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Abstract We discuss the asymptotic behavior of the least energy solution of a Dirich-
let problem in the zero mass case. If Q is a uniformly positive potential having k isolated
local minima, then we prove the existence of a positive multi-spike solutions having k peaks
concentrating at each local minima of the potential.
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1 Introduction

There has been considerable interest in understanding the behavior of positive solutions of
the elliptic problem {−ε2�u = f (x, u) in �

u = 0 on ∂�
(1.1)

where ε > 0 is a parameter, f is a superlinear function and� is a smooth bounded domain in
R

N . Let F(x, u) = ∫ u
0 f (x, t)dt . We consider the problems in the zero mass case i.e. when

f (x, 0) = 0 and fu(x, 0) = 0. Let f (x, u) = f (u). Then problem (1.1) can be viewed as
borderline problems because if f ′(0) > 0, there is no non-trivial solutions for small ε > 0
Berestycki and Lions [2] proved the existence of ground state solutions if f (u) behaves
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186 E. N. Dancer, S. Santra

like |u|p for large u and |u|q for small u where p and q are supercritical and subcritical,
respectively.

In this paper we consider the problems,⎧⎨
⎩

−ε2�u = u p − uq in �

u > 0 in �

u = 0 on ∂�,

(1.2)

⎧⎨
⎩

−ε2�u = u p − Q(x)uq in �

u > 0 in �

u = 0 on ∂�

(1.3)

where 1 < q < p < N+2
N−2 , N ≥ 3 and Q(x) ≥ b > 0 for all x ∈ �, Q is bounded and

smooth. Let U be a solution of⎧⎪⎪⎨
⎪⎪⎩

−�u = u p − uq in R
N

u > 0 in R
N

u → 0 as |x | → ∞
u ∈ C2(RN ).

(1.4)

By [12] and [11], U is radial and unique. Locating the points of concentration is important
because they provide a concrete way of understanding the geometry of a class of solutions.
In this paper, we study problems concerning the asymptotic behavior of the mountain pass
solution and existence of multi-peak solutions for ε > 0 sufficiently small. Let N ≥ 3 and
q� := N

N−2 . The exponent q� is somewhat critical to the problems considered above. Then

Theorem 1.1 Consider the problem (1.2). For q > q�, there exists ε0 > 0 such that for
every 0 < ε < ε0, there exists a least energy positive solution uε ∈ H1

0 (�) of the problem
and uε has a unique point of maximum xε . Then uε concentrates at a minima ofψx (x), where
ψx satisfies, {

−�ψx = 0 in �

ψx = 1
|x−y|N−2 on ∂�.

(1.5)

Hence uε concentrates at a harmonic center of �.

Note that in the case q = 1, the least energy solution to the problem (1.2) has a unique
maxima xε; as ε tends to zero uε decays exponentially away from xε and d(xε, ∂�) →
maxx∈� d(x, ∂�). This implies that the solution concentrates at an interior point furthest
from the boundary of �. This was studied by Ni and Wei [13]. Later Flucher and Wei [10],
proved that if f (u) = (u − 1)p

+, then the least energy solution of (1.1) concentrates at the
harmonic center of �. Note that harmonic center in general is different from the point of
maximal distance from the boundary. With a slight modification of our proof we can prove
that results of Theorem 1.1 holds for the nonlinearity

f (u) = u p −
m∑

j=1

c j u
q j

where 1 < q j < p, c j > 0 and m ∈ N.
Let α = max{ 2

q−1 , N − 2}. We have the following result:

Theorem 1.2 Consider the problem (1.3) and assume q �= q�. Let Q has k isolated local
minima in � say z1, z2, . . . , zk . Then, there exists ε0 > 0 such that for every 0 < ε < ε0,
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Singular perturbed problems in the zero mass case 187

there exists a positive solution uε ∈ H1
0 (�) to the problem (1.2) possessing exactly k max-

ima xε, j ∈ � such that xε, j → z j for j = 1, 2, . . . , k and there exists a constant C > 0
independent of ε, Q such that

uε(x) ≤ C
εα

|x − xε, j |α
away from z j .

In the case q = 1, the existence of a single spike solution first studied by Floer and
Weinstein [8]. When � = R and f (u) = u3, they constructed a single spike solution con-
centrating around any given non-degenerate critical point of the potential Q. Later Yong-Geun
[16,17], extended the result of Floer and Weinstein in the higher dimensional case. Wang
[19] showed that the mountain pass solution concentrate around a global minimum point of
Q. When � = R

N , Del Pino and Felmer [5], proved an analogue of Wang’s result imposing
the condition on Q that there exists a bounded domain � with

inf
�

Q < inf
∂�

Q.

They then prove that the above problem has a solution concentrating around a minimum of Q
in�. Moreover, in [6,7] they proved the existence of multi-peak solutions concentrating near
any finite set of local minima of a uniformly positive potential. Problem (1.2) was studied by
Dancer [3] in domains having some kind of symmetry. In fact, he proved that for sufficiently
small ε > 0, the positive solution is unique. Note that the positive solutions we obtain are
concentrating exactly at the local minima of V . Our main contribution is to cover the case
where q > 1. Before proving the main theorems, we look in to the difficulties associated
with the problem.

• The solution of (1.4), U ∈ D1,2(RN ) ∩ Lq+1(RN ) and U decays algebraically.
• Since our proof requires nondegeneracy results and U ∈ D1,2(RN ) ∩ Lq+1(RN ), we

work in the larger space D1,2(RN ).
• Approximate solution to U may not be positive in � in the Dirichlet case. In the case

the problem (1.2) with Neumann boundary conditions, the approximate solution to U is
positive and satisfy

{−ε2�Zε + qU q−1
ε Zε = U p

ε + (q − 1)U q
ε in �

∂Zε
∂ν

= 0 on ∂�
(1.6)

where Uε is a re-scaled version of U and one expects to obtain similar results to [14]
and [15].

• Most surprising fact is the existence of the exponent q� such that for all q ∈ (1, q�], the
asymptotic behavior of least energy solution of problem (1.1) cannot be studied by our
method. The natural question arises, is it possible to obtain a higher order expansion for
the case q ∈ (1, q�]? This runs into a major problem as U q−1 is not integrable at infinity.

In fact, for q = q�, we expect the entire solution U to satisfy U ∼ r−(N−2)(log r)− N−2
2

as r → ∞.
• The reduction method could in principle be applied to Q ≡ 1, but it seems difficult to

determine the location of peaks by our method.
• Finally note that we cannot extend Theorem 1.2 to unbounded domains. The main reason

for that is we cannot obtain good boundary estimates as (7.7).
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188 E. N. Dancer, S. Santra

2 Preliminaries

Let us modify the problem (1.2) to⎧⎨
⎩

−ε2�u = (u+)p − (u+)q in �

u > 0 in �

u = 0 on ∂�.

(2.1)

It is easy to show that any solution of (2.1) is positive and is in fact a positive solution to
(1.2). Note that the associated functional to the problem (1.2) is


ε(u) =
∫
�

(
ε2

2
|∇u|2 − 1

p + 1
(u+)p+1 + 1

q + 1
(u+)q+1

)
dx

Note that 
ε satisfies Palais Smale condition and all the conditions of the mountain pass
theorem and hence there exist a mountain pass solution uε > 0 and a mountain pass critical
value

0 < cε = inf
γ∈� max

t∈[0,1]
ε(γ (t))

where

� = {
γ ∈ C

([0, 1], H1
0 (�)

) : γ (0) = 0, γ (1) �= 0,
ε(γ (1)) ≤ 0
}
.

With a change of variable the problem (1.2) takes the form⎧⎨
⎩

−�u = u p − uq in �ε
u > 0 in �ε
u = 0 on ∂�ε

(2.2)

where �ε is a re-scaled version of �. The functional associated to the problem (2.2) is

Iε(u) =
∫
�ε

(
1

2
|∇u|2 − 1

p + 1
(u+)p+1 + 1

q + 1
(u+)q+1

)
dx

Note that Iε(0) = 0, Iε(tu) → −∞ as t → +∞ and Iε satisfies the Palais Smale con-
dition on H1

0 (�). Hence, we obtain a positive solution vε for each ε > 0 obtained by the
mountain pass theorem. Then the mountain pass critical value bε is given by

bε = inf
γ∈�ε

max
t∈[0,1] Iε(γ (t))

where

�ε = {
γ ∈ C

([0, 1], H1
0 (�ε)

) : γ (0) = 0, γ (1) �= 0, Iε(γ (1)) ≤ 0
}

Note that as 0 is a strict local minima of Iε, bε > 0, ∀ε > 0. Also note that 
ε(u) =
εN Iε(u) which implies that cε = εN bε. Let

Nε (�ε) =

⎧⎪⎨
⎪⎩u ∈ H1

0 (�ε) :
∫
�ε

|∇u|2 +
∫
�ε

(u+)q+1 =
∫
�ε

(u+)p+1

⎫⎪⎬
⎪⎭.

Lemma 2.1 We have for all ε > 0

bε = inf
γ∈�ε

max
t∈[0,1] Iε(γ (t)) = inf

u∈Nε(�ε)
Iε(u) = inf

u∈H1
0 (�ε),u �=0

max
t≥0

Iε(tu).
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Singular perturbed problems in the zero mass case 189

Proof For the sake of completeness we prove this well-known lemma. Let ε > 0 be fixed.
First note that

inf
γ∈�ε

max
t∈[0,1] Iε(γ (t)) ≤ inf

u∈H1
0 (�ε)

max
t≥0

Iε(tu) (2.3)

We first claim that infu∈Nε(�ε) Iε(u) = infu∈H1
0 (�ε)

maxt≥0 Iε(tu). Define h(t) = Iε(tu).
Then as discussed earlier and due to the nature of the nonlinearity we have h(0) = 0, h(t) > 0
for small t > 0 and h(t) < 0 for t > 0 sufficiently large. Hence maxt∈[0,+∞)h(t) is achieved.
Also note that h′(t) = 0 implies ‖u‖2

H1
0 (�ε)

= g(t) where

g(t) = t p−1
∫
�ε

(
u+)p+1 − tq−1

∫
�ε

(
u+)q+1

.

It is easy to see that g is an increasing function of t whenever g(t) > 0. Thus there exists
a unique t such that ‖u‖H1

0 (�)
= g(t). Hence there exist a unique point θ(u) such that

h′(θ(u)u) = 0 and θ(u)u ∈ Nε(�ε). This implies that Nε(�ε) is radially homeomorphic
to H1

0 (�ε)\{0} if we prove that θ : H1
0 (�ε)\{0} → R

+ is continuous. In order to do so let
un → u in H1

0 (�ε)\{0}. Then un → u in H1
0 (�ε) and un → u in Lr (�ε) for all r ≤ N+2

N−2
and ∫

�ε

|∇un |2 = θ p−1(un)

∫
�ε

(
u+

n

)p+1 − θq−1(un)

∫
�ε

(
u+

n

)q+1
(2.4)

which proves there exist constants m > 0 and M > 0 independent of n such that m ≤
θ(un) ≤ M . By passing to the limit in (2.4) the whole sequence {θ(un)} converges as un is
convergent and hence θ(u) = θ0 where θ0u ∈ Nε which proves our claim.

Next, we claim that infγ∈�ε maxt∈[0,1] Iε(γ (t)) = infu∈Nε(�ε) Iε(u). It is easy to see that
infγ∈�ε maxt∈[0,1] Iε(γ (t)) ≥ infu∈Nε(�ε) Iε(u) by (2.3). It is enough to prove that any γ ∈
�ε intersects Nε. Note that Iε(u) > 0 for ‖u‖H1

0 (�)
sufficiently small and Iε(γ (1)) < 0

which implies the required result. ��

Lemma 2.2 There exists a C > 0 independent of ε such that bε ≤ C for sufficiently small ε.
Hence along a subsequence bε converges as ε → 0.

