈ �\
∞⋃

n=1

�n .

Then P is a continuous linear projection, with ‖P‖ = 1, and whose range P L p ⊂ L p is
linearly isometric to p(N).

Proof We consider only the case that 1 ≤ p < ∞, the case p = ∞ being treated similarly
but with slight modifications. The linearity of P is obvious, as is the fact that P2 = P . Also,
Hölder’s inequality gives

|(P f )(x)| ≤
⎛

⎜⎝
1

μ(�n)

∫

�n

| f |p dμ

⎞

⎟⎠

1/p

for every x ∈ �n . It follows that
∫

�

|P f |p dμ =
∞∑

n=1

∫

�n

|P f |p dμ ≤
∞∑

n=1

∫

�n

| f |p dμ =
∫

�

| f |p dμ,

so ‖P‖ ≤ 1. If f is the characteristic function of �n for some n ≥ 1, then P f = f , so
‖P‖ = 1.

If g ∈ P L p, we know that there exist quantities an for n ≥ 1 such that g(x) = an for
all x ∈ �n and g(x) = 0 for x ∈ �\⋃∞

n=1�n . Upon defining V g ∈ p(N) by (V g)n :=
anμ(�n)

1/p , one can easily check that ‖V g‖ = ‖g‖ and that V : P L p → p(N) is onto. ��
We now prove the main theorem of this section.

Proof of Theorem 3.1 By Lemma 3.3, there exist pairwise disjoint, measurable sets �n for
n ≥ 1 with 0 < μ(�n) < ∞ for all n ≥ 1. Lemma 3.4 implies that there is a contin-
uous linear projection P : L p→L p such that P L p is linearly isometric to p(N), and by
Proposition 3.2, there exists a graded family of homogeneous, set-additive MNC’s {ξt }t>0

on P L p. Thus by Theorem 2.12, there exists a graded family of homogeneous, set-additive
MNC’s {γt }t>0 on L p . ��

Theorem 3.1 implies a corresponding result for any infinite dimensional Hilbert space.
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Inequivalent measures of noncompactness 477

Corollary 3.5 Let H be an infinite dimensional Hilbert space. Then there exists a graded
family of homogeneous, set-additive MNC’s {γt }t>0 on H.

Proof If H is separable, H is linearly isometric to L2([0, 1]) with Lebesgue measure, so
Corollary 3.5 follows from Theorem 3.1 in this case.

Thus, we assume that H is not separable and use Theorem 2.12 to reduce to the separable
case. There exists a countable, infinite family of orthonormal vectors {en | n ≥ 1} in H . If
H0 denotes the closed linear span of {en | n ≥ 1}, then H0 is separable and there exists an
orthogonal linear projection P of H onto H0. Since H0 is separable, there exists a graded
family of homogeneous, set-additive MNC’s {ξt }t>0 on H0. Corollary 3.5 now follows from
Theorem 2.12. ��

4 Inequivalent measures of noncompactness on C(K)

If K is a compact Hausdorff space, C(K ) will denote the Banach space of continuous maps
f : K→R with the norm ‖ f ‖ := supx∈K | f (x)|. Our main goal in this section is to prove
the following result.

Theorem 4.1 Let K be a compact Hausdorff space with infinitely many elements. Then there
exists a graded family of homogeneous, set-additive MNC’s {γt }t>0 on C(K ).

We shall prove Theorem 4.1 by considering two separate cases, namely, the case where
the set K∗ of accumulation points in K is infinite, and the case where K∗ is finite. Here,
K∗ ⊂ K is defined by

K∗ := {x ∈ K | {x} is not an open set}. (4.1)

With K a compact Hausdorff space, let us observe that K∗ is closed and thus compact. Also,
K∗ �= ∅ if and only if K is an infinite set; in particular, if K is infinite but K∗ = ∅ then
{{x} | x ∈ K } would be an open cover of K without a finite subcovering, contradicting the
compactness of K . Let us note further that if x ∈ K∗, then every neighborhood of x contains
infinitely many points of K .

With the next two lemmas, we treat the case that K∗ is an infinite set.

Lemma 4.2 Let K be a compact Hausdorff space. Assume that there exists a decreasing
sequence of nonempty open sets Un ⊂ K , for n ≥ 1, with U1 = K and U n+1 ⊂ Un for all
n ≥ 1, and where Un\U n+1 is an infinite set for all n ≥ 1. Then there exists a graded family
of homogeneous, set-additive MNC’s {γt }t>0 on C(K ).

