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Abstract Groundstates of the stationary nonlinear Schrödinger equation

−�u + V u = K u p−1,

are studied when the nonnegative function V and K are neither bounded away from zero,
nor bounded from above. A special attention is paid in the case of a potential V that goes to 0
at infinity. Conditions on compact embeddings that allow to prove in particular the existence
of groundstates are established. The fact that the solution is in L2(RN ) is studied and decay
estimates are derived using Moser iteration scheme. The results depend on whether V decays
slower than |x |−2 at infinity.
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1 Introduction

In this paper, we consider the following problem for the time-independent nonlinear
Schrödinger equation:

{−�u + V u = K u p−1 in R
N ,

lim|x |→∞ u(x) = 0.
(PV,K )

Here u : R
N → R is an unknown function, while V : R

N → R
+ and K : R

N → R
+ are

given potentials. Solutions to (PV,K ) can be used to represent a standing wave to the time-
dependent nonlinear Schödinger equation; they also appear as stationary solutions in models
of cross-diffusion [12]. The study of such problems was initiated by Floer and Weinstein [9]
by perturbation methods.

Afterwards, Rabinowitz showed how the variational methods could be applied to this
problem. Indeed, the solutions of (PV,K ) are—at least formally—critical points of the action
functional

I (u) =
∫

RN

|∇u|2
2

+ V
|u|2

2
− K

|u|p

p
.

The quadratic part of the functional naturally defines the Hilbert space

H1
V (R

N ) =

⎧⎪⎨
⎪⎩u ∈ W 1,1

loc (R
N )

∣∣ ∫

RN

|∇u|2 + V |u|2 < ∞

⎫⎪⎬
⎪⎭ ;

the functional I : H1
V (R

N ) → R ∪ {−∞} is then well defined. The groundstates are the
nontrivial weak solutions to (PV,K ) in H1

V (R
N ) which has the least energy I (u) among all

solutions in H1
V . The classical scheme to prove the existence of groundstates consists in

minimizing I on the Nehari manifold

N =

⎧⎪⎨
⎪⎩u ∈ H1

V (R
N )

∣∣ ∫

RN

|∇u|2 + V |u|2 =
∫

RN

K |u|p

⎫⎪⎬
⎪⎭
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Groundstates with vanishing potential 275

The particularization of one result of Rabinowitz to our setting is

Theorem 1 (Rabinowitz [16]) Let V ∈ C(RN ; R
+
0 ) and K ∈ C(RN ; R). If 2 < p <

2N/(N − 2),

(i) sup
RN K < ∞,

(ii) inf
RN V > 0,

(iii) lim|x |→∞ V (x) = +∞,

then problem (PV,K ) has a groundstate u ∈ H1
V (R

N ).

Rabinowitz could also handle cases in which V is bounded from above on R
N . Further

applications of variational methods have yield existence of solutions that are not groundstates,
for problems that might also not have a groundstate, see e.g. [7,8].

All the works mentioned are built on the assumption that V has a positive lower bound and
that K is bounded. In a recent work, Ambrosetti et al. have investigated groundstates when
V tends to zero at infinity. One of the problems arising is that the natural space H1

V (R
N ) is

not anymore embedded in L2(RN ). They obtained

Theorem 2 (Ambrosetti et al. [2]) Assume N ≥ 3, V ∈ C(RN ; R
+
0 ) and K ∈ C(RN ; R). If

2 < p < 2N/(N − 2), 0 < α < 1,

β > (1 − α)

(
N − p

(
N

2
− 1

))
, (1)

(i) supx∈RN (1 + |x |)βK < +∞,
(ii) infx∈RN (1 + |x |)2−2αV (x) > 0,

then problem (PV,K ) has a groundstate u ∈ H1
V (R

N ). Moreover, u ∈ L2(R2) and

u(x) ≤ Ce−λ|x |α

for some C > 0 and λ > 0.

One should note that the solution is constructed as an element of H1
V (R

N ), and need
therefore not be a priori in L2(RN ). However, some regularity theory allows to show after-
wards that u is indeed square integrable. The fact that u ∈ L2(RN ) has an interpretation in
the model of the nonlinear Schrödinger equation: since |u|2 corresponds to the probability
density of a particle, this means that the particle is localized, and that the solution corre-
sponds to a boundstate. The study of boundstates which are not necessary groundstates with
potentials vanishing at infinity has also been recently studied [3,5].

The aim of the present work consists in giving more insights into Theorem 2. A first
question is the existence question: What conditions should V and K satisfy so that prob-
lem (PV,K ) has a groundstate? A second question is whether the groundstate solution is
in L2(RN ). We provide here an unified approach which allows to handle potentials V that
vanish at infinity or potentials K that explode at infinity. Unbounded potentials have been
considered by several authors, see e.g. [18].

A classical tool to prove the existence of groundstates of (PV,µ) is

Theorem 3 If one has the continuous embedding

H1
V (R

N ) ⊂ L p(RN , KLN ),

123



276 D. Bonheure, J. Van Schaftingen

then the functional I : H1
V (R

N ) → R defined by

I (u) =
∫

RN

|∇u2|
2

+ V
|u|2

2
−

∫

RN

|u|pdµ

is well defined and continuously differentiable on H1
V (R

N ).
If moreover this embedding is compact, then there exists a groundstate solution to problem

(PV,µ).

The applicability of Theorem 3 depends just on the answer to a question about continuous
and compact embeddings. The assumptions of Theorem 2 are one way to ensure these em-
beddings, but there are other ways. A first tool is the function

W(x) = K (x)

V (x)
N
2 − p

2

(
N
2 −1

) .

Using Hölder’s inequality and Sobolev inequality, one can prove the following result.

Theorem 4 Let K : R
N → R

+ and V : R
N → R

+ be measurable functions.

(i) If W ∈ L∞(RN ) and 2 ≤ p ≤ 2N
N−2 , then one has the continuous embedding

H1
V (R

N ) ⊂ L p(RN , KLN ).

(ii) If moreover K ∈ L∞
loc(R

N ), p < 2N
N−2 and for every ε > 0,

LN ({x ∈ R
N | W(x) > ε}) < ∞,

then this embedding is compact.

Theorem 4 is related to Theorems 18.6 and 18.7 in [14] by which H1
V (R

N ) ⊂ L p
K (R

N )

when there exists R > 0 and r : R
N \B(0, R) → R

+ such that

1√
V (x)

≤ r(x) ≤ |x |
3

for every x ∈ R
N \B(0, R),

0 < c−1 ≤ r(y)

r(x)
≤ c for every x ∈ R

N \B(0, R) and y ∈ B(x, r(x)),

sup
x∈RN \B(0,R)

sup
y∈B(x,r(x))

K (y)r(x)
N−p

(
N
2 −1

)
< ∞.

Since

W(x) ≤ K (x)r(x)
N−p

(
N
2 −1

)
≤ sup

y∈B(x,r(x)
K (y)r(x)

N−p
(

N
2 −1

)
,

these assumptions are stronger than those of Theorem 4, and may fail for highly oscillating
potentials covered by Theorem 4.

In the case where V (x) = (1 + |x |)2α−2, Theorem 4 allows for potentials K such that

lim|x |→∞|x |βK (x) = 0,

with

β = (1 − α)

(
N − p

(
N

2
− 1

))
, (2)
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Groundstates with vanishing potential 277

which is a small improvement in view of Theorem 2. In the case of unbounded potentials,
we recover the embeddings of [18].

While the condition of Theorem 4 allows V and K to oscillate strongly, their oscillation
should be coordinated. A second tool provides embedding theorems with a condition without
interplay between K and V , in terms of Marcinkiewicz spaces. Setting

‖ f ‖Lr,∞ = sup
E⊂RN

1

LN (E)1− 1
r

∫
E

| f |,

for p > 1, recall that the space Lr,∞(RN ) is the space of measurable functions f : R
N → R

such that ‖ f ‖Lr,∞ < +∞. Its subspace Lr,∞
0 (RN ) is the closure of (L∞ ∩ L1)(RN ) in

Lr,∞(RN ).
In the sequel, we denote by Ḣ1(RN ) the homogeneous Sobolev space, i.e. H1

V (R
N ) with

V ≡ 0.

Theorem 5 Assume N ≥ 3.