Proof Let ϕ1 > 0 be the eigenfunction corresponding to the first eigenvalue λ1 of −�
in � with respect to the zero Dirichlet boundary conditions. Let

∫
�
ϕ2

1 = 1. Note that
supp ϕ1 ⊂ � ⊂ �ε for sufficiently small ε. Choose a t > 0 such that Iε(tϕ1) ≤ 0. We claim
that in fact t is uniformly bounded. We have

Iε(tϕ1) =
∫
�ε

(
1

2
|∇tϕ1|2 − 1

p + 1
(tϕ1)

p+1 + 1

q + 1
(tϕ1)

q+1
)

dx

= λ1t2 1

2

∫
�ε

ϕ2
1 − t p+1

p + 1

∫
�ε

ϕ
p+1
1 + tq+1

q + 1

∫
�ε

ϕ
q+1
1

= λ1t2

2

∫
�

ϕ2
1 − t p+1

p + 1

∫
�

ϕ
p+1
1 + tq+1

q + 1

∫
�

ϕ
q+1
1
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190 E. N. Dancer, S. Santra

which implies t p−1 ≤ C . Now the right-hand side is independent of ε. Since p > q > 1, we
can find t > 0 such that Iε(tϕ1) < 0 for all ε small. Now

bε = inf
γε∈�ε

max
t∈[0,1] Iε(γ (t)).

Define γ1 : [0, 1] → H1
0 (�ε) such that γ1(t) = t tϕ1. Hence we have

bε ≤ max
t∈[0,1] Iε(γ1(t)) ≤ C

where C > 0 independent of ε, as required. ��
Lemma 2.3 The function ψx (y) is positive and continuous in �× �. Also ψx (x) → +∞
as dist (x, ∂�) → 0.

Proof The result can be found in Bandle and Flucher [1]. ��
As a result,

h(x) = ψx (x)

is strictly positive in �, locally bounded and h(x) → +∞ as x → ∂�. Hence it achieves a
minimum in the interior of �.

Remark 2.4 Since

bε = inf
u∈Nε(�ε)

Iε(u) = Iε (vε)

we have

bε = Iε(vε) =
(

1

2
− 1

p + 1

)∫
�ε

|∇vε|2 +
(

1

q + 1
− 1

p + 1

)∫
�ε

vq+1
ε (2.5)

which implies that
∫
�ε

|∇vε|2,
∫
�ε
v

p+1
ε and

∫
�ε
v

q+1
ε are uniformly bounded. First note that

from (1.2), maxx∈� uε ≥ 1. Also note that by Gidas-Spruck [9] we obtain ‖vε‖L∞(RN ) ≤ C
and from Schauder estimates, it follows that there exists C > 0 such that ‖vε‖C2,β

loc (R
N )

≤ C

for some 0 < β ≤ 1. Hence by the Ascoli-Arzela’s theorem there exists an U �= 0 such that

‖vε − U‖C2
loc(R

N ) → 0 as ε → 0.

Blowing up around zε (where zε is a point of maximum of vε) we easily see by a limit
argument and the strong maximum principle U satisfies (1.4). (That U → 0 as |x | → +∞
will be proved in the next section.) The only case we have difficulty is if zε is within order 1
of ∂�ε. In this case, we obtain a non-trivial solution of the half space problem.⎧⎨

⎩
−�u = u p − uq in R

N+
u = 0 on yN = 0
u ∈ C2

(
R

N+
) (2.6)

Suppose Ũ is a solution of (2.6) which achieves its maximum, then by [4] it follows that
∂Ũ
∂yN

> 0 in R
N+ and hence Ũ cannot achieve a maximum, a contradiction. Using the above

argument, it is easy to show that d(zε, ∂�ε) → +∞ as ε → 0. We call U to be the entire
solution.
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Singular perturbed problems in the zero mass case 191

3 Asymptotics of the entire solution

Lemma 3.1 Then U satisfies

∇U ∈ L2(RN ), U ∈ L p+1(RN ) and U ∈ Lq+1(RN ).

Moreover,

lim|x |→+∞ U (x) = 0,

and U is radially decreasing about the origin, U is the unique positive decaying solution
of (1.4). For q �= q�,

U (r) ∼ 1

rα

as r → +∞ where α = max
{

2
q−1 , N − 2

}
.

Proof Note that from (2.5) it follows easily that
∫

RN |∇U |2, ∫
RN U p+1 and

∫
RN U q+1 are

finite. Hence applying one sided Harnack inequality [18], we have

max
B1(x)

U ≤ c

⎛
⎜⎝

∫
B2(x)

U q+1

⎞
⎟⎠

1/q+1

where x ∈ R
N is an arbitrary point and c is a constant depending on N . Hence we have

U (x) → 0 as |x | → +∞
Applying the result in [12], we obtain that U is radial. The uniqueness of U follows from
[11]. Also note that −Urr − N−1

r Ur = (U p −U q),U (0) > 1 and hence for large r,Urr > 0,
which implies that Ur is increasing and hence limr→+∞|Ur | = Ur (0) = 0.

First, we obtain the decay for the case α = N − 2. Consider the problem �u1 = 0 in
R

N \BR(0). Let u1 = r−(N−2) and hence there exist C > 0 such that U − Cu1 < 0 in
∂BR and

−�(U − Cu1) < 0 in R
N \BR

and U − Cr−(N−2) → 0 as r → +∞. Note that if U − Cu1 is positive somewhere on
R

N \BR(0), it has a positive maxima which contradicts the fact that �(U − Cu1) > 0 in
R

N \BR(0). Hence U ≤ Cr2−N in R
N \BR .

In the case q < N
N−2 , we claim that there exists a C1 > 0 such that C1r− 2

q−1 ≥ U (r) for
r sufficiently large. Define

H(r) = 1

2

(
U ′)2 + 1

p + 1
U p+1 − 1

q + 1
U q+1

Then H(r) is a decreasing function. For large r,U ′(r) is small and hence it follows that
H(r) → 0 as r → +∞. Note that H(r) ≥ 0 and hence for large r we have

|U ′(r)|2 ≥
(

2

q + 1
− ε

)
U q+1
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192 E. N. Dancer, S. Santra

for some ε > 0 small and hence ∣∣∣∣
(

U
1−q

2 (r)
)′∣∣∣∣ ≥ k

Hence we have U
1−q

2 ≥ kr for large r which implies that U ≤ C1r− 2
q−1 for large r.

Define v(r) = U (r)rα. Then v is bounded and satisfies

− vrr − (N − 2α − 1)

r
vr + α(N − 2α − 2)

r2 v = rα(1−p)v p − rα(1−q)vq (3.1)

that is

vrr + |N − 2α − 1|
r

vr = α(N − 2α − 2)

r2 v − rα(1−p)v p + rα(1−q)vq

where α = max
{

2
q−1 , N − 2

}
. For N > 3 we use the transformations r = e

t
|N−2α−1| and

w(t) = v(r) in the above equation, we have

w′′(t) = α(N − 2α − 2)(N − 2α − 1)−2w

−(N − 2α − 1)−2e
(2+α(1−p)|N−2α−1|)t

|N−2α−1| w p

+(N − 2α − 1)−2e
(2+α(1−q)|N−2α−1|)t

|N−2α−1| wq (3.2)

Let g(t)be the right-hand side of (3.2). Note that (N−2α−2) < 0 and (2+α(1−q)|N−2α−1|)t
|N−2α−1|

< 0, hence w′′ has definite sign after a certain stage and hence limt→+∞w′(t) = l (where
l may be ±∞). For the case l > 0 and l < 0 we can deduce that w(t) → +∞ and
w(t) → −∞ respectively as t → +∞ which contradicts the fact thatw(t) is bounded. There-
fore,w′(t) → 0 as t → +∞. Now g(t) is integrable and as a result w′(t) = − ∫ +∞

t g(s)ds.
Hence w′(t) has definite sign after a certain stage and hence we conclude that there exists
µ ≥ 0 such that

lim
t→+∞w(t) = µ.

We claim that when α = 2
q−1 , then µ > 0. If µ = 0, then by (3.2), w′′(t) < 0 for t � 0.

Thus there exists t2 large such that w′(t2) < 0. Note that w(t) > 0 in (0,+∞). Hence
w′(t) ≤ w′(t2) < 0 for t ≥ t2 and this implies w(t) → −∞ as t → +∞, a contradiction.
Hence µ > 0.

For α = N − 2, and N > 3, we use the same technique as above to obtain µ > 0.
For N = 3, note that (N − 2α − 1) = (N − 3) = 0 and hence (3.1) reduces to

vrr + 1

r2 v = r (1−p)v p − r (1−q)vq .

Hence we obtain for r � 0, vrr ≤ 0 as v
r2 ≥ 0. This implies that limr→+∞ vr = 0 by similar

argument to above. Hence

vr (r) = −
+∞∫
r

(
1

s2 v(s)+ 1

s p−1 v
p(s)− 1

sq−1 v
q(s)

)
ds.

As a result vr has a definite sign and hence limr→+∞ v(r) exists. Applying the same technique
as in the case α = 2

q−1 we obtain limr→+∞ rU (r) > 0. ��
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Singular perturbed problems in the zero mass case 193

Corollary 3.2 As r → +∞ we have,

|Ur | ∼
{ 1

r N−1 if α = N − 2
1

rαq−1 if α = 2
q−1 .

(3.3)

Proof Since (r N−1Ur )r is positive after a certain stage, which implies that (r N−1Ur ) is
increasing after a certain stage limr→+∞ r N−1|Ur | = l exists finitely as the right-hand
side is integrable if q �= q�; and non-zero when α = N − 2. (Otherwise it will contradict
Lemma 3.1.) Hence 0 <

∫
RN (U p − U q)dx < +∞ as limr→+∞

∫ r
0 (U

p − U q) s N−1dr =
limr→+∞ r N−1|Ur | = ∫ +∞

0 (U p − U q) r N−1dr . As a result |Ur | ∼ r−(N−1) as r → +∞.
When α = 2

q−1 , then r (N−1)Ur (r) → 0. We have as r → +∞
(

r N−1Ur

)
r

∼ U qr N−1

and note that αq > N and integrating we obtain

−r N−1Ur =
+∞∫
r

(
s N−1Us

)
s

∼
+∞∫
r

U qs N−1 ∼
+∞∫
r

s−αq+N−1ds

which implies that

|Ur | ∼ r−αq+1.

��
Remark 3.3 Note that if q = q�, it is easy to show that in fact limr→+∞ r N−1|Ur | < +∞.
Note that in fact the limit is zero since otherwise U q� is not integrable at infinity which
contradicts the fact that limr→+∞ r N−1|Ur | exists and thus limr→+∞ r N−2U = 0. Hence∫

RN U qdx < +∞.

Remark 3.4 Let us define a space D = D1,2(RN ) ∩ Lq+1(RN ). Define a norm on D as

‖u‖D =
⎛
⎜⎝

∫

RN

|∇u|2
⎞
⎟⎠

1/2

+
⎛
⎜⎝

∫

RN

|u|q+1

⎞
⎟⎠

1/q+1

∀u ∈ D

Note that (D, ‖u‖D) is a reflexive Banach space. We claim that D ↪→ L p+1(RN ) is a con-
tinuous embedding provided p + 1 ≤ 2N

N−2 . In order to prove this first note that there exists

0 < θ < 1 such that 1
p+1 = θ

q+1 + 1−θ
2∗ we have by interpolation and Sobolev inequality

‖u‖L p+1 ≤ ‖u‖θLq+1‖u‖1−θ
L2∗

≤ C‖u‖θLq+1‖u‖1−θ
D1,2

≤ C‖u‖θD‖u‖1−θ
D

= C‖u‖D. (3.4)

Hence the embedding is continuous. Note that as 1 < q < p < 2∗ − 1, by (3.4) follows that
U ∈ D. Define I∞ : D → R as

I∞(u) =
∫

RN

(
1

2
|∇u|2 − 1

p + 1
|u|p+1 + 1

q + 1
|u|q+1

)
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Now we need to show that I∞ satisfies Palais Smale condition on D. Let un be a sequence
in D such that I∞(un) ≤ C and I ′∞(un)un = o(1)‖un‖D . Then we obtain that un satisfies(

1

2
− 1

p + 1

) ∫

RN

|∇un |2 +
(

1

q + 1
− 1

p + 1

) ∫

RN

|un |q+1 = C + o(1)‖un‖D

Hence there exists C1 > 0 such that

C1

⎛
⎜⎝

∫

RN

|∇un |2 +
∫

RN

|un |q+1

⎞
⎟⎠ = C + o(1)‖un‖D

which implies that ⎛
⎜⎝

∫

RN

|∇un |2
⎞
⎟⎠ ≤ C + o(1)‖un‖D

⎛
⎜⎝

∫

RN

|un |q+1

⎞
⎟⎠ ≤ C + o(1)‖un‖D.