Proof We define A := ⋂∞
n=1 U n = ⋂∞

n=1 Un . Since U n is a decreasing sequence of com-
pact, nonempty sets, A is compact and nonempty. We define Z := C(K )with the usual norm
‖ · ‖, and for convenience we set Bn := Un\Un+1.

Our strategy now is to use Theorem 2.10 to prove our lemma. Let an , for n ≥ 1, be a
nonincreasing sequence of positive reals with a1 ≤ 1 and limn→∞an = 0. For t > 0, let Zt

denote the set of functions f : K→R such that f |A is continuous, f |(K\A) is continuous,
and ‖ f ‖t < ∞, where

‖ f ‖t := max

{
sup
x∈A

| f (x)|, sup
n≥1

(
at

n sup
x∈Bn

| f (x)|
)}

denotes the norm on Zt . Again, one can easily verify that (Zt , ‖ · ‖t ) is a real Banach space;
in proving this fact, it is useful to note that for every open neighborhood V of A, there is an
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478 J. Mallet-Paret, R. D. Nussbaum

integer N = N (V ) such that U n ⊂ V for all n ≥ N (V ). One also has that Z ⊂ Zt for t > 0,
with Zs ⊂ Zt whenever 0 < s < t , with all the inclusion maps having norm less than or
equal to 1.

Since K is a normal space, for each n ≥ 1 there exists a continuous map ψn : K→[0, 1]
with ψn(x) = 0 for all x ∈ U n+1 and ψn(x) = 1 for all x ∈ K\Un . Define linear maps
Pn : Z→Z for n ≥ 1 by

(Pn f )(x) := ψn(x) f (x),

and note that

‖Pn f ‖ ≤ ‖ f ‖, ‖Pn f ‖t ≤ ‖ f ‖t , ‖Pn f ‖ ≤ a−t
n ‖Pn f ‖t ,

hold for all n ≥ 1 and f ∈ Z , and every t > 0. (We remark that, in contrast to our earlier
application of Theorem 2.10, the maps Pn here are not projections.)

For each n ≥ 1, define

Yn := { f ∈ Z | f (x) = 0 for all x ∈ U n+1 ∪ (K\Un)}.
Note that Yn is a closed linear subspace of (Z , ‖ · ‖), and also of (Zt , ‖ · ‖t ) for all t > 0, and
thus is a Banach space in each of these norms. Further, ‖ f ‖t = at

n‖ f ‖ for all f ∈ Yn , and
because Un\U n+1 is an infinite set, Yn is infinite dimensional.

Again with A(Z) defined by Eq. (2.4), where α is the Kuratowski MNC on Z , define
Sn := { f ∈ Yn | ‖ f ‖ ≤ 1} ⊂ Z for n ≥ 1. As before, Sn ∈ A(Z). Then Sn , considered as
a subset of (Yn, ‖ · ‖t ), is the closed ball of radius at

n , so αt (Sn) = 2at
n where αt denotes

the Kuratowski MNC on Zt . Thus, if 0 < s < t , the limit (2.37) holds. We have verified the
hypotheses of Theorem 2.10, so Lemma 4.2 follows directly. ��

The hypotheses of Lemma 4.2 will be satisfied if K has infinitely many accumulation
points.

Lemma 4.3 Let K be a compact Hausdorff space and let K∗, the set of accumulation points,
be given by (4.1). Assume that K∗ has infinitely many elements. Then there exists a graded
family of homogeneous, set-additive MNC’s {γt }t>0 on C(K ).

Proof Under the assumption that K∗ is an infinite set, there exists x∗ ∈ K∗ such that every
open neighborhood U of x∗ contains infinitely many elements of K∗. If not, then for every
x ∈ K∗ there exists an open neighborhood Vx of x such that x is the only element of K∗
in Vx . But then {Vx | x ∈ K∗} is an open covering of the compact space K∗, and this open
covering has no finite refinement, a contradiction.