(i) If 2 ≤ p ≤ 2N
N−2

p

(
1

2
− 1

N

)
+ 1

r
= 1

and K ∈ Lr,∞(RN ,R+), then the embedding

Ḣ1(RN ) ⊂ L p(RN , KLN )

is continuous.
(ii) If moreover p < 2N

N−2 and K ∈ Lr,∞
0 (RN ), then this embedding is compact.

The first part of the result has been obtained by Visciglia [20]. Whereas the combination
of Theorems 4 and 5 allows K not to be controlled pointwise by V , it still requires when V
is bounded that K should not be locally worse than a function in Lr,∞. On the other hand,
when p is small enough, trace theorems show that |u|p is locally integrable on subsurfaces.
This brings us to embeddings theorem for a general measure. Here, we state the result with
an explicit shape of a model potential V . Define

[µ]α = sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| x ∈ R
N and 0 < ρ <

1

2
(1 + |x |)1−α

}
. (3)

Theorem 6 Let N ≥ 3, α ≥ 0, V (x) = (1 + |x |)2α−2 and µ be a Radon measure. Then,

(i) [µ]α is finite if and only if there exists c > 0 such that for every u ∈ H1
V (R

N ),

‖u‖L p(RN ,µ) ≤ c‖u‖H1
V
,

the quantity [µ]α being equivalent to the optimal constant in the inequality;
(ii) the embedding H1

V (R
N ) ⊂ L p(RN , µ) is compact if and only if

lim
δ→0

sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| x ∈ R
N and 0 < ρ < δ(1 + |x |)1−α

}
= 0, (4)

lim|x |→∞ sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| 0 < ρ <
1

2
(1 + |x |)1−α

}
= 0. (5)
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278 D. Bonheure, J. Van Schaftingen

When α = 0, then H1
V (R

N ) = D1,2(RN ); then the continuity part of Theorem 6
was proven by Maz’ja [11, Theorem 1.4.4/1] and the compactness part by Schneider
[17, Theorem 2.1]. When α = 1, it is due to Maz’ja [11, Theorems 1.4.4/2 and 1.4.6/1].

Whereas we do not have counterparts of Theorems 4 and 5 when N = 2, Theorem 6

remains true when N = 2 provided ρ
N
2 −1 is replaced by (log ρ(1+|x |)α−1)−1 everywhere in

the statement (see Theorem 11). When p < 2N
N−2 , Theorem 6 allows the measure to be singu-

lar with respect to the Lebesgue measure. Another situation in which Theorem 6 works while
the previous theorems fail is the following: α = 1 and K ∈ Lr

loc(R
N )\L∞(RN ) is periodic.

We now draw our interest to the question whether the solutions to⎧⎨
⎩

−�u + V u = u p−1µ in R
N ,

lim|x |→∞ u(x) = 0.
(PV,µ)

are in L2(RN ), as it is the case in Theorem 2. Observe that we have replaced the potential K
by a positive Radon measure µ. The solution is then understood in the distributional sense.

Let us first point out a necessary condition. Indeed, if u = 0, and

lim sup
|x |→∞

V (x)|x |2 < λ(λ+ 2 − N ), (6)

then, by the maximum principle, we have, for some c > 0,

u(x) ≥ c

(1 + |x |)λ .

In particular, if (6) holds with λ = N
2 , then u ∈ L2(RN ). This decay of V is in fact critical

for u to be square-integrable.

Theorem 7 Assume that H1
V (R

N ) ⊂ L p(RN , µ), and that

lim inf|x |→∞|x |2V (x) > 1 −
(

N

2
− 1

)2

> 0, (7)

then u ∈ L2(RN ).

The proof proceeds by multiplication of the equation by a test function of the form
u(1 + |x |).

We will go further in this analysis, and try to obtain as much information as possible about
the decay of a solution.

Theorem 8 Assume that H1
V (R

N ) ⊂ L p(RN , µ) and u ∈ H1
V (R

N ) solves

−�u + V u = u p−1µ.

(i) If there exists λ > 0 such that

lim inf|x |→∞ V (x)|x |2 > λ(λ+ 2 − N ),

then there exists C < ∞ such that

u(x) ≤ C

(1 + |x |)λ .
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Groundstates with vanishing potential 279

(ii) If moreover there exists α > 0 and λ > 0 such that

lim inf|x |→∞ V (x)|x |2−2α > λ2,

then there exists C < ∞ such that

u(x) ≤ Ce−λ(1+|x |)α .
Theorem 2 gives the same decay rate than the last part of the theorem. However, our result

allows equality in (1)—provided a solution exists. The limit case where equality holds in (1)
brings us some complications in the proof. In the previous situation, the condition (1) implies
that H1

V (R
N ) ⊂ Lq(RN , µ) for some q > p. This allows to start immediately a bootstrap

argument. In the present setting, a first step is required to prove that H1
V (R

N ) ⊂ Lq(RN , µ)

for some q > p.
The sequel of the paper is organized as follows. In Sect. 2, we work out the continuous and

compact embeddings ; in particular, we prove Theorems 4, 5 and 6. Section 3 is devoted to
decay estimates and contains the proofs of Theorems 7 and 8. Finally, Sect. 4 deals with some
extensions of our decay estimates to other frameworks that we do not cover with details.

2 Embedding theorems

In this section, we consider conditions that ensure continuity or compactness of the imbedding
of H1

V (R
N ) into L p(RN , KLN ). We shall use three different methods: one based on the con-

centration function, the second based on Marcinkiewicz weak L p-spaces and the last on the
measure of balls, which will lead respectively to Theorems 4, 5 and 6 which are independent.

2.1 Concentration function method

A first technique to obtain embeddings of H1
V (R

N ) consists in interpolating between

L2(RN , V LN ) and a space in which H1
V (R

N ) is contained : L
2N

N−2 (RN ).

Proof of Theorem 4 For every measurable set A ⊂ R
N , since 2 ≤ p ≤ 2∗, using Hölder’s

inequality, we infer that for any u ∈ H1
V (R

N ),

∫
A

K |u|p ≤ ‖W‖L∞(A)

⎛
⎝∫

A

V |u|2
⎞
⎠

N
2 − p

2

(
N
2 −1

) ⎛
⎝∫

A

|u| 2N
N−2

⎞
⎠
( p

2 −1)
(

N
2 −1

)

. (8)

Taking A = R
N , we deduce the first statement of the Theorem from the Sobolev inequality.

To prove the second statement, it is sufficient to show that for any ε > 0, there exists a
set A ⊂ R

N of finite-measure such that for every u ∈ H1
V (R

N ) with ‖u‖H1
V

≤ 1,
∫
Ac

K (x)|u|p < ε.

Choosing Aδ = {x ∈ R
N | W(x) ≥ δ} in (8), we get

∫

RN \Aδ

K (x)|u|p ≤ δ

⎛
⎜⎝

∫

RN

V |u|2
⎞
⎟⎠

N
2 − p

2

(
N
2 −1

) ⎛
⎜⎝

∫

RN

|u| 2N
N−2

⎞
⎟⎠
( p

2 −1)
(

N
2 −1

)

,

so that our claim follows from the Sobolev inequality. ��
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280 D. Bonheure, J. Van Schaftingen

As mentioned in Sect. 1, Theorem 4 implies that H1
V (R

N ) ⊂ L p(RN , KLN )when V (x) =
|x |2−2α and K (x) = |x |−β , with β given by (2).

It should be pointed out that not only the proof of Theorem 4 fails in dimension 2: one
can find counter-examples. A weaker statement will be proved in Sect. 2.3.3.

2.2 Marcinkiewicz spaces method

Another point of view to obtain embedding, consists in using only the information about the
Sobolev embedding of H1

V (R
N ).

Proof of Theorem 5 By [15], see also [21, Chapter 2], the Sobolev space Ḣ1(RN ) is

continuously embedded in the Lorentz space L
2N

N−2 ,2(RN ), i.e. the estimate

‖u‖
L

2N
N−2 ,2

≤ C‖∇u‖L2

holds. One has then, by Hölder’s inequality for Lorentz spaces and by the embedding

L
2N

N−2 ,p(RN ) ⊂ L
2N

N−2 ,2(RN ), and for every measurable set A ⊂ R
N

∫
A

K |u|p ≤ ‖K‖Lr,∞(A)‖u‖p

L
2N

N−2 ,p

≤ ‖K‖Lr,∞(A)‖u‖p

L
2N

N−2 ,2

≤ C‖K‖Lr,∞(A)‖∇u‖p
L2(RN )

.

