Singular perturbed problems in the zero mass case: asymptotic behavior of spikes

E. N. Dancer · Sanjiban Santra

Received: 31 October 2008 / Accepted: 9 June 2009 / Published online: 27 June 2009 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2009

Abstract We discuss the asymptotic behavior of the least energy solution of a Dirichlet problem in the zero mass case. If Q is a uniformly positive potential having k isolated local minima, then we prove the existence of a positive multi-spike solutions having k peaks concentrating at each local minima of the potential.

Keywords Concentration phenomena \cdot Peak solutions \cdot Morse index \cdot Finite dimensional reduction

Mathematics Subject Classification (2000) 35J10 · 35J65

1 Introduction

There has been considerable interest in understanding the behavior of positive solutions of the elliptic problem

$$\begin{cases} -\varepsilon^2 \Delta u = f(x, u) & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(1.1)

where $\varepsilon > 0$ is a parameter, f is a superlinear function and Ω is a smooth bounded domain in \mathbb{R}^N . Let $F(x, u) = \int_0^u f(x, t) dt$. We consider the problems in the zero mass case i.e. when f(x, 0) = 0 and $f_u(x, 0) = 0$. Let f(x, u) = f(u). Then problem (1.1) can be viewed as borderline problems because if f'(0) > 0, there is no non-trivial solutions for small $\varepsilon > 0$ Berestycki and Lions [2] proved the existence of ground state solutions if f(u) behaves

This work was supported by the Australian Research Council.

E. N. Dancer · S. Santra (🖂)

School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia e-mail: sanjiban@maths.usyd.edu.au; sanjiban2003@yahoo.com

like $|u|^p$ for large u and $|u|^q$ for small u where p and q are supercritical and subcritical, respectively.

In this paper we consider the problems,

$$\begin{cases} -\varepsilon^2 \Delta u = u^p - u^q & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.2)

$$\begin{cases} -\varepsilon^2 \Delta u = u^p - Q(x)u^q & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(1.3)

where $1 < q < p < \frac{N+2}{N-2}$, $N \ge 3$ and $Q(x) \ge b > 0$ for all $x \in \Omega$, Q is bounded and smooth. Let U be a solution of

$$\begin{cases}
-\Delta u = u^{p} - u^{q} & \text{in } \mathbb{R}^{N} \\
u > 0 & \text{in } \mathbb{R}^{N} \\
u \to 0 & \text{as } |x| \to \infty \\
u \in C^{2}(\mathbb{R}^{N}).
\end{cases}$$
(1.4)

By [12] and [11], U is radial and unique. Locating the points of concentration is important because they provide a concrete way of understanding the geometry of a class of solutions. In this paper, we study problems concerning the asymptotic behavior of the mountain pass solution and existence of multi-peak solutions for $\varepsilon > 0$ sufficiently small. Let $N \ge 3$ and $q^* := \frac{N}{N-2}$. The exponent q^* is somewhat critical to the problems considered above. Then

Theorem 1.1 Consider the problem (1.2). For $q > q^*$, there exists $\varepsilon_0 > 0$ such that for every $0 < \varepsilon < \varepsilon_0$, there exists a least energy positive solution $u_{\varepsilon} \in H_0^1(\Omega)$ of the problem and u_{ε} has a unique point of maximum x_{ε} . Then u_{ε} concentrates at a minima of $\psi_x(x)$, where ψ_x satisfies,

$$\begin{cases} -\Delta \psi_x = 0 & \text{in } \Omega\\ \psi_x = \frac{1}{|x-y|^{N-2}} & \text{on } \partial\Omega. \end{cases}$$
(1.5)

Hence u_{ε} concentrates at a harmonic center of Ω .

Note that in the case q = 1, the least energy solution to the problem (1.2) has a unique maxima x_{ε} ; as ε tends to zero u_{ε} decays exponentially away from x_{ε} and $d(x_{\varepsilon}, \partial \Omega) \rightarrow \max_{x \in \Omega} d(x, \partial \Omega)$. This implies that the solution concentrates at an interior point furthest from the boundary of Ω . This was studied by Ni and Wei [13]. Later Flucher and Wei [10], proved that if $f(u) = (u - 1)_{+}^{p}$, then the least energy solution of (1.1) concentrates at the harmonic center of Ω . Note that harmonic center in general is different from the point of maximal distance from the boundary. With a slight modification of our proof we can prove that results of Theorem 1.1 holds for the nonlinearity

$$f(u) = u^p - \sum_{j=1}^m c_j u^{q_j}$$

where $1 < q_j < p, c_j > 0$ and $m \in \mathbb{N}$.

Let $\alpha = \max\{\frac{2}{q-1}, N-2\}$. We have the following result:

Theorem 1.2 Consider the problem (1.3) and assume $q \neq q^*$. Let Q has k isolated local minima in Ω say z_1, z_2, \ldots, z_k . Then, there exists $\varepsilon_0 > 0$ such that for every $0 < \varepsilon < \varepsilon_0$,

there exists a positive solution $u_{\varepsilon} \in H_0^1(\Omega)$ to the problem (1.2) possessing exactly k maxima $x_{\varepsilon,j} \in \Omega$ such that $x_{\varepsilon,j} \to z_j$ for j = 1, 2, ..., k and there exists a constant C > 0independent of ε , Q such that

$$u_{\varepsilon}(x) \le C \frac{\varepsilon^{\alpha}}{|x - x_{\varepsilon,j}|^{\alpha}}$$

away from z_i .

In the case q = 1, the existence of a single spike solution first studied by Floer and Weinstein [8]. When $\Omega = \mathbb{R}$ and $f(u) = u^3$, they constructed a single spike solution concentrating around any given non-degenerate critical point of the potential Q. Later Yong-Geun [16,17], extended the result of Floer and Weinstein in the higher dimensional case. Wang [19] showed that the mountain pass solution concentrate around a global minimum point of Q. When $\Omega = \mathbb{R}^N$, Del Pino and Felmer [5], proved an analogue of Wang's result imposing the condition on Q that there exists a bounded domain Λ with

$$\inf_{\Lambda} Q < \inf_{\partial \Lambda} Q.$$

They then prove that the above problem has a solution concentrating around a minimum of Q in Λ . Moreover, in [6,7] they proved the existence of multi-peak solutions concentrating near any finite set of local minima of a uniformly positive potential. Problem (1.2) was studied by Dancer [3] in domains having some kind of symmetry. In fact, he proved that for sufficiently small $\varepsilon > 0$, the positive solution is unique. Note that the positive solutions we obtain are concentrating exactly at the local minima of V. Our main contribution is to cover the case where q > 1. Before proving the main theorems, we look in to the difficulties associated with the problem.

- The solution of (1.4), $U \in D^{1,2}(\mathbb{R}^N) \cap L^{q+1}(\mathbb{R}^N)$ and U decays algebraically.
- Since our proof requires nondegeneracy results and $U \in D^{1,2}(\mathbb{R}^N) \cap L^{q+1}(\mathbb{R}^N)$, we work in the larger space $D^{1,2}(\mathbb{R}^N)$.
- Approximate solution to U may not be positive in Ω in the Dirichlet case. In the case the problem (1.2) with Neumann boundary conditions, the approximate solution to U is positive and satisfy

$$\begin{cases} -\varepsilon^2 \Delta Z_{\varepsilon} + q U_{\varepsilon}^{q-1} Z_{\varepsilon} = U_{\varepsilon}^p + (q-1) U_{\varepsilon}^q & \text{in } \Omega\\ \frac{\partial Z_{\varepsilon}}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$
(1.6)

where U_{ε} is a re-scaled version of U and one expects to obtain similar results to [14] and [15].

- Most surprising fact is the existence of the exponent q^{*} such that for all q ∈ (1, q^{*}], the asymptotic behavior of least energy solution of problem (1.1) cannot be studied by our method. The natural question arises, is it possible to obtain a higher order expansion for the case q ∈ (1, q^{*}]? This runs into a major problem as U^{q-1} is not integrable at infinity. In fact, for q = q^{*}, we expect the entire solution U to satisfy U ~ r^{-(N-2)}(log r)^{-N-2}/₂ as r → ∞.
- The reduction method could in principle be applied to $Q \equiv 1$, but it seems difficult to determine the location of peaks by our method.
- Finally note that we cannot extend Theorem 1.2 to unbounded domains. The main reason for that is we cannot obtain good boundary estimates as (7.7).

2 Preliminaries

Let us modify the problem (1.2) to

$$-\varepsilon^2 \Delta u = (u^+)^p - (u^+)^q \quad \text{in } \Omega$$

$$u > 0 \qquad \qquad \text{in } \Omega$$

$$u = 0 \qquad \qquad \text{on } \partial\Omega.$$
(2.1)

It is easy to show that any solution of (2.1) is positive and is in fact a positive solution to (1.2). Note that the associated functional to the problem (1.2) is

$$\Phi_{\varepsilon}(u) = \int_{\Omega} \left(\frac{\varepsilon^2}{2} |\nabla u|^2 - \frac{1}{p+1} (u^+)^{p+1} + \frac{1}{q+1} (u^+)^{q+1} \right) \mathrm{d}x$$

Note that Φ_{ε} satisfies Palais Smale condition and all the conditions of the mountain pass theorem and hence there exist a mountain pass solution $u_{\varepsilon} > 0$ and a mountain pass critical value

$$0 < c_{\varepsilon} = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \Phi_{\varepsilon}(\gamma(t))$$

where

$$\Gamma = \left\{ \gamma \in C\left([0,1], H_0^1(\Omega)\right) : \gamma(0) = 0, \gamma(1) \neq 0, \Phi_{\varepsilon}(\gamma(1)) \le 0 \right\}.$$

With a change of variable the problem (1.2) takes the form

$$\begin{cases} -\Delta u = u^p - u^q & \text{in } \Omega_{\varepsilon} \\ u > 0 & \text{in } \Omega_{\varepsilon} \\ u = 0 & \text{on } \partial \Omega_{\varepsilon} \end{cases}$$
(2.2)

where Ω_{ε} is a re-scaled version of Ω . The functional associated to the problem (2.2) is

$$I_{\varepsilon}(u) = \int_{\Omega_{\varepsilon}} \left(\frac{1}{2} |\nabla u|^2 - \frac{1}{p+1} (u^+)^{p+1} + \frac{1}{q+1} (u^+)^{q+1} \right) \mathrm{d}x$$

Note that $I_{\varepsilon}(0) = 0$, $I_{\varepsilon}(tu) \to -\infty$ as $t \to +\infty$ and I_{ε} satisfies the Palais Smale condition on $H_0^1(\Omega)$. Hence, we obtain a positive solution v_{ε} for each $\varepsilon > 0$ obtained by the mountain pass theorem. Then the mountain pass critical value b_{ε} is given by

$$b_{\varepsilon} = \inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t))$$

where

$$\Gamma_{\varepsilon} = \left\{ \gamma \in C\left([0, 1], H_0^1(\Omega_{\varepsilon})\right) : \gamma(0) = 0, \gamma(1) \neq 0, I_{\varepsilon}(\gamma(1)) \le 0 \right\}$$

Note that as 0 is a strict local minima of $I_{\varepsilon}, b_{\varepsilon} > 0$, $\forall \varepsilon > 0$. Also note that $\Phi_{\varepsilon}(u) = \varepsilon^{N} I_{\varepsilon}(u)$ which implies that $c_{\varepsilon} = \varepsilon^{N} b_{\varepsilon}$. Let

$$\mathcal{N}_{\varepsilon}(\Omega_{\varepsilon}) = \left\{ u \in H_0^1(\Omega_{\varepsilon}) : \int_{\Omega_{\varepsilon}} |\nabla u|^2 + \int_{\Omega_{\varepsilon}} (u^+)^{q+1} = \int_{\Omega_{\varepsilon}} (u^+)^{p+1} \right\}.$$

Lemma 2.1 We have for all $\varepsilon > 0$

$$b_{\varepsilon} = \inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)) = \inf_{u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})} I_{\varepsilon}(u) = \inf_{u \in H_0^1(\Omega_{\varepsilon}), u \neq 0} \max_{t \ge 0} I_{\varepsilon}(tu).$$

Proof For the sake of completeness we prove this well-known lemma. Let $\varepsilon > 0$ be fixed. First note that

$$\inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)) \le \inf_{u \in H_0^1(\Omega_{\varepsilon})} \max_{t \ge 0} I_{\varepsilon}(tu)$$
(2.3)

We first claim that $\inf_{u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})} I_{\varepsilon}(u) = \inf_{u \in H_0^1(\Omega_{\varepsilon})} \max_{t \ge 0} I_{\varepsilon}(tu)$. Define $h(t) = I_{\varepsilon}(tu)$. Then as discussed earlier and due to the nature of the nonlinearity we have h(0) = 0, h(t) > 0 for small t > 0 and h(t) < 0 for t > 0 sufficiently large. Hence $\max_{t \in [0, +\infty)} h(t)$ is achieved. Also note that h'(t) = 0 implies $\|u\|_{H_0^1(\Omega_{\varepsilon})}^2 = g(t)$ where

$$g(t) = t^{p-1} \int_{\Omega_{\varepsilon}} \left(u^+ \right)^{p+1} - t^{q-1} \int_{\Omega_{\varepsilon}} \left(u^+ \right)^{q+1}$$

It is easy to see that g is an increasing function of t whenever g(t) > 0. Thus there exists a unique t such that $||u||_{H_0^1(\Omega)} = g(t)$. Hence there exist a unique point $\theta(u)$ such that $h'(\theta(u)u) = 0$ and $\theta(u)u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})$. This implies that $\mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})$ is radially homeomorphic to $H_0^1(\Omega_{\varepsilon}) \setminus \{0\}$ if we prove that $\theta : H_0^1(\Omega_{\varepsilon}) \setminus \{0\} \to \mathbb{R}^+$ is continuous. In order to do so let $u_n \to u$ in $H_0^1(\Omega_{\varepsilon}) \setminus \{0\}$. Then $u_n \to u$ in $H_0^1(\Omega_{\varepsilon})$ and $u_n \to u$ in $L^r(\Omega_{\varepsilon})$ for all $r \le \frac{N+2}{N-2}$ and

$$\int_{\Omega_{\varepsilon}} |\nabla u_n|^2 = \theta^{p-1}(u_n) \int_{\Omega_{\varepsilon}} (u_n^+)^{p+1} - \theta^{q-1}(u_n) \int_{\Omega_{\varepsilon}} (u_n^+)^{q+1}$$
(2.4)

which proves there exist constants m > 0 and M > 0 independent of n such that $m \le \theta(u_n) \le M$. By passing to the limit in (2.4) the whole sequence $\{\theta(u_n)\}$ converges as u_n is convergent and hence $\theta(u) = \theta_0$ where $\theta_0 u \in \mathcal{N}_{\varepsilon}$ which proves our claim.

Next, we claim that $\inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)) = \inf_{u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})} I_{\varepsilon}(u)$. It is easy to see that $\inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)) \ge \inf_{u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})} I_{\varepsilon}(u)$ by (2.3). It is enough to prove that any $\gamma \in \Gamma_{\varepsilon}$ intersects $\mathcal{N}_{\varepsilon}$. Note that $I_{\varepsilon}(u) > 0$ for $||u||_{H_{0}^{1}(\Omega)}$ sufficiently small and $I_{\varepsilon}(\gamma(1)) < 0$ which implies the required result.

Lemma 2.2 There exists a C > 0 independent of ε such that $b_{\varepsilon} \leq C$ for sufficiently small ε . Hence along a subsequence b_{ε} converges as $\varepsilon \to 0$.