We may thus fix x∗ ∈ K∗ so that every open neighborhood U of x∗ contains infinitely many
elements of K∗. Recall that for any x ∈ K∗, every open neighborhood of x contains infinitely
many elements of K . Let U1 := K and fix any x1 ∈ K∗ with x1 �= x∗. Next select an open
neighborhood U2 of x∗ with x1 �∈ U 2 and select x2 ∈ K∗ ∩ U2 with x2 �= x∗. In general, we
proceed by induction. Suppose we have found open neighborhoods U j of x∗ for 1 ≤ j ≤ n
such that U j+1 ⊂ U j for 1 ≤ j < n and such that there exists x j ∈ (K∗ ∩ U j )\U j+1 for
1 ≤ j < n. Then select xn ∈ K∗ ∩Un with xn �= x∗ and select Un+1 to be an open neighbor-
hood of x∗ such that U n+1 ⊂ Un and xn �∈ U n+1. Since Un\U n+1 is an open neighborhood
of xn ∈ K∗, the set Un\U n+1 contains infinitely many elements of K . Thus, Lemma 4.3
follows from Lemma 4.2. ��

To complete the proof of Theorem 4.1, it suffices, by virtue of Lemma 4.3, to assume that
K∗ is a finite set. Here it is useful to consider the Banach spaces c(�) and c0(�), where� is
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Inequivalent measures of noncompactness 479

an infinite set. (The set� here is not endowed with a topology, but is simply an index set.) We
recall some definitions. Let b(�) denote the Banach space of all bounded maps f : �→R

in the norm ‖ f ‖ := supθ∈� | f (θ)|. We say that f ∈ b(�) is an element of c(�) if and only
if for every ε > 0, there exists a finite set S = S(ε, f ) such that

sup{| f (θ1)− f (θ2)| | θ1, θ2 ∈ �\S} < ε.

One can easily check that c(�) is a closed linear subspace of b(�) and hence a Banach
space. Given f ∈ c(�) and any finite subset S ⊂ �, define A( f ; S) to be the closure of
{ f (θ) |θ ∈ �\S}. If F(�) denotes the collection of all finite subsets S ⊂ � and if f ∈ c(�),
it is easy to show that there is a unique real number r such that

⋂

S∈F(�)
A( f ; S) = {r}. (4.2)

For f ∈ c(�) and r as in Eq. (4.2) define L f by

L f := r. (4.3)

One can check that L : c(�)→R is a continuous linear functional and ‖L‖ = 1. We define
c0(�) ⊂ c(�) by

c0(�) := { f ∈ c(�) | L f = 0}.
Then c0(�) ⊂ c(�) is a closed complemented subspace, in fact with a one-dimensional
complement spanned by e : �→R, the function identically equal to 1.

Proposition 4.4 Let� be an infinite set. Then there exists a graded family of homogeneous,
set-additive MNC’s {γt }t>0 on c(�), and similarly on c0(�).

Proof By Theorem 2.12, it is enough to prove the result for c0(�). As is well known,� and
�× N have the same cardinality (see [20], page 280), so there is a one-one map σ of�× N

onto �. Fixing such a map σ , define a linear map Uσ : c0(�) → c0(�× N) by Uσ f = g,
where g(θ, n) = f (σ (θ, n)). One can check that Uσ is an isometry of c0(�) onto c0(�×N).
Thus, it suffices to prove the result for c0(�× N).

One now easily checks that for a function g : �× N → R, one has that g ∈ c0(�× N) if
and only if both g(·, n) ∈ c0(�) for every n ∈ N and limn→∞‖g(·, n)‖c0(�) = 0. From this,
one sees directly that c0(�× N) is linearly isometric to (⊕∞

n=1Yn)c0 where Yn := c0(�) for
all n ≥ 1. The result now follows from Theorem 2.13. ��

We now prove the main result of this section.

Proof of Theorem 4.1 It is enough to consider the case where K∗ is a nonempty finite set.
We consider first the special case that K∗ is a singleton, so K∗ = {x∗} for some x∗ ∈ K .
We claim that C(K ) is linearly isometric to c(�) where � := K\{x∗}. By virtue of Propo-
sition 4.4, the proof of Theorem 4.1 will be complete in this case. We begin by proving that
if f ∈ C(K ), then f |� ∈ c(�). First observe that K\U is a finite set for any neighborhood
U of x∗ as every point in K\U is both open and closed. From this observation, and from the
continuity of f at x∗, one directly shows that f |� ∈ c(�). Thus define H : C(K ) → c(�)
by setting H f := f |� for f ∈ C(K ). It is clear that H is linear and that ‖H f ‖ = ‖ f ‖
for all f ∈ C(K ). To see that H is onto, given f ∈ c(�), we define a map g : K→R by
g(x) := f (x) for x ∈ � and g(x∗) := L f , where L is defined as in Eqs. (4.2), (4.3). We
leave to the reader the verification that g is continuous and Hg = f .
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480 J. Mallet-Paret, R. D. Nussbaum