Hence

‖un‖D ≤ min
{
(C + o(1)‖un‖D)1/2, (C + o(1)‖un‖D)1/q+1}

which implies that un is bounded in D.
In order to prove the Palais Smale condition we prove the following lemma.

Lemma 3.5 Let Dr be the subspace of D consisting of radially symmetric functions. Then
Dr ↪→ L p+1(RN ) is a compact embedding provided 2 < p + 1 < 2N

N−2 .

Proof Suppose T is a bounded set in Dr . If u ∈ T ,

u(r) = −
∞∫

r

u′(s)ds

and hence by Cauchy–Schwartz inequality, and the definition of the norm on D

|u(r)| ≤ Cr− N−2
2 ,

where C > 0 is independent of u. Thus |u(r)| ≤ ε if u ∈ T and r ≥ R. Hence

∞∫
R

|u(r)|p+1r N−1 =
∞∫

R

|u(r)|p−q |u(r)|q+1r N−1

≤ ε

∞∫
R

|u|q+1r N−1 ≤ ε‖u‖Lq+1

Now, we know that bounded sets in Dr will converge strongly in L p+1(RN ) on compact sub-
sets and hence we can use the usual diagonalization argument to obtain a strongly convergent
subsequence in L p+1(RN ) from a sequence in T . ��
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As a matter of fact I∞ satisfies all the conditions of the mountain pass theorem in Dr .
Hence there exists a c > 0 such that

c = inf
γ∈� max

t∈[0,1] I∞(γ (t)) = inf
u∈Dr

max
t≥0

I∞(tu)

where

� = {γ ∈ C([0, 1]; Dr ); γ (0) = 0, I∞(γ (1)) ≤ 0}
Hence there exists a positive radial solution of (1.4) obtained by the mountain pass theorem.
Hence by Lemma 2.2, U is a mountain pass solution of (1.4).

4 Kernel of � + pU p−1 − qUq−1 in D1,2 (
R

N)

Let U be the radial solution to (1.4). In this section, we want to prove that�+pU p−1−qU q−1

is Fredholm on D1,2(RN ). Let us write

φ =
∞∑

k=1

φk(r)Sk(θ)

where r = |x |, θ = x
|x | ∈ S

N−1; and −�
SN−1 Sk = λSk where λk = k(N − 2 + k);

k ∈ Z
+ ∪ {0} and whose multiplicity is given by Mk − Mk−2 where Mk = (N+k−1)!

(N−1)!k! for
k ≥ 2. Note that λ0 = 0 has algebraic multiplicity one and λ1 = (N − 1) has algebraic
multiplicity N . Then φk satisfy an infinite system of ODE given by,

φ′′
k + N − 1

r
φ′

k +
(

pU p−1 − qU q−1 − λk

r2

)
φk = 0, r ∈ (0,∞) (4.1)

Also note that (4.1) has two linearly independent solutions z1,k and z2,k . Let

Ak(φ) = φ′′ + N − 1

r
φ′ +

(
pU p−1 − qU q−1 − λk

r2

)
φ

Also recall that if one solution z1,k to (4.1) is known, a second linearly independent solution
can be found in any interval where z1,k does not vanish as

z2,k(r) = z1,k(r)
∫

z−2
1,kr1−N dr

where
∫

denotes antiderivatives. One can obtain the asymptotic behavior of any solution z
as r → ∞ by examining the indicial roots of the associated Euler equation. Note that in the
case α = 2

q−1 , the limiting equation becomes

r2φ′′ + (N − 1)rφ′ − (qζ + λk)φ = 0 (4.2)

where r2U q−1 → ζ > 0 as r → ∞ and when α = N − 2, the limiting equation becomes

r2φ′′ + (N − 1)rφ′ − λkφ = 0 (4.3)

whose indicial roots are given by

µ±
k =

⎧⎪⎨
⎪⎩

N−2
2 ±

√
(N−2)2+4(qζ+λk )

2 if k �= 0

N−2
2 ±

√
(N−2)2+4qζ

2 if k = 0
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In this way we see that the asymptotic behavior is ruled by z(r) ∼ r−µ as r → +∞; where
µ satisfies the problem{

µ2 − (N − 2)µ− (qζ + λk) = 0 if α = 2
q−1

µ2 − (N − 2)µ− λk = 0 if α = N − 2
(4.4)

Lemma 4.1 If k = 0, Eq. (4.1) has no nontrivial solution in D1,2(RN ).

Proof This follows exactly as in [11]. ��
Lemma 4.2 If k = 1, then all solutions of equation (4.1) are constant multiples of U ′.

Proof In this case λ1 = N − 1 and hence we have z1,1(r) = −U ′(r) is a solution to the
problem (4.1) and is positive (0,+∞). Hence we define

z1,2(r) = z1,1(r)

r∫
1

z1,1(s)
−2s1−N ds

Let us check how z1,2(r) behaves at infinity. By Corollary 3.2, when α = N − 2 then
|Ur | ∼ r1−N at infinity and hence z1,2(r) ∼ r as r → ∞ as a result z1,2 does not belong to
D1,2(RN ).

Again when α = 2
q−1 , then |Ur | ∼ r−αq+1 as r → ∞ and hence z1,2(r) ∼ rαq−N+1 and

as αq > N , z1,2 �∈ D1,2(RN ). Hence any family of solutions of (4.1) is given by φ1 = cU ′(r)
for some c ∈ R. ��
Lemma 4.3 If k ≥ 2, Eq. (4.1) admits only trivial solution in D1,2(RN ).

Proof We will show that if Ak(φk) = 0, then φk = 0. Note that −U ′ is a positive solution
of A1. Let us study the first eigenvalue of the problem{

A1(φ) = λφ in R
N

∫
RN φ

2 = 1
(4.5)

We know from Lemma 3.1 that Urr > 0 after a certain stage and when α = N −2,Urr ∼ 1
r N

and when α = 2
q−1 ,Urr ∼ 1

rαq as r → ∞. Note that if λ1 > 0, then
∫

RN φ1U ′ = 0 and

hence there exists a point in R
N such that φ1 changes sign. But φ1 is the first eigenfunction

corresponding to λ1 and hence it has a definite sign. Hence λ1 ≤ 0. Thus A1 is an operator
having no positive eigenvalues. Hence for k ≥ 2, ck = k(N − 2 + k)− (N − 1) > 0. Now

Ak = A1 − k(N − 2 + k)− (N − 1)

r2 I

where I is the identity. Hence 0 = 〈−Ak(φk), φk〉 ≥ ck
∫

RN
φ2

k
r2 and as φk ∈ C(RN ), we have

φk ≡ 0. ��

Lemma 4.4 Ker
(−�− pU p−1 + qU q−1

) =
{
∂U
∂x1
, . . . , ∂U

∂xN

}
in D1,2(RN ).

Proof From the previous lemmas, we deduce that for any φ ∈ Ker(−�− pU p−1 +qU q−1),
then φ = U ′(r)S1 where S1 satisfies

−�
SN−1 S1 = λ1S1.
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Now Ker(−�
SN−1 −λ1 I ) is N -dimensional and hence Ker(−�

SN−1 −λ1 I ) = span{S1,1, . . . ,

S1,N } � span R
N . Hence

Ker
(−�− pU p−1 + qU q−1) = span

{
U ′(r)S1,1, . . . ,U

′(r)S1,N
}

= span

{
∂U

∂x1
, . . . ,

∂U

∂xN

}
.

��
Remark 4.5 Also note that there is always a nontrivial bounded radial solution to the lin-
earized equation. As a result, the operator is not nondegenerate in the space of bounded
functions.

5 Profile of spikes

Let z be a point of minimum of h in �. Let us define Uε,z(x) = U
( x−z
ε

)
, then Uε,z satisfies{−ε2�Uε,z = U p

ε,z − U q
ε,z in R

N

Uε,z > 0 in R
N .

(5.1)

Also let V̂ε,z be the unique solution of{−ε2�V̂ε,z = U p
ε,z − U q

ε,z in �

V̂ε,z = 0 on ∂�.
(5.2)

Then by the maximum principle V̂ε,z ≤ Uε,z in �. Note that V̂ε,z may not be a positive
solution of (5.2).

Lemma 5.1 For sufficiently small ε > 0,

Uε,z − V̂ε,z = (C + o(1))εαψz (5.3)

for some constant C > 0.

Proof Subtracting (5.1) from (5.2) we have{
−ε2�

(
Uε,z − V̂ε,z

)
= 0 in �

Uε,z − V̂ε,z = Uε,z on ∂�.
(5.4)

Now Uε,z = C+o(1)
|x−z|α ε

α on ∂�, by Lemma 3.1. Hence by the maximum principle and the defi-

nition ofψz,Uε,z − V̂ε,z = (C +o(1))εαψz and U − V̂ε,z(z +εy) = (C +o(1))ψz(z +εy)εα

in �ε,z . ��
Remark 5.2 Note that from Lemma 3.1, we have Uε,z ∼ εα|x − z|−α when |x − z| is large.
For αq > N , ∫

RN

U q+1
ε,z =

∫

RN \�
U q+1
ε,z +

∫
�

U q+1
ε,z

=
∫
�

U q+1
ε,z + O

(
εα(q+1)

)
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and εα(q+1) = εN+αo(1). Hence we have

∫
�

U q+1
ε,z = εN

∫

RN

U q+1 + εN+αo(1).

Lemma 5.3 Let c be the mountain pass value of (1.4) and N
N−2 < q < N+2

N−2 . Then, we have

cε ≤ εN

⎛
⎜⎝c + C

2
εN−2 min

�
h

∫

RN

(U p − U q)dx + o(εN−2)

⎞
⎟⎠.

Proof First note that by the mean value theorem,

∫
�

(
V̂ε,z

)q+1

+ =
∫
�

(Uε,z)
q+1 + (q + 1)

∫
�

(Uε,z)
q
(

V̂ε,z − Uε,z
)

+ o(1)εN+N−2 (5.5)

Hence, by the equation satisfied by V̂ε,z and integration by parts,


ε

(
V̂ε,z

)
=

∫
�

(
ε2

2
|∇ V̂ε,z |2 − 1

p + 1

(
V̂ε,z

)p+1

+ + 1

q + 1

(
V̂ε,z

)q+1

+

)

=
∫
�

(
1

2

(
U p
ε,z − U q

ε,z
)

V̂ε,z

− 1

p + 1

(
V̂ε,z

)p+1

+ + 1

q + 1

(
V̂ε,z

)q+1

+

)

=
∫
�

(
1

2

(
U p
ε,z − U q

ε,z
) (

Uε,z − (C + o(1))ψzε
N−2

)

− 1

p + 1

(
V̂ε,z

)p+1

+ + 1

q + 1

(
V̂ε,z

)q+1

+

)

= 1

2

∫
�

(
U p+1
ε,z − U q+1

ε,z

)
− C + o(1)

2
εN−2

∫
�

ψz
(
U p
ε,z − U q

ε,z
)

− 1

p + 1

∫
�

(
V̂ε,z

)p+1

+ + 1

q + 1

∫
�

(
V̂ε,z

)q+1

+ . (5.6)

Here we have used (5.5), Remark 5.2 and that Uε,z has algebraic decay. Since ψz(x) is
bounded on � and ψz(z + εx) converges pointwise to h, we can use the dominated conver-
gence theorem to conclude that

∫
�ε
(U p − U q)ψz(z + εx) = h(z)

∫
RN (U p − U q) + o(1).