Proof Let $\varphi_1 > 0$ be the eigenfunction corresponding to the first eigenvalue λ_1 of $-\Delta$ in Ω with respect to the zero Dirichlet boundary conditions. Let $\int_{\Omega} \varphi_1^2 = 1$. Note that $supp \varphi_1 \subset \Omega \subset \Omega_{\varepsilon}$ for sufficiently small ε . Choose a t > 0 such that $I_{\varepsilon}(t\varphi_1) \leq 0$. We claim that in fact t is uniformly bounded. We have

$$\begin{split} I_{\varepsilon}(t\varphi_{1}) &= \int_{\Omega_{\varepsilon}} \left(\frac{1}{2} |\nabla t\varphi_{1}|^{2} - \frac{1}{p+1} (t\varphi_{1})^{p+1} + \frac{1}{q+1} (t\varphi_{1})^{q+1} \right) \mathrm{d}x \\ &= \lambda_{1} t^{2} \frac{1}{2} \int_{\Omega_{\varepsilon}} \varphi_{1}^{2} - \frac{t^{p+1}}{p+1} \int_{\Omega_{\varepsilon}} \varphi_{1}^{p+1} + \frac{t^{q+1}}{q+1} \int_{\Omega_{\varepsilon}} \varphi_{1}^{q+1} \\ &= \frac{\lambda_{1} t^{2}}{2} \int_{\Omega} \varphi_{1}^{2} - \frac{t^{p+1}}{p+1} \int_{\Omega} \varphi_{1}^{p+1} + \frac{t^{q+1}}{q+1} \int_{\Omega} \varphi_{1}^{q+1} \end{split}$$

which implies $t^{p-1} \leq C$. Now the right-hand side is independent of ε . Since p > q > 1, we can find $\overline{t} > 0$ such that $I_{\varepsilon}(\overline{t}\varphi_1) < 0$ for all ε small. Now

$$b_{\varepsilon} = \inf_{\gamma_{\varepsilon} \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)).$$

Define $\gamma_1: [0, 1] \to H^1_0(\Omega_{\varepsilon})$ such that $\gamma_1(t) = t\bar{t}\varphi_1$. Hence we have

$$b_{\varepsilon} \le \max_{t \in [0,1]} I_{\varepsilon}(\gamma_1(t)) \le C$$

where C > 0 independent of ε , as required.

Lemma 2.3 The function $\psi_x(y)$ is positive and continuous in $\Omega \times \Omega$. Also $\psi_x(x) \to +\infty$ as dist $(x, \partial \Omega) \to 0$.

Proof The result can be found in Bandle and Flucher [1].

As a result,

$$h(x) = \psi_x(x)$$

is strictly positive in Ω , locally bounded and $h(x) \to +\infty$ as $x \to \partial \Omega$. Hence it achieves a minimum in the interior of Ω .

Remark 2.4 Since

$$b_{\varepsilon} = \inf_{u \in \mathcal{N}_{\varepsilon}(\Omega_{\varepsilon})} I_{\varepsilon}(u) = I_{\varepsilon}(v_{\varepsilon})$$

we have

$$b_{\varepsilon} = I_{\varepsilon}(v_{\varepsilon}) = \left(\frac{1}{2} - \frac{1}{p+1}\right) \int_{\Omega_{\varepsilon}} |\nabla v_{\varepsilon}|^2 + \left(\frac{1}{q+1} - \frac{1}{p+1}\right) \int_{\Omega_{\varepsilon}} v_{\varepsilon}^{q+1}$$
(2.5)

which implies that $\int_{\Omega_{\varepsilon}} |\nabla v_{\varepsilon}|^2$, $\int_{\Omega_{\varepsilon}} v_{\varepsilon}^{p+1}$ and $\int_{\Omega_{\varepsilon}} v_{\varepsilon}^{q+1}$ are uniformly bounded. First note that from (1.2), $\max_{x \in \Omega} u_{\varepsilon} \ge 1$. Also note that by Gidas-Spruck [9] we obtain $\|v_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^N)} \le C$ and from Schauder estimates, it follows that there exists C > 0 such that $\|v_{\varepsilon}\|_{C^{2,\beta}_{L^{\infty}}(\mathbb{R}^N)} \leq C$ for some $0 < \beta \le 1$. Hence by the Ascoli-Arzela's theorem there exists an $U \neq 0$ such that

$$\|v_{\varepsilon} - U\|_{C^2_{loc}(\mathbb{R}^N)} \to 0 \text{ as } \varepsilon \to 0.$$

Blowing up around z_{ε} (where z_{ε} is a point of maximum of v_{ε}) we easily see by a limit argument and the strong maximum principle U satisfies (1.4). (That $U \to 0$ as $|x| \to +\infty$ will be proved in the next section.) The only case we have difficulty is if z_{ε} is within order 1 of $\partial \Omega_{\varepsilon}$. In this case, we obtain a non-trivial solution of the half space problem.

$$\begin{cases} -\Delta u = u^p - u^q & \text{in } \mathbb{R}^N_+ \\ u = 0 & \text{on } y_N = 0 \\ u \in C^2\left(\mathbb{R}^N_+\right) \end{cases}$$
(2.6)

Suppose \tilde{U} is a solution of (2.6) which achieves its maximum, then by [4] it follows that $\frac{\partial \tilde{U}}{\partial y_N} > 0$ in \mathbb{R}^N_+ and hence \tilde{U} cannot achieve a maximum, a contradiction. Using the above argument, it is easy to show that $d(z_{\varepsilon}, \partial \Omega_{\varepsilon}) \to +\infty$ as $\varepsilon \to 0$. We call U to be the entire solution.

3 Asymptotics of the entire solution

Lemma 3.1 Then U satisfies

$$\forall U \in L^2(\mathbb{R}^N), \quad U \in L^{p+1}(\mathbb{R}^N) \text{ and } U \in L^{q+1}(\mathbb{R}^N).$$

Moreover,

$$\lim_{|x| \to +\infty} U(x) = 0,$$

and U is radially decreasing about the origin, U is the unique positive decaying solution of (1.4). For $q \neq q^*$,

$$U(r) \sim \frac{1}{r^{\alpha}}$$

as $r \to +\infty$ where $\alpha = \max\left\{\frac{2}{q-1}, N-2\right\}$.

Proof Note that from (2.5) it follows easily that $\int_{\mathbb{R}^N} |\nabla U|^2$, $\int_{\mathbb{R}^N} U^{p+1}$ and $\int_{\mathbb{R}^N} U^{q+1}$ are finite. Hence applying one sided Harnack inequality [18], we have

1

$$\max_{B_1(x)} U \le c \left(\int_{B_2(x)} U^{q+1} \right)^{1/q+1}$$

where $x \in \mathbb{R}^N$ is an arbitrary point and *c* is a constant depending on *N*. Hence we have

$$U(x) \to 0$$
 as $|x| \to +\infty$

Applying the result in [12], we obtain that U is radial. The uniqueness of U follows from [11]. Also note that $-U_{rr} - \frac{N-1}{r}U_r = (U^p - U^q), U(0) > 1$ and hence for large $r, U_{rr} > 0$, which implies that U_r is increasing and hence $\lim_{r \to +\infty} |U_r| = U_r(0) = 0$.

First, we obtain the decay for the case $\alpha = N - 2$. Consider the problem $\Delta u_1 = 0$ in $\mathbb{R}^N \setminus B_R(0)$. Let $u_1 = r^{-(N-2)}$ and hence there exist C > 0 such that $U - Cu_1 < 0$ in ∂B_R and

$$-\Delta(U-Cu_1) < 0$$
 in $\mathbb{R}^N \setminus B_R$

and $U - Cr^{-(N-2)} \to 0$ as $r \to +\infty$. Note that if $U - Cu_1$ is positive somewhere on $\mathbb{R}^N \setminus B_R(0)$, it has a positive maxima which contradicts the fact that $\Delta(U - Cu_1) > 0$ in $\mathbb{R}^N \setminus B_R(0)$. Hence $U \leq Cr^{2-N}$ in $\mathbb{R}^N \setminus B_R$.

In the case $q < \frac{N}{N-2}$, we claim that there exists a $C_1 > 0$ such that $C_1 r^{-\frac{2}{q-1}} \ge U(r)$ for r sufficiently large. Define

$$H(r) = \frac{1}{2} \left(U' \right)^2 + \frac{1}{p+1} U^{p+1} - \frac{1}{q+1} U^{q+1}$$

Then H(r) is a decreasing function. For large r, U'(r) is small and hence it follows that $H(r) \to 0$ as $r \to +\infty$. Note that $H(r) \ge 0$ and hence for large r we have

$$|U'(r)|^2 \ge \left(\frac{2}{q+1} - \epsilon\right) U^{q+1}$$

for some $\epsilon > 0$ small and hence

$$\left| \left(U^{\frac{1-q}{2}}(r) \right)' \right| \ge k$$

Hence we have $U^{\frac{1-q}{2}} \ge kr$ for large r which implies that $U \le C_1 r^{-\frac{2}{q-1}}$ for large r. Define $v(r) = U(r)r^{\alpha}$. Then v is bounded and satisfies

$$-v_{rr} - \frac{(N-2\alpha-1)}{r}v_r + \frac{\alpha(N-2\alpha-2)}{r^2}v = r^{\alpha(1-p)}v^p - r^{\alpha(1-q)}v^q$$
(3.1)

that is

$$v_{rr} + \frac{|N - 2\alpha - 1|}{r}v_r = \frac{\alpha(N - 2\alpha - 2)}{r^2}v - r^{\alpha(1-p)}v^p + r^{\alpha(1-q)}v^q$$

where $\alpha = \max\left\{\frac{2}{q-1}, N-2\right\}$. For N > 3 we use the transformations $r = e^{\frac{t}{|N-2\alpha-1|}}$ and w(t) = v(r) in the above equation, we have

$$w''(t) = \alpha (N - 2\alpha - 2)(N - 2\alpha - 1)^{-2} w$$

-(N - 2\alpha - 1)^{-2} e^{\frac{(2 + \alpha (1 - p)[N - 2\alpha - 1])t}{|N - 2\alpha - 1|}} w^{p}
+(N - 2\alpha - 1)^{-2} e^{\frac{(2 + \alpha (1 - q)[N - 2\alpha - 1])t}{|N - 2\alpha - 1|}} w^{q} (3.2)

Let g(t) be the right-hand side of (3.2). Note that $(N-2\alpha-2) < 0$ and $\frac{(2+\alpha(1-q)|N-2\alpha-1|)t}{|N-2\alpha-1|} < 0$, hence w'' has definite sign after a certain stage and hence $\lim_{t\to+\infty} w'(t) = l$ (where l may be $\pm\infty$). For the case l > 0 and l < 0 we can deduce that $w(t) \to +\infty$ and $w(t) \to -\infty$ respectively as $t \to +\infty$ which contradicts the fact that w(t) is bounded. Therefore, $w'(t) \to 0$ as $t \to +\infty$. Now g(t) is integrable and as a result $w'(t) = -\int_t^{+\infty} g(s) ds$. Hence w'(t) has definite sign after a certain stage and hence we conclude that there exists $\mu \ge 0$ such that

$$\lim_{t \to +\infty} w(t) = \mu.$$

We claim that when $\alpha = \frac{2}{q-1}$, then $\mu > 0$. If $\mu = 0$, then by (3.2), w''(t) < 0 for $t \gg 0$. Thus there exists t_2 large such that $w'(t_2) < 0$. Note that w(t) > 0 in $(0, +\infty)$. Hence $w'(t) \le w'(t_2) < 0$ for $t \ge t_2$ and this implies $w(t) \to -\infty$ as $t \to +\infty$, a contradiction. Hence $\mu > 0$.

For $\alpha = N - 2$, and N > 3, we use the same technique as above to obtain $\mu > 0$. For N = 3, note that $(N - 2\alpha - 1) = (N - 3) = 0$ and hence (3.1) reduces to

$$v_{rr} + \frac{1}{r^2}v = r^{(1-p)}v^p - r^{(1-q)}v^q.$$

Hence we obtain for $r \gg 0$, $v_{rr} \le 0$ as $\frac{v}{r^2} \ge 0$. This implies that $\lim_{r \to +\infty} v_r = 0$ by similar argument to above. Hence

$$v_r(r) = -\int_{r}^{+\infty} \left(\frac{1}{s^2} v(s) + \frac{1}{s^{p-1}} v^p(s) - \frac{1}{s^{q-1}} v^q(s) \right) \mathrm{d}s.$$

As a result v_r has a definite sign and hence $\lim_{r \to +\infty} v(r)$ exists. Applying the same technique as in the case $\alpha = \frac{2}{q-1}$ we obtain $\lim_{r \to +\infty} rU(r) > 0$.

Corollary 3.2 As $r \to +\infty$ we have,

$$|U_r| \sim \begin{cases} \frac{1}{r^{N-1}} & \text{if } \alpha = N - 2\\ \frac{1}{r^{\alpha q - 1}} & \text{if } \alpha = \frac{2}{q - 1}. \end{cases}$$
(3.3)

Proof Since $(r^{N-1}U_r)_r$ is positive after a certain stage, which implies that $(r^{N-1}U_r)$ is increasing after a certain stage $\lim_{r \to +\infty} r^{N-1}|U_r| = l$ exists finitely as the right-hand side is integrable if $q \neq q^*$; and non-zero when $\alpha = N - 2$. (Otherwise it will contradict Lemma 3.1.) Hence $0 < \int_{\mathbb{R}^N} (U^p - U^q) dx < +\infty$ as $\lim_{r \to +\infty} r^{N-1}|U_r| = \int_0^{r} (U^p - U^q) s^{N-1} dr = \lim_{r \to +\infty} r^{N-1}|U_r| = \int_0^{+\infty} (U^p - U^q) r^{N-1} dr$. As a result $|U_r| \sim r^{-(N-1)}$ as $r \to +\infty$. When $\alpha = \frac{2}{a-1}$, then $r^{(N-1)}U_r(r) \to 0$. We have as $r \to +\infty$

$$\left(r^{N-1}U_r\right)_r \sim U^q r^{N-1}$$

and note that $\alpha q > N$ and integrating we obtain

$$-r^{N-1}U_r = \int_r^{+\infty} \left(s^{N-1}U_s\right)_s \sim \int_r^{+\infty} U^q s^{N-1} \sim \int_r^{+\infty} s^{-\alpha q+N-1} \mathrm{d}s$$

which implies that

$$|U_r| \sim r^{-\alpha q+1}$$

Remark 3.3 Note that if $q = q^*$, it is easy to show that in fact $\lim_{r \to +\infty} r^{N-1} |U_r| < +\infty$. Note that in fact the limit is zero since otherwise U^{q^*} is not integrable at infinity which contradicts the fact that $\lim_{r \to +\infty} r^{N-1} |U_r|$ exists and thus $\lim_{r \to +\infty} r^{N-2} U = 0$. Hence $\int_{\mathbb{R}^N} U^q dx < +\infty$.