Now suppose more generally that K∗ has n elements, say K∗ = {x1, x2, . . . , xn}, where
1 ≤ n < ∞. Let U1 be an open neighborhood of x1 such that x j �∈ U 1 for 2 ≤ j ≤ n. Then
U 1\U1, being disjoint from K∗, is an open set. Thus, U 1 is an open set, and of course, a
closed set. We define ψ(x) = 1 for x ∈ U 1 and ψ(x) = 0 for x ∈ K\U 1. Since U 1 is both
open and closed, ψ is a continuous function. If we define P : C(K )→C(K ) by

(P f )(x) := ψ(x) f (x),

then P is a continuous linear projection whose range P(C(K )) is clearly linearly isometric
to C(S), where S := U 1. Noting that S is a compact Hausdorff space and an infinite set,
and that for every x ∈ S with x �= x1 the set {x} is both open and closed, we conclude
from the first part of this proof (where n = 1) that the space C(S) and hence P(C(K )) each
possess a graded family of homogeneous, set-additive MNC’s. Thus, by Theorem 2.12, the
space C(K ) possesses a graded family of homogeneous, set-additive MNC’s. With this, the
theorem is proved. ��

If [a, b] is a finite interval of reals and 1 ≤ m < ∞, then Cm([a, b]) denotes, as usual,
the Banach space of m times continuously differential functions f : [a, b]→R in the norm

‖ f ‖ := sup
a≤t≤b

| f (m)(t)| +
m−1∑

j=0

| f ( j)(a)|.

We have the following result for this space.

Corollary 4.5 There exists a graded family of homogeneous, set-additive MNC’s {γt }t>0 on
Cm([a, b]).
Proof It is well known that Cm([a, b]) is linearly isomorphic to the Banach space C([a, b])×
R

m by the map

J f := ( f (m), f (a), f (1)(a), f (2)(a), . . . , f (m−1)(a)).

There is a continuous linear projection of C([a, b])×R
m onto C([a, b]), so the result follows

by Theorems 2.12 and 4.1. ��
We recall that C(K ) is a Banach lattice, and we refer the reader to [23] or [42] for basic

definitions and theorems about Banach lattices. In general, if X and Y are Banach lattices,
one says that X and Y are linearly order isometric (see [23]) if there is a linear isome-
try � of X onto Y such that � and �−1 preserve the natural partial ordering on X and Y
associated with the lattice structures. A Banach lattice X is called an abstract M-space if
‖x + y‖ = max(‖x‖, ‖y‖) whenever x ∧ y = 0. Of course C(K ) is an abstract M-space for
K a compact Hausdorff space. An element e of a Banach lattice X is called a strong unit
of X provided that, for every x ∈ X , it is the case that ‖x‖ ≤ 1 if and only if |x | ≤ e. If
e denotes the function identically equal to 1 on K , then e is a strong unit in C(K ); however,
not every abstract M-space has a strong unit. If X is an abstract M-space, a classical result of
S. Kakutani asserts (see [24], Theorem 1.b.6, page 16 and [18]), that X is linearly order iso-
metric to a Banach sublattice of C(K ) for some compact Hausdorff space K . If, in addition,
X has a strong unit, then X is linearly order isometric to C(K ) for some compact Hausdorff
space K .

Kakutani (see [13,18,23]) has also explicitly described the closed sublattices of C(K ) for
K a compact Hausdorff space. If X is a closed linear subspace of C(K ), then X is a sublattice

123



Inequivalent measures of noncompactness 481

if and only if there is a collection F of ordered triples (k1, k2, λ) with k1, k2 ∈ K and λ ≥ 0
such that

X = { f ∈ C(K ) | f (k1) = λ f (k2) for every (k1, k2, λ) ∈ F}. (4.4)

See Theorem 1.b.5 in [23]. More generally, if K is a compact Hausdorff space, and F is
a collection of ordered triples (k1, k2, λ) with k1, k2 ∈ K and λ ∈ R, and if X is defined
by (4.4), then X is called a G-space. Thus, any Banach sublattice of C(K ) is a G-space.
A. Grothendieck [16] introduced G-spaces, and later Y. Benjamini [8] proved that every
separable G-space X is linearly isomorphic to C(S) for some compact Hausdorff space S.
(Of course, all linear isomorphisms are understood to be continuous).