Thus we have
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ε(V̂ε,z) =
(

1

2
− 1

p + 1

)∫
�

U p+1
ε,z −

(
1

2
− 1

q + 1

)∫
�

U q+1
ε,z

+
(

1 − 1

2

)
CεN−2

∫
�

(U p
ε,z − U q

ε,z)ψzdx

+ o(1)εN−2+N

=
(

1

2
− 1

p + 1

)
εN

∫

RN

U p+1 −
(

1

2
− 1

q + 1

)
εN

∫

RN

U q+1

+C

2
εN+N−2h(z)

∫

RN

(
U p − U q) + εN+N−2o(1)

= εN

⎛
⎜⎝c + C

2
εN−2 min

�
h

∫

RN

(U p − U q)dx + o
(
εN−2

)⎞
⎟⎠ (5.7)

Let tε ∈ (0,+∞) be the unique constant such that



(

tε V̂ε,z
)

= max
t≥0



(

t V̂ε,z
)

Hence 〈

′
ε

(
tε V̂ε,z

)
, V̂ε,z

〉
= 0 (5.8)

We claim that tε → 1 as ε → 0. By the equation satisfied by V̂ε,z we have

〈

′
ε

(
V̂ε,z

)
, V̂ε,z

〉
=

∫
�

(
ε2|∇ V̂ε,z |2 −

(
V̂ε,z

)p+1

+ +
(

V̂ε,z
)q+1

+

)

=
∫
�

(
U p
ε,z V̂ε,z − U q

ε,z V̂ε,z −
(

V̂ε,z
)p+1

+ +
(

V̂ε,z
)q+1

+

)

= O(1)εN+N−2 (5.9)

and analyzing the higher order terms, and using the fact that

∫

RN

|∇U |2 =
∫

RN

U p+1 −
∫

RN

U q+1

there exists a c′ > 0 such that


′′
ε

(
V̂ε,z

)
〈V̂ε,z, V̂ε,z〉 =

∫
�ε

(
ε2|∇ V̂ε,z |2 − p

(
V̂ε,z

)p+1

+ + q
(

V̂ε,z
)q+1

+

)

= εN
∫

RN

(−(p − 1)U p+1 + (q − 1)U q+1) + o(1)εN
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= εN

⎛
⎜⎝−(p − q)

∫

RN

U p+1 − (q − 1)
∫

RN

|∇U |2 + o(1)

⎞
⎟⎠

≤ −c′εN (5.10)

Since
〈

′
ε

(
tε V̂ε,z

)
, V̂ε,z

〉
= 0 and

〈

′
ε

(
V̂ε,z

)
, V̂ε,z

〉
= o(1)εN , we have

〈

′
ε

(
tε V̂ε

)
−
′

ε

(
V̂ε

)
, V̂ε,z

〉
= o(1)εN

which implies

(
t2
ε − 1

) ∫
�

ε2|∇ V̂ε,z |2 − (
t p+1
ε − 1

) ∫
�

(
V̂ε,z

)p+1

+ + (
tq+1
ε − 1

) ∫
�

(
V̂ε,z

)q+1

+ = o(1)εN

and letting Ṽε,z(x) = V̂ε,z(εx + z) in �ε we have

(
t2
ε − 1

) ∫
�ε

|∇ Ṽε,z |2 − (
t p+1
ε − 1

) ∫
�ε

(
Ṽε,z

)p+1

+ + (tq+1
ε − 1)

∫
�ε

(
Ṽε,z

)q+1

+ = o(1)

which implies that tε − 1 = o(1).


ε(uε) ≤ max
t>0


ε

(
t V̂ε,z

)
= 
ε(tε V̂ε)

= 
ε

(
V̂ε,z

)
+ (tε − 1)

〈

′
ε

(
V̂ε,z

)
, V̂ε,z

〉
+ 1

2
(tε − 1)2
′′

ε

(
ξε V̂ε,z

) 〈
V̂ε,z, V̂ε,z

〉

≤ 
ε

(
V̂ε,z

)
+ o(1)εN+N−2

≤ εN

⎛
⎜⎝c + C

2
εN−2 min

�
h

∫

RN

(U p − U q)dx + o
(
εN−2

)
⎞
⎟⎠

where ξε lies in between tε and 1. Hence we have

cε ≤ εN

⎛
⎜⎝c + C

2
εN−2 min

�
h

∫

RN

(U p − U q)dx + o
(
εN−2

)
⎞
⎟⎠. (5.11)

��
Lemma 5.4 For sufficiently small ε > 0, uε has a unique maximum.

Proof First note by Lemma 5.3, ε2
∫
�

|∇uε|2 ≤ C and hence by Moser iteration, uε(x)
is uniformly bounded. Thus applying Schauder estimates we obtain a C > 0 such that
‖εDuε‖L∞ ≤ C. If possible, let zε,1 and zε,2 are two distinct local maxima of uε. Then it
easily follows that uε(zε,1) ≥ 1 and uε(zε,2) ≥ 1. Suppose zε = zε,1−zε,2

ε
. Suppose along

a subsequence |zε| → δ ∈ [0,+∞). Let z = limε→0
zε,1−zε,2

ε
. Then if δ > 0, then define

vε(y) = uε(εy + zε,2) then it follows from Remark 2.4, vε → U in C2
loc(R

N ) and satisfies⎧⎨
⎩

−�U = U p − U q in R
N

U (0) = U ′(δ) = 0
U → 0 as |x | → ∞
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which is a contradiction as U ′(r) < 0 for r ∈ (0,+∞). Now suppose δ = 0. Then vε → U
in C2

loc(R
N ) and U has a unique critical point at 0 (since U (0) > 1 and U is a radial). Thus

vε has a critical point in a neighborhood of zero which is a contradiction. Hence |zε| → +∞
as ε → 0.

We claim that uε has exactly one maximum for sufficiently small ε > 0. First, note that
as uε is a mountain pass solution and hence it has Morse index at most one. Let z̃1,ε and
z̃2,ε be two maxima of vε . Then by the above result |z̃1,ε − z̃2,ε| → +∞ as ε → 0. Now
by [3] p. 145, it was proved that there exist r < 0 and h exponentially decreasing such that
−�h − f ′(U )h = rh and hence

∫
RN |∇h|2 − f ′(U )h2 < 0. Now using an appropriate cut

off function we can obtain the same property for h with compact support. Now define a two-
dimensional space spanned by h1(x) = h(x + z̃1,ε) and h2(x) = h(x + z̃2,ε) where x ∈ �ε.
Note that the support supp h1 ∩ supp h2 = ∅ as |z̃1,ε − z̃2,ε| → +∞. Hence we obtain
a two dimensional space on which

∫
�ε

|∇hi |2 − f ′(vε)h2
i = ∫

RN |∇hi |2 − f ′(U )h2
i < 0

for i = 1, 2. Note that we are using the fact that vε → U in C2
loc(R

N ) and hi has compact
support. Hence uε has Morse index at least two, a contradiction. ��

Now we require to obtain the second-order lower bound. To this context, we first note
that U − V̂ε,zε (zε + εy) = (C + o(1))ψzε (zε + εy)εα in �ε. Let Ṽε = V̂ε,zε (zε + εy), and
ũε = uε(zε + εy). Then

−�
(

ũε − Ṽε
)

= f (ũε)− f (U ) = f ′ (W̃ε

)
(ũε − U )

where W̃ε is between ũε and U . Hence

−�
(

ũε − Ṽε
)

= f ′ (W̃ε

) (
ũε − Ṽε

)
+ f ′ (W̃ε

) (
Ṽε − U

)
.

Thus ⎧⎨
⎩

−�
(

ũε − Ṽε
)

− f ′
(

W̃ε

) (
ũε − Ṽε

)
= f ′

(
W̃ε

) (
Ṽε − U

)
in �ε(

ũε − Ṽε
)

= 0 on ∂�ε
(5.12)

Define

ϕ̃ε = ũε − Ṽε
CεN−2h(zε)

where zε is the point of maximum of uε. Then{
−�ϕ̃ε − f ′

(
W̃ε

)
ϕ̃ε = f ′

(
W̃ε

)
Sε in �ε

ϕ̃ε = 0 on ∂�ε
(5.13)

where

Sε =
(

Ṽε − U
)

CεN−2h(zε)
.

Lemma 5.5 For sufficiently small ε > 0, then up to a subsequence

ϕ̃ε → ϕ0

uniformly as ε → 0 and ϕ0 satisfies⎧⎨
⎩

−�ϕ0 − f ′(U )ϕ0 + f ′(U ) = 0 in R
N

ϕ0 → 0 as |x | → ∞
ϕ0 ∈ C1(RN ) ∩ L∞(RN )

(5.14)
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Proof Note that since dist(zε,∂�)
ε

→ ∞ we have ψzε (zε+εx)
h(zε)

is uniformly bounded and hence
by Lemma 5.1, Sε is uniformly bounded. Note that by the decay property of ũε and U,
W̃ε ≤ C

|x |N−2 for |x | sufficiently large. Hence f ′(W̃ε) ≤ 0 for |x | ≥ R0 and f ′(W̃ε) ≤ k
|x |r

where r > 2. Hence we can choose C̃ |x |2−r as a super-solution of (5.13) for |x | ≥ R0 if we
choose r̃ ≥ 2 but close to 2 and C̃ > 0 is large. Hence we can bound C̃ > 0 if we have a
uniform bound ϕ̃ε on |x | = R0. Thus we have a uniform decay for ϕ̃ε if we can bound ϕ̃ε on
|x | = R0.

If possible let ϕ̃ε be unbounded. Then ‖ϕ̃ε‖∞ → ∞ (up to a subsequence). Define
ψε = ϕ̃ε

‖ϕ̃ε‖∞ . Then ‖ψε‖∞ = 1. Hence the right-hand term in (5.13) is uniformly small
and thus by the argument in the previous paragraph ψε has a uniform decay for large |x |.
Thus the maximum of ψε must occur at kε where |kε| ≤ R for sufficiently small ε. Let k
be a subsequential limit of kε. By Schauder estimates we obtain ‖ψε‖C1,θ

loc
is bounded for

some θ ∈ (0, 1] and hence by the Arzela-Ascoli’s theorem there exists ψ0 ∈ C1 such that
‖ψε − ψ0‖C1

loc
→ 0 as ε → 0. Then ψ0 satisfies

⎧⎨
⎩

−�ψ0 − f ′(U )ψ0 = 0 in R
N

ψ0(k) = 1
ψ0(x) → 0 as |x | → ∞.

(5.15)

Note that we use the fact that dist(kε, ∂�ε) → ∞ in order to conclude that the above problem
is not a half space problem. We can now use C |x |−(N−2) as a super-solution to deduce that

|x |N−2ψ0 is bounded. This implies that ψ0 ∈ L
2N

N−2 (RN ). On the other hand we have,∫

RN

|∇ψ0|2 =
∫

RN

f ′(U )ψ2
0 < ∞.

As a result, ψ0 ∈ D1,2(RN ) ∩ ker(−� − f ′(U )). Since ψ0 �≡ 0 and since by Lemma 4.4,

ker(−�− f ′(U )) =
{
∂U
∂y1
, ∂U
∂y2
, . . . , ∂U

∂yN

}
, we have

ψ0 =
N∑

j=1

a j
∂U

∂yi

where not all a j ’s are zero. Since U is radial, U ′(0) = 0 and �U (0) �= 0, it follows that
ψ0(0) = 0 and ∇ψ0(0) �= 0. We obtain a contradiction by proving ∇ψ0(0) = 0. Note that
∇ũε(0) = 0 and ∇U (0) = 0 and hence

∇ψ̃ε(0) = ∇ϕ̃ε(0)
εN−2h(zε)‖ϕ̃ε‖L∞

= ∇U (0)

εN−2h(zε)‖ϕ̃ε‖L∞

Thus ∇ψ̃ε(0) = 0 and by C1
loc convergence we have ∇ψ0(0) = 0. This gives a contradiction.