Remark 3.4 Let us define a space $\mathcal{D} = D^{1,2}(\mathbb{R}^N) \cap L^{q+1}(\mathbb{R}^N)$. Define a norm on \mathcal{D} as

$$\|u\|_{\mathcal{D}} = \left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^{1/2} + \left(\int_{\mathbb{R}^N} |u|^{q+1}\right)^{1/q+1} \quad \forall u \in \mathcal{D}$$

Note that $(\mathcal{D}, ||u||_{\mathcal{D}})$ is a reflexive Banach space. We claim that $\mathcal{D} \hookrightarrow L^{p+1}(\mathbb{R}^N)$ is a continuous embedding provided $p+1 \leq \frac{2N}{N-2}$. In order to prove this first note that there exists $0 < \theta < 1$ such that $\frac{1}{p+1} = \frac{\theta}{q+1} + \frac{1-\theta}{2^*}$ we have by interpolation and Sobolev inequality

$$\begin{aligned} \|u\|_{L^{p+1}} &\leq \|u\|_{L^{q+1}}^{\theta} \|u\|_{L^{2^{*}}}^{1-\theta} \\ &\leq C \|u\|_{L^{q+1}}^{\theta} \|u\|_{D^{1,2}}^{1-\theta} \\ &\leq C \|u\|_{\mathcal{D}}^{\theta} \|u\|_{\mathcal{D}}^{1-\theta} \\ &= C \|u\|_{\mathcal{D}}. \end{aligned}$$
(3.4)

Hence the embedding is continuous. Note that as $1 < q < p < 2^* - 1$, by (3.4) follows that $U \in \mathcal{D}$. Define $I_{\infty} : \mathcal{D} \to \mathbb{R}$ as

$$I_{\infty}(u) = \int_{\mathbb{R}^{N}} \left(\frac{1}{2} |\nabla u|^{2} - \frac{1}{p+1} |u|^{p+1} + \frac{1}{q+1} |u|^{q+1} \right)$$

Now we need to show that I_{∞} satisfies Palais Smale condition on \mathcal{D} . Let u_n be a sequence in \mathcal{D} such that $I_{\infty}(u_n) \leq C$ and $I'_{\infty}(u_n)u_n = o(1) ||u_n||_{\mathcal{D}}$. Then we obtain that u_n satisfies

$$\left(\frac{1}{2} - \frac{1}{p+1}\right) \int_{\mathbb{R}^N} |\nabla u_n|^2 + \left(\frac{1}{q+1} - \frac{1}{p+1}\right) \int_{\mathbb{R}^N} |u_n|^{q+1} = C + o(1) ||u_n||_{\mathcal{D}}$$

Hence there exists $C_1 > 0$ such that

$$C_1\left(\int\limits_{\mathbb{R}^N} |\nabla u_n|^2 + \int\limits_{\mathbb{R}^N} |u_n|^{q+1}\right) = C + o(1) ||u_n||_{\mathcal{D}}$$

which implies that

$$\left(\int_{\mathbb{R}^N} |\nabla u_n|^2\right) \le C + o(1) ||u_n||_{\mathcal{D}}$$
$$\left(\int_{\mathbb{R}^N} |u_n|^{q+1}\right) \le C + o(1) ||u_n||_{\mathcal{D}}.$$

Hence

$$\|u_n\|_{\mathcal{D}} \le \min\left\{ (C + o(1)\|u_n\|_{\mathcal{D}})^{1/2}, (C + o(1)\|u_n\|_{\mathcal{D}})^{1/q+1} \right\}$$

which implies that u_n is bounded in \mathcal{D} .

In order to prove the Palais Smale condition we prove the following lemma.

Lemma 3.5 Let \mathcal{D}_r be the subspace of \mathcal{D} consisting of radially symmetric functions. Then $\mathcal{D}_r \hookrightarrow L^{p+1}(\mathbb{R}^N)$ is a compact embedding provided 2 .

Proof Suppose T is a bounded set in \mathcal{D}_r . If $u \in T$,

$$u(r) = -\int_{r}^{\infty} u'(s) \mathrm{d}s$$

and hence by Cauchy–Schwartz inequality, and the definition of the norm on \mathcal{D}

$$|u(r)| \le Cr^{-\frac{N-2}{2}},$$

where C > 0 is independent of u. Thus $|u(r)| \le \epsilon$ if $u \in T$ and $r \ge R$. Hence

$$\int_{R}^{\infty} |u(r)|^{p+1} r^{N-1} = \int_{R}^{\infty} |u(r)|^{p-q} |u(r)|^{q+1} r^{N-1}$$
$$\leq \epsilon \int_{R}^{\infty} |u|^{q+1} r^{N-1} \leq \epsilon ||u||_{L^{q+1}}$$

Now, we know that bounded sets in \mathcal{D}_r will converge strongly in $L^{p+1}(\mathbb{R}^N)$ on compact subsets and hence we can use the usual diagonalization argument to obtain a strongly convergent subsequence in $L^{p+1}(\mathbb{R}^N)$ from a sequence in T.

As a matter of fact I_{∞} satisfies all the conditions of the mountain pass theorem in D_r . Hence there exists a c > 0 such that

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_{\infty}(\gamma(t)) = \inf_{u \in \mathcal{D}_r} \max_{t \ge 0} I_{\infty}(tu)$$

where

$$\Gamma = \{ \gamma \in C([0, 1]; \mathcal{D}_r); \gamma(0) = 0, I_{\infty}(\gamma(1)) \le 0 \}$$

Hence there exists a positive radial solution of (1.4) obtained by the mountain pass theorem. Hence by Lemma 2.2, U is a mountain pass solution of (1.4).

4 Kernel of $\Delta + pU^{p-1} - qU^{q-1}$ in $D^{1,2}(\mathbb{R}^N)$

Let U be the radial solution to (1.4). In this section, we want to prove that $\Delta + pU^{p-1} - qU^{q-1}$ is Fredholm on $D^{1,2}(\mathbb{R}^N)$. Let us write

$$\phi = \sum_{k=1}^{\infty} \phi_k(r) S_k(\theta)$$

where $r = |x|, \theta = \frac{x}{|x|} \in \mathbb{S}^{N-1}$; and $-\Delta_{\mathbb{S}^{N-1}}S_k = \lambda S_k$ where $\lambda_k = k(N-2+k)$; $k \in \mathbb{Z}^+ \cup \{0\}$ and whose multiplicity is given by $M_k - M_{k-2}$ where $M_k = \frac{(N+k-1)!}{(N-1)!k!}$ for $k \ge 2$. Note that $\lambda_0 = 0$ has algebraic multiplicity one and $\lambda_1 = (N-1)$ has algebraic multiplicity N. Then ϕ_k satisfy an infinite system of ODE given by,

$$\phi_k'' + \frac{N-1}{r}\phi_k' + \left(pU^{p-1} - qU^{q-1} - \frac{\lambda_k}{r^2}\right)\phi_k = 0, \quad r \in (0,\infty)$$
(4.1)

Also note that (4.1) has two linearly independent solutions $z_{1,k}$ and $z_{2,k}$. Let

$$A_{k}(\phi) = \phi'' + \frac{N-1}{r}\phi' + \left(pU^{p-1} - qU^{q-1} - \frac{\lambda_{k}}{r^{2}}\right)\phi$$

Also recall that if one solution $z_{1,k}$ to (4.1) is known, a second linearly independent solution can be found in any interval where $z_{1,k}$ does not vanish as

$$z_{2,k}(r) = z_{1,k}(r) \int z_{1,k}^{-2} r^{1-N} \mathrm{d}r$$

where \int denotes antiderivatives. One can obtain the asymptotic behavior of any solution *z* as $r \to \infty$ by examining the indicial roots of the associated Euler equation. Note that in the case $\alpha = \frac{2}{q-1}$, the limiting equation becomes

$$r^{2}\phi'' + (N-1)r\phi' - (q\zeta + \lambda_{k})\phi = 0$$
(4.2)

where $r^2 U^{q-1} \rightarrow \zeta > 0$ as $r \rightarrow \infty$ and when $\alpha = N - 2$, the limiting equation becomes

$$r^{2}\phi'' + (N-1)r\phi' - \lambda_{k}\phi = 0$$
(4.3)

whose indicial roots are given by

$$\mu_k^{\pm} = \begin{cases} \frac{N-2}{2} \pm \frac{\sqrt{(N-2)^2 + 4(q\zeta + \lambda_k)}}{2} & \text{if } k \neq 0\\ \frac{N-2}{2} \pm \frac{\sqrt{(N-2)^2 + 4q\zeta}}{2} & \text{if } k = 0 \end{cases}$$

In this way we see that the asymptotic behavior is ruled by $z(r) \sim r^{-\mu}$ as $r \to +\infty$; where μ satisfies the problem

$$\begin{cases} \mu^2 - (N-2)\mu - (q\zeta + \lambda_k) = 0 & \text{if } \alpha = \frac{2}{q-1} \\ \mu^2 - (N-2)\mu - \lambda_k = 0 & \text{if } \alpha = N-2 \end{cases}$$
(4.4)

Lemma 4.1 If k = 0, Eq. (4.1) has no nontrivial solution in $D^{1,2}(\mathbb{R}^N)$.

Proof This follows exactly as in [11].

Lemma 4.2 If k = 1, then all solutions of equation (4.1) are constant multiples of U'.

Proof In this case $\lambda_1 = N - 1$ and hence we have $z_{1,1}(r) = -U'(r)$ is a solution to the problem (4.1) and is positive $(0, +\infty)$. Hence we define

$$z_{1,2}(r) = z_{1,1}(r) \int_{1}^{r} z_{1,1}(s)^{-2} s^{1-N} ds$$

Let us check how $z_{1,2}(r)$ behaves at infinity. By Corollary 3.2, when $\alpha = N - 2$ then $|U_r| \sim r^{1-N}$ at infinity and hence $z_{1,2}(r) \sim r$ as $r \to \infty$ as a result $z_{1,2}$ does not belong to $D^{1,2}(\mathbb{R}^N)$.

Again when $\alpha = \frac{2}{q-1}$, then $|U_r| \sim r^{-\alpha q+1}$ as $r \to \infty$ and hence $z_{1,2}(r) \sim r^{\alpha q-N+1}$ and as $\alpha q > N$, $z_{1,2} \notin D^{1,2}(\mathbb{R}^N)$. Hence any family of solutions of (4.1) is given by $\phi_1 = cU'(r)$ for some $c \in \mathbb{R}$.

Lemma 4.3 If $k \ge 2$, Eq. (4.1) admits only trivial solution in $D^{1,2}(\mathbb{R}^N)$.

Proof We will show that if $A_k(\phi_k) = 0$, then $\phi_k = 0$. Note that -U' is a positive solution of A_1 . Let us study the first eigenvalue of the problem

$$\begin{cases} A_1(\phi) = \lambda \phi & \text{in } \mathbb{R}^N \\ \int_{\mathbb{R}^N} \phi^2 = 1 \end{cases}$$
(4.5)

We know from Lemma 3.1 that $U_{rr} > 0$ after a certain stage and when $\alpha = N - 2$, $U_{rr} \sim \frac{1}{r^N}$ and when $\alpha = \frac{2}{q-1}$, $U_{rr} \sim \frac{1}{r^{\alpha q}}$ as $r \to \infty$. Note that if $\lambda_1 > 0$, then $\int_{\mathbb{R}^N} \phi_1 U' = 0$ and hence there exists a point in \mathbb{R}^N such that ϕ_1 changes sign. But ϕ_1 is the first eigenfunction corresponding to λ_1 and hence it has a definite sign. Hence $\lambda_1 \leq 0$. Thus A_1 is an operator having no positive eigenvalues. Hence for $k \geq 2$, $c_k = k(N - 2 + k) - (N - 1) > 0$. Now

$$A_k = A_1 - \frac{k(N-2+k) - (N-1)}{r^2}I$$

where *I* is the identity. Hence $0 = \langle -A_k(\phi_k), \phi_k \rangle \ge c_k \int_{\mathbb{R}^N} \frac{\phi_k^2}{r^2}$ and as $\phi_k \in C(\mathbb{R}^N)$, we have $\phi_k \equiv 0$.

Lemma 4.4 Ker
$$\left(-\Delta - pU^{p-1} + qU^{q-1}\right) = \left\{\frac{\partial U}{\partial x_1}, \dots, \frac{\partial U}{\partial x_N}\right\}$$
 in $D^{1,2}(\mathbb{R}^N)$.

Proof From the previous lemmas, we deduce that for any $\phi \in \text{Ker}(-\Delta - pU^{p-1} + qU^{q-1})$, then $\phi = U'(r)S_1$ where S_1 satisfies

$$-\Delta_{\mathbb{S}^{N-1}}S_1=\lambda_1S_1.$$

Springer

Now Ker $(-\Delta_{\mathbb{S}^{N-1}}-\lambda_1 I)$ is *N*-dimensional and hence Ker $(-\Delta_{\mathbb{S}^{N-1}}-\lambda_1 I) = \operatorname{span}\{S_{1,1}, \ldots, S_{1,N}\} \simeq \operatorname{span} \mathbb{R}^N$. Hence

$$\operatorname{Ker}\left(-\Delta - pU^{p-1} + qU^{q-1}\right) = \operatorname{span}\left\{U'(r)S_{1,1}, \dots, U'(r)S_{1,N}\right\}$$
$$= \operatorname{span}\left\{\frac{\partial U}{\partial x_1}, \dots, \frac{\partial U}{\partial x_N}\right\}.$$

Remark 4.5 Also note that there is always a nontrivial bounded radial solution to the linearized equation. As a result, the operator is not nondegenerate in the space of bounded functions.

5 Profile of spikes

Let z be a point of minimum of h in Ω . Let us define $U_{\varepsilon,z}(x) = U\left(\frac{x-z}{\varepsilon}\right)$, then $U_{\varepsilon,z}$ satisfies

$$\begin{cases} -\varepsilon^2 \Delta U_{\varepsilon,z} = U^p_{\varepsilon,z} - U^q_{\varepsilon,z} & \text{in } \mathbb{R}^N \\ U_{\varepsilon,z} > 0 & \text{in } \mathbb{R}^N. \end{cases}$$
(5.1)

Also let $\hat{V}_{\varepsilon,z}$ be the unique solution of

$$\begin{cases} -\varepsilon^2 \Delta \hat{V}_{\varepsilon,z} = U^p_{\varepsilon,z} - U^q_{\varepsilon,z} & \text{in } \Omega\\ \hat{V}_{\varepsilon,z} = 0 & \text{on } \partial \Omega. \end{cases}$$
(5.2)

Then by the maximum principle $\hat{V}_{\varepsilon,z} \leq U_{\varepsilon,z}$ in Ω . Note that $\hat{V}_{\varepsilon,z}$ may not be a positive solution of (5.2).

Lemma 5.1 For sufficiently small $\varepsilon > 0$,

$$U_{\varepsilon,z} - \hat{V}_{\varepsilon,z} = (C + o(1))\varepsilon^{\alpha}\psi_z \tag{5.3}$$

for some constant C > 0.

Proof Subtracting (5.1) from (5.2) we have

$$\begin{cases} -\varepsilon^2 \Delta \left(U_{\varepsilon,z} - \hat{V}_{\varepsilon,z} \right) = 0 & \text{in } \Omega \\ U_{\varepsilon,z} - \hat{V}_{\varepsilon,z} = U_{\varepsilon,z} & \text{on } \partial \Omega. \end{cases}$$
(5.4)

Now $U_{\varepsilon,z} = \frac{C+o(1)}{|x-z|^{\alpha}} \varepsilon^{\alpha}$ on $\partial \Omega$, by Lemma 3.1. Hence by the maximum principle and the definition of ψ_z , $U_{\varepsilon,z} - \hat{V}_{\varepsilon,z} = (C+o(1))\varepsilon^{\alpha}\psi_z$ and $U - \hat{V}_{\varepsilon,z}(z+\varepsilon y) = (C+o(1))\psi_z(z+\varepsilon y)\varepsilon^{\alpha}$ in $\Omega_{\varepsilon,z}$.