In view of these remarks, we easily obtain the following result.

Theorem 4.6 Let X be an infinite dimensional Banach space and assume that X satisfies
at least one of the following conditions: (a) X is an abstract M-space with a strong unit;
(b) X is a separable abstract M-space; (c) X is a separable G-space; or (d) X ⊂ C(K )
is a G-space, where K is a compact metric space. Then there exists a graded family of
homogeneous, set-additive MNC’s {γt } on X.

Proof If (a) is satisfied, Kakutani’s theorem implies that X is linearly order isometric to
C(K ) for some compact Hausdorff space K . Since X is infinite dimensional, K must have
infinitely many points. The conclusions of Theorem 4.6 now follow from Theorem 4.1. If X
satisfies condition (c), Benyamini’s theorem [8] implies that X is linearly isomorphic to C(S),
for some compact Hausdorff space S, so we again obtain Theorem 4.6 from Theorem 4.1. If
X satisfies condition (b), Kakutani’s theorem implies that X is linearly order isometric to a
separable Banach sublattice of C(K ) for some compact Hausdorff space K , so X is linearly
isomorphic to a separable G-space, and case (b) reduces to case (c). If K is a compact metric
space, it is well known that C(K ) is separable, so if X ⊂ C(K ) is a G-space, then X is
separable, and case (d) reduces to case (c). ��

The following result extends Theorem 3.1 to the case of p = ∞.

Corollary 4.7 Let (�,�,μ) be a measure space. If the space L∞ := L∞(�,�,μ) is
infinite dimensional, then there exists a graded family of homogeneous, set-additive MNC’s
{γt }t>0 on L∞.

Proof We see that L∞ is an infinite dimensional abstract M-space with a strong unit. Thus
the result follows from part (a) of Theorem 4.6. ��
Remark It is natural to conjecture that Theorem 4.6 remains true if X is any infinite dimen-
sional abstract M-space, but this question remains open. Y. Benyamini [9] has given an
example of a nonseparable abstract M-space Z such that Z is not linearly isomorphic to a
closed, complemented linear subspace Y of C(K ) for any compact Hausdorff space K . Thus,
Benyamini’s space Z falls outside the scope of Theorem 4.6. However, Z is a special case of
the class of Banach spaces considered in Theorem 2.13, so the conclusions of Theorem 4.6
also hold for Benyamini’s M-space Z .

5 Inequivalent measures of noncompactness on Hölder spaces

Let (K , d) be a compact metric space with metric d . For a given real number λ with 0 <
λ ≤ 1, we are interested here in C0,λ(K ), the Banach space of Hölder continuous functions
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f : K→R with Hölder exponent λ. Recall that a continuous function f : K→R is Hölder
continuous with Hölder exponent λ if and only if ‖ f ‖λ < ∞ where

‖ f ‖λ := sup
x∈K

| f (x)| + sup
x,y∈K

x �=y

( | f (x)− f (y)|
d(x, y)λ

)
(5.1)

is the norm on C0,λ(K ). Given δ > 0, it is sometimes convenient to use the equivalent norm

‖ f ‖λ,δ := sup
x∈K

| f (x)| + sup
x,y∈K

0<d(x,y)≤δ

( | f (x)− f (y)|
d(x, y)λ

)
.

It is known (see Lemma 5.2 of [37]) that the Kuratowski MNC obtained from ‖ · ‖λ equals
the Kuratowski MNC obtained from ‖ · ‖λ,δ . We remark that part of our interest here stems
from questions about the essential spectral radius and the cone essential spectral radius of
so-called linear “Perron-Frobenius operators” on C0,λ(K ); see Sections 5 and 6 of [37].

Our goal in this section is to prove the following result.

Theorem 5.1 Let (K , d) be a compact metric space with infinitely many points and let
0 < λ ≤ 1. Then there exists a graded family of homogeneous, set-additive MNC’s {γt }t>0

on C0,λ(K ).