Under assumption (ii), the compactness of the embedding can be proved easily. ��
Let us compare Theorems 4 and 5 in the case where V (x) ≥ (1 + |x |)2α−2 and K (x) ≤

(1 + |x |)β . The first gives a continuous embedding when

β ≥ (1 − α)

(
N − p

(
1 − N

2

))

while the latter requires

β ≥ N − p

(
1 − N

2

)
.

If α ≥ 0, the condition of Theorem 4 is weaker than the condition of Theorem 5; when
α ≤ 0, one has the converse situation. The criticality of the rate α = 0 can be explained by
the Hardy inequality: H1

V (R
N ) is a strict subspace of Ḣ1(RN ) if, and only if, α > 0.

As a byproduct of Theorems 4 and 5, one has

Corollary 2.1 Assume that

p

(
1

2
− 1

N

)
+ 1

s
+ 2t

N
= 1,

with 2 ≤ p ≤ 2N
N−2 and t > 0.

(i) If K V −t ∈ Ls,∞(RN ), then the embedding H1
V (R

N ) ⊂ L p(RN , KLN ) holds.
(ii) If p < 2N

N−2 and K V −t ∈ Ls,∞
0 (RN ), this embedding is compact.
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Groundstates with vanishing potential 281

Proof Taking θ = 1
t

( N
2 − p

2

( N
2 − 1

))
and using Hölder’s inequality, we infer

∫

RN

K |u|p ≤
⎛
⎜⎝

∫

RN

V
N
2 − p

2

(
N
2 −1

)
|u|p

⎞
⎟⎠

1
θ

⎛
⎜⎝

∫

RN

(
K V −t) θ

θ−1 |u|p

⎞
⎟⎠

1− 1
θ

.

One checks that the first factor is bounded by Theorem 4 while the second is bounded by
Theorem 5. We then conclude that∫

RN

K |u|p ≤ C‖K V −t‖Ls,∞‖u‖p
H1

V
.

Under the assumptions in (ii), one obtains the compactness in a straightforward way. ��
2.3 Trace-type inequalities

We now examine the special case where V (x) = (1 + |x |)α . In this case, one can find
necessary and sufficient conditions on a Radon measure µ so that one has the continuous
embedding H1

V (R
N ) ⊂ L p(RN , µ), or so that it is compact. This approach is based on the

corresponding work of Maz’ja on Ḣ1(RN ). We first explain how the case N > 2 is treated
before sketching out how to adapt the arguments to the dimension N = 2.

2.3.1 The subcritical case

A first tool in the proof of Theorem 6 is a characterizations of the measures for which
H1

V (R
N ) ⊂ L p(RN , µ) when N > 2. Define

[µ] = sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| x ∈ R
N and ρ > 0

}
.

Theorem 9 ( Adams [1], Maz’ja [11, Theorems 1.4.4/1 and 1.4.6/1]) Let N > 2, µ be a
Radon measure and p > 2. Then,

(i) [µ] is finite if and only if there exists C > 0 such that for every u ∈ Ḣ1(RN ),

‖u‖L p(RN ,µ) ≤ C ‖∇u‖L2 ,

the quantity [µ] being equivalent to the optimal constant in the inequality;
(ii) The embedding Ḣ1(Rn) ⊂ L p(RN , µ) is compact if and only if

lim
δ→0

sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| x ∈ R
N and 0 < ρ < δ

}
= 0,

lim|x |→∞ sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| ρ > 0

}
= 0.

Remark 1 Since for every Radon measure µ = 0,

lim inf
ρ→0

sup
x∈RN

µ(B(x, ρ))

ρN
> 0,

Theorem 9 essentially applies only if p < 2N
N−2 .
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282 D. Bonheure, J. Van Schaftingen

In order to prove Theorem 6, we first prove that Theorem 9 applies to the restriction of
the measure µ to the ball B(x, 1

2 (1 + |x |)α). Recall that [µ]α has been defined in (3).

Lemma 2.2 Under the assumptions of Theorem 6, one has

(i) For every x, y ∈ R
N and ρ > 0,

µ(B(y, ρ) ∩ B(x, r))
1
p

ρ
N
2 −1

≤ C[µ]α,

where r = 1
2 (1 + |x |)1−α;

(ii) For every R > 0 and δ > 0,

sup

{
µ(B(x, ρ) ∩ B(0, R))

ρ
N
2 −1

| x ∈ R
N and ρ < δ

}

≤ sup

{
µ(B(x, ρ) ∩ B(0, R))

ρ
N
2 −1

| x ∈ R
N and ρ < δ

(1 + |x |)1−α

min(1, (1 + δ + R)1−α)

}

(9)

and

sup

{
µ(B(x, ρ)\B(0, R))

1
p

ρ
N
2 −1

| x ∈ R
N and ρ <

1

2
(1 + |x |)1−α

}

≤ sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1

| |x | > 2R − 1

3
and 0 < ρ <

1

2
(1 + |x |)1−α

}
. (10)

Proof When ρ < 1
2 (1 + |y|)1+α , one has trivially

µ(B(y, ρ) ∩ B(x, r))
1
p

ρ
N
2 −1

≤ µ(B(y, ρ))
1
p

ρ
N
2 −1

≤ [µ]α.

Assume now that ρ ≥ 1
2 (1 + |y|)1−α . If 1

3 (1 + |x |) ≤ (1 + |y|) ≤ 3(1 + |x |), one has
ρ ≥ 3−|1−α|r , and thus

µ(B(y, ρ) ∩ B(x, r))
1
p

ρ
N
2 −1

≤ µ(B(x, r))
1
p

ρ
N
2 −1

≤ 3
|1−α|

(
N
2 −1

)
µ(B(x, r))

1
p

r
N
2 −1

≤ 3
|1−α|

(
N
2 −1

)
[µ]α. (11)

If 3(1 + |y|) < 1 + |x |, assume without loss of generality that B(x, r) ∩ B(y, ρ) = ∅.
One has then, since r ≤ 1

2 (1 + |x |),
|x | − 1

2
≤ |x | − r < |y| + ρ ≤ |x | − 2

3
+ ρ

so that

ρ ≥ |x | + 1

6
>

r

3
.

123



Groundstates with vanishing potential 283

Reasoning as in (11), one obtains

µ(B(y, ρ) ∩ B(x, r))
1
p

ρ
N
2 −1

≤ 3

(
N
2 −1

)
[µ]α.

Finally, when 3(1 + |x |) < 1 + |y| and B(x, r) ∩ B(y, ρ) = ∅, one has

3|x | + 2 − ρ ≤ |y| − ρ < |x | + r ≤ 3|x | + 1

2

so that

ρ ≥ 3

2
(|x | + 1) > 3r,

and, as before,

µ(B(y, ρ) ∩ B(x, r))
1
p

ρ
N
2 −1

≤ 1

3
N
2 −1

[µ]α.

For the second statement, assume that ρ ≤ δ and B(x, ρ) ∩ B(0, R) = ∅. One has then
|x | ≤ ρ + R ≤ δ + R, so that

ρ ≤ δ
(1 + |x |)1−α

min(1, (1 + δ + R)1−α)
.

For the last statement, if B(x, ρ) ⊂ B(0, R), then R ≤ |x | + ρ ≤ (3|x | + 1)/2 and
|x | ≥ (3R − 1)/2; the conclusion follows. ��

The third tool to prove Theorem 6 is

Theorem 10 (Besicovitch’s covering theorem, see e.g. [10, Theorem 2.7]) If A ⊂ R
N is

bounded and B is a family of closed balls such that each point of A is the center of some ball
of B, then there exists a finite or countable collection of balls Bi ∈ B that covers A and such
that every point of R

N belong to at most P(N ) balls.

We can now prove the main result of this section.

Proof of Theorem6 By Lemma 2.2 and Theorem 9, for every x ∈ R
N and v ∈ Ḣ1(RN ),

‖v‖2
L p(B(x,r/2),µ) ≤ ‖v‖2

L p(B(x,r),µ) ≤ C[µ]α
∫

RN

|∇v|2,

where r = 1
2 (1+|x |)1−α . Recall that every u ∈ H1(B(0, 1/2)) has an extension v ∈ H1(RN )

such that ∫

RN

|∇v|2 ≤ C
∫

B(0,1/2)

|∇u|2 + |u|2.

By translation and scaling, every u ∈ H1(B(x, r/2)) has an extension v ∈ H1(RN ) such
that ∫

RN

|∇v|2 ≤ C
∫

B(x,r/2)

|∇u|2 + r−2|u|2.