Remark 5.2 Note that from Lemma 3.1, we have $U_{\varepsilon,z} \sim \varepsilon^{\alpha} |x-z|^{-\alpha}$ when |x-z| is large. For $\alpha q > N$,

$$\int_{\mathbb{R}^{N}} U_{\varepsilon,z}^{q+1} = \int_{\mathbb{R}^{N} \setminus \Omega} U_{\varepsilon,z}^{q+1} + \int_{\Omega} U_{\varepsilon,z}^{q+1}$$
$$= \int_{\Omega} U_{\varepsilon,z}^{q+1} + O\left(\varepsilon^{\alpha(q+1)}\right)$$

and $\varepsilon^{\alpha(q+1)} = \varepsilon^{N+\alpha} o(1)$. Hence we have

$$\int_{\Omega} U_{\varepsilon,z}^{q+1} = \varepsilon^N \int_{\mathbb{R}^N} U^{q+1} + \varepsilon^{N+\alpha} o(1).$$

Lemma 5.3 Let c be the mountain pass value of (1.4) and $\frac{N}{N-2} < q < \frac{N+2}{N-2}$. Then, we have

$$c_{\varepsilon} \leq \varepsilon^{N} \left(c + \frac{C}{2} \varepsilon^{N-2} \min_{\Omega} h \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) \mathrm{d}x + o(\varepsilon^{N-2}) \right).$$

Proof First note that by the mean value theorem,

$$\int_{\Omega} \left(\hat{V}_{\varepsilon,z} \right)_{+}^{q+1} = \int_{\Omega} \left(U_{\varepsilon,z} \right)^{q+1} + \left(q+1 \right) \int_{\Omega} \left(U_{\varepsilon,z} \right)^{q} \left(\hat{V}_{\varepsilon,z} - U_{\varepsilon,z} \right) + o(1) \varepsilon^{N+N-2}$$
(5.5)

Hence, by the equation satisfied by $\hat{V}_{\varepsilon,z}$ and integration by parts,

$$\Phi_{\varepsilon}\left(\hat{V}_{\varepsilon,z}\right) = \int_{\Omega} \left(\frac{\varepsilon^{2}}{2}|\nabla\hat{V}_{\varepsilon,z}|^{2} - \frac{1}{p+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \frac{1}{q+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$

$$= \int_{\Omega} \left(\frac{1}{2}\left(U_{\varepsilon,z}^{p} - U_{\varepsilon,z}^{q}\right)\hat{V}_{\varepsilon,z}$$

$$- \frac{1}{p+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \frac{1}{q+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$

$$= \int_{\Omega} \left(\frac{1}{2}\left(U_{\varepsilon,z}^{p} - U_{\varepsilon,z}^{q}\right)\left(U_{\varepsilon,z} - (C+o(1))\psi_{z}\varepsilon^{N-2}\right)\right)$$

$$- \frac{1}{p+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \frac{1}{q+1}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$

$$= \frac{1}{2}\int_{\Omega} \left(U_{\varepsilon,z}^{p+1} - U_{\varepsilon,z}^{q+1}\right) - \frac{C+o(1)}{2}\varepsilon^{N-2}\int_{\Omega}\psi_{z}\left(U_{\varepsilon,z}^{p} - U_{\varepsilon,z}^{q}\right)$$

$$- \frac{1}{p+1}\int_{\Omega}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \frac{1}{q+1}\int_{\Omega}\left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}.$$
(5.6)

Here we have used (5.5), Remark 5.2 and that $U_{\varepsilon,z}$ has algebraic decay. Since $\psi_z(x)$ is bounded on Ω and $\psi_z(z + \varepsilon x)$ converges pointwise to h, we can use the dominated convergence theorem to conclude that $\int_{\Omega_{\varepsilon}} (U^p - U^q) \psi_z(z + \varepsilon x) = h(z) \int_{\mathbb{R}^N} (U^p - U^q) + o(1)$. Thus we have

$$\Phi_{\varepsilon}(\hat{V}_{\varepsilon,z}) = \left(\frac{1}{2} - \frac{1}{p+1}\right) \int_{\Omega} U_{\varepsilon,z}^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1}\right) \int_{\Omega} U_{\varepsilon,z}^{q+1} \\ + \left(1 - \frac{1}{2}\right) C \varepsilon^{N-2} \int_{\Omega} (U_{\varepsilon,z}^{p} - U_{\varepsilon,z}^{q}) \psi_{z} dx \\ + o(1) \varepsilon^{N-2+N} \\ = \left(\frac{1}{2} - \frac{1}{p+1}\right) \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1}\right) \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{q+1} \\ + \frac{C}{2} \varepsilon^{N+N-2} h(z) \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) + \varepsilon^{N+N-2} o(1) \\ = \varepsilon^{N} \left(c + \frac{C}{2} \varepsilon^{N-2} \min_{\Omega} h \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) dx + o\left(\varepsilon^{N-2}\right)\right)$$
(5.7)

Let $t_{\varepsilon} \in (0, +\infty)$ be the unique constant such that

$$\Phi\left(t_{\varepsilon}\hat{V}_{\varepsilon,z}\right) = \max_{t\geq 0} \Phi\left(t\hat{V}_{\varepsilon,z}\right)$$

Hence

$$\left\langle \Phi_{\varepsilon}'\left(t_{\varepsilon}\hat{V}_{\varepsilon,z}\right),\hat{V}_{\varepsilon,z}\right\rangle = 0$$
(5.8)

We claim that $t_{\varepsilon} \to 1$ as $\varepsilon \to 0$. By the equation satisfied by $\hat{V}_{\varepsilon,z}$ we have

$$\left\langle \Phi_{\varepsilon}'\left(\hat{V}_{\varepsilon,z}\right),\,\hat{V}_{\varepsilon,z}\right\rangle = \int_{\Omega} \left(\varepsilon^{2}|\nabla\hat{V}_{\varepsilon,z}|^{2} - \left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$

$$= \int_{\Omega} \left(U_{\varepsilon,z}^{p}\hat{V}_{\varepsilon,z} - U_{\varepsilon,z}^{q}\hat{V}_{\varepsilon,z} - \left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$

$$= O(1)\varepsilon^{N+N-2}$$

$$(5.9)$$

and analyzing the higher order terms, and using the fact that

$$\int_{\mathbb{R}^N} |\nabla U|^2 = \int_{\mathbb{R}^N} U^{p+1} - \int_{\mathbb{R}^N} U^{q+1}$$

there exists a c' > 0 such that

$$\Phi_{\varepsilon}^{\prime\prime}\left(\hat{V}_{\varepsilon,z}\right)\langle\hat{V}_{\varepsilon,z},\hat{V}_{\varepsilon,z}\rangle = \int_{\Omega_{\varepsilon}} \left(\varepsilon^{2}|\nabla\hat{V}_{\varepsilon,z}|^{2} - p\left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + q\left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1}\right)$$
$$= \varepsilon^{N} \int_{\mathbb{R}^{N}} \left(-(p-1)U^{p+1} + (q-1)U^{q+1}\right) + o(1)\varepsilon^{N}$$

199

D Springer

$$=\varepsilon^{N}\left(-(p-q)\int_{\mathbb{R}^{N}}U^{p+1}-(q-1)\int_{\mathbb{R}^{N}}|\nabla U|^{2}+o(1)\right)$$

$$\leq -c'\varepsilon^{N}$$
(5.10)

Since
$$\left\langle \Phi_{\varepsilon}'\left(t_{\varepsilon}\hat{V}_{\varepsilon,z}\right),\hat{V}_{\varepsilon,z}\right\rangle = 0$$
 and $\left\langle \Phi_{\varepsilon}'\left(\hat{V}_{\varepsilon,z}\right),\hat{V}_{\varepsilon,z}\right\rangle = o(1)\varepsilon^{N}$, we have
 $\left\langle \Phi_{\varepsilon}'\left(t_{\varepsilon}\hat{V}_{\varepsilon}\right) - \Phi_{\varepsilon}'\left(\hat{V}_{\varepsilon}\right),\hat{V}_{\varepsilon,z}\right\rangle = o(1)\varepsilon^{N}$

which implies

$$\left(t_{\varepsilon}^{2}-1\right) \int_{\Omega} \varepsilon^{2} |\nabla \hat{V}_{\varepsilon,z}|^{2} - \left(t_{\varepsilon}^{p+1}-1\right) \int_{\Omega} \left(\hat{V}_{\varepsilon,z}\right)_{+}^{p+1} + \left(t_{\varepsilon}^{q+1}-1\right) \int_{\Omega} \left(\hat{V}_{\varepsilon,z}\right)_{+}^{q+1} = o(1)\varepsilon^{N}$$

and letting $\tilde{V}_{\varepsilon,z}(x) = \hat{V}_{\varepsilon,z}(\varepsilon x + z)$ in Ω_{ε} we have

$$\left(t_{\varepsilon}^{2}-1\right) \int_{\Omega_{\varepsilon}} |\nabla \tilde{V}_{\varepsilon,z}|^{2} - \left(t_{\varepsilon}^{p+1}-1\right) \int_{\Omega_{\varepsilon}} \left(\tilde{V}_{\varepsilon,z}\right)_{+}^{p+1} + \left(t_{\varepsilon}^{q+1}-1\right) \int_{\Omega_{\varepsilon}} \left(\tilde{V}_{\varepsilon,z}\right)_{+}^{q+1} = o(1)$$

which implies that $t_{\varepsilon} - 1 = o(1)$.

$$\begin{split} \Phi_{\varepsilon}(u_{\varepsilon}) &\leq \max_{t>0} \Phi_{\varepsilon}\left(t\,\hat{V}_{\varepsilon,z}\right) = \Phi_{\varepsilon}(t_{\varepsilon}\,\hat{V}_{\varepsilon}) \\ &= \Phi_{\varepsilon}\left(\hat{V}_{\varepsilon,z}\right) + (t_{\varepsilon}-1)\left\langle\Phi_{\varepsilon}'\left(\hat{V}_{\varepsilon,z}\right),\,\hat{V}_{\varepsilon,z}\right\rangle + \frac{1}{2}(t_{\varepsilon}-1)^{2}\Phi_{\varepsilon}''\left(\xi_{\varepsilon}\,\hat{V}_{\varepsilon,z}\right)\left\langle\hat{V}_{\varepsilon,z},\,\hat{V}_{\varepsilon,z}\right\rangle \\ &\leq \Phi_{\varepsilon}\left(\hat{V}_{\varepsilon,z}\right) + o(1)\varepsilon^{N+N-2} \\ &\leq \varepsilon^{N}\left(c + \frac{C}{2}\varepsilon^{N-2}\min_{\Omega}h\int_{\mathbb{R}^{N}}(U^{p}-U^{q})\mathrm{d}x + o\left(\varepsilon^{N-2}\right)\right) \end{split}$$

where ξ_{ε} lies in between t_{ε} and 1. Hence we have

$$c_{\varepsilon} \leq \varepsilon^{N} \left(c + \frac{C}{2} \varepsilon^{N-2} \min_{\Omega} h \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) \mathrm{d}x + o\left(\varepsilon^{N-2}\right) \right).$$
(5.11)

Lemma 5.4 For sufficiently small $\varepsilon > 0$, u_{ε} has a unique maximum.

Proof First note by Lemma 5.3, $\varepsilon^2 \int_{\Omega} |\nabla u_{\varepsilon}|^2 \leq C$ and hence by Moser iteration, $u_{\varepsilon}(x)$ is uniformly bounded. Thus applying Schauder estimates we obtain a C > 0 such that $\|\varepsilon Du_{\varepsilon}\|_{L^{\infty}} \leq C$. If possible, let $z_{\varepsilon,1}$ and $z_{\varepsilon,2}$ are two distinct local maxima of u_{ε} . Then it easily follows that $u_{\varepsilon}(z_{\varepsilon,1}) \geq 1$ and $u_{\varepsilon}(z_{\varepsilon,2}) \geq 1$. Suppose $z_{\varepsilon} = \frac{z_{\varepsilon,1} - z_{\varepsilon,2}}{\varepsilon}$. Suppose along a subsequence $|z_{\varepsilon}| \to \delta \in [0, +\infty)$. Let $z = \lim_{\varepsilon \to 0} \frac{z_{\varepsilon,1} - z_{\varepsilon,2}}{\varepsilon}$. Then if $\delta > 0$, then define $v_{\varepsilon}(y) = u_{\varepsilon}(\varepsilon y + z_{\varepsilon,2})$ then it follows from Remark 2.4, $v_{\varepsilon} \to U$ in $C_{loc}^2(\mathbb{R}^N)$ and satisfies

$$\begin{cases} -\Delta U = U^p - U^q & \text{in } \mathbb{R}^N \\ U(0) = U'(\delta) = 0 \\ U \to 0 & \text{as } |x| \to \infty \end{cases}$$

🖄 Springer

which is a contradiction as U'(r) < 0 for $r \in (0, +\infty)$. Now suppose $\delta = 0$. Then $v_{\varepsilon} \to U$ in $C^2_{loc}(\mathbb{R}^N)$ and U has a unique critical point at 0 (since U(0) > 1 and U is a radial). Thus v_{ε} has a critical point in a neighborhood of zero which is a contradiction. Hence $|z_{\varepsilon}| \to +\infty$ as $\varepsilon \to 0$.

We claim that u_{ε} has exactly one maximum for sufficiently small $\varepsilon > 0$. First, note that as u_{ε} is a mountain pass solution and hence it has Morse index at most one. Let $\tilde{z}_{1,\varepsilon}$ and $\tilde{z}_{2,\varepsilon}$ be two maxima of v_{ε} . Then by the above result $|\tilde{z}_{1,\varepsilon} - \tilde{z}_{2,\varepsilon}| \to +\infty$ as $\varepsilon \to 0$. Now by [3] p. 145, it was proved that there exist r < 0 and h exponentially decreasing such that $-\Delta h - f'(U)h = rh$ and hence $\int_{\mathbb{R}^N} |\nabla h|^2 - f'(U)h^2 < 0$. Now using an appropriate cut off function we can obtain the same property for h with compact support. Now define a twodimensional space spanned by $h_1(x) = h(x + \tilde{z}_{1,\varepsilon})$ and $h_2(x) = h(x + \tilde{z}_{2,\varepsilon})$ where $x \in \Omega_{\varepsilon}$. Note that the support $supp h_1 \cap supp h_2 = \emptyset$ as $|\tilde{z}_{1,\varepsilon} - \tilde{z}_{2,\varepsilon}| \to +\infty$. Hence we obtain a two dimensional space on which $\int_{\Omega_{\varepsilon}} |\nabla h_i|^2 - f'(v_{\varepsilon})h_i^2 = \int_{\mathbb{R}^N} |\nabla h_i|^2 - f'(U)h_i^2 < 0$ for i = 1, 2. Note that we are using the fact that $v_{\varepsilon} \to U$ in $C_{loc}^2(\mathbb{R}^N)$ and h_i has compact support. Hence u_{ε} has Morse index at least two, a contradiction.