For the remainder of this section, (K , d)will denote a compact metric space with infinitely
many points and λ will denote a fixed real number with 0 < λ ≤ 1. Our assumptions imply
that (K , d) has an accumulation point. Let x∗ ∈ K denote any accumulation point, which will
remain fixed throughout this section. For each n ≥ 1, we select xn ∈ K with d(xn, x∗) > 0
and

d(xn+1, x∗) ≤ d(xn, x∗)
10

,

and for n ≥ 1 we denote

εn := d(xn, x∗)
10

.

For the remainder of this section, the above points xn will remain fixed.
We shall denote by X the Banach space

X := { f ∈ C0,λ(K ) | f (x∗) = 0},
which we note is a closed subspace of C0,λ(K ) of codimension one, and is thus a comple-
mented subspace. Thus by Theorem 2.12, it suffices to prove Theorem 5.1 with X replacing
C0,λ(K ). Let us also observe that

‖ f ‖ := sup
x,y∈K

x �=y

( | f (x)− f (y)|
d(x, y)λ

)
(5.2)

is a norm on the space X , and in fact the norms given by Eqs. (5.1) and (5.2) are equivalent
on X . Below we shall always use the norm (5.2) on X .

Our strategy in proving Theorem 5.1 will be to show that ∞(N) is linearly isomorphic
to a closed, complemented linear subspace of X , and thus Theorem 5.1 will follow from
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Theorem 2.12 and Corollary 4.7. To this end, we define linear maps R : X→∞(N) and
E : ∞(N)→X by

(R f )(n) := f (xn)

ελn

for every n ≥ 1, where f ∈ X , and

(Eg)(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ελn − d(x, xn)

λ
)

g(n), for x ∈ Bn,

0, for x ∈ K\
∞⋃

n=1

Bn,

(5.3)

where g ∈ ∞(N), and where

Bn := Bεn (xn) ⊂ K

in the notation (1.1). Note that Bm ∩ Bn = ∅ for m �= n, so Eg is well defined as a function
on K . Also note the estimate

|(Eg)(x)| ≤ ελn |g(n)| ≤ ελn‖g‖ (5.4)

for every x ∈ Bn , for all n ≥ 1. We think of R as the operation of restriction of f to the set
S := {xn | n ≥ 1} ∪ {x∗}, and E as the operation of extending a map g, defined on S, to all of
K , with a weight factor of ε−λn or ελn . It still must be shown that the above operators indeed
map into the indicated spaces, and that they are continuous operators.

Lemma 5.2 The operator R is a continuous linear map of X into ∞(N).

Proof Linearity of R is clear. If f ∈ X , we have

|(R f )(n)| = | f (xn)|
ελn

= 10λ| f (xn)− f (x∗)|
d(xn, x∗)λ

≤ 10λ‖ f ‖

for all n ≥ 1, and so ‖R f ‖ ≤ 10λ‖ f ‖, so R is a continuous linear map. ��

Lemma 5.3 The operator E is a continuous linear map of ∞(N) into X. Also, we have that
RE = I , the identity operator on ∞(N).

Proof The linearity of E is clear. We also see from the formulas for R and E that (REg)(n) =
ε−λn (Eg)(xn) = g(n) for any n ≥ 1, and thus RE = I . We have to prove that Eg ∈ X for
every g ∈ ∞(N), and that E : ∞(N)→X is continuous. We shall in fact show that for every
such g, and denoting f := Eg, that we have

| f (x)− f (y)|
d(x, y)λ

≤ (1 + 10−λ)‖g‖ (5.5)

for every x, y ∈ K with x �= y. The estimate (5.5) implies that f ∈ C0,λ(K ), and noting
that x∗ �∈ Bn for all n ≥ 1, we have that f (x∗) = 0 and thus f ∈ X . Therefore, (5.5) implies
that Eg ∈ X and ‖Eg‖ ≤ (1 + 10−λ)‖g‖, as desired.

Thus fix g and f as above, and take any x, y ∈ K with x �= y. We consider four cases,
based on whether x and/or y belong to the balls Bn .
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Case 1 There exists n ≥ 1 such that x, y ∈ Bn . In this case, our formula (5.3) for f gives

| f (x)− f (y)|
d(x, y)λ

=
( |d(x, xn)

λ − d(y, xn)
λ|

d(x, y)λ

)
|g(n)| ≤

( |d(x, xn)
λ − d(y, xn)

λ|
d(x, y)λ

)
‖g‖.