123



284 D. Bonheure, J. Van Schaftingen

By the choice of r , for every y ∈ B(x, r),

3

2
(1 + |x |) ≤ 1 + |x | − (1 + |x |)1−α

2
≤ 1 + |y|

≤ 1 + |x | + (1 + |x |)1−α

2
≤ 3

2
(1 + |x |),

so that ∫

RN

|∇v|2 ≤ C ′
∫

B(x,r/2)

|∇u|2 + V |u|2.

One has thus, for every u ∈ H1
V (R

N ),

⎛
⎜⎝

∫
B(x,r/2)

|u|p

⎞
⎟⎠

2
p

≤ C[µ]α
∫

B(x,r/2)

|∇u|2 + V |u|2.

For every R > 0, applying now Theorem 10 to A = B̄(0, R) and B = B(x, 1
2 (1 + |x |)1−α),

one obtains a collection of balls (B̄(xi , ri/2))i∈I such that A ⊂ ⋃
i∈I B̄(xi , ri/2), with

ri = 1
2 (1 + |xi |)1−α and

∑
i∈I χB̄(xi ,ri /2) ≤ P(N ), so that

⎛
⎜⎝

∫
B(0,R)

|u|p dµ

⎞
⎟⎠

2
p

≤
⎛
⎜⎝∑

i∈I

∫
B(xi ,ri )

|u|p dµ

⎞
⎟⎠

2
p

≤
∑
i∈I

⎛
⎜⎝

∫
B(xi ,ri )

|u|p dµ

⎞
⎟⎠

2
p

≤ C[µ]α
∑
i∈I

∫
B(xi ,ri )

|∇u|2 + V |u|2

≤ C P(N )[µ]α
∫

RN

|∇u|2 + V |u|2.

One obtains the continuous embedding by letting R → ∞.
For the converse statement, let ϕ be a compactly supported smooth function such that

ϕ = 1 on B(0, 1
2 ) and suppϕ ⊂ B(0, 3/4) and set ϕx,ρ(y) = ϕ((x − y)/ρ). If ρ <

1
2 (1 + |x |)1−α , then 1

2 (1 + |y|) ≤ (1 + |x |) ≤ 2(1 + |y|) for y ∈ B(x, ρ), so that

∫

RN

V |ϕx,ρ |2 ≤ CρN

(1 + |x |)2−2α ≤ C ′ρN−2. (12)

One has thus

µ(B(x, ρ))
1
p ≤ ‖ϕx,ρ‖L p(RN ,µ) ≤ c

⎛
⎜⎝

∫

RN

|∇ϕx,ρ |2 + V |ϕx,ρ |
⎞
⎟⎠

1
2

≤ cCρ
N
2 −1.
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For the compactness part, first note that we deduce from (9) of Lemma 2.2 and Theorem 9
that Ḣ1(RN ) is compactly embedded in L p(B(0, R), µ) for every R > 0. Therefore, the
map u �→ χB(0,R)u is a compact operator from H1

V (R
N ) to L p(RN , µ). By the first part of

this theorem and (10) of Lemma 2.2,

‖u − χB(0,R)u‖L p(RN ,µ)

‖u‖H1
V

≤ sup

{
µ(B(x, ρ)\B(0, R))

1
p

ρ
N
2 −1

| x ∈ R
N and ρ <

1

2
(1 + |x |)1−α

}
→ 0

as R → ∞. Therefore, the embedding H1
V (R

N ) ⊂ L p(RN , µ) is compact as a limit in the
operator norm of compact operators.

For the necessity part, let δk → 0 and (xk)k ⊂ R
N . Set ρk = δk(1+|x |)1−α . The sequence

uk = ρ
−(N−2)/2
k ϕxk ,ρk is bounded in H1

V (R
N ) (see (12)) and converges weakly to 0. Since

H1
V (R

N ) is embedded compactly in L p(RN , µ), one obtains

µ(B(xk , ρk))
1
p

ρ
N
2 −1

k

≤ C‖uk‖L p(RN ,µ) → 0.

as k → ∞. This proves (4). Assuming that |xk | → ∞ and taking δk = 1
2 instead of δk → 0,

one obtains similarly (5). ��
Remark 2 In view of [11], it is clear that similar results apply to the Sobolev spaces W 1,q (RN ),
with q < N . For example, one has

⎛
⎜⎝

∫

RN

|u|pdµ

⎞
⎟⎠

1
p

≤ [µ]q,α

⎛
⎜⎝

∫

RN

k∑
i=0

|Di u|p

(1 + |x |)(1−α)(k−i)p

⎞
⎟⎠

1
q

,

where

[µ]α,q = sup

{
µ(B(x, ρ))

1
p

ρ
N
p −k

| x ∈ R
N and 0 < ρ <

1

2
(1 + |x |)1−α

}
.

Remark 3 One can also consider spaces with a weight on the gradient. For example, set

H =

⎧⎪⎨
⎪⎩u ∈ W1,1

loc

∣∣ ∫

RN

(1 + |x |)2τ |∇u|2 + (1 + |x |)2α+2τ−2|u|2
⎫⎪⎬
⎪⎭ .

One has then H ∈ L p(RN , µ) if and only if

sup

{
µ(B(x, ρ))

1
p

ρ
N
2 −1(1 + |x |)τ

| x ∈ R
N and 0 < ρ <

1

2
(1 + |x |)1−α

}
< ∞.

2.3.2 The critical case

In two dimensions, one has a similar result. Define

[µ]α,2 = sup

{
| log ρ|µ(B(x, ρ(1 + |x |)1−α))

1
p

∣∣∣ x ∈ R
N and 0 < ρ <

1

2

}
.
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Theorem 11 Assume α ≥ 0, V (x) = (1 + |x |)2α−2 and let µ be a Radon measure. Then,

(i) [µ]α,2 is finite if and only if there exists C > 0 such that for every u ∈ Ḣ1(R2),

‖u‖L p(R2,µ) ≤ C‖u‖H1
V
,

the quantity [µ]α,2 being equivalent to the optimal constant in the inequality;
(ii) The embedding H1

V (R
2) ⊂ L p(R2, µ) is compact if and only if

lim
δ→0

sup
{

| log ρ|µ(B(x, ρ(1 + |x |)1−α))
1
p

∣∣∣ x ∈ R
N and 0 < ρ < δ

}
= 0,

lim|x |→∞ sup

{
| log ρ|µ(B(x, ρ(1 + |x |)1−α))

1
p

∣∣∣ 0 < ρ <
1

2

}
= 0 .

Instead of Theorem 9, the main tool to prove Theorem 11 is

Theorem 12 (see [11, Corollary 8.6/1]) Let µ be a Radon measure, p > 2 and

[µ]2 = sup
{
|log ρ|µ(B(x, ρ)) 1

p | x ∈ R
N and 0 < ρ < 1

}
.

Then,

(i) [µ]2 is finite if and only if there exists C > 0 such that for every u ∈ H1(R2),

‖u‖L p(R2,µ) ≤ C(‖∇u‖L2 + ‖u‖L2),

the quantity [µ]2 being equivalent to the optimal constant in the inequality;
(ii) The embedding H1(R2) ⊂ L p(R2, µ) is compact if and only if

lim
δ→0

sup{|log ρ|µ(B(x, ρ)) 1
p | x ∈ R

N and 0 < ρ < δ} = 0,

lim|x |→∞ sup{|log ρ|µ(B(x, ρ)) 1
p | 0 < ρ < 1} = 0.

Proof of Theorem 6 By a variant of Lemma 2.2 and Theorem 12 together with a scaling
argument, one obtains that for every v ∈ H1(RN ) and x ∈ R

N ,

‖v‖2
L p(B(x,R/2),µ) ≤ C[µ]

∫

RN

|∇v|2 + v2

R2 ,

where R = 1
2 (1 + |x |)1−α . The proof continues then as the proof of Theorem 6. ��

Remark 4 Remark 2 still applies for W k,q(RN ), with kq = N and

[µ]q,α = sup

{
|log ρ|q−1µ(B(x, ρ))

1
p | x ∈ R

N and 0 < ρ <
1

2
(1 + |x |)1−α

}
.

2.3.3 Power-like potentials

When N ≥ 2 and V (x) = (1 + |x |)2α−2, Theorems 6 and 11, show that when K (x) =
(1 + |x |)−β , where β is given by (2),

H1
V (R

N ) ⊂ L p(RN , KLN ).