Now we require to obtain the second-order lower bound. To this context, we first note that $U - \hat{V}_{\varepsilon, z_{\varepsilon}}(z_{\varepsilon} + \varepsilon y) = (C + o(1))\psi_{z_{\varepsilon}}(z_{\varepsilon} + \varepsilon y)\varepsilon^{\alpha}$ in Ω_{ε} . Let $\tilde{V}_{\varepsilon} = \hat{V}_{\varepsilon, z_{\varepsilon}}(z_{\varepsilon} + \varepsilon y)$, and $\tilde{u}_{\varepsilon} = u_{\varepsilon}(z_{\varepsilon} + \varepsilon y)$. Then

$$-\Delta\left(\tilde{u}_{\varepsilon}-\tilde{V}_{\varepsilon}\right)=f\left(\tilde{u}_{\varepsilon}\right)-f(U)=f'\left(\tilde{W}_{\varepsilon}\right)\left(\tilde{u}_{\varepsilon}-U\right)$$

where \tilde{W}_{ε} is between \tilde{u}_{ε} and U. Hence

$$-\Delta\left(\tilde{u}_{\varepsilon}-\tilde{V}_{\varepsilon}\right)=f'\left(\tilde{W}_{\varepsilon}\right)\left(\tilde{u}_{\varepsilon}-\tilde{V}_{\varepsilon}\right)+f'\left(\tilde{W}_{\varepsilon}\right)\left(\tilde{V}_{\varepsilon}-U\right).$$

Thus

$$\begin{cases} -\Delta \left(\tilde{u}_{\varepsilon} - \tilde{V}_{\varepsilon} \right) - f' \left(\tilde{W}_{\varepsilon} \right) \left(\tilde{u}_{\varepsilon} - \tilde{V}_{\varepsilon} \right) = f' \left(\tilde{W}_{\varepsilon} \right) \left(\tilde{V}_{\varepsilon} - U \right) & \text{in } \Omega_{\varepsilon} \\ \left(\tilde{u}_{\varepsilon} - \tilde{V}_{\varepsilon} \right) = 0 & \text{on } \partial \Omega_{\varepsilon} \end{cases}$$
(5.12)

Define

$$\tilde{\varphi}_{\varepsilon} = \frac{\tilde{u}_{\varepsilon} - \tilde{V}_{\varepsilon}}{C\varepsilon^{N-2}h(z_{\varepsilon})}$$

where z_{ε} is the point of maximum of u_{ε} . Then

$$\begin{cases} -\Delta \tilde{\varphi}_{\varepsilon} - f'\left(\tilde{W}_{\varepsilon}\right)\tilde{\varphi}_{\varepsilon} = f'\left(\tilde{W}_{\varepsilon}\right)S_{\varepsilon} & \text{in } \Omega_{\varepsilon}\\ \tilde{\varphi}_{\varepsilon} = 0 & \text{on } \partial\Omega_{\varepsilon} \end{cases}$$
(5.13)

where

$$S_{\varepsilon} = rac{\left(ilde{V}_{\varepsilon} - U
ight)}{C\varepsilon^{N-2}h(z_{\varepsilon})}.$$

Lemma 5.5 For sufficiently small $\varepsilon > 0$, then up to a subsequence

 $\tilde{\varphi}_{\varepsilon} \to \varphi_0$

uniformly as $\varepsilon \to 0$ and φ_0 satisfies

$$\begin{cases} -\Delta\varphi_0 - f'(U)\varphi_0 + f'(U) = 0 & \text{in } \mathbb{R}^N\\ \varphi_0 \to 0 & \text{as } |x| \to \infty\\ \varphi_0 \in C^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \end{cases}$$
(5.14)

Proof Note that since $\frac{\operatorname{dist}(z_{\varepsilon},\partial\Omega)}{\varepsilon} \to \infty$ we have $\frac{\psi_{z_{\varepsilon}}(z_{\varepsilon}+\varepsilon x)}{h(z_{\varepsilon})}$ is uniformly bounded and hence by Lemma 5.1, S_{ε} is uniformly bounded. Note that by the decay property of \tilde{u}_{ε} and U, $\tilde{W}_{\varepsilon} \leq \frac{C}{|x|^{N-2}}$ for |x| sufficiently large. Hence $f'(\tilde{W}_{\varepsilon}) \leq 0$ for $|x| \geq R_0$ and $f'(\tilde{W}_{\varepsilon}) \leq \frac{k}{|x|^r}$ where r > 2. Hence we can choose $\tilde{C}|x|^{2-r}$ as a super-solution of (5.13) for $|x| \geq R_0$ if we choose $\tilde{r} \geq 2$ but close to 2 and $\tilde{C} > 0$ is large. Hence we can bound $\tilde{C} > 0$ if we have a uniform bound $\tilde{\varphi}_{\varepsilon}$ on $|x| = R_0$. Thus we have a uniform decay for $\tilde{\varphi}_{\varepsilon}$ if we can bound $\tilde{\varphi}_{\varepsilon}$ on $|x| = R_0$.

If possible let $\tilde{\varphi}_{\varepsilon}$ be unbounded. Then $\|\tilde{\varphi}_{\varepsilon}\|_{\infty} \to \infty$ (up to a subsequence). Define $\psi_{\varepsilon} = \frac{\tilde{\varphi}_{\varepsilon}}{\|\tilde{\varphi}_{\varepsilon}\|_{\infty}}$. Then $\|\psi_{\varepsilon}\|_{\infty} = 1$. Hence the right-hand term in (5.13) is uniformly small and thus by the argument in the previous paragraph ψ_{ε} has a uniform decay for large |x|. Thus the maximum of ψ_{ε} must occur at k_{ε} where $|k_{\varepsilon}| \leq R$ for sufficiently small ε . Let k be a subsequential limit of k_{ε} . By Schauder estimates we obtain $\|\psi_{\varepsilon}\|_{C_{loc}^{1,\theta}}$ is bounded for some $\theta \in (0, 1]$ and hence by the Arzela-Ascoli's theorem there exists $\psi_0 \in C^1$ such that $\|\psi_{\varepsilon} - \psi_0\|_{C_{loc}^{1,\theta}} \to 0$ as $\varepsilon \to 0$. Then ψ_0 satisfies

$$\begin{cases} -\Delta \psi_0 - f'(U)\psi_0 = 0 & \text{in } \mathbb{R}^N \\ \psi_0(k) = 1 \\ \psi_0(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$
(5.15)

Note that we use the fact that $\operatorname{dist}(k_{\varepsilon}, \partial\Omega_{\varepsilon}) \to \infty$ in order to conclude that the above problem is not a half space problem. We can now use $C|x|^{-(N-2)}$ as a super-solution to deduce that $|x|^{N-2}\psi_0$ is bounded. This implies that $\psi_0 \in L^{\frac{2N}{N-2}}(\mathbb{R}^N)$. On the other hand we have,

$$\int_{\mathbb{R}^N} |\nabla \psi_0|^2 = \int_{\mathbb{R}^N} f'(U)\psi_0^2 < \infty.$$

As a result, $\psi_0 \in D^{1,2}(\mathbb{R}^N) \cap \ker(-\Delta - f'(U))$. Since $\psi_0 \neq 0$ and since by Lemma 4.4, $\ker(-\Delta - f'(U)) = \left\{\frac{\partial U}{\partial y_1}, \frac{\partial U}{\partial y_2}, \dots, \frac{\partial U}{\partial y_N}\right\}$, we have

$$\psi_0 = \sum_{j=1}^N a_j \frac{\partial U}{\partial y_i}$$

where not all a_j 's are zero. Since U is radial, U'(0) = 0 and $\Delta U(0) \neq 0$, it follows that $\psi_0(0) = 0$ and $\nabla \psi_0(0) \neq 0$. We obtain a contradiction by proving $\nabla \psi_0(0) = 0$. Note that $\nabla \tilde{u}_{\varepsilon}(0) = 0$ and $\nabla U(0) = 0$ and hence

$$\nabla \tilde{\psi}_{\varepsilon}(0) = \frac{\nabla \tilde{\varphi}_{\varepsilon}(0)}{\varepsilon^{N-2} h(z_{\varepsilon}) \| \tilde{\varphi}_{\varepsilon} \|_{L^{\infty}}} = \frac{\nabla U(0)}{\varepsilon^{N-2} h(z_{\varepsilon}) \| \tilde{\varphi}_{\varepsilon} \|_{L^{\infty}}}$$

Thus $\nabla \tilde{\psi}_{\varepsilon}(0) = 0$ and by C_{loc}^1 convergence we have $\nabla \psi_0(0) = 0$. This gives a contradiction. Hence $\tilde{\varphi}_{\varepsilon}$ is uniformly bounded.

By our earlier argument with a super-solution, we obtain that $\tilde{\varphi}_{\varepsilon}$ decays uniformly, while by elliptic regularity theory applied to (5.13) we have $\tilde{\varphi}_{\varepsilon}$ converges uniformly to φ_0 in $C^1_{\text{loc}}(\mathbb{R}^N)$ where φ_0 satisfies the problem (5.14). By uniform decay of $\tilde{\varphi}_{\varepsilon}$, we can conclude that $\varphi_0 \to 0$ as $|x| \to \infty$. Hence $\tilde{\varphi}_{\varepsilon} \to \varphi_0$ as $\varepsilon \to 0$ uniformly. This completes the proof.

Remark 5.6 Hence we have $u_{\varepsilon} = U_{\varepsilon, z_{\varepsilon}} - C\varepsilon^{N-2}(\psi_{z_{\varepsilon}} - \varphi_0 h(z_{\varepsilon}) + o(1))$ in Ω and by using the fact that z_{ε} is the only maximum of u_{ε} , we have

$$\max_{\Omega \setminus \Omega \cap B_{\varepsilon R}(z_{\varepsilon})} u_{\varepsilon} \leq C \varepsilon^{N-2}$$

🖄 Springer

Lemma 5.7 We have,

$$c_{\varepsilon} \geq \varepsilon^{N} \left(c + \frac{C}{2} \varepsilon^{N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) dx + o\left(\varepsilon^{N-2}\right) \right).$$

Proof Multiplying both sides of (5.14) by $U \in D^{1,2}(\mathbb{R}^N)$ and integrating by parts we obtain,

$$(p-1)\int_{\mathbb{R}^N} U^p \varphi_0 - (q-1)\int_{\mathbb{R}^N} U^q \varphi_0 = p \int_{\mathbb{R}^N} U^p - q \int_{\mathbb{R}^N} U^q.$$
(5.16)

Also note that $u_{\varepsilon} = U_{\varepsilon, z_{\varepsilon}} - C \varepsilon^{N-2} (\psi_{z_{\varepsilon}} - \varphi_0 h(z_{\varepsilon}) + o(1))$ in Ω . Choose a R > 0 sufficiently large such that U(r) < 1 for r > R, and by using Taylors expansion,

$$\int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} u_{\varepsilon}^{p+1} = \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon, z_{\varepsilon}}^{p+1} - (p+1)C\varepsilon^{N-2} \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon, z_{\varepsilon}}^{p} \left(\psi_{z_{\varepsilon}} - \varphi_{0}h(z_{\varepsilon})\right) + o(1)\varepsilon^{N+N-2}.$$

Then by Remark 5.6 we have,

$$\begin{split} c_{\varepsilon} &= \Phi_{\varepsilon}(u_{\varepsilon}) = \int_{\Omega} \left(\frac{\varepsilon^2}{2} |\nabla u_{\varepsilon}|^2 - \frac{1}{p+1} (u_{\varepsilon})_{+}^{p+1} + \frac{1}{q+1} (u_{\varepsilon})_{+}^{q+1} \right) \\ &= \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} \left(\frac{1}{2} f(u_{\varepsilon}) u_{\varepsilon} - F(u_{\varepsilon}) \right) + \int_{\Omega \setminus \Omega \cap B_{\varepsilon R}(z_{\varepsilon})} \left(\frac{1}{2} f(u_{\varepsilon}) u_{\varepsilon} - F(u_{\varepsilon}) \right) \\ &= \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} \left(\left(\frac{1}{2} - \frac{1}{p+1} \right) u_{\varepsilon}^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1} \right) u_{\varepsilon}^{q+1} \right) + o(1) \varepsilon^{N+N-2} \\ &= \left(\frac{1}{2} - \frac{1}{p+1} \right) \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1} \right) \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{q+1} \\ &- \frac{p-1}{2} C \varepsilon^{N-2} \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{p} \psi_{z_{\varepsilon}} \\ &+ \frac{q-1}{2} C \varepsilon^{N-2} \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{p} \psi_{z_{\varepsilon}} \\ &+ \frac{p-1}{2} C \varepsilon^{N-2} h(z_{\varepsilon}) \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{p} \varphi_{0} \\ &- \frac{q-1}{2} C \varepsilon^{N-2} h(z_{\varepsilon}) \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon,z_{\varepsilon}}^{q} \varphi_{0} + o(1) \varepsilon^{N+N-2}. \end{split}$$

D Springer

By our decay estimates and Remark 5.2, we have

$$\int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon, z_{\varepsilon}}^{p+1} = \int_{\mathbb{R}^{N}} U_{\varepsilon, z_{\varepsilon}}^{p+1} - \int_{\mathbb{R}^{N} \setminus \Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U_{\varepsilon, z_{\varepsilon}}^{p+1}$$
$$= \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p+1} + o(1)\varepsilon^{N+N-2}.$$

Also by Taylors expansion in $B_{\varepsilon R}(z_{\varepsilon})$, we have $\psi_{z_{\varepsilon}}(z) - h(z_{\varepsilon}) = o(1)$

$$\int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U^{p}_{\varepsilon, z_{\varepsilon}} \psi_{z_{\varepsilon}} = h(z_{\varepsilon}) \int_{\Omega \cap B_{\varepsilon R}(z_{\varepsilon})} U^{p}_{\varepsilon, z_{\varepsilon}} + o(1)\varepsilon^{N}$$
$$= h(z_{\varepsilon})\varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p} + o(1)\varepsilon^{N}$$
$$= h(z_{\varepsilon})\varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p} + o(1)\varepsilon^{N}.$$

Hence we have

$$\begin{split} c_{\varepsilon} &= \left(\frac{1}{2} - \frac{1}{p+1}\right) \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1}\right) \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{q+1} \\ &- \frac{p-1}{2} C \varepsilon^{N+N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} U^{p} + \frac{q-1}{2} C \varepsilon^{N+N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} U^{q} \\ &+ \frac{p-1}{2} C \varepsilon^{N+N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} U^{p} \varphi_{0} \\ &- \frac{q-1}{2} C \varepsilon^{N+N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} U^{q} \varphi_{0} + o(1) \varepsilon^{N+N-2}. \end{split}$$

using (5.16) we deduce

$$c_{\varepsilon} \ge \varepsilon^{N} \left(c + \frac{C}{2} \varepsilon^{N-2} h(z_{\varepsilon}) \int_{\mathbb{R}^{N}} (U^{p} - U^{q}) + o(\varepsilon^{N-2})
ight).$$

Remark 5.8 As a result of Lemmas 5.3 and 5.5, we obtain $h(z_{\varepsilon}) \to \min_{\Omega} h$. Hence Theorem 1.1 is proved. Note that for $\alpha = \frac{2}{q-1}$, from Corollary 3.2 we have $\int_{\mathbb{R}^N} (U^p - U^q) dx = 0$ and as a result we cannot obtain any information on the point of concentration of spikes.

🖄 Springer

6 Multi-peak solutions

We modify the problem (1.3) to

$$\begin{cases} -\varepsilon^2 \Delta u = (u^+)^p - Q(x)(u^+)^q & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(6.1)

Choose $\delta > 0$ such that $Q(x) > Q(z_j)$ for all $x \in B_{\delta}(z_j) \setminus \{z_j\}$ and $B_{\delta}(z_i) \cap B_{\delta}(z_j) = \emptyset$ for $i \neq j$. Let $Q(z_j) = b_j > 0$. Then for any b > 0, let W be the unique radial solution

$$\begin{cases} -\Delta W = W^p - bW^q & \text{in } \mathbb{R}^N \\ W > 0 & \text{in } \mathbb{R}^N \\ W \to 0 & \text{as } |x| \to \infty. \end{cases}$$
(6.2)

Define the transformation, $W(x) = b^{\frac{1}{p-q}} U\left(b^{\frac{p-1}{2(p-q)}}x\right)$. Then *U* satisfies the problem (1.4). We can assume that $Q(z_j)$ are all equal. This is not needed but it simplifies the notation. In this case, we can re-scale so that $b_j = 1$ for all *j*. Let $\gamma > 0$ be small and $\tau > 0$ is defined in Lemma 7.1. For $x = (x_1, \ldots, x_k)$, define

$$D_{k,\varepsilon} = \left\{ x \in \Omega^k, \, j = 1, \dots, k; \, x_j \in B_{\delta}(z_j), \, |Q(x_j) - 1| \le \varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}}}, \\ U\left(\frac{x_i - x_j}{\varepsilon}\right) \le \varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}}}, \, i \ne j \right\}.$$

Also let $\hat{V}_{\varepsilon,z}$ be the unique solution of

$$\begin{cases} -\varepsilon^2 \Delta \hat{V}_{\varepsilon,z} = U^p_{\varepsilon,z} - U^q_{\varepsilon,z} & \text{in } \Omega\\ \hat{V}_{\varepsilon,z} = 0 & \text{on } \partial\Omega \end{cases}$$
(6.3)

Define a norm on $H_0^1(\Omega)$

$$\|v\|_{\varepsilon}^{2} = \varepsilon^{2} \int_{\Omega} |\nabla v|^{2} \mathrm{d}x \tag{6.4}$$

For any $x \in D_{k,\varepsilon}$, let

$$E_{\varepsilon,x,k} = \left\{ \omega \in H_0^1(\Omega), \left\langle \omega, \frac{\partial \hat{V}_{\varepsilon,x_j}}{\partial x_{jl}} \right\rangle_{\varepsilon} = 0; l = 1, \dots, N, j = 1, \dots, k \right\}$$

where $x_j = (x_{j1}, \ldots, x_{jN}) \in \mathbb{R}^N$.