We have |d(x, xn)−d(y, xn)| ≤ d(x, y)by the triangle inequality, so |d(x, xn)−d(y, xn)|λ ≤
d(x, y)λ. A simple calculus argument shows that |uλ − vλ| ≤ |u − v|λ whenever u and v
are nonnegative reals and 0 < λ ≤ 1, so it follows that |d(x, xn)

λ − d(y, xn)
λ| ≤ d(x, y)λ.

Using this estimate, we see that

| f (x)− f (y)|
d(x, y)λ

≤ ‖g‖,

which verifies the desired estimate (5.5) for Case 1.

Case 2 There exist m ≥ 1 and n ≥ 1 with m �= n such that x ∈ Bm and y ∈ Bn . By
symmetry in the roles of x and y, we can assume that m < n. Using (5.4), we have that

| f (x)− f (y)|
d(x, y)λ

≤ | f (x)| + | f (y)|
d(x, y)λ

≤
(
ελm + ελn

d(x, y)λ

)
‖g‖ ≤

(
(1 + 10−λ)ελm

d(x, y)λ

)
‖g‖, (5.6)

where we have used the fact that εn ≤ 1
10εm in the final inequality. By the triangle inequality,

we have

10εm =d(x∗, xm)≤d(x∗, xn)+ d(xn, y)+ d(y, x)+ d(x, xm) < 10εn + εn + d(y, x)+ εm

and thus

d(x, y) > 9εm − 11εn ≥ 9εm − 11εm

10
> εm,

and so it follows from this and from (5.6) that

| f (x)− f (y)|
d(x, y)λ

≤ (1 + 10−λ)‖g‖.

This verifies the estimate (5.5) for Case 2.

Case 3 One of the points x and y lies in some ball Bm , while the other does not lie in any
ball Bn . For definiteness, assume that x ∈ Bm for some m ≥ 1, while y �∈ Bn for all n ≥ 1.
Our formula for f gives f (y) = 0 and so with (5.3) we have

| f (x)− f (y)|
d(x, y)λ

= | f (x)|
d(x, y)λ

=
(
ελm − d(x, xm)

λ

d(x, y)λ

)
|g(m)| ≤

(
ελm − d(x, xm)

λ

d(x, y)λ

)
‖g‖.

(5.7)

By the triangle inequality, we have d(x, y) ≥ d(y, xm) − d(x, xm) ≥ εm − d(x, xm) > 0,
and so

d(x, y)λ ≥ (εm − d(x, xm))
λ ≥ ελm − d(x, xm)

λ.

It follows from this and from (5.7) that

| f (x)− f (y)|
d(x, y)λ

≤ ‖g‖,

to give (5.5) in Case 3.
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Case 4 We have both x �∈ Bn for every n ≥ 1, and y �∈ Bn for every n ≥ 1. In this
case f (x) = f (y) = 0 and the estimate (5.5) trivially holds. With this final case, (5.5) is
established, and the proof of the lemma is complete. ��

With these preliminaries, we are almost ready to prove Theorem 5.1, but it is convenient
to state one more lemma first.

Lemma 5.4 The operator P := E R is a continuous linear projection of X onto a closed
linear subspace X0 := P X ⊂ X. The restriction of R to X0 is a one-one, continuous linear
map of X0 onto ∞(N).

Proof By Lemma 5.3, we have RE = I , and so P2 = (E R)2 = E(RE)R = E R = P .
Thus, P is a projection on X .

Now let h ∈ X0, say h = E R f for some f ∈ X . If Rh = 0 then RE R f = R f = 0,
so h = 0. Thus, we see that R|X0 is one-one. Next let g ∈ ∞(N) and set f = Eg. Then
RE R f = (RE)2g = g. Since E R f ∈ X0, this shows that R|X0 maps onto ∞(N). ��

Proof of Theorem 5.1 As noted earlier in this section, there exists a graded family of homo-
geneous, set-additive MNC’s {ηt }t>0 on ∞(N) In the notation of Lemma 5.4, the restriction
R|X0 is a linear homeomorphism of X0 onto ∞(N), so there exists a graded family of
homogeneous, set-additive MNC’s {ξt }t>0 on X0. Lemma 5.4 implies that P is a continuous
linear projection of X onto X0, so Theorem 2.12 implies that there exists a graded family
of homogeneous, set-additive MNC’s {γt }t>0 on X . As previously noted, this implies the
corresponding result for C0,λ(K ). ��

6 Inequivalent measures of noncompactness on Sobolev spaces

In this section, � will always denote a fixed, open subset of R
n , while m will denote a

fixed positive integer and p is either a real number with 1 ≤ p < ∞ or p = ∞. If
α = (α1, α2, . . . , αn) is an n-tuple of nonnegative integers and u ∈ L p(�), then Dαu will
denote the distributional partial derivative of u. We shall write |α| =∑n

i=1 αi . As usual (see
[1], pages 44–45) the Sobolev space W m,p(�) is given by

W m,p(�) := {u ∈ L p(�) | Dαu ∈ L p(�) for 0 ≤ |α| ≤ m}.

The following theorem is the main result of this section.

Theorem 6.1 There exists a graded family of homogeneous, set-additive MNC’s {γt }t>0 on
W m,p(�).

Fix any point x0 ∈ � and quantities 0 < a < b such that A ⊂ �, where

A := {x ∈ � | a < ‖x − x0‖ < b}.

We keep the point x0 and the quantities a and b fixed for the remainder of this section.
By using so-called extension theorems for Sobolev spaces (see [1], pages 83–94), we see
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that there exists a continuous linear map E : W m,p(A)→W m,p(�) with the property that
(Eu)(x) = u(x) for almost every x ∈ A. If v ∈ W m,p(�), we define the restriction map
R : W m,p(�)→W m,p(A) by (Rv)(x) = v(x) for x ∈ A. The map R is continuous and
linear. Clearly, RE = I , the identity map on W m,p(A).

With these preliminaries, the proof of the next lemma is essentially identical to the proof
of Lemma 5.4 and is left to the reader.

Lemma 6.2 The operator P := E R is a continuous linear projection of W m,p(�) onto
a closed linear subspace X := P(W m,p(�)) ⊂ W m,p(�). The restriction of R to X is a
one-one, continuous linear map of X onto W m,p(A).

With this, we now prove our main theorem for Sobolev spaces.

Proof of Theorem 6.1 By using Theorem 2.12 and Lemma 6.2, we see that the problem of
finding a graded family of homogeneous, set-additive MNC’s on W m,p(�) reduces to the
same problem on W m,p(A).

We make a further reduction by projecting onto the space of radial functions in W m,p(A),
which forms a closed, complemented subspace of W m,p(A). Recall that if p < ∞ then
Z := Cm(A)∩ W m,p(A) is dense in W m,p(A) in the norm on W m,p(A). Define Q : Z → Z
by

(Qu)(x) := 1

cn−1

∫

|ω|=1

u(|x |ω) dω (6.1)

for u ∈ Z and x ∈ A, where dω denotes surface area on the unit sphere and cn−1 denotes
the surface area of the unit sphere in R

n . The map Q can be shown to extend to a continuous
linear projection of W m,p(A) into W m,p(A) whose range Y := Q(W m,p(A)) ⊂ W m,p(A)
consists of the radially symmetric functions in W m,p(A). If p = ∞ then W m,∞(A) ⊂ C(A),
and again Q as in (6.1) defines such a projection onto a subspace Y . Thus in any case, it
suffices to find a graded family of homogeneous, set-additive MNC’s on Y .

The space Y is, in turn, linearly isomorphic to the Sobolev space W m,p(a, b). If u :
(a, b)→R, it is known that u ∈ W m,p(a, b) if and only if u has m − 1 continuous, bounded
derivatives on (a, b) with the function u(m−1) absolutely continuous (and consequently dif-
ferentiable almost everywhere), and with u(m) ∈ L p(a, b). Let c be a fixed element of (a, b)
and define a linear map J : W m,p(a, b)→L p(a, b)× R

m by

Ju := (u(m), u(c), u(1)(c), u(2)(c), . . . , u(m−1)(c)).

It is relatively easy to show that J is a linear isomorphism of W m,p(a, b) onto L p(a, b)×R
m ,

so we conclude that Y is linearly isomorphic to L p(a, b)× R
m .

Thus, it is enough to find a graded family of homogeneous, set-additive MNC’s on
L p(a, b)× R

m . By Theorem 2.12, it is enough to find a graded family of homogeneous, set-
additive MNC’s on the subspace L p(a, b). However, such exists by Theorem 3.1 if p < ∞,
and by Corollary 4.7 if p = ∞. ��
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