While Theorem 4 fails when N = 2, the preceding conclusion holds in this particular case.
We prove it as a lemma that we keep for future reference in Sect. 3. As this remains true
when N = 1, we provide a direct proof that works for all dimensions:
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Lemma 2.3 Let N ≥ 1, α > 0, 2 ≤ p ≤ 2N
N−2 if N ≥ 3 and 2 ≤ p < ∞ otherwise,

and β be given by (2). If p < ∞, V (x) = (1 + |x |)2α−2 and K (x) = (1 + |x |)−β , then
H1

V (R
N ) ⊂ L p(RN , KLN ).

Proof First note that by Gagliardo–Nirenberg’s inequality [13] and by scale invariance, for
every R > 0

∫
B(0,2R)\B(0,R)

|u(x)|p

|x |β dx ≤ C

⎛
⎜⎝

∫
B(0,2R)\B(0,R)

|u(x)|2
|x |2−2α dx

⎞
⎟⎠

N
2 − p

2

(
N
2 −1

)

×
⎛
⎜⎝

∫
B(0,2R)\B(0,R)

|∇u(x)|2 + |u(x)|2
|x |2 dx

⎞
⎟⎠
( p

2 −1) N
2

.

Summing this for R = 2k, k ≥ 0, we obtain since α ≥ 0,

∫

RN \B(0,1)

|u(x)|p

|x |β dx ≤ C

⎛
⎜⎝

∫

RN \B(0,1)

|u(x)|2
|x |2−2α dx

⎞
⎟⎠

N
2 − p

2

(
N
2 −1

)

×
⎛
⎜⎝

∫

RN \B(0,1)

|∇u(x)|2 + |u(x)|2
|x |2 dx

⎞
⎟⎠
( p

2 −1) N
2

≤ C

⎛
⎜⎝

∫

RN \B(0,1)

|∇u(x)|2 + |u(x)|2
|x |2−2α dx

⎞
⎟⎠

p
2

.

The conclusion follows then from Sobolev’s embedding theorem. ��
One could similarly obtain some conditions for the compactness of the embedding. As a

corollary, one has in R
2,

∫

R2

|u(x)|p

|x |2 dx ≤ C

⎛
⎜⎝

∫

R2

|∇u(x)|2 + |u(x)|2
|x |2 dx

⎞
⎟⎠

p
2

.

In contrast with the higher-dimensional case, the previous lemma cannot be improved when
N = 2 and α > 0 by replacing (1 + |x |) by |x |. If one sets V (x) = (1 + |x |2α−2) and
K (x) = 1 + |x |−β , then the conclusion of the Lemma holds provided α ≤ 0.

3 Decay estimates

We now turn out to the decay property of solutions to (PV,µ). The first improvement is to
obtain that u multiplied by some function is still in the energy space H1

V (R
N ). The latter

method also allows that the same holds for a small power of u. By Moser’s iteration technique,
we show then that a solution u satisfies some decay estimates at infinity.
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3.1 Linear estimates

We begin by considering the L2 theory of decay of finite-energy. These are special cases of
the sequel, but give an useful insight into the proof of the exact decay estimates.

Assumption 1 Let µ be a Radon measure, f ∈ L p/(p−2)(RN , µ) and u ∈ H1
V (R

N ) be such
that

(i) The embedding H1
V ⊂ L p(RN , µ) is continuous,

(ii) u satisfies

−�u + V u = f uµ. (13)

Proposition 3.1 Under Assumption 1, if

ν := lim inf|x |→∞|x |2V (x) > λ2 −
(

N

2
− 1

)2

> 0, (14)

then (1 + |x |)λ u ∈ H1
V (R

N ).

Let us first show how Theorem 7 follows:

Proof of Theorem 7 Under the assumptions of Theorem 7, the assumptions of Proposition 3.1

hold with f = |u|p−2 ∈ L
p

p−2 (RN , µ) and λ = 1. We have thus (1 + |x |)u ∈ H1
V and it

easily follows that u ∈ L2(RN ). ��
The proof roughly goes as follow. Take |x |2λu as a test function in (13), integrate on

R
N \B(0, R) and apply Hölder’s inequality to obtain

∫

RN \B(0,R)

|∇(|x |λu)|2 + V (x)||x |λu|2

≤
⎛
⎜⎝

∫

RN \B(0,R)

f p/(p−2)dµ

⎞
⎟⎠

1−2/p ⎛
⎜⎝

∫

RN \B(0,R)

||x |λu|
⎞
⎟⎠

1/p

+ λ2
∫

RN

|u|x |λ|2
|x |2 +

∫
∂B(0,R)

u
∂

∂ν
(u|x |2λ).

When R is large enough, by the assumption on f, µ and λ, the two first terms in the right-hand
side can be absorbed, so that the conclusion follows. As usual, we need to be careful in the
estimates of quantities that might not be finite.

Proof of Proposition 3.1 For every � ⊂ R
N and for every ϕ ∈ W 1,∞

0 (�) such that ∇ϕ has
compact support in �, recall that ϕ2u and ϕu ∈ H1

V (R
N ),

|∇(ϕu)|2 = ∇u · ∇(ϕ2u)+ |∇ϕ|2|u|2. (15)
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so that, by Hölder’s inequality and the embedding H1
V (R

N ) ⊂ L p(RN , µ), we get
∫

RN

|∇(ϕu)|2 + V |ϕu|2 =
∫

RN

f ϕ2|u|2dµ+ |∇ϕ|2|u|2

≤
⎛
⎝∫
�

| f | p
p−2 dµ

⎞
⎠

1− 2
p
⎛
⎜⎝

∫

RN

|ϕu|pdµ

⎞
⎟⎠

2
p

+
∫

RN

|∇ϕ|2|u|2

≤ C

⎛
⎝∫
�

| f | p
p−2 dµ

⎞
⎠

1− 2
p
⎛
⎜⎝

∫

RN

|∇(ϕu)|2 + V |ϕu|2
⎞
⎟⎠

+
∫

RN

|∇ϕ|2|u|2.

Let δ= C
(∫
�
| f | p

p−2 dµ
)1− 2

p
. Since f ∈ L

p
p−2 (RN , µ), we can choose�= R

N \B(0, R)

in such a way that 0 < δ < 1. The preceding estimates then yield a control on the norm of
ϕu

(1 − δ)

∫

RN

|∇(ϕu)|2 + V |ϕu|2 ≤
∫

RN

|∇ϕ|2|u|2. (16)

Taking (14) into account and increasing R if necessary, we can assume that for every x ∈ �,

V (x) ≥ ν − δ

|x |2 (17)

and

(ν − δ)(1 − δ) ≥ λ2

1 − δ
− (1 − δ)

(
N

2
− 1

)2

, (18)

where we recall that ν = lim inf |x |→∞|x |2V (x).
Choose now ψ ∈ C∞

c (�) such that ψ ≡ 1 on R
N \B(0, 2R) and, for k > 0, set ϕk(x) =

ψ(x)min(k, |x |λ). We infer from (16) and (17) that

(1−δ)
∫

RN

|∇(ϕku)|2+
(
δV +(1−δ)ν−δ|x |2

)
|ϕku|2 ≤

∫

RN

|∇ϕk |2|u|2

≤
∫

RN

λ2

|x |2 |ϕku|2 + C
∫

B(0,2R)\B(0,R)

|u|2,

where the constant C depends only on ψ, R and λ. Therefore,
∫

RN

|∇(ϕku)|2 +
(
δV +

(
(1 − δ)(ν − δ)− λ2

1 − δ

)
1

|x |2
)

|ϕku|2

≤ C

1 − δ

∫
B(0,2R)\B(0,R)

|u|2.
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Now, using (18), we infer that

δ

⎛
⎜⎝

∫

RN

|∇(ϕku)|2 + V |ϕku|2
⎞
⎟⎠ + (1 − δ)

⎛
⎜⎝

∫

RN

|∇(ϕku)|2 −
(

N

2
− 1

)2 |ϕku|2
|x |2

⎞
⎟⎠

≤ C ′
∫

B(0,2R)\B(0,R)

|u|2

and Hardy’s inequality then yields

δ

⎛
⎜⎝

∫

RN

|∇(ϕku)|2 + V |ϕku|2
⎞
⎟⎠ ≤ C ′

∫
B(0,2R)\B(0,R)

|u|2.