Choose R > 0 sufficiently large such that U(x) < 1 for $|x| \ge R$.

Remark 6.1 Let $2^* = \frac{2N}{N-2}$. We derive an important inequality which we will use in the later stage of our proof. We have by the Sobolev and Hölder inequalities,

$$\begin{split} \int_{B_{\varepsilon R}} |\omega| &\leq |B_{\varepsilon R}|^{\frac{1}{2}} \left(\int_{B_{\varepsilon R}} |\omega|^2 \right)^{\frac{1}{2}} \\ &\leq C \varepsilon^{\frac{N}{2}} \left(\int_{B_{\varepsilon R}} |\omega|^2 \right)^{\frac{1}{2}} \\ &\leq C \varepsilon^{\frac{N}{2}} |B_{\varepsilon R}|^{\frac{1}{2} - \frac{1}{2^*}} \left(\int_{B_{\varepsilon R}} |\omega|^{2^*} \right)^{\frac{1}{2^*}} \\ &\leq C \varepsilon^{\frac{N}{2}} |B_{\varepsilon R}|^{\frac{1}{2} - \frac{1}{2^*}} \left(\int_{B_{\varepsilon R}} |\omega|^{2^*} \right)^{\frac{1}{2}} \\ &\leq C \varepsilon^{\frac{N}{2}} \left(\varepsilon^2 \int_{\Omega} |D\omega|^2 \right)^{\frac{1}{2}} \\ &\leq C \varepsilon^{\frac{N}{2}} ||\omega||_{\varepsilon} \end{split}$$
(6.5)

for some constant C > 0 independent of ε .

Lemma 6.2 For any $\omega \in H_0^1(\Omega)$ and $\varepsilon > 0$ sufficiently small, there exists a C > 1 independent of ε such that

$$\|\omega\|_{\varepsilon} \leq \left(\varepsilon^{2} \int_{\Omega} |\nabla \omega|^{2} \mathrm{d}x + q \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}}\right)^{q-1} \omega^{2}\right)^{\frac{1}{2}} \leq C \|\omega\|_{\varepsilon}.$$

Proof Note that the left hand side of the inequality follows trivially. Now let us estimate the term

$$\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q-1} \omega^2 = \int_{\bigcup B_{\varepsilon R}(x_i)} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q-1} \omega^2 + \int_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q-1} \omega^2 \le C \int_{B_{\varepsilon R}(x_i)} \omega^2 + C \varepsilon^{\alpha(q-1)} \int_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} \omega^2.$$
(6.6)

Note that $\varepsilon^{\alpha(q-1)} \int_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} \omega^2 \leq \varepsilon^2 \int_{\Omega} |\nabla \omega|^2$ and by (6.5) we obtain that the above inequality holds.

7 The reduction

In this section, we will reduce the proof of Theorem 1.2 to find a solution of the form $\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} + \omega$ for (6.1) to a finite dimensional problem. We will prove that for each $x \in D_{k,\varepsilon}$, there is a unique $\omega_{\varepsilon,x} \in E_{\varepsilon,x,k}$ such that

$$\left\langle I_{\varepsilon}'\left(\sum_{j=1}^{k}\hat{V}_{\varepsilon,x_{j}}+\omega_{\varepsilon,x}\right),\eta\right\rangle_{\varepsilon}=0\quad\forall\eta\in E_{\varepsilon,x,k}.$$

Let

$$k(x,\omega) = I_{\varepsilon} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} + \omega_{\varepsilon,x} \right).$$

If we expand $k(x, \omega)$ near $\omega = 0$ as

$$k(x,\omega) = k(x,0) + l_{\varepsilon,x}(\omega) + \frac{1}{2}Q_{\varepsilon,x}(\omega,\omega) + R_{\varepsilon}(\omega)$$

where

$$l_{\varepsilon,x}(\omega) = \sum_{j=1}^{k} \int_{\Omega} \varepsilon^{2} D \hat{V}_{\varepsilon,x_{j}} D\omega - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p} \omega + \int_{\Omega} Q \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega,$$

$$Q_{\varepsilon,x}(\omega, \eta) = \int_{\Omega} \varepsilon^{2} D \omega D \eta - p \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p-1} \omega \eta + q \int_{\Omega} Q \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q-1} \omega \eta,$$

$$(7.1)$$

and

$$R_{\varepsilon}(\omega) = J_{1,\varepsilon}(\omega) + J_{2,\varepsilon}(\omega).$$
(7.3)

Here

$$J_{1,\varepsilon}(\omega) = \frac{1}{p+1} \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} + \omega \right)_{+}^{p+1} - \frac{1}{p+1} \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p+1} - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} + \omega \right)_{+}^{p} - \frac{p}{2} \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p-1} \omega^{2}$$
(7.4)

D Springer

(7.2)

and

$$J_{2,\varepsilon}(\omega) = \frac{1}{q+1} \int_{\Omega} \mathcal{Q}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} + \omega\right)_{+}^{q+1} - \frac{1}{q+1} \int_{\Omega} \mathcal{Q}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right)_{+}^{q+1} - \int_{\Omega} \mathcal{Q}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} + \omega\right)_{+}^{q} - \frac{q}{2} \int_{\Omega} \mathcal{Q}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right)_{+}^{q-1} \omega^{2}.$$
 (7.5)

We will prove in Lemma 7.1 that $l_{\varepsilon,x}(\omega)$ is a bounded linear functional in $E_{\varepsilon,x,k}$. Hence it will follow by the Riesz representation theorem, that there exists $l_{\varepsilon,x} \in E_{\varepsilon,x,k}$ such that

$$\langle l_{\varepsilon,x}, \omega \rangle_{\varepsilon} = l_{\varepsilon,x}(\omega) \quad \forall \ \omega \in E_{\varepsilon,x,k}.$$

In Lemma 7.2 we will prove that $Q_{\varepsilon,x}(\omega, \eta)$ is a bounded linear operator from $E_{\varepsilon,x,k}$ to $E_{\varepsilon,x,k}$ such that

$$\langle Q_{\varepsilon,x}\omega,\eta\rangle_{\varepsilon} = Q_{\varepsilon,x}(\omega,\eta) \quad \forall \,\omega,\eta \in E_{\varepsilon,x,k}.$$

Thus finding a critical point of $k(x, \omega)$ is equivalent to solving the problem in $E_{\varepsilon, x, k}$:

$$l_{\varepsilon,x} + Q_{\varepsilon,x}\omega + R'_{\varepsilon}(\omega) = 0.$$
(7.6)

We will prove in Lemma 7.3 that the operator $Q_{\varepsilon,x}$ is invertible in $E_{\varepsilon,x,k}$. In Lemma 7.4, we will prove that if ω belongs to a suitable set, $R'_{\varepsilon}(\omega)$ is a small perturbation term in (7.6). Thus we can use the contraction mapping theorem to prove that (7.6) has a unique solution for each fixed $x \in D_{k,\varepsilon}$.

Lemma 7.1 The functional $l_{\varepsilon,x} : H_0^1(\Omega) \to \mathbb{R}$ defined in (7.1) is a bounded linear functional. Moreover,

$$\|l_{\varepsilon,x}\|_{\varepsilon} = \varepsilon^{\frac{N}{2}} O\left(\sum_{j=1}^{k} |Q(x_j) - 1| + \sum_{i < j} U\left(\frac{|x_i - x_j|}{\varepsilon}\right) + \varepsilon^{\tau}\right)$$

where $\tau = \min\{\alpha, \sigma\} > 0$.

Proof We have

$$\begin{split} l_{\varepsilon,x}(\omega) &= \sum_{j=1}^{k} \int_{\Omega} \varepsilon^{2} D \hat{V}_{\varepsilon,x_{j}} D \omega - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p} \omega + \int_{\Omega} Q \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega \\ &= \sum_{j=1}^{k} \int_{\Omega} \left(U_{\varepsilon,x_{j}}^{p} - U_{\varepsilon,x_{j}}^{q} \right) \omega - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p} \omega + \int_{\Omega} Q \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega \\ &= \sum_{j=1}^{k} \int_{\Omega} \left(U_{\varepsilon,x_{j}}^{p} - U_{\varepsilon,x_{j}}^{q} \right) \omega - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p} \omega + \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega \\ &+ \int_{\Omega} (Q - 1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega \end{split}$$

In order to estimate the last term we decompose the domain into $\Omega = (\Omega \setminus \bigcup B_{\varepsilon R}(x_i)) \cup (\bigcup B_{\varepsilon R}(x_i))$. Since Q is bounded we have

$$\begin{split} \int_{\Omega} (Q-1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} \right)_{+}^{q} \omega &= \int_{\cup B_{\varepsilon R}(x_i)} (Q-1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} \right)_{+}^{q} \omega \\ &+ \int_{\Omega \setminus \cup B_{\varepsilon R}(x_i)} (Q-1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} \right)_{+}^{q} \omega \\ &\leq \int_{\cup B_{\varepsilon R}(x_i)} (Q-1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} \right)_{+}^{q} \omega + \varepsilon^{\alpha q} \int_{\Omega \setminus \cup B_{\varepsilon R}(x_i)} |\omega| \\ &\leq \sum_{i=1}^{k} \int_{B_{\varepsilon R}(x_i)} (Q-1) \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} \right)_{+}^{q} \omega + C\varepsilon^{\alpha q} \int_{\Omega} |D\omega|^2 \end{split}$$

Here we have used the decay estimates of \hat{V} . On the other hand using Taylors theorem on Q in $B_{\varepsilon R}(x_i)$ and using (6.5) we have

$$Q(x) = Q(x_i) + \langle DQ(x_i), x - x_i \rangle + O(\varepsilon^2).$$

Hence

$$\int_{B_{\varepsilon R}(x_i)} (Q-1) \left(\sum_{j=1}^k \hat{V}_{\varepsilon, x_j} \right)_+^q \omega \le C |Q(x_i) - 1| \int_{B_{\varepsilon R}(x_i)} |\omega| + \varepsilon^{\frac{N}{2}} O\left(\varepsilon^{\frac{N}{2}+1}\right) \|\omega\|_{\varepsilon}$$
$$= \varepsilon^{\frac{N}{2}} O\left(|Q(x_i) - 1| + \varepsilon^{\frac{N}{2}+1} \right) \|\omega\|_{\varepsilon}$$

Using Taylors theorem and our estimate for $U_{\varepsilon,x_j} - \hat{V}_{\varepsilon,x_j}$,

$$\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} + \sum_{j=1}^{k} (\hat{V}_{\varepsilon,x_j} - U_{\varepsilon,x_j}) \right)_{+}^{q} \omega$$
$$= \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q} \omega + O(1) \varepsilon^{\alpha} \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q-1} \omega$$

In order to estimate the second term we decompose the domain into $\Omega = (\Omega \setminus \bigcup B_{\varepsilon R}(x_i)) \cup (\bigcup B_{\varepsilon R}(x_i))$ and we have from (6.5)

$$\varepsilon^{\alpha} \int_{B_{\varepsilon R}(x_i)} \left(\sum_{j=1}^k U_{\varepsilon, x_j} \right)^{q-1} \omega \leq C \varepsilon^{\frac{N}{2} + \alpha} \| \omega \|_{\varepsilon}$$

and by decay estimates,

$$\varepsilon^{\alpha} \int_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} \left(\sum_{j=1}^k U_{\varepsilon, x_j} \right)^{q-1} \omega \le C \varepsilon^{\alpha q} \int_{\Omega} |\omega|$$
$$= C \varepsilon^{\frac{N}{2} + \sigma} \|\omega\|_{\varepsilon}$$

where $\sigma = \frac{N}{2} - 1$. We will use the following basic facts, in our proof

$$|a+b|^{q} - |a|^{q} - |b|^{q} = O(1) \left(|a|^{\frac{q}{2}} |b|^{\frac{q}{2}} \right) \text{ if } 1 < q < 2$$
$$|a+b|^{q} - |a|^{q} - |b|^{q} = O(1) |a|^{q-1} |b| \text{ if } q \ge 2.$$

For the case $q \ge 2$, we have

$$\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_j} \right)^{q} \omega = \sum_{j=1}^{k} \int_{\Omega} U_{\varepsilon, x_j}^{q} \omega + O\left(\sum_{j \neq i} \int_{\Omega} U_{\varepsilon, x_j}^{q-1} U_{\varepsilon, x_i} |\omega| \right)$$

In order to estimate the second term we decompose the domain into $\Omega = (\Omega \setminus \bigcup B_{\varepsilon R}(x_i)) \cup (\bigcup B_{\varepsilon R}(x_i))$ and we have

$$\int_{\Omega} U_{\varepsilon,x_j}^{q-1} U_{\varepsilon,x_i} |\omega| = \int_{\Omega \setminus \cup B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{q-1} U_{\varepsilon,x_i} |\omega| + \int_{\cup B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{q-1} U_{\varepsilon,x_i} |\omega|$$

Now from (6.5) we have

$$\begin{split} \int_{B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{q-1} U_{\varepsilon,x_i} |\omega| &\leq \left(\int_{B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{2(q-1)} U_{\varepsilon,x_i}^2 \right)^{\frac{1}{2}} \left(\int_{B_{\varepsilon R}(x_i)} |\omega|^2 \right)^{\frac{1}{2}} \\ &\leq \left(\int_{B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{2(q-1)} U_{\varepsilon,x_i}^2 \right)^{\frac{1}{2}} \|\omega\|_{\varepsilon} \\ &\leq \varepsilon^{\frac{N}{2}} \left(\int_{B_R} U_{1,\frac{x_i-x_j}{\varepsilon}}^{2(q-1)} U^2 \right)^{\frac{1}{2}} \|\omega\|_{\varepsilon} \\ &= \varepsilon^{\frac{N}{2}} O\left(U\left(\frac{x_i-x_j}{\varepsilon}\right) \right) \|\omega\|_{\varepsilon}. \end{split}$$

D Springer

On the boundary we have from decay estimates and since $\alpha q > N$,

$$\int_{\Omega \setminus \cup B_{\varepsilon,R}(x_i))} U_{\varepsilon,x_i}^{q-1} U_{\varepsilon,x_i} |\omega| \leq C \varepsilon^{\alpha q} \int_{\Omega \setminus \cup B_{\varepsilon R}(x_i))} |\omega|$$

$$\leq C \varepsilon^{\alpha q} \int_{\Omega} |\omega| \qquad (7.7)$$

$$\leq C \varepsilon^{\alpha q} \left(\int_{\Omega} |D\omega|^2 \right)^{\frac{1}{2}}$$

$$\leq C \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{N}{2}-1} \left(\int_{\Omega} \varepsilon^2 |D\omega|^2 \right)^{\frac{1}{2}}$$

$$\leq C \varepsilon^{\frac{N}{2}} \varepsilon^{\sigma} \|\omega\|_{\varepsilon} \qquad (7.8)$$