Hence ϕ̃ε is uniformly bounded.
By our earlier argument with a super-solution, we obtain that ϕ̃ε decays uniformly, while by

elliptic regularity theory applied to (5.13) we have ϕ̃ε converges uniformly to ϕ0 in C1
loc(R

N )

where ϕ0 satisfies the problem (5.14). By uniform decay of ϕ̃ε,we can conclude that ϕ0 → 0
as |x | → ∞. Hence ϕ̃ε → ϕ0 as ε → 0 uniformly. This completes the proof. ��
Remark 5.6 Hence we have uε = Uε,zε − CεN−2(ψzε − ϕ0h(zε)+ o(1)) in� and by using
the fact that zε is the only maximum of uε, we have

max
�\�∩BεR(zε)

uε ≤ CεN−2
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Lemma 5.7 We have,

cε ≥ εN

⎛
⎜⎝c + C

2
εN−2h(zε)

∫

RN

(U p − U q)dx + o
(
εN−2

)
⎞
⎟⎠.

Proof Multiplying both sides of (5.14) by U ∈ D1,2(RN ) and integrating by parts we obtain,

(p − 1)
∫

RN

U pϕ0 − (q − 1)
∫

RN

U qϕ0 = p
∫

RN

U p − q
∫

RN

U q . (5.16)

Also note that uε = Uε,zε −CεN−2(ψzε −ϕ0h(zε)+o(1)) in�. Choose a R > 0 sufficiently
large such that U (r) < 1 for r > R, and by using Taylors expansion,

∫
�∩BεR(zε)

u p+1
ε =

∫
�∩BεR(zε)

U p+1
ε,zε

− (p + 1)CεN−2
∫

�∩BεR(zε)

U p
ε,zε

(
ψzε − ϕ0h(zε)

)

+ o(1)εN+N−2.

Then by Remark 5.6 we have,

cε = 
ε(uε) =
∫
�

(
ε2

2
|∇uε|2 − 1

p + 1
(uε)

p+1
+ + 1

q + 1
(uε)

q+1
+

)

=
∫

�∩BεR(zε)

(
1

2
f (uε)uε − F(uε)

)
+

∫
�\�∩BεR(zε)

(
1

2
f (uε)uε − F(uε)

)

=
∫

�∩BεR(zε)

((
1

2
− 1

p + 1

)
u p+1
ε −

(
1

2
− 1

q + 1

)
uq+1
ε

)
+ o(1)εN+N−2

=
(

1

2
− 1

p + 1

) ∫
�∩BεR(zε)

U p+1
ε,zε −

(
1

2
− 1

q + 1

) ∫
�∩BεR(zε)

U q+1
ε,zε

− p − 1

2
CεN−2

∫
�∩BεR(zε)

U p
ε,zεψzε

+q − 1

2
CεN−2

∫
�∩BεR(zε)

U q
ε,zεψzε

+ p − 1

2
CεN−2h(zε)

∫
�∩BεR(zε)

U p
ε,zεϕ0

−q − 1

2
CεN−2h(zε)

∫
�∩BεR(zε)

U q
ε,zεϕ0 + o(1)εN+N−2.
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By our decay estimates and Remark 5.2, we have

∫
�∩BεR(zε)

U p+1
ε,zε =

∫

RN

U p+1
ε,zε −

∫

RN \�∩BεR(zε)

U p+1
ε,zε

= εN
∫

RN

U p+1 + o(1)εN+N−2.

Also by Taylors expansion in BεR(zε), we have ψzε (z)− h(zε) = o(1)

∫
�∩BεR(zε)

U p
ε,zεψzε = h(zε)

∫
�∩BεR(zε)

U p
ε,zε + o(1)εN

= h(zε)ε
N

∫

RN

U p + o(1)εN

= h(zε)ε
N

∫

RN

U p + o(1)εN .

Hence we have

cε =
(

1

2
− 1

p + 1

)
εN

∫

RN

U p+1 −
(

1

2
− 1

q + 1

)
εN

∫

RN

U q+1

− p − 1

2
CεN+N−2h(zε)

∫

RN

U p + q − 1

2
CεN+N−2h(zε)

∫

RN

U q

+ p − 1

2
CεN+N−2h(zε)

∫

RN

U pϕ0

−q − 1

2
CεN+N−2h(zε)

∫

RN

U qϕ0 + o(1)εN+N−2.

using (5.16) we deduce

cε ≥ εN

⎛
⎜⎝c + C

2
εN−2h(zε)

∫

RN

(U p − U q)+ o(εN−2)

⎞
⎟⎠.

��

Remark 5.8 As a result of Lemmas 5.3 and 5.5, we obtain h(zε) → min� h. Hence
Theorem 1.1 is proved. Note that for α = 2

q−1 , from Corollary 3.2 we have
∫

RN (U p −
U q)dx = 0 and as a result we cannot obtain any information on the point of concentration
of spikes.
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6 Multi-peak solutions

We modify the problem (1.3) to

⎧⎨
⎩

−ε2�u = (u+)p − Q(x)(u+)q in �

u > 0 in �

u = 0 on ∂�.

(6.1)

Choose δ > 0 such that Q(x) > Q(z j ) for all x ∈ Bδ(z j )\{z j } and Bδ(zi )∩ Bδ(z j ) = ∅ for
i �= j . Let Q(z j ) = b j > 0. Then for any b > 0, let W be the unique radial solution

⎧⎨
⎩

−�W = W p − bW q in R
N

W > 0 in R
N

W → 0 as |x | → ∞.

(6.2)

Define the transformation, W (x) = b
1

p−q U

(
b

p−1
2(p−q) x

)
. Then U satisfies the problem (1.4).

We can assume that Q(z j ) are all equal. This is not needed but it simplifies the notation. In
this case, we can re-scale so that b j = 1 for all j . Let γ > 0 be small and τ > 0 is defined
in Lemma 7.1. For x = (x1, . . . , xk), define

Dk,ε =
{

x ∈ �k, j = 1, . . . , k; x j ∈ Bδ(z j ), |Q(x j )− 1| ≤ ε
2γ τ

min{q,2} ,

U

(
xi − x j

ε

)
≤ ε

2γ τ
min{q,2} , i �= j

}
.

Also let V̂ε,z be the unique solution of

{−ε2�V̂ε,z = U p
ε,z − U q

ε,z in �

V̂ε,z = 0 on ∂�
(6.3)

Define a norm on H1
0 (�)

‖v‖2
ε = ε2

∫
�

|∇v|2dx (6.4)

For any x ∈ Dk,ε, let

Eε,x,k =
{
ω ∈ H1

0 (�),

〈
ω,
∂ V̂ε,x j

∂x jl

〉
ε

= 0; l = 1, . . . , N , j = 1, . . . , k

}

where x j = (x j1, . . . , x j N ) ∈ R
N .

Choose R > 0 sufficiently large such that U (x) < 1 for |x | ≥ R.
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Remark 6.1 Let 2∗ = 2N
N−2 . We derive an important inequality which we will use in the later

stage of our proof. We have by the Sobolev and Hölder inequalities,

∫
BεR

|ω| ≤ |BεR | 1
2

⎛
⎜⎝

∫
BεR

|ω|2
⎞
⎟⎠

1
2

≤ Cε
N
2

⎛
⎜⎝

∫
BεR

|ω|2
⎞
⎟⎠

1
2

≤ Cε
N
2 |BεR | 1

2 − 1
2∗

⎛
⎜⎝

∫
BεR

|ω|2∗

⎞
⎟⎠

1
2∗

≤ Cε
N
2

⎛
⎝ε2

∫
�

|Dω|2
⎞
⎠

1
2

≤ Cε
N
2 ‖ω‖ε (6.5)

for some constant C > 0 independent of ε.

Lemma 6.2 For any ω ∈ H1
0 (�) and ε > 0 sufficiently small, there exists a C > 1 inde-

pendent of ε such that

‖ω‖ε ≤
⎛
⎜⎝ε2

∫
�

|∇ω|2dx + q

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω2

⎞
⎟⎠

1
2

≤ C‖ω‖ε.

Proof Note that the left hand side of the inequality follows trivially. Now let us estimate
the term

∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω2 =
∫

∪BεR(xi )

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω2

+
∫

�\∪BεR(xi )

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω2

≤ C
∫

BεR(xi )

ω2 + Cεα(q−1)
∫

�\∪BεR(xi )

ω2. (6.6)

Note that εα(q−1)
∫
�\∪BεR(xi )

ω2 ≤ ε2
∫
�

|∇ω|2 and by (6.5) we obtain that the above inequal-
ity holds. ��

123



Singular perturbed problems in the zero mass case 207

7 The reduction

In this section, we will reduce the proof of Theorem 1.2 to find a solution of the form∑k
j=1 V̂ε,x j + ω for (6.1) to a finite dimensional problem. We will prove that for each x ∈

Dk,ε, there is a unique ωε,x ∈ Eε,x,k such that

〈
I ′
ε

⎛
⎝ k∑

j=1

V̂ε,x j + ωε,x

⎞
⎠ , η

〉

ε

= 0 ∀η ∈ Eε,x,k .

Let

k(x, ω) = Iε

⎛
⎝ k∑

j=1

V̂ε,x j + ωε,x

⎞
⎠.

If we expand k(x, ω) near ω = 0 as

k(x, ω) = k(x, 0)+ lε,x (ω)+ 1

2
Qε,x (ω, ω)+ Rε(ω)

where

lε,x (ω) =
k∑

j=1

∫
�

ε2 DV̂ε,x j Dω −
∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p

+
ω

+
∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω, (7.1)

Qε,x (ω, η) =
∫
�

ε2 DωDη − p
∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p−1

+
ωη

+ q
∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q−1

+
ωη, (7.2)

and

Rε(ω) = J1,ε(ω)+ J2,ε(ω). (7.3)

Here

J1,ε(ω) = 1

p + 1

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j + ω

⎞
⎠

p+1

+
− 1

p + 1

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p+1

+

−
∫
�

⎛
⎝ k∑

j=1

V̂ε,x j + ω

⎞
⎠

p

+
− p

2

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p−1

+
ω2 (7.4)
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and

J2,ε(ω) = 1

q + 1

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j + ω

⎞
⎠

q+1

+
− 1

q + 1

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q+1

+

−
∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j + ω

⎞
⎠

q

+
− q

2

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q−1

+
ω2. (7.5)

We will prove in Lemma 7.1 that lε,x (ω) is a bounded linear functional in Eε,x,k . Hence
it will follow by the Riesz representation theorem, that there exists lε,x ∈ Eε,x,k such that

〈lε,x , ω〉ε = lε,x (ω) ∀ ω ∈ Eε,x,k .

In Lemma 7.2 we will prove that Qε,x (ω, η) is a bounded linear operator from Eε,x,k to
Eε,x,k such that

〈Qε,xω, η〉ε = Qε,x (ω, η) ∀ ω, η ∈ Eε,x,k .

Thus finding a critical point of k(x, ω) is equivalent to solving the problem in Eε,x,k :

lε,x + Qε,xω + R′
ε(ω) = 0. (7.6)

We will prove in Lemma 7.3 that the operator Qε,x is invertible in Eε,x,k . In Lemma 7.4,
we will prove that if ω belongs to a suitable set, R′

ε(ω) is a small perturbation term in (7.6).
Thus we can use the contraction mapping theorem to prove that (7.6) has a unique solution
for each fixed x ∈ Dk,ε.