By letting k → ∞, we deduce from Fatou’s lemma that∫

RN

|∇(ϕu)|2 + V |ϕu|2 ≤ C ′
∫

B(0,2R)\B(0,R)

|u|2,

with ϕ(x) = ψ(x)|x |λ. Since local estimates are straightforward, we easily conclude that
|x |λ u ∈ H1

V (R
N \B(0, 1)).

To complete the proof, we need to show that ∇((1 + |x |)λu) ∈ L2(RN ). For this purpose,
it is enough to observe that

(1 + |x |)λu = (1 + |x |)λ
|x |λ |x |λu

and to use the fact that ∇(|x |λu) ∈ L2(RN ). ��
A similar method works in the case where V decays slowly at the infinity:

Proposition 3.2 Under Assumption 1, if

να := lim inf|x |→∞|x |2−2αV (x) > λ2, (19)

then eλ(1+|x |)αu ∈ H1
V (R

N ).

Proof Arguing as in the proof of Proposition 3.1, we choose the radius R in such a way that
δ < 1,

να >
λ2

(1 − δ)2
+ δ. (20)

and

V (x) >
να − δ

|x |2−2α , (21)

for every x ∈ U . Let ψ ∈ C∞
c (U ) be such that ψ ≡ 1 on R

N \B(0, 2R) and, for k > 0, set
ϕk(x) = ψ(x)min(k, eλ|x |α ). By (16), (20) and (21), we deduce that∫

RN

|∇(ϕku)|2 + V |ϕku|2 ≤ C
∫

B(0,2R)\B(0,R)

|u|2.
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Letting k → ∞ and applying Fatou’s lemma, we conclude that∫

RN

|∇(ϕu)|2 + V |ϕu|2 ≤ C
∫

B(0,2R)\B(0,R)

|u|2,

withϕ(x) = ψ(x)eλ|x |α . One concludes therefrom and from local estimates that eλ
′(1+|x |)αu ∈

H1
V (R

N ) for every λ′ < λ. ��
Remark 5 The statement uses the weight eλ(1+|x |)α instead of the simpler one eλ|x |α because
the latter is not Lipschitz when 0 < α < 1.

3.2 Nonlinear estimates

The method of proof of Propositions 3.1 and 3.2 allows in fact to obtain information about
((1 + |x |)λ u)γ or (eλ(1+|x |)α u)γ for γ > 1.

Lemma 3.3 Under Assumption 1, assuming moreover that γ > 1, u ∈ L2γ
loc(R

N ) and one
of the following hypothesis holds

(i)

λ <

(
N

2
− 1

)
2γ − 1

γ 2 − γ
,

and

ν = lim inf|x |→∞|x |2V (x) >

(
λ+ γ − 1

γ

(
N

2
− 1

))2

−
(

N

2
− 1

)2

> 0,

(ii)

ν > (1 + (γ − 1)2

2γ − 1
)λ2,

we have ((1 + |x |)λ u)γ ∈ H1
V (R

N ).

The statement of Theorem 3.3 is a perturbation of Proposition 3.1 in the sense that for
every λ that satisfies (14), there exists γ̄ (ν, λ) > 1 such that Theorem 3.3 is applicable for
1 ≤ γ < γ̄ (ν, λ). On the other hand, Theorem 3.3 will only be useful when γ is small.
Indeed, starting with u ∈ H1

loc, Sobolev’s embedding theorem only says u ∈ L2γ
loc(R

N ) for

γ ≤ N/(N − 2). Iterating the Lemma, one obtains successively that u ∈ L2γk
loc (R

N ) for
γk = N k/(N − 2)k for every k. For every fixed λ > 0, the iteration process will cease giving
global integrability information about ((1 + |x |)λu)γ when γ is too large.

The proof of Lemma 3.3 follows the strategy used to prove that solutions u ∈ H1(B(0, 1))
of the critical problem

−�u = u
N+2
N−2

are in Lq(B(0, 1
2 )) for q < 2N 2/(N − 2)2 [4,6,19]. The proof proceeds as follows. We first

establish by integration by parts the inequality (25). A suitable choice of test functions yields
that ((1 + |x |)λ u)γ ∈ H1

V (R
N \B(0, 2R)) for some large R > 0. Finally, we prove that one

also has that for every y ∈ R
N , ((1 + |x |)λ u)γ ∈ H1

V (B(y, ρ)) for some ρ > 0. Since by
Besicovitch’s covering theorem, R

N can be written as the union of a finite collection of such
balls together with R

N \B(0, 2R), the claim will follow.
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Proof of Lemma 3.3 First note that if v ∈ H1
loc(R

N ) is locally bounded and if ϕ is locally
Lipschitz, one has

|∇((ϕv)γ )|2 = γ 2

2γ − 1
∇v · ∇(ϕ2γ v2γ−1)+ 2γ 2 − 2γ

2γ − 1
vγ ϕγ−1∇ϕ · ∇(ϕv)γ

+ γ 2

2γ − 1
|∇ϕ|2v2γ ϕ2γ−2 (22)

and thus, for every η > 0,(
1 − η

γ 2 − γ

2γ − 1

)
|∇((ϕv)γ |)2 ≤ γ 2

2γ − 1
∇v · ∇(ϕ2γ v2γ−1)

+
(

γ 2

2γ − 1
+ 1

η

γ 2 − γ

2γ − 1

)
|∇ϕ|2v2γ ϕ2γ−2. (23)

On the other hand, by (15), and since γ > 1,(
1 − η

γ 2 − γ

2γ − 1

)
|∇(ϕv)|2 ≤ γ 2

2γ − 1
|∇(ϕv)|2 = γ 2

2γ − 1
∇v · ∇(ϕ2v)

+ γ 2

2γ − 1
|∇ϕ|2v2 ≤ γ 2

2γ − 1
∇v · ∇(ϕ2v)

+
(

γ 2

2γ − 1
+ 1

η

γ 2 − γ

2γ − 1

)
|∇ϕ|2v2. (24)

We will use this last estimates successively to obtain a first estimate at infinity and a second
one on small balls.

First step—a basic inequality. Define the truncation sequences (vk)k and (wk)k by

vk = min((uϕk)
γ , kuϕk) and wk = min

(
(uϕk)

2γ−1, k2uϕk
)
,

where the choice of ϕk will be specified later. By applying successively (23) and (24) to vk ,
we get the estimate(

1 − η
γ 2 − γ

2γ − 1

)
|∇vk |2 ≤ γ 2

2γ − 1
∇u · ∇(ϕkwk)+

(
γ 2

2γ − 1
+ 1

η

γ 2 − γ

2γ − 1

) |∇ϕk |2
ϕ2

k

v2
k .

If the support of ϕk lies in some open set� ⊂ R
N , choosing ϕkwk as test function, applying

Hölder’s inequality and the embedding H1
V (R

N ) ⊂ L p(RN , µ), we infer that
∫

RN

(
2γ−1

γ 2 −ηγ−1

γ

)
|∇vk |2+V |vk |2 ≤

∫

RN

f |vk |2dµ+
(

1 + 1

η

γ − 1

γ

) ∫

RN

|∇ϕk |2
|ϕk |2 |vk |2

≤
⎛
⎝∫
�

| f | p
p−2 dµ

⎞
⎠

1− 2
p
⎛
⎜⎝

∫

RN

|vk |pdµ

⎞
⎟⎠

2
p

+
(

1 + 1

η

γ − 1

γ

) ∫

RN

|∇ϕk |2
|ϕk |2 |vk |2

≤ C

⎛
⎝∫
�

| f | p
p−2 dµ

⎞
⎠

1− 2
p
⎛
⎜⎝

∫

RN

|∇vk |2 + V |vk |2
⎞
⎟⎠ +

(
1 + 1

η

γ − 1

γ

) ∫

RN

|∇ϕk |2
|ϕk |2 |vk |2.

(25)
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Let us set again δ = C
(∫
�
| f | p

p−2 dµ
)1− 2

p
. The preceding estimate then leads to

(
2γ − 1

γ 2 −ηγ − 1

γ
−δ

) ∫

RN

|∇vk |2+(1 − δ)

∫

RN

V |vk |2 ≤
(

1 + 1

η

γ − 1

γ

) ∫

RN

|∇ϕ|2
|ϕ|2 |vk |2.

(26)

Second step—an estimate at infinity. Assume first that (i) holds. We then chooseη=λ/( N
2−1).

Since f ∈ L
p

p−2 (RN , µ), we can take � = R
N \B(0, R) in such a way that

δ(2 − δ) ≤ 2γ − 1

γ 2 − 2λ

N − 2

γ − 1

γ
.