In the case when 1 < q < 2,

$$\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q} \omega = \sum_{j=1}^{k} \int_{\Omega} U_{\varepsilon,x_j}^{q} \omega + O\left(\sum_{j \neq i} \int_{\Omega} U_{\varepsilon,x_j}^{\frac{q}{2}} U_{\varepsilon,x_i}^{\frac{q}{2}} |\omega| \right)$$

and we proceed as in the case $q \ge 2$.

$$\begin{split} \int\limits_{B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{\frac{q}{2}} U_{\varepsilon,x_i}^{\frac{q}{2}} |\omega| &\leq C \int\limits_{B_{\varepsilon R}(x_i)} U_{\varepsilon,x_j}^{\frac{q}{2}} |\omega| \leq C \varepsilon^{\frac{N}{2}} U\left(\frac{|x_i - x_j|}{\varepsilon}\right)^{\frac{q}{2}} \|\omega\|_{\varepsilon} \\ &\leq C \varepsilon^{\frac{N}{2}} U\left(\frac{|x_i - x_j|}{\varepsilon}\right) \|\omega\|_{\varepsilon} \end{split}$$

as $U\left(\frac{|x_i-x_j|}{\varepsilon}\right)$ is small. Hence we obtain

$$\begin{split} l_{\varepsilon,x}(\omega) &= \sum_{j=1}^{k} \int_{\Omega} (U_{\varepsilon,x_{j}}^{p} - U_{\varepsilon,x_{j}}^{q}) \omega - \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{p} \omega + \int_{\Omega} \mathcal{Q} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} \right)_{+}^{q} \omega \\ &= \varepsilon^{\frac{N}{2}} \mathcal{O} \left(\sum_{j=1}^{k} |\mathcal{Q}(x_{j}) - 1| + \sum_{j \neq i} \mathcal{U} \left(\frac{|x_{i} - x_{j}|}{\varepsilon} \right) + \varepsilon^{\tau} \right) \|\omega\|_{\varepsilon}. \end{split}$$

Lemma 7.2 The bilinear form $Q_{\varepsilon,x}(\omega)$ defined in (7.2) is a bounded linear. Moreover $|Q_{\varepsilon,x}(\omega,\eta)| \leq C ||\omega||_{\varepsilon} ||\eta||_{\varepsilon}$

where *C* is independent of ε .

Proof Note that there exists a C > 0, such that

$$\int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j}} \right)_{+}^{p-1} \omega \eta \leq C \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}} \right)^{q-1} |\omega| |\eta| \leq C \|\omega\|_{\varepsilon} \|\eta\|_{\varepsilon}$$

🖄 Springer

and

$$\left|\varepsilon^{2} \int_{\Omega} D\omega D\eta + q \int_{\Omega} Q\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right)_{+}^{q-1} \omega\eta\right| \leq C \|\omega\|_{\varepsilon} \|\eta\|_{\varepsilon}$$

Lemma 7.3 There exists $\rho > 0$ independent of ε , such that

$$\|Q_{\varepsilon,x}\omega\|_{\varepsilon} \ge \rho \|\omega\|_{\varepsilon} \quad \forall \ \omega \in E_{\varepsilon,x,k}, \ x \in D_{k,\varepsilon}$$

Proof Note that Q is uniformly positive and bounded. Purely for simplicity, we assume $Q \equiv 1$. Suppose there exists a sequence $\varepsilon_n \to 0$, $x_{j,n} \in D_{k,\varepsilon_n}$, with $x_{j,n} \to z_j$, $\omega_n \in E_{\varepsilon_n,x_n,k}$ such that $\|\omega_n\|_{\varepsilon_n} = \varepsilon_n^{\frac{N}{2}}$ and

$$\|Q_{\varepsilon_n}\omega_n\|_{\varepsilon_n}=o\left(\varepsilon_n^{\frac{N}{2}}\right)$$

Let $\tilde{\omega}_{i,n} = \omega_n(\varepsilon_n y + x_{i,n})$ and $\Omega_n = \{y : \varepsilon_n y + x_{i,n} \in \Omega\}$ such that

$$\int_{\Omega_n} |D\tilde{\omega}_{i,n}|^2 = \varepsilon_n^{-N} \left(\varepsilon_n^2 \int_{\Omega} |D\omega_n|^2 \right) = 1$$
(7.9)

Hence there exists $\omega_i \in D^{1,2}(\mathbb{R}^N)$ such that $\tilde{\omega}_{i,n} \rightharpoonup \omega_i \in D^{1,2}(\mathbb{R}^N)$ and hence $\tilde{\omega}_{i,n} \rightarrow \omega_i \in L^2_{loc}(\mathbb{R}^N)$. We claim that

$$-\Delta\omega_i = pU^{p-1}\omega_i - qU^{q-1}\omega_i \quad \text{in } \mathbb{R}^N$$

that is for all $\eta \in C_0^{\infty}(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} D\omega_i D\eta = p \int_{\mathbb{R}^N} U^{p-1} \omega_i \eta - q \int_{\mathbb{R}^N} U^{q-1} \omega_i \eta.$$
(7.10)

Now

$$\int_{\Omega} \varepsilon_n^2 D\omega_n D\eta - p \int_{\Omega} \left(\sum_{j=1}^k \hat{V}_{\varepsilon_n, x_{j,n}} \right)_+^{p-1} \omega_n \eta + q \int_{\Omega} \left(\sum_{j=1}^k \hat{V}_{\varepsilon_n, x_{j,n}} \right)_+^{q-1} \omega_n \eta$$
$$= \langle Q_{\varepsilon_n, x_n} \omega_n, \eta \rangle_{\varepsilon}$$
$$= o \left(\varepsilon_n^{\frac{N}{2}} \right) \|\eta\|_{\varepsilon_n}$$

which implies

$$\int_{\Omega_n} D\tilde{\omega}_{i,n} D\tilde{\eta} - p \int_{\Omega_n} \left(\sum_{j=1}^k \tilde{V}_{\varepsilon_n, x_{j,n}} \right)_+^{p-1} \tilde{\omega}_{i,n} \tilde{\eta} + q \int_{\Omega_n} \left(\sum_{j=1}^k \tilde{V}_{\varepsilon_n, x_{j,n}} \right)_+^{q-1} \tilde{\omega}_{i,n} \tilde{\eta}$$
$$= o(1) \|\tilde{\eta}\|, \tag{7.11}$$

🖄 Springer

where

$$\begin{split} \tilde{V}_{\varepsilon_n, x_{j,n}} &= \hat{V}_{\varepsilon_n, x_{j,n}}(\varepsilon_n y + x_{i,n}), \\ \|\tilde{\eta}\|^2 &= \int\limits_{\Omega_n} |D\tilde{\eta}|^2, \\ \tilde{E}_{\varepsilon_n, x_n, k} &= \left\{ \tilde{\eta} : \int\limits_{\Omega_n} D\tilde{\eta} D\tilde{W}_{n, j, l} = 0 \right\} \end{split}$$

and $\tilde{W}_{n,j,l} = \varepsilon_n \frac{\partial \tilde{V}_{\varepsilon_n,x_{j,n}}(\varepsilon_n y + x_{i,n})}{\partial x_{jl}}$. Let $\eta \in C_0^{\infty}(\mathbb{R}^N)$. Then we can choose $a_{jln} \in \mathbb{R}$ such that

$$\tilde{\eta}_n = \eta - \sum_{j=1}^k \sum_{l=1}^N a_{jln} \tilde{W}_{n,j,l}.$$

Note that $\tilde{W}_{n,j,l}$ satisfies the problem

$$\begin{cases} -\Delta \tilde{W}_{n,j,l} = \left(p U^{p-1} \left(y - \frac{x_{i,n} - x_{j,n}}{\varepsilon_n} \right) - q U^{q-1} \left(y - \frac{x_{i,n} - x_{j,n}}{\varepsilon_n} \right) \right) \frac{\partial U}{\partial x_l} & \text{in } \Omega_n \\ \tilde{W}_{n,j,l} = 0 & \text{on } \partial \Omega_n \end{cases}$$
(7.12)

Let $\alpha = \frac{2}{q-1}$. Then we claim that $\tilde{W}_{n,j,l}$ is bounded in $D^{1,2}(\Omega_n)$. Now using Hölder's and Hardy's inequality we have

$$\int_{\Omega_n} |\nabla \tilde{W}_{n,j,l}|^2 = \int_{\Omega_n} \left(p U^{p-1} - q U^{q-1} \right) \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}$$
$$\leq C \left(\int_{\Omega_n} U^{q-1} \tilde{W}_{n,j,l}^2 \right)^{\frac{1}{2}} \leq C \left(\int_{\Omega_n} |\nabla \tilde{W}_{n,j,l}|^2 \right)^{\frac{1}{2}}$$
(7.13)

Hence $\int_{\Omega_n} |\nabla \tilde{W}_{n,j,l}|^2$ is uniformly bounded and as a result there exists W such that

$$\tilde{W}_{n, i, l} \rightarrow W$$
 in $D^{1, 2}$

at least for a subsequence. Hence

$$\tilde{W}_{n,j,l} \to W \text{ in } L^2_{\text{loc}}.$$

Note that W satisfies the problem,

$$\begin{cases} -\Delta W = \left(pU^{p-1} - qU^{q-1}\right) \frac{\partial U}{\partial x_l} & \text{in } \mathbb{R}^N\\ \int_{\mathbb{R}^N} |\nabla W|^2 = \int_{\mathbb{R}^N} \left(pU^{p-1} - qU^{q-1}\right) \frac{\partial U}{\partial x_l} W. \end{cases}$$
(7.14)

We claim that $\tilde{W}_{n,j,l} \to W$ in $D^{1,2}$. First note that

$$\int_{\Omega_n} |U^{p-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}| \leq C \int_{\Omega_n} |U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}|$$
$$\int_{\Omega_n} |\nabla \tilde{W}_{n,j,l}|^2 = p \int_{\Omega_n} U^{p-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}$$

$$-q \int_{\Omega_n} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}$$

$$\rightarrow p \int_{\mathbb{R}^N} U^{p-1} \frac{\partial U}{\partial x_l} W - q \int_{\mathbb{R}^N} U^{q-1} \frac{\partial U}{\partial x_l} W$$

$$= \int_{\mathbb{R}^N} |\nabla W|^2.$$
(7.15)

Here we have used that $\tilde{W}_{n,j,l}$ converges weakly in L^{2^*} . Hence $\tilde{W}_{n,j,l} \to W = \frac{\partial U}{\partial x_l}$ in $D^{1,2}$ strongly. Now for $i \neq j$, we have

$$\left\langle \eta, \tilde{W}_{n,j,l} \right\rangle = \int_{\Omega_n \cap supp \ \eta} \left\{ pU \left(y - \frac{x_{i,n} - x_{j,n}}{\varepsilon_n} \right)^{p-1} - qU \left(y - \frac{x_{i,n} - x_{j,n}}{\varepsilon_n} \right)^{q-1} \right\} \frac{\partial U}{\partial x_l} \eta$$
$$= o(1)$$

For i = j we have

$$\left|\langle \eta, \tilde{W}_{n,j,l} \rangle\right| \leq C$$

Hence using a coordinate transformation we obtain $a_{jln} = (I + O(1))^{-1} \langle \eta, \tilde{W}_{n,j,l} \rangle$ where *I* is the identity matrix and O(1) has small off diagonal elements. Hence $a_{jln} \to 0$ as $n \to \infty$ for $i \neq j$. Putting the value of η_n in (7.11) and letting $n \to \infty$, we have

$$\int_{\mathbb{R}^{N}} D\omega_{i} D\eta - p \int_{\mathbb{R}^{N}} U^{p-1} \omega_{i} \eta + q \int_{\mathbb{R}^{N}} U^{q-1} \omega_{i} \eta$$
$$= \sum_{l=1}^{N} a_{l} \left(\int_{\mathbb{R}^{N}} D\omega_{i} D \frac{\partial U}{\partial x_{l}} - p \int_{\mathbb{R}^{N}} U^{p-1} \omega_{i} \frac{\partial U}{\partial x_{l}} + q \int_{\mathbb{R}^{N}} U^{q-1} \omega_{i} \frac{\partial U}{\partial x_{l}} \right)$$

where $a_l = \lim_{n \to \infty} a_{jln}$. Using Lemma 4.4, we have

$$\int_{\mathbb{R}^N} D\omega_i D \frac{\partial U}{\partial x_l} - p \int_{\mathbb{R}^N} U^{p-1} \omega_i \frac{\partial U}{\partial x_l} + q \int_{\mathbb{R}^N} U^{q-1} \omega_i \frac{\partial U}{\partial x_l} = 0$$

and

$$\int_{\mathbb{R}^N} D\omega_i D\eta - p \int_{\mathbb{R}^N} U^{p-1} \omega_i \eta + q \int_{\mathbb{R}^N} U^{q-1} \omega_i \eta = 0$$

Hence we have (7.10).

Since $\omega_i \in D^{1,2}(\mathbb{R}^N)$, it follows by nondegeneracy

$$\omega_i = \sum_{l=1}^N b_l \frac{\partial U}{\partial x_l}$$

Since $\tilde{\omega}_{i,n} \in \tilde{E}_{\varepsilon_n, x_n, k}$, letting $n \to \infty$ in (7.11), we have

$$\int\limits_{\mathbb{R}^N} D\omega_i D \frac{\partial U}{\partial x_l} = 0$$

🖄 Springer

which implies $b_l = 0$ for all l = 1, 2, ..., N. Thus $\omega_i = 0$. Hence for any R > 0 we have

$$\int\limits_{B_{\varepsilon_n R}(x_{i,n})} |\omega_n|^2 = o(\varepsilon_n^N).$$

Now

$$\begin{split} \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j,n}} \right)_{+}^{p-1} \omega_{n}^{2} &= \int_{\cup B_{\varepsilon_{n}R}(x_{i,n})} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j,n}} \right)_{+}^{p-1} \omega_{n}^{2} + \int_{\Omega \setminus \cup B_{\varepsilon_{n}R}(x_{i,n})} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j,n}} \right)_{+}^{p-1} \omega_{n}^{2} \\ &\leq \int_{\cup B_{\varepsilon_{n}R}(x_{i,n})} \omega_{n}^{2} + \int_{\Omega \setminus \cup B_{\varepsilon_{n}R}(x_{i,n})} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j,n}} \right)_{+}^{p-1} \omega_{n}^{2} \\ &\leq o(1)\varepsilon_{n}^{N} + \varepsilon_{n}^{\alpha(p-q)} \int_{\Omega \setminus \cup B_{\varepsilon_{n}R}(x_{i,n})} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j,n}} \right)_{+}^{q-1} \omega_{n}^{2} \\ &\leq o(1)\varepsilon_{n}^{N} + \varepsilon_{n}^{\alpha(p-q)} \|\omega_{n}\|_{\varepsilon_{n}}^{2}. \end{split}$$

Hence

$$o\left(\varepsilon_{n}^{N}\right) \geq \langle \mathcal{Q}_{\varepsilon_{n},x_{n}}(\omega_{n}), \omega_{n} \rangle_{\varepsilon_{n}} \geq \|\omega_{n}\|_{\varepsilon_{n}}^{2} - p \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j,n}}\right)_{+}^{p-1} \omega_{n}^{2}$$
$$\geq \varepsilon_{n}^{N} - o(1)\varepsilon_{n}^{N}$$
(7.16)

which implies a contradiction.