Lemma 7.1 The functional lε,x : H1
0 (�) → R defined in (7.1) is a bounded linear func-

tional. Moreover,

‖lε,x‖ε = ε
N
2 O

⎛
⎝ k∑

j=1

|Q(x j )− 1| +
∑
i< j

U

( |xi − x j |
ε

)
+ ετ

⎞
⎠

where τ = min{α, σ } > 0.

Proof We have

lε,x (ω) =
k∑

j=1

∫
�

ε2 DV̂ε,x j Dω −
∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p

+
ω +

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

=
k∑

j=1

∫
�

(
U p
ε,x j − U q

ε,x j

)
ω −

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p

+
ω +

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

=
k∑

j=1

∫
�

(
U p
ε,x j − U q

ε,x j

)
ω −

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p

+
ω +

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

+
∫
�

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω
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In order to estimate the last term we decompose the domain into � = (�\ ∪ BεR(xi )) ∪
(∪BεR(xi )). Since Q is bounded we have

∫
�

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω =

∫
∪BεR(xi )

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

+
∫

�\∪BεR(xi )

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

≤
∫

∪BεR(xi )

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω + εαq

∫
�\∪BεR(xi )

|ω|

≤
k∑

i=1

∫
BεR(xi )

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω + Cεαq

∫
�

|Dω|2

Here we have used the decay estimates of V̂ . On the other hand using Taylors theorem on Q
in BεR(xi ) and using (6.5) we have

Q(x) = Q(xi )+ 〈DQ(xi ), x − xi 〉 + O(ε2).

Hence

∫
BεR(xi )

(Q − 1)

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω ≤ C |Q(xi )− 1|

∫
BεR(xi )

|ω| + ε
N
2 O

(
ε

N
2 +1

)
‖ω‖ε

= ε
N
2 O

(
|Q(xi )− 1| + ε

N
2 +1

)
‖ω‖ε

Using Taylors theorem and our estimate for Uε,x j − V̂ε,x j ,

∫
�

⎛
⎝ k∑

j=1

Uε,x j +
k∑

j=1

(V̂ε,x j − Uε,x j )

⎞
⎠

q

+
ω

=
∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q

ω + O(1)εα
∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω

In order to estimate the second term we decompose the domain into � = (�\ ∪ BεR(xi )) ∪
(∪BεR(xi )) and we have from (6.5)

εα
∫

BεR(xi )

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω ≤ Cε
N
2 +α‖ω‖ε
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and by decay estimates,

εα
∫

�\∪BεR(xi )

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

ω ≤ Cεαq
∫
�

|ω|

= Cε
N
2 +σ ‖ω‖ε

where σ = N
2 − 1. We will use the following basic facts, in our proof

|a + b|q − |a|q − |b|q = O(1)
(
|a| q

2 |b| q
2

)
if 1 < q < 2

|a + b|q − |a|q − |b|q = O(1)|a|q−1|b| if q ≥ 2.

For the case q ≥ 2, we have

∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q

ω =
k∑

j=1

∫
�

U q
ε,x jω + O

⎛
⎝∑

j �=i

∫
�

U q−1
ε,x j Uε,xi |ω|

⎞
⎠

In order to estimate the second term we decompose the domain into � = (�\ ∪ BεR(xi ))∪
(∪BεR(xi )) and we have

∫
�

U q−1
ε,x j Uε,xi

|ω| =
∫

�\∪BεR(xi ))

U q−1
ε,x j Uε,xi

|ω| +
∫

∪BεR(xi )

U q−1
ε,x j Uε,xi

|ω|

Now from (6.5) we have

∫
BεR(xi )

U q−1
ε,x j Uε,xi

|ω| ≤
⎛
⎜⎝

∫
BεR(xi )

U 2(q−1)
ε,x j U 2

ε,xi

⎞
⎟⎠

1
2
⎛
⎜⎝

∫
BεR(xi )

|ω|2
⎞
⎟⎠

1
2

≤
⎛
⎜⎝

∫
BεR(xi )

U 2(q−1)
ε,x j U 2

ε,xi

⎞
⎟⎠

1
2

‖ω‖ε

≤ ε
N
2

⎛
⎜⎝

∫
BR

U 2(q−1)

1,
xi −x j
ε

U 2

⎞
⎟⎠

1
2

‖ω‖ε

= ε
N
2 O

(
U

(
xi − x j

ε

))
‖ω‖ε.
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On the boundary we have from decay estimates and since αq > N ,∫
�\∪BεR(xi ))

U q−1
ε,x j Uε,xi |ω| ≤ Cεαq

∫
�\∪BεR(xi ))

|ω|

≤ Cεαq
∫
�

|ω| (7.7)

≤ Cεαq

⎛
⎝∫
�

|Dω|2
⎞
⎠

1
2

≤ Cε
N
2 ε

N
2 −1

⎛
⎝∫
�

ε2|Dω|2
⎞
⎠

1
2

≤ Cε
N
2 εσ ‖ω‖ε (7.8)

In the case when 1 < q < 2,

∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q

ω =
k∑

j=1

∫
�

U q
ε,x jω + O

⎛
⎝∑

j �=i

∫
�

U
q
2
ε,x j U

q
2
ε,xi |ω|

⎞
⎠

and we proceed as in the case q ≥ 2.

∫
BεR(xi )

U
q
2
ε,x j U

q
2
ε,xi |ω| ≤ C

∫
BεR(xi )

U
q
2
ε,x j |ω| ≤ Cε

N
2 U

( |xi − x j |
ε

) q
2 ‖ω‖ε

≤ Cε
N
2 U

( |xi − x j |
ε

)
‖ω‖ε

as U
( |xi −x j |

ε

)
is small. Hence we obtain

lε,x (ω) =
k∑

j=1

∫
�

(U p
ε,x j − U q

ε,x j )ω −
∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p

+
ω +

∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

+
ω

= ε
N
2 O

⎛
⎝ k∑

j=1

|Q(x j )− 1| +
∑
j �=i

U

( |xi − x j |
ε

)
+ ετ

⎞
⎠ ‖ω‖ε.

��
Lemma 7.2 The bilinear form Qε,x (ω) defined in (7.2) is a bounded linear. Moreover

|Qε,x (ω, η)| ≤ C‖ω‖ε‖η‖ε
where C is independent of ε.

Proof Note that there exists a C > 0, such that

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p−1

+
ωη ≤ C

∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q−1

|ω||η| ≤ C‖ω‖ε‖η‖ε
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and ∣∣∣∣∣∣∣
ε2

∫
�

DωDη + q
∫
�

Q

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q−1

+
ωη

∣∣∣∣∣∣∣
≤ C‖ω‖ε‖η‖ε

��

Lemma 7.3 There exists ρ > 0 independent of ε, such that

‖Qε,xω‖ε ≥ ρ‖ω‖ε ∀ ω ∈ Eε,x,k, x ∈ Dk,ε

Proof Note that Q is uniformly positive and bounded. Purely for simplicity, we assume
Q ≡ 1.Suppose there exists a sequence εn → 0, x j,n ∈ Dk,εn , with x j,n → z j , ωn ∈ Eεn ,xn ,k

such that ‖ωn‖εn = ε
N
2

n and

‖Qεnωn‖εn = o

(
ε

N
2

n

)

Let ω̃i,n = ωn(εn y + xi,n) and �n = {y : εn y + xi,n ∈ �} such that

∫
�n

|Dω̃i,n |2 = ε−N
n

⎛
⎝ε2

n

∫
�

|Dωn |2
⎞
⎠ = 1 (7.9)

Hence there exists ωi ∈ D1,2(RN ) such that ω̃i,n ⇀ ωi ∈ D1,2(RN ) and hence ω̃i,n → ωi ∈
L2

loc(R
N ). We claim that

−�ωi = pU p−1ωi − qU q−1ωi in R
N

that is for all η ∈ C∞
0 (R

N ),
∫

RN

Dωi Dη = p
∫

RN

U p−1ωiη − q
∫

RN

U q−1ωiη. (7.10)

Now

∫
�

ε2
n Dωn Dη − p

∫
�

⎛
⎝ k∑

j=1

V̂εn ,x j,n

⎞
⎠

p−1

+
ωnη + q

∫
�

⎛
⎝ k∑

j=1

V̂εn ,x j,n

⎞
⎠

q−1

+
ωnη

= 〈Qεn ,xnωn, η〉ε
= o

(
ε

N
2

n

)
‖η‖εn

which implies

∫
�n

Dω̃i,n Dη̃ − p
∫
�n

⎛
⎝ k∑

j=1

Ṽεn ,x j,n

⎞
⎠

p−1

+
ω̃i,n η̃ + q

∫
�n

⎛
⎝ k∑

j=1

Ṽεn ,x j,n

⎞
⎠

q−1

+
ω̃i,n η̃

= o(1)‖η̃‖, (7.11)
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where

Ṽεn ,x j,n = V̂εn ,x j,n (εn y + xi,n),

‖η̃‖2 =
∫
�n

|Dη̃|2,

Ẽεn ,xn ,k =

⎧⎪⎨
⎪⎩η̃ :

∫
�n

Dη̃DW̃n, j,l = 0

⎫⎪⎬
⎪⎭,

and W̃n, j,l = εn
∂ V̂εn ,x j,n (εn y+xi,n)

∂x jl
. Let η ∈ C∞

0 (R
N ). Then we can choose a jln ∈ R such that

η̃n = η −
k∑

j=1

N∑
l=1

a jln W̃n, j,l .

Note that W̃n, j,l satisfies the problem{
−�W̃n, j,l =

(
pU p−1

(
y − xi,n−x j,n

εn

)
− qU q−1

(
y − xi,n−x j,n

εn

))
∂U
∂xl

in �n

W̃n, j,l = 0 on ∂�n

(7.12)

Let α = 2
q−1 . Then we claim that W̃n, j,l is bounded in D1,2(�n). Now using Hölder’s

and Hardy’s inequality we have∫
�n

|∇W̃n, j,l |2 =
∫
�n

(
pU p−1 − qU q−1) ∂U

∂xl
W̃n, j,l

≤ C

⎛
⎜⎝

∫
�n

U q−1W̃ 2
n, j,l

⎞
⎟⎠

1
2

≤ C

⎛
⎜⎝

∫
�n

|∇W̃n, j,l |2
⎞
⎟⎠

1
2

(7.13)

Hence
∫
�n

|∇W̃n, j,l |2 is uniformly bounded and as a result there exists W such that

W̃n, j,l ⇀ W in D1,2

at least for a subsequence. Hence

W̃n, j,l → W in L2
loc.

Note that W satisfies the problem,{ −�W = (
pU p−1 − qU q−1

)
∂U
∂xl

in R
N

∫
RN |∇W |2 = ∫

RN

(
pU p−1 − qU q−1

)
∂U
∂xl

W.
(7.14)

We claim that W̃n, j,l → W in D1,2. First note that∫
�n

|U p−1 ∂U

∂xl
W̃n, j,l | ≤ C

∫
�n

|U q−1 ∂U

∂xl
W̃n, j,l |

∫
�n

|∇W̃n, j,l |2 = p
∫
�n

U p−1 ∂U

∂xl
W̃n, j,l
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− q
∫
�n

U q−1 ∂U

∂xl
W̃n, j,l

→ p
∫

RN

U p−1 ∂U

∂xl
W − q

∫

RN

U q−1 ∂U

∂xl
W

=
∫

RN

|∇W |2. (7.15)

Here we have used that W̃n, j,l converges weakly in L2� . Hence W̃n, j,l → W = ∂U
∂xl

in D1,2

strongly. Now for i �= j , we have

〈
η, W̃n, j,l

〉
=

∫
�n∩supp η

{
pU

(
y − xi,n − x j,n

εn

)p−1

− qU

(
y − xi,n − x j,n

εn

)q−1
}
∂U

∂xl
η

= o(1)

For i = j we have ∣∣∣〈η, W̃n, j,l〉
∣∣∣ ≤ C

Hence using a coordinate transformation we obtain a jln = (I + O(1))−1〈η, W̃n, j,l〉 where I
is the identity matrix and O(1) has small off diagonal elements. Hence a jln → 0 as n → ∞
for i �= j. Putting the value of ηn in (7.11) and letting n → ∞, we have∫

RN

Dωi Dη − p
∫

RN

U p−1ωiη + q
∫

RN

U q−1ωiη

=
N∑

l=1

al

⎛
⎜⎝

∫

RN

Dωi D
∂U

∂xl
− p

∫

RN

U p−1ωi
∂U

∂xl
+ q

∫

RN

U q−1ωi
∂U

∂xl

⎞
⎟⎠

where al = limn→∞ a jln . Using Lemma 4.4, we have∫

RN

Dωi D
∂U

∂xl
− p

∫

RN

U p−1ωi
∂U

∂xl
+ q

∫

RN

U q−1ωi
∂U

∂xl
= 0

and ∫

RN

Dωi Dη − p
∫

RN

U p−1ωiη + q
∫

RN

U q−1ωiη = 0

Hence we have (7.10).
Since ωi ∈ D1,2(RN ), it follows by nondegeneracy

ωi =
N∑

l=1

bl
∂U

∂xl

Since ω̃i,n ∈ Ẽεn ,xn ,k , letting n → ∞ in (7.11), we have∫

RN

Dωi D
∂U

∂xl
= 0
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which implies bl = 0 for all l = 1, 2, . . . , N . Thus ωi = 0. Hence for any R > 0 we have
∫

Bεn R(xi,n)

|ωn |2 = o(εN
n ).