On the other hand, increasing R if necessary, we can assume that

(ν − δ) ≥
(
λ+ γ

γ−1

( N
2 − 1

))2

(1 − δ)2
−

(
N

2
− 1

)2

(27)

and

V (x) ≥ ν − δ

|x |2 ,

for every x ∈ �. Let ψ ∈ C∞
c (�) be such that ψ ≡ 1 on R

N \B(0, 2R). For k > 0, set
ϕk(x) = ψ(x)min(k, |x |λ). By (16), for k and R large enough, we have

∫

RN

(
2γ − 1

γ 2 − η
γ − 1

γ
− δ

)
|∇vk |2 +

(
(1 − δ)δV + (1 − δ)2

ν − δ

|x |2
)

|vk |2

≤
(

1 + 1

η

γ − 1

γ

) ∫

RN

|∇ϕk |2
|ϕk |2 |vk |2

≤
(

1 + 1

η

γ − 1

γ

) ⎛
⎜⎝

∫

RN

λ2

|x |2 |vk |2 + C
∫

B(0,2R)\B(0,R)

|u|2γ
⎞
⎟⎠ ,

where the constant C does not depend on k. Taking (27) into account, we deduce that

(
2γ − 1

γ 2 − η
γ − 1

γ
− δ(2 − δ)

) ⎛
⎜⎝

∫

RN

|∇vk |2 −
(

N

2
− 1

)2 |vk |2
|x |2

⎞
⎟⎠

+ (1 − δ)δ

⎛
⎜⎝

∫

RN

|∇vk |2 + V |vk |2
⎞
⎟⎠ ≤ C

∫
B(0,2R)\B(0,R)

|u|2γ

Applying Hardy’s inequality yields
∫

RN

|∇vk |2 + V |vk |2 ≤ C ′
∫

B(0,2R)\B(0,R)

|u|2γ ,
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and letting k → ∞, we conclude that∫

RN

|∇(ϕu)γ |2 + V |(ϕu)γ |2 ≤ C ′
∫

B(0,2R)\B(0,R)

|u|2,

with ϕ(x) = ψ(x)|x |λ. Arguing as in the proof of Proposition 3.1, we deduce that ((1 +
|x |)λ u)γ ∈ H1

V (R
N \B(0, 2R)).

If (ii) holds, we proceed similarly, choosing the radius R sufficiently large and η > 0 such
that

η
γ − 1

γ
+ 2δ − δ2 ≤ 2γ − 1

γ 2 , λ2
(

1 + 1

η

γ − 1

γ

)
≤ (ν − δ)(1 − δ)2

instead of (27).

Third step—the local estimates. Keeping the same notations, we now fix x0 ∈ R
N , choose

η = 1/(γ − 1),� = B(x0, ρ), ϕ ∈ C∞
c (�) such that ϕ = 1 on B(x0, ρ/2) and we set

ψk = ϕ for every k. Taking ρ in such a way that

δ ≤ γ − 1

2γ 2 ,

we deduce from (16) that

γ − 1

2γ 2

∫
B(x0,ρ)

|∇vk |2 + V |vk |2 ≤ C
∫

B(x0,ρ)

|vk |2 ≤ C ′
∫

B(x0,ρ)

|u|2γ .

Letting k → ∞, we conclude that ∇(uγ ) ∈ L2(B(x0, ρ/2)), and therefore ((1 + |x |)λu)γ ∈
H1

V (B(x0, ρ/2).

Conclusion. Taking all the previous estimates into account, the conclusion now follows from
a standard application of Besicovitch’s covering theorem. ��

In view of Theorem 8, one would have expected to have conditions (i) or (ii) replaced by
the weaker assumption

ν >

(
λ− γ − 1

γ

(
N

2
− 1

))2

−
(

N

2
− 1

)2

.

Observe that the sign in front of γ−1
γ

has changed. This can be explained partially roughly

as follows. If λ is optimal, one expects u to behave as |x |−λ−
(

N
2 −1

)
/γ

and

2uγ |x |λ(γ−1)∇|x |λ · ∇(|x |λu)γ ∼ −λ(N − 2)

|x |N
.

When passing from (22) to (23), the latter quantity can be bounded by

η|∇(u|x |λ)γ |2 + 1

η
u2γ |x |2λ(γ−1)|∇|x |λ|2

so that choosing η = λ/
( N

2 − 1
)

as in the proof, yields λ(N − 2)/|x |N , i.e. the opposite
quantity. (One would like thus to take η = −λ/ ( N

2 − 1
)
.)
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The method of proof also works for 1
2 < γ < 1. In this case, the second term on the

right-hand side of (22) has a negative coefficient, so that one (23) holds for η < 0. The
conditions on γ, λ and ν are the same excepted that the second inequality in (i) becomes

ν >

(
λ− γ − 1

γ

(
N

2
− 1

))2

−
(

N

2
− 1

)2

.

In view of the previous remark, the case γ < 1 is slightly better.
Finally, in the same fashion, one obtains the counterpart of Proposition 3.2:

Lemma 3.4 Under Assumption 1, if u ∈ L2γ
loc(R

N ) with γ > 1, and if

να = lim inf|x |→∞|x |2−2αV (x) >

(
1 + (γ − 1)2

2γ − 1

)
λ2,

then
(
eλ(1+|x |)α u

)γ ∈ H1
V (R

N ).

As for Lemma 3.3, the condition on να and λ are stronger than the condition να > λ2 that
is stated in Theorem 8.

Whereas Lemma 3.3 plays a crucial role in the sequel, Lemma 3.4 is not really needed,
since Lemma 3.6 only requires information on the integrability of |u|p−2 with a power-type
weight.

3.3 Moser iteration scheme

We now show that whenever u and f are in slightly better spaces than H1
V (R

N ) and
L p/(p−2)(RN , µ), this information can be upgraded to a uniform decay of u at infinity.

Lemma 3.5 Assume that (14) holds, H1
V (R

N ) ⊂ L p(RN , µ) and

f (1 + |x |)(N−2)(η−1) ∈ Lq(RN , µ),

where

η = p

2

(
1 − 1

q

)
> 1.

Then, if (1 + |x |)λ u ∈ H1
V (R

N ) and u solves (13), there exists C < ∞ such that

u(x) ≤ C

(1 + |x |)λ+(N−2)/2
.

Proof Assume that ((1+|x |)σ u)γ ∈ H1
V (R

N ) for some γ ≥ 1 and σ > 0. Setting γ ′ = ηγ ,

σ ′ = σ +
(

N

2
− 1

)
η − 1

γ ′ ,

w(x) = u2γ ′−1(1 + |x |)2γ ′σ ′

and

v(x) = ((1 + |x |)σ ′
u)γ

′
,

one has, see (24),

|∇v|2 = γ ′2

2γ ′ − 1
∇u · ∇w + 2σ ′ γ ′(γ ′ − 1)

2γ ′ − 1

v

1 + |x |
x · ∇v

|x | + γ ′2

2γ ′ − 1
σ ′2 |v|2

(1 + |x |)2 ,

123



296 D. Bonheure, J. Van Schaftingen

so that

|∇v|2 ≤ 2γ ′2

2γ ′ − 1
∇u · ∇w + γ ′2σ ′2

(
1 + 1

(2γ ′ − 1)2

) |v|2
(1 + |x |)2 .

By a suitable limiting argument, one has therefore

∫

RN

|∇v|2 ≤ 2γ ′2

2γ ′ − 1

∫

RN

f v2dµ− 2γ ′2

2γ ′ − 1

∫

RN

V v2

+ γ ′2σ ′2(1 + 1

(2γ ′ − 1)2
)

∫

RN

|v|2
(1 + |x |)2 .

One has by Hölder’s inequality and the embedding H1
V ⊂ L p(RN , µ)

∫

RN

f v2dµ =
∫

RN

f (1 + |x |)(N−2)(η−1)|u(x)(1 + |x |)σ |2γ ′
dµ

≤ C

⎛
⎜⎝

∫

RN

| f (1 + |x |)(N−2)(η−1)|qdµ

⎞
⎟⎠

1
q

⎛
⎜⎝

∫

RN

|(1 + |x |)σ u|γ pdµ

⎞
⎟⎠

1− 1
q

≤ C

⎛
⎜⎝

∫

RN

| f (1 + |x |)(N−2)(η−1)|qdµ

⎞
⎟⎠

1
q

‖((1 + |x |)σ u)γ ‖2η
H1

V
.

Observing that η < p ≤ 2N/(N −2) and combining this with (14), we infer that Lemma 2.3
is applicable and yields

∫

RN

|v|2
(1 + |x |)2 =

∫

RN

(|(1 + |x |)σ u|γ )2η

(1 + |x |)2−
(

N
2 −1

)
(2η−2)

≤ C‖((1 + |x |)σ u)γ ‖2η
H1

V
.

One concludes thus that

‖((1 + |x |)σ ′
u)γ

′ ‖H1
V

≤ C(1 + γ ′ + σ ′γ ′2)‖((1 + |x |)σ u)γ ‖η
H1

V
.

Setting now γk = ηk and

σk = λ+
(

1 − 1

ηk

)
N − 2

2
,

we get

‖((1 + |x |)σk+1 u)γk+1‖1/γk+1

H1
V

≤ [C(1 + η2(k+1))]1/ηk+1‖((1 + |x |)σk u)γ ‖1/γk

H1
V
.

Therefore, the quantity

‖((1 + |x |)σk u)γk ‖1/γk

H1
V
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is bounded uniformly in k. In particular, by Lemma 2.3 again, we infer that

⎛
⎜⎝

∫

RN

((1 + |x |)λ+(N−2)/2 u)2η
k

(1 + |x |)N

⎞
⎟⎠

1/(2ηk )

is bounded uniformly in k, so that

(1 + |x |)λ+(N−2)/2 u ∈ L∞(RN ).

��
The same can be done when the potential decays slowly at infinity.

Lemma 3.6 Assume (19) holds, H1
V (R

N ) ⊂ L p(RN , µ) and

f (1 + |x |)(1−α)(N−2)(η−1) ∈ Lq(RN , µ),

where

η = p

2

(
1 − 1

q

)
> 1.

If eλ(1+|x |)α u ∈ H1
V (R

N ) and u solves (13), then there exists C < ∞ such that

u(x) ≤ Ce−λ(1+|x |)α

(1 + |x |)(1−α)(N−2)/2
.

Proof We argue as in the proof of the previous lemma, taking γ ′ = ηγ ,

σ ′ = σ + (1 − α)

(
N

2
− 1

)
η − 1

γ ′

w(x) = (1 + |x |)2γ ′σ ′
e2γ ′λ(1+|x |)αu2γ ′−1(x),

and

v(x) = ((1 + |x |)σ ′
eλ(1+|x |)αu(x))γ

′
.

One obtains similarly
∫

RN

|∇v|2 ≤ 2γ ′2

2γ ′ − 1

∫

RN

f v2dµ− 2γ ′2

2γ ′ − 1

∫

RN

V v2

+ γ ′2(|σ ′| + λα)2
(

1 + 1

(2γ ′ − 1)2

) ∫

RN

|v|2
(1 + |x |)2−2α .

From the embedding H1
V ⊂ L p(RN , µ) and Lemma 2.3, we deduce

‖((1 + |x |)σ ′
u)γ

′ ‖H1
V

≤ C(1 + γ ′ + (|σ | + λα)γ ′2)‖((1 + |x |)σ u)γ ‖2η
H1

V
.

Setting now γk = ηk and

σk = λ+ (1 − α)

(
1 − 1

ηk

)
N − 2

2
,
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and iterating as before, one has that

‖(eλ(1+|x |)αu)γk ‖1/γk

H1
V

is bounded uniformly in k. In particular, by Lemma 2.3

⎛
⎜⎝

∫

RN

((1 + |x |)(1−α)(N−2)/2eλ(1+|x |)αu)2η
k

(1 + |x |)N (1−α)

⎞
⎟⎠

1/(2ηk )

is bounded uniformly in k, so that

(1 + |x |)(1−α)(N−2)/2eλ(1+|x |)αu ∈ L∞(RN ).

��
3.4 Proof of Theorem 8

We can now bring together the results of the previous sections in order to deduce the decay
at infinity.

Proof of Theorem 8 Consider first the statement (i). Since we know that |u|p−2 ∈ L p/(p−2)

(RN , µ) and, by assumption, we have

lim inf|x |→∞ V (x)|x |2 >
(
λ−

(
N

2
− 1

))2

−
(

N

2
− 1

)2

,

we deduce from Proposition 3.1 that u(1 + |x |)λ−
(

N
2 −1

)
∈ H1

V (R
N ).

Next, when γ > 1 is sufficiently small, Lemma 3.3 shows that
(

u(1 + |x |)
γ−1
γ

(
N
2 −1

))γ
∈ H1

V (R
N ) ⊂ L p(RN , µ).

Setting q = γ p
p−2 and

η = p

2

(
1 − 1

q

)
= 1 + γ − 1

γ

( p

2
− 1

)
,

one reaches the conclusion by using Lemma 3.5.
The proof of (ii) is similar. We start from Proposition 3.2 which states eλ(1+|x |)αu ∈

H1
V (R

N ). On the other hand, in view of Lemma 3.3, there exists γ > 1 such that

(
u(1 + |x |)

γ−1
γ
(α−1)

(
N
2 −1

))γ
∈ H1

V (R
N )

Taking q and η as above, by Lemma 3.6,

(1 + |x |)(1−α)(N−2)/2eλ(1+|x |)αu ∈ L∞(RN ).

This gives the conclusion if α ≤ 1. Otherwise, one just need to notice that the range of
admissible λ is open. ��
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4 Further comments

The method that we have followed is known to be very flexible. Let us highlight some similar
situations that can be treated as above.

4.1 Fast decay for exploding potential

By the Kelvin transform the estimates around infinity are equivalent to local estimates with
a singular potential. Indeed, if u ∈ H1

V (R
N ) satisfies (PV,µ), then

ū(x) = 1

|x |N−2 u

(
x

|x |2
)
.

satisfies

−�ū + V̄ u = u p−1µ̄,

where

V̄ (x) = 1

|x |4 V

(
x

|x |2
)

and the measure µ̄ is defined by∫

RN

ϕdµ̄ =
∫

RN

ϕ

(
x

|x |2
)

1

|x |(N−2)p
dµ.

As a consequence of Theorem 8, one has that if

lim inf
x→0

|x |2V (x) > λ(λ+ N − 2)

for λ > 0, then in a neighborhood of 0, u(x) ≤ C |x |λ. Similarly, if

lim inf
x→0

|x |2+2αV (x) > λ2,

then u(x) ≤ e−λ/|x |α in a neighborhood of 0.

4.2 Divergence-form operators

The Laplacian can be replaced by an elliptic operator in divergence form. Assume that u
solves,

− div ·A∇u + V u = |u|p−2uµ,

where A : R
N → R

N×N is measurable and A(x) is symmetric for every x ∈ R
N and there

exist 0 < a ≤ a < ∞ such that

a|ξ |2 ≤ ξ · Aξ ≤ a|ξ |2. (28)

If

lim inf|x |→∞|x |2V (x) > aλ2 − a

(
N

2
− 1

)2

> 0

then (1 + |x |)λ ∈ H1
V (R

N ). Similarly, if

lim inf|x |→∞|x |2−2αV (x) > aλ2,
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then eλ(1+|x |)αu ∈ H1
V (R

N ). The proof of Lemmas 3.5 and 3.6 apply directly, so that u(x) ≤
C(1 + |x |)−λ+1− N

2 and u(x) ≤ Ce−λ(1+|x |)α (1 + |x |)(α−1)
(

N
2 −1

)
.

4.3 Nonuniformly elliptic operators

If the matrix A is not anymore uniformly elliptic, but satisfies

a

(1 + |x |)2τ |ξ |2 ≤ ξ · Aξ ≤ a

(1 + |x |)2τ |ξ |2,

instead of (28). One has then the following extension: if

lim inf|x |→∞|x |2V (x) > aλ2 − a

(
N

2
− τ − 1

)2

> 0,

then (1 + |x |)λ u ∈ H , where H is defined in Remark 3, and if

lim inf|x |→∞|x |2−2αV (x) > aλ2,

then eλ(1+|x |)αu ∈ H . Suitable adaptations of Lemmas 3.5 allow also to show that

u(x) ≤ C(1 + |x |)−λ−
(

N
2 −1−τ

)

and

u(x) ≤ Ce−λ(1+|x |)α (1 + |x |)(α−1)
(

N
2 −1−τ

)

respectively.
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