Now

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j,n

⎞
⎠

p−1

+
ω2

n =
∫

∪Bεn R (xi,n)

⎛
⎝ k∑

j=1

V̂ε,x j,n

⎞
⎠

p−1

+
ω2

n +
∫

�\∪Bεn R (xi,n)

⎛
⎝ k∑

j=1

V̂ε,x j,n

⎞
⎠

p−1

+
ω2

n

≤
∫

∪Bεn R (xi,n)

ω2
n +

∫
�\∪Bεn R (xi,n)

⎛
⎝ k∑

j=1

Uε,x j,n

⎞
⎠

p−1

+
ω2

n

≤ o(1)εN
n + ε

α(p−q)
n

∫
�\∪Bεn R (xi,n)

⎛
⎝ k∑

j=1

Uε,x j,n

⎞
⎠

q−1

+
ω2

n

≤ o(1)εN
n + ε

α(p−q)
n ‖ωn‖2

εn
.

Hence

o
(
εN

n

)
≥ 〈Qεn ,xn (ωn), ωn〉εn ≥ ‖ωn‖2

εn
− p

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j,n

⎞
⎠

p−1

+
ω2

n

≥ εN
n − o(1)εN

n (7.16)

which implies a contradiction.
For the case α = N − 2. We claim that W̃n, j,l is bounded in D1,2(�n). As ∂U

∂xl
∈ L2 and

N (N − 2)(q − 1) > N , we have
∫
�n

|∇W̃n, j,l |2 =
∫
�n

(
pU p−1 − qU q−1) ∂U

∂xl
W̃n, j,l

≤ C

⎛
⎜⎝

∫
�n

U 2(q−1)W̃ 2
n, j,l

⎞
⎟⎠

1
2

≤ C

⎛
⎜⎝

∫
�n

U
2∗(2q−2)

2∗−2

⎞
⎟⎠

1
2 (1− 2

2∗ )⎛
⎜⎝

∫
�n

|W̃n, j,l |2∗

⎞
⎟⎠

1
2∗

≤
⎛
⎜⎝

∫

RN

U N (q−1)

⎞
⎟⎠

1
2 (1− 2

2∗ )⎛
⎜⎝

∫
�n

|W̃n, j,l |2∗

⎞
⎟⎠

1
2∗

≤ C

⎛
⎜⎝

∫
�n

|∇W̃n, j,l |2
⎞
⎟⎠

1
2

(7.17)
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as
∫ ∞

1
1

r N (N−2)(q−1)−(N−1) < ∞,which implies that W̃n, j,l is bounded in D1,2(�n). there exists
W such that

W̃n, j,l ⇀ W in D1,2

and hence

W̃n, j,l → W in L2
loc.

Note that W satisfies the problem,{ −�W = (pU p−1 − qU q−1) ∂U
∂xl

in R
N∫

RN |∇W |2 = ∫
RN (pU p−1 − qU q−1) ∂U

∂xl
W.

(7.18)

We claim that W̃n, j,l → W in D1,2. First note that for any compact subset�′ ⊂ �n we have∫
�n

U q−1 ∂U

∂xl
W̃n, j,l =

∫
�′

U q−1 ∂U

∂xl
W̃n, j,l +

∫
�n\�′

U q−1 ∂U

∂xl
W̃n, j,l .

Hence the first integral ∫
�′

U q−1 ∂U

∂xl
W̃n, j,l →

∫
�′

U q−1 ∂U

∂xl
W

Using the fact that (N − 2)(q − 1) > 2 and Hardy inequality, we obtain∫
�n\�′

U q−1W̃ 2
n, j,l ≤ C

∫
�n\�′

|x |−(N−2)(q−1)W̃ 2
n, j,l

≤ C
∫

�n\�′
|x |−2W̃ 2

n, j,l

≤ C
∫

�n\�′
|∇W̃n, j,l |2. (7.19)

As a result we obtain ∫
�n\�′

U q−1 ∂U

∂xl
W̃n, j,l →

∫

RN \�′

U q−1 ∂U

∂xl
W.

Hence ∫
�n

|∇W̃n, j,l |2 = p
∫
�n

U p−1 ∂U

∂xl
W̃n, j,l

− q
∫
�n

U q−1 ∂U

∂xl
W̃n, j,l

→ p
∫

RN

U p−1 ∂U

∂xl
W − q

∫

RN

U q−1 ∂U

∂xl
W

=
∫

RN

|∇W |2. (7.20)
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Hence W̃n, j,l → W = ∂U
∂xl

in D1,2 strongly. The remainder of the proof follows exactly as
above. ��
Lemma 7.4 Let Rε(ω) be the functional defined by (7.3). Let ω ∈ H1

0 (�), then

|Rε(ω)| ≤ CεN (1− min{p+1,3}
2 )‖ω‖

min{p+1,3}
2∗

ε + Cε
N

(
1− min{q+1,3}

2

)
‖ω‖

min{q+1,3}
2∗

ε

+ o(1)‖ω‖2
ε (7.21)

and

‖R′
ε(ω)‖ε ≤ CεN (1− min{p,2}

2 )‖ω‖
min{p,2}

2∗
ε + Cε

N
(

1− min{q,2}
2

)
‖ω‖

min{q,2}
2∗

ε

+ o(1)‖ω‖ε. (7.22)

Proof As before we have Rε(ω) = J1,ε(ω)+ J2,ε(ω). Then

|J1,ε(ω)| ≤
∫

∪BεR(xi )

|J1,ε(ω)| +
∫

�\∪BεR(xi )

|J1,ε(ω)|

≤
∫

∪BεR(xi )

|ω|min{p+1,3} + p o

⎛
⎜⎝

∫
�\∪BεR(xi )

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p−1

+
ω2

⎞
⎟⎠

Here we have used (7.4). However,

∫
∪BεR(xi )

|ω|min{p+1,3} ≤ CεN (1− min{p+1,3}
2 )

⎛
⎜⎝

∫
BεR(xi )

|ω|2∗

⎞
⎟⎠

min{p+1,3}
2∗

≤ Cε
N

(
1− min{p+1,3}

2

)
‖ω‖

min{p+1,3}
2∗

ε .

Moreover, by the algebraic decay of V̂ε,x j we obtain,

o

⎛
⎜⎝

∫
�\∪BεR(xi )

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

p−1

+
ω2

⎞
⎟⎠ ≤ Co(1)εα(p−1)

∫
�

ω2 ≤ Co(1)ε2
∫
�

|∇ω|2

Hence the result follows. ��
Lemma 7.5 There exists an ε0 > 0 such that for ε ∈ (0, ε0], there exists a C1 map ωε,x :
Dk,ε → H, such that ωε,x ∈ Eε,x,k we have

〈
I ′
ε

⎛
⎝ k∑

j=1

V̂ε,x j + ωε,x

⎞
⎠, η

〉

ε

= 0, ∀η ∈ Eε,x,k .

Moreover, we have

‖ωε,x‖ε ≤ Cε
N
2 ε

γ τ
min{q,2} + κ

where κ > 0 is sufficiently small.
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Proof We have lε,x + Qε,xω+ R′
ε(ω) = 0. As Q−1

ε,x exists, the above equation is equivalent
to solving

Q−1
ε,x lε,x + ω + Q−1

ε,x R′
ε(ω) = 0.

Define

G(ω) = −Q−1
ε,x lε,x − Q−1

ε,x R′
ε(ω) ∀ω ∈ Eε,x,k .

Hence the problem is reduced to finding a fixed point of the map G.

Choose γ > 0 small. For any ω1 ∈ Eε,x,k and ω2 ∈ Eε,x,k with ‖ω1‖ε ≤ ε
N
2 ε

γ τ
min{q,2} ,

‖ω2‖ε ≤ ε
N
2 ε

γ τ
min{q,2}

‖G(ω1)− G(ω2)‖ε ≤ C‖R′
ε(ω1)− R′

ε(ω2)‖ε.
Note that〈

R′
ε(ω1)− R′

ε(ω2), η
〉
ε

= 〈
J ′

1,ε(ω1)− J ′
1,ε(ω2), η

〉
ε
+ 〈

J ′
2,ε(ω1)− J ′

2,ε(ω2), η
〉
ε

From Lemma 7.4, we have
〈
R′
ε(ω1)− R′

ε(ω2), η
〉
ε

≤ CεN (1− min{p,2}
2 )‖ω1 − ω2‖min{p,2}

ε ‖η‖ε
+ CεN (1− min{q,2}

2 )‖ω1 − ω2‖min{q,2}
ε ‖η‖ε

+ o(1)‖ω1 − ω2‖ε‖η‖ε.
Hence we have

‖R′
ε(ω1)− R′

ε(ω2)‖ε ≤ CεN (1− min{p,2}
2 )‖ω1 − ω2‖min{p,2}

ε

+ CεN (1− min{q,2}
2 )‖ω1 − ω2‖min{q,2}

ε + o(1)‖ω1 − ω2‖ε
≤ o(1)‖ω1 − ω2‖ε.

Hence G is a contraction as

‖G(ω1)− G(ω2)‖ε ≤ Co(1)‖ω1 − ω2‖ε.
Also for ω ∈ Eε,x,k with ‖ω‖ε ≤ ε

N
2 ε

γ τ
min{q,2} , and κ > 0 sufficiently small

‖G(ω)‖ε ≤ C‖lε,x‖ε + C‖R′
ε(ω)‖ε

≤ Cε
N
2 ε

2γ τ
min{q,2} + ε

N
2 ε

γ τ
min{q,2} + κ

≤ Cε
N
2 ε

γ τ
min{q,2} + κ

≤ ε
N
2 ε

γ τ
min{q,2} (7.23)

if ‖lε‖ε ≤ ε
N
2 ε

2γ τ
min{q,2} . Hence

G : Eε,x,k ∩ B
ε

N
2 ε

γ τ
min{q,2} (0) → Eε,x,k ∩ B

ε
N
2 ε

γ τ
min{q,2} (0)

is a contraction map if ‖lε‖ε ≤ ε
N
2 ε

2γ τ
min{q,2} .Hence by the contraction mapping principle there

exists a unique ω ∈ Eε,x,k ∩ B
ε

N
2 ε

γ τ
min{q,2} (0) such that ω = G(ω) and

‖ωε,x‖ε = ‖G(ωε,x )‖ε ≤ Cε
N
2 ε

γ τ
min{q,2} +κ .

��
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8 Existence of interior peaks

Lemma 8.1 For any positive integer k, we have

Iε

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠ = kεN c − c1ε

N
∑
i< j

U

( |xi − x j |
ε

)
+ c2ε

N
k∑

j=1

(Q(x j )− 1)

+ εN O

⎛
⎝ k∑

i=1

|Q(xi )− 1|2 +
∑
i< j

U 1+λ
( |xi − x j |

ε

)
+ εmin{1,α}

⎞
⎠ (8.1)

where c1, c2, λ > 0, and c is the mountain pass critical value of the limiting problem.

Proof We have

Iε

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠ =

k∑
j=1

Iε
(

V̂ε,x j

)
+ 1

2

∑
i �= j

∫
�

ε2 DV̂ε,xi DV̂ε,x j

−
∫
�

F

⎛
⎝x,

k∑
j=1

V̂ε,x j

⎞
⎠ +

∫
�

k∑
j=1

F
(

x, V̂ε,x j

)
.

From Remark 5.2 we have

ε2

2

∫
�

|DV̂ε,x j |2 = 1

2

∫
�

U p
ε,x j V̂ε,x j − 1

2

∫
�

U q
ε,x j V̂ε,x j

= 1

2

∫
�

U p
ε,x j (Uε,x j − Cεα)− 1

2

∫
�

U q
ε,x j (Uε,x j − Cεα)

= 1

2

∫
�

U p+1
ε,x j − 1

2

∫
�

U q+1
ε,x j + O(εN+α)

= 1

2
εN

∫

RN

(U p+1 − U q+1)+ O(εN+α).

Similarly we have

1

p + 1

∫
�

(V̂ε,x j )
p+1
+ = 1

p + 1

∫
�

U p+1
ε,x j + O

⎛
⎝εα

∫
�

U p
ε,x j

⎞
⎠

= 1

p + 1
εN

∫

RN

U p+1 + O
(
εN+α),

1

q + 1

∫
�

(
V̂ε,x j

)q+1

+ = 1

q + 1
εN

∫

RN

U q+1 + O
(
εN+α),
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and

1

q + 1

∫
�

(Q − 1)
(

V̂ε,x j

)q+1

+ = 1

q + 1

∫
�

(Q(x)− Q(x j ))
(

V̂ε,x j

)q+1

+

+ 1

q + 1
(Q(x j )− 1)

∫
�

(
V̂ε,x j

)q+1

+ . (8.2)

To estimate the first term, we decompose � = BεR(x j ) ∪ (
�\BεR(x j )

)
and using Taylor’s

theorem on Q we have,

∫
�

(Q(x)− Q(x j ))(V̂ε,x j )
q+1
+ =

∫
BεR(x j )

(Q(x)− Q(x j ))(V̂ε,x j )
q+1
+

+
∫

�\BεR(x j )

(Q(x)− Q(x j ))
(

V̂ε,x j

)q+1

+

≤ CεN+1 + Cεα(q+1).

To estimate the second term in (8.2) we use

(Q(x j )− 1)
∫
�

(
V̂ε,x j

)q+1

+ = (Q(x j )− 1)εN
∫

RN

U q+1 + O
(
εN+α)

Hence we have

Iε
(

V̂ε,x j

)
= 1

2
εN

∫

RN

(U p+1 − U q+1)− 1

p + 1
εN

∫

RN

U p+1

+ 1

q + 1
εN

∫

RN

U q+1 + (Q(x j )− 1)
1

q + 1
εN

∫

RN

U q+1 + O
(
εN+min{1,α})

= εN

⎡
⎢⎣

(
1

2
− 1

p + 1

) ∫

RN

U p+1 −
(

1

2
− 1

q + 1

) ∫

RN

U q+1

⎤
⎥⎦

+ (Q(x j )− 1)
1

q + 1
εN

∫

RN

U q+1 + O
(
εN+min{1,α}).

On the other hand, we know that for i �= j

U
1,

xi −x j
ε

= U

( |xi − x j |
ε

)
+ O

(
εα

)
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and using Remark 5.2,

ε2

2

∑
i �= j

∫
�

DV̂ε,xi DV̂ε,x j = 1

2

∑
i �= j

∫
�

(
U p
ε,x j − U q

ε,x j

)
V̂ε,xi

= 1

2

∑
i �= j

∫
�

(
U p
ε,x j − U q

ε,x j

)
Uε,xi + O(εN+α)

= εN

2

∑
i �= j

∫

RN

(
U p − U q)

U
1,

xi −x j
ε

+ O
(
εN+α)

= εN

2

∑
i �= j

∫

RN

(
U p − U q)

U
1,

xi −x j
ε

+ O
(
εN+α)

= CεN
∑
i< j

U

( |xi − x j |
ε

)
+ O

(
εN+α).

Similarly

∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q+1

=
∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

+ O

⎛
⎝∫
�

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠

q

εα

⎞
⎠

=
∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

+ O

⎛
⎝∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q

εα

⎞
⎠

=
∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

+ O(εN+α).

If we note that

||a + b|q+1 − |a|q+1 − |b|q+1 − (q + 1)aqb − (q + 1)abq |
= O(1)a

q+1
2 b

q+1
2 if 1 < q < 2

||a + b|q+1 − |a|q+1 − |b|q+1 − (q + 1)aqb − (q + 1)abq |
= O(1)|a|q |b| + O(1)|a||b|q if q ≥ 2

and the decomposition technique used in Lemma 7.1, we find that

∫
�

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

−
k∑

j=1

∫
�

U q+1
ε,x j

=
∫
�

⎛
⎝ k∑

j=2

Uε,x j

⎞
⎠

q+1

−
k∑

j=2

∫
�

U q+1
ε,x j + (q + 1)

∫
�

⎛
⎝ k∑

j=2

Uε,x j

⎞
⎠

q

Uε,x1
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+(q + 1)
∫
�

U q
ε,x1

k∑
j=2

Uε,x j + O
(
εN+α)

= (q + 1)
∑
i< j

∫
�

U q
ε,x j Uε,xi + εN O

(
U 1+λ

( |xi − x j |
ε

)
+ εα

)
.

As a result we obtain

∫
�

F

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠ −

∫
�

k∑
j=1

F(Uε,x j ) =
⎧⎨
⎩

∫
�

F

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠ −

∫
�

k∑
j=1

F(Uε,x j )

−
∑
i �= j

f (Uε,x j )Uε,xi

⎫⎬
⎭ +

∑
i �= j

f (Uε,x j )Uε,xi

=
∑
i �= j

f (Uε,x j )Uε,xi + O
(
εN+α)

+ εN O

(
U 1+λ

( |xi − x j |
ε

)
+ εα

)
. (8.3)

where f (u) = u p − uq and λ > 0. Now let us estimate

∫
�

(Q − 1)

⎧⎨
⎩(

k∑
j=1

Uε,x j )
q+1 −

k∑
j=1

U q+1
ε,x j

⎫⎬
⎭

=
∫
�

(Q(x)− Q(xi ))

⎧⎪⎨
⎪⎩

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

−
k∑

j=1

U q+1
ε,x j

⎫⎪⎬
⎪⎭

+ (Q(xi )− 1)
∫
�

⎧⎪⎨
⎪⎩

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

−
k∑

j=1

U q+1
ε,x j

⎫⎪⎬
⎪⎭

= εN O

⎛
⎝ k∑

i=1

|Q(xi )− 1|2 +
∑
i< j

U 1+λ
( |xi − x j |

ε

)
+ εmin{1,α}

⎞
⎠ .

We have used the fact that

(Q(xi )− 1)
∫
�

⎧⎪⎨
⎪⎩

⎛
⎝ k∑

j=1

Uε,x j

⎞
⎠

q+1

−
k∑

j=1

U q+1
ε,x j

⎫⎪⎬
⎪⎭

= εN O (|Q(xi )− 1| + ε)
∑
i< j

U

( |xi − x j |
ε

)

= εN O

⎛
⎝|Q(xi )− 1|2 +

∑
i< j

U 2
( |xi − x j |

ε

)
+ ε

⎞
⎠ . (8.4)

This proves the result. ��
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Proof [Proof of Theorem 1.2] Define

Gε(x) = Iε

⎛
⎝ k∑

j=1

V̂ε,x j + ωε,x

⎞
⎠

and consider the problem

min
x∈Dk,ε

Gε(x).

To prove that
∑k

j=1 V̂ε,x j + ωε,x is a solution of (6.1), we need to prove that x is a critical
point of Gε(x).

For any x ∈ Dk,ε, we have from Lemma 8.1,

Gε(x) = Iε

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠ + O(‖lε,x‖ε‖ωε,x‖ε + ‖ωε,x‖2

ε + Rε(ωε,x ))

= Iε

⎛
⎝ k∑

j=1

V̂ε,x j

⎞
⎠ + εN O

(
ε

2γ τ
min{q,2} +κ

)

= kεN c − c1ε
N

∑
i< j

U

( |xi − x j |
ε

)
+ c2ε

N
k∑

i=1

(Q(xi )− 1)

+ εN O

(
|Q(xi )− 1|2 + U 1+λ

( |xi − x j |
ε

)
+ εmin{α,1}

)

+ εN O

(
ε

2γ τ
min{q,2} +κ

)
. (8.5)

Let xε ∈ Dk,ε be a point of minimum of Gε in Dk,ε. Choose x̃ε = (
x̃ε,1, . . . , x̃ε,k

)
such that

|x̃ε, j − z j | ≤ ε
1
2 j = 1, 2, . . . , k

and

|x̃ε,i − x̃ε, j | ≥ 1

2k

√
ε i �= j.

Then we have U
( |x̃ε,i −x̃ε, j |

ε

)
≤ Cε

α
2 for i �= j and the mean value theorem yields

|Q (
x̃ε,i

) − 1| ≤ C |x̃ε,i − zi |2 ≤ Cε i = 1, 2, . . . , k.

Thus x̃ε ∈ Dk,ε.

Hence it follows from (8.5) that

Gε (x̃ε) = ckεN + εN O

(
ε

2γ τ
min{q,2} +κ

)
. (8.6)

But since Gε (x̃ε) ≥ Gε(xε) we have from (8.5) and (8.6)

−c1

∑
i< j

U

( |xε,i − xε, j |
ε

)
+ c2

k∑
i=1

(Q(xε,i )− 1) ≤ O

(
ε

2γ τ
min{q,2} +κ

)
.
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Thus we have

0 ≤ Q(xε,i )− 1 ≤ O

(
ε

2γ τ
min{q,2} +κ

)
i = 1, 2, . . . , k

and

−U

( |xi − x j |
ε

)
≤ O

(
ε

2γ τ
min{q,2} +κ

)
i �= j.

This implies

U

( |xi − x j |
ε

)
≤ O

(
ε

2γ τ
min{q,2} +κ

)
i �= j.

Hence xε is an interior point of Dk,ε and hence is a critical point as required. It easily follows∑k
j=1 V̂ε,x j + ωε,x is a positive solution of (1.3). This finishes the proof. ��

Remark 8.2 Consider the problem,⎧⎨
⎩

−ε2div (a(x)∇u) = u p − Q(x)uq in �

u > 0 in �

u = 0 on ∂�

(8.7)

where a is a smooth function satisfying a(x) ≥ µ > 0 in �. Note that for some x0 ∈ R
N ,

the limiting problem to (8.7) is⎧⎨
⎩

−a(x0)�u = u p − Q(x0)uq in R
N

u > 0 in R
N

u(x) → 0 as |x | → +∞
(8.8)

By a change of variable of the form u(x) = Q
1

p−q (x0)v

(
Q

p−1
2(p−q) (x0)

a1/2(x0)
x

)
, then v satisfies the

problem (1.4). Define ζ : � → R by

ζ(x) = Q
N (p−1)+2(p+1)

2(p−q) (x)

a
N
2 (x)

in�. Let ζ has k isolated local minima. Then using the results of Theorem 1.2 it seems likely
that one can show that for sufficiently small ε > 0, there exists a positive solution uε having
k peaks with each peak concentrating at a local minima of ζ.
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