For the case $\alpha = N - 2$. We claim that $\tilde{W}_{n,j,l}$ is bounded in $D^{1,2}(\Omega_n)$. As $\frac{\partial U}{\partial x_l} \in L^2$ and N(N-2)(q-1) > N, we have

$$\int_{\Omega_{n}} |\nabla \tilde{W}_{n,j,l}|^{2} = \int_{\Omega_{n}} \left(p U^{p-1} - q U^{q-1} \right) \frac{\partial U}{\partial x_{l}} \tilde{W}_{n,j,l}
\leq C \left(\int_{\Omega_{n}} U^{2(q-1)} \tilde{W}_{n,j,l}^{2} \right)^{\frac{1}{2}}
\leq C \left(\int_{\Omega_{n}} U^{\frac{2^{*}(2q-2)}{2^{*}-2}} \right)^{\frac{1}{2}(1-\frac{2}{2^{*}})} \left(\int_{\Omega_{n}} |\tilde{W}_{n,j,l}|^{2^{*}} \right)^{\frac{1}{2^{*}}}
\leq \left(\int_{\mathbb{R}^{N}} U^{N(q-1)} \right)^{\frac{1}{2}(1-\frac{2}{2^{*}})} \left(\int_{\Omega_{n}} |\tilde{W}_{n,j,l}|^{2^{*}} \right)^{\frac{1}{2^{*}}}
\leq C \left(\int_{\Omega_{n}} |\nabla \tilde{W}_{n,j,l}|^{2} \right)^{\frac{1}{2}}$$
(7.17)

D Springer

as $\int_{1}^{\infty} \frac{1}{r^{N(N-2)(q-1)-(N-1)}} < \infty$, which implies that $\tilde{W}_{n,j,l}$ is bounded in $D^{1,2}(\Omega_n)$. there exists W such that

$$\tilde{W}_{n,i,l} \rightarrow W$$
 in $D^{1,2}$

and hence

$$\tilde{W}_{n,j,l} \to W$$
 in L^2_{loc} .

Note that W satisfies the problem,

$$\begin{cases} -\Delta W = (pU^{p-1} - qU^{q-1})\frac{\partial U}{\partial x_l} & \text{in } \mathbb{R}^N\\ \int_{\mathbb{R}^N} |\nabla W|^2 = \int_{\mathbb{R}^N} (pU^{p-1} - qU^{q-1})\frac{\partial U}{\partial x_l}W. \end{cases}$$
(7.18)

We claim that $\tilde{W}_{n,j,l} \to W$ in $D^{1,2}$. First note that for any compact subset $\Omega' \subset \Omega_n$ we have

$$\int_{\Omega_n} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l} = \int_{\Omega'} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l} + \int_{\Omega_n \setminus \Omega'} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}.$$

Hence the first integral

$$\int_{\Omega'} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l} \to \int_{\Omega'} U^{q-1} \frac{\partial U}{\partial x_l} W$$

Using the fact that (N - 2)(q - 1) > 2 and Hardy inequality, we obtain

$$\int_{\Omega_{n}\backslash\Omega'} U^{q-1}\tilde{W}_{n,j,l}^{2} \leq C \int_{\Omega_{n}\backslash\Omega'} |x|^{-(N-2)(q-1)}\tilde{W}_{n,j,l}^{2}$$

$$\leq C \int_{\Omega_{n}\backslash\Omega'} |x|^{-2}\tilde{W}_{n,j,l}^{2}$$

$$\leq C \int_{\Omega_{n}\backslash\Omega'} |\nabla \tilde{W}_{n,j,l}|^{2}.$$
(7.19)

As a result we obtain

$$\int_{\Omega_n \setminus \Omega'} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l} \to \int_{\mathbb{R}^N \setminus \Omega'} U^{q-1} \frac{\partial U}{\partial x_l} W$$

Hence

$$\int_{\Omega_n} |\nabla \tilde{W}_{n,j,l}|^2 = p \int_{\Omega_n} U^{p-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}
- q \int_{\Omega_n} U^{q-1} \frac{\partial U}{\partial x_l} \tilde{W}_{n,j,l}
\rightarrow p \int_{\mathbb{R}^N} U^{p-1} \frac{\partial U}{\partial x_l} W - q \int_{\mathbb{R}^N} U^{q-1} \frac{\partial U}{\partial x_l} W
= \int_{\mathbb{R}^N} |\nabla W|^2.$$
(7.20)

🖄 Springer

Hence $\tilde{W}_{n,j,l} \to W = \frac{\partial U}{\partial x_l}$ in $D^{1,2}$ strongly. The remainder of the proof follows exactly as above.

Lemma 7.4 Let $R_{\varepsilon}(\omega)$ be the functional defined by (7.3). Let $\omega \in H_0^1(\Omega)$, then

$$|R_{\varepsilon}(\omega)| \leq C\varepsilon^{N(1-\frac{\min\{p+1,3\}}{2})} \|\omega\|_{\varepsilon}^{\frac{\min\{p+1,3\}}{2^{*}}} + C\varepsilon^{N\left(1-\frac{\min\{q+1,3\}}{2}\right)} \|\omega\|_{\varepsilon}^{\frac{\min\{q+1,3\}}{2^{*}}} + o(1)\|\omega\|_{\varepsilon}^{2}$$
(7.21)

and

$$\|R_{\varepsilon}'(\omega)\|_{\varepsilon} \leq C\varepsilon^{N(1-\frac{\min\{p,2\}}{2^*})}\|\omega\|_{\varepsilon}^{\frac{\min\{p,2\}}{2^*}} + C\varepsilon^{N\left(1-\frac{\min\{q,2\}}{2}\right)}\|\omega\|_{\varepsilon}^{\frac{\min\{q,2\}}{2^*}} + o(1)\|\omega\|_{\varepsilon}.$$
(7.22)

Proof As before we have $R_{\varepsilon}(\omega) = J_{1,\varepsilon}(\omega) + J_{2,\varepsilon}(\omega)$. Then

$$\begin{aligned} |J_{1,\varepsilon}(\omega)| &\leq \int\limits_{\bigcup B_{\varepsilon R}(x_i)} |J_{1,\varepsilon}(\omega)| + \int\limits_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} |J_{1,\varepsilon}(\omega)| \\ &\leq \int\limits_{\bigcup B_{\varepsilon R}(x_i)} |\omega|^{\min\{p+1,3\}} + p \ o \left(\int\limits_{\Omega \setminus \bigcup B_{\varepsilon R}(x_i)} \left(\sum_{j=1}^k \hat{V}_{\varepsilon,x_j}\right)_+^{p-1} \omega^2\right) \end{aligned}$$

Here we have used (7.4). However,

$$\int_{\bigcup B_{\varepsilon R}(x_i)} |\omega|^{\min\{p+1,3\}} \leq C\varepsilon^{N(1-\frac{\min\{p+1,3\}}{2})} \left(\int_{B_{\varepsilon R}(x_i)} |\omega|^{2^*}\right)^{\frac{\min\{p+1,3\}}{2^*}} \leq C\varepsilon^{N\left(1-\frac{\min\{p+1,3\}}{2}\right)} \|\omega\|_{\varepsilon}^{\frac{\min\{p+1,3\}}{2^*}}.$$

Moreover, by the algebraic decay of $\hat{V}_{\varepsilon,x_i}$ we obtain,

$$o\left(\int_{\Omega\setminus\cup B_{\varepsilon R}(x_i)}\left(\sum_{j=1}^k \hat{V}_{\varepsilon,x_j}\right)_+^{p-1}\omega^2\right) \le Co(1)\varepsilon^{\alpha(p-1)}\int_{\Omega}\omega^2 \le Co(1)\varepsilon^2\int_{\Omega}|\nabla\omega|^2$$

Hence the result follows.

Lemma 7.5 There exists an $\varepsilon_0 > 0$ such that for $\varepsilon \in (0, \varepsilon_0]$, there exists a C^1 map $\omega_{\varepsilon,x} : D_{k,\varepsilon} \to H$, such that $\omega_{\varepsilon,x} \in E_{\varepsilon,x,k}$ we have

$$\left\langle I_{\varepsilon}'\left(\sum_{j=1}^{k}\hat{V}_{\varepsilon,x_{j}}+\omega_{\varepsilon,x}\right),\eta\right\rangle_{\varepsilon}=0, \quad \forall \eta\in E_{\varepsilon,x,k}.$$

Moreover, we have

$$\|\omega_{\varepsilon,x}\|_{\varepsilon} \leq C\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min\{q,2\}}+\kappa}$$

where $\kappa > 0$ is sufficiently small.

Proof We have $l_{\varepsilon,x} + Q_{\varepsilon,x}\omega + R'_{\varepsilon}(\omega) = 0$. As $Q_{\varepsilon,x}^{-1}$ exists, the above equation is equivalent to solving

$$Q_{\varepsilon,x}^{-1}l_{\varepsilon,x} + \omega + Q_{\varepsilon,x}^{-1}R_{\varepsilon}'(\omega) = 0.$$

Define

$$G(\omega) = -Q_{\varepsilon,x}^{-1} l_{\varepsilon,x} - Q_{\varepsilon,x}^{-1} R_{\varepsilon}'(\omega) \quad \forall \omega \in E_{\varepsilon,x,k}.$$

Hence the problem is reduced to finding a fixed point of the map G.

Choose $\gamma > 0$ small. For any $\omega_1 \in E_{\varepsilon,x,k}$ and $\omega_2 \in E_{\varepsilon,x,k}$ with $\|\omega_1\|_{\varepsilon} \leq \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{\gamma\tau}{\min[q,2]}}$, $\|\omega_2\|_{\varepsilon} \leq \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{\gamma\tau}{\min[q,2]}}$

$$\|G(\omega_1) - G(\omega_2)\|_{\varepsilon} \le C \|R'_{\varepsilon}(\omega_1) - R'_{\varepsilon}(\omega_2)\|_{\varepsilon}.$$

Note that

$$\left\langle R_{\varepsilon}'(\omega_{1}) - R_{\varepsilon}'(\omega_{2}), \eta \right\rangle_{\varepsilon} = \left\langle J_{1,\varepsilon}'(\omega_{1}) - J_{1,\varepsilon}'(\omega_{2}), \eta \right\rangle_{\varepsilon} + \left\langle J_{2,\varepsilon}'(\omega_{1}) - J_{2,\varepsilon}'(\omega_{2}), \eta \right\rangle_{\varepsilon}$$

From Lemma 7.4, we have

$$\begin{split} \left\langle R_{\varepsilon}'(\omega_{1}) - R_{\varepsilon}'(\omega_{2}), \eta \right\rangle_{\varepsilon} &\leq C \varepsilon^{N(1 - \frac{\min\{p, 2\}}{2})} \|\omega_{1} - \omega_{2}\|_{\varepsilon}^{\min\{p, 2\}} \|\eta\|_{\varepsilon} \\ &+ C \varepsilon^{N(1 - \frac{\min\{q, 2\}}{2})} \|\omega_{1} - \omega_{2}\|_{\varepsilon}^{\min\{q, 2\}} \|\eta\|_{\varepsilon} \\ &+ o(1) \|\omega_{1} - \omega_{2}\|_{\varepsilon} \|\eta\|_{\varepsilon}. \end{split}$$

Hence we have

$$\begin{split} \|R_{\varepsilon}'(\omega_{1}) - R_{\varepsilon}'(\omega_{2})\|_{\varepsilon} &\leq C\varepsilon^{N(1-\frac{\min\{p,2\}}{2})} \|\omega_{1} - \omega_{2}\|_{\varepsilon}^{\min\{p,2\}} \\ &+ C\varepsilon^{N(1-\frac{\min\{q,2\}}{2})} \|\omega_{1} - \omega_{2}\|_{\varepsilon}^{\min\{q,2\}} + o(1)\|\omega_{1} - \omega_{2}\|_{\varepsilon} \\ &\leq o(1)\|\omega_{1} - \omega_{2}\|_{\varepsilon}. \end{split}$$

Hence G is a contraction as

$$\|G(\omega_1) - G(\omega_2)\|_{\varepsilon} \le Co(1)\|\omega_1 - \omega_2\|_{\varepsilon}.$$

Also for $\omega \in E_{\varepsilon,x,k}$ with $\|\omega\|_{\varepsilon} \leq \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{\gamma\tau}{\min\{q,2\}}}$, and $\kappa > 0$ sufficiently small

$$\|G(\omega)\|_{\varepsilon} \leq C \|l_{\varepsilon,x}\|_{\varepsilon} + C \|R'_{\varepsilon}(\omega)\|_{\varepsilon}$$

$$\leq C\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{2\gamma\tau}{\min[q,2]}} + \varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min[q,2]} + \kappa}$$

$$\leq C\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min[q,2]} + \kappa}$$

$$< \varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min[q,2]}}$$
(7.23)

if $||l_{\varepsilon}||_{\varepsilon} \leq \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}}}$. Hence

$$G: E_{\varepsilon,x,k} \cap B_{\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min[q,2]}}}(0) \to E_{\varepsilon,x,k} \cap B_{\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min[q,2]}}}(0)$$

is a contraction map if $\|l_{\varepsilon}\|_{\varepsilon} \leq \varepsilon^{\frac{N}{2}} \varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}}}$. Hence by the contraction mapping principle there exists a unique $\omega \in E_{\varepsilon,x,k} \cap B_{\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min\{q,2\}}}}(0)$ such that $\omega = G(\omega)$ and

$$\|\omega_{\varepsilon,x}\|_{\varepsilon} = \|G(\omega_{\varepsilon,x})\|_{\varepsilon} \le C\varepsilon^{\frac{N}{2}}\varepsilon^{\frac{\gamma\tau}{\min\{q,2\}}+\kappa}.$$

🖄 Springer

8 Existence of interior peaks

Lemma 8.1 For any positive integer k, we have

$$I_{\varepsilon}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right) = k\varepsilon^{N}c - c_{1}\varepsilon^{N}\sum_{i(8.1)$$

where $c_1, c_2, \lambda > 0$, and c is the mountain pass critical value of the limiting problem.

Proof We have

$$I_{\varepsilon}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right) = \sum_{j=1}^{k} I_{\varepsilon}\left(\hat{V}_{\varepsilon,x_{j}}\right) + \frac{1}{2} \sum_{i \neq j} \int_{\Omega} \varepsilon^{2} D\hat{V}_{\varepsilon,x_{i}} D\hat{V}_{\varepsilon,x_{j}}$$
$$- \int_{\Omega} F\left(x, \sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}}\right) + \int_{\Omega} \sum_{j=1}^{k} F\left(x, \hat{V}_{\varepsilon,x_{j}}\right).$$

From Remark 5.2 we have

$$\begin{split} \frac{\varepsilon^2}{2} \int\limits_{\Omega} |D\hat{V}_{\varepsilon,x_j}|^2 &= \frac{1}{2} \int\limits_{\Omega} U^p_{\varepsilon,x_j} \hat{V}_{\varepsilon,x_j} - \frac{1}{2} \int\limits_{\Omega} U^q_{\varepsilon,x_j} \hat{V}_{\varepsilon,x_j} \\ &= \frac{1}{2} \int\limits_{\Omega} U^p_{\varepsilon,x_j} (U_{\varepsilon,x_j} - C\varepsilon^{\alpha}) - \frac{1}{2} \int\limits_{\Omega} U^q_{\varepsilon,x_j} (U_{\varepsilon,x_j} - C\varepsilon^{\alpha}) \\ &= \frac{1}{2} \int\limits_{\Omega} U^{p+1}_{\varepsilon,x_j} - \frac{1}{2} \int\limits_{\Omega} U^{q+1}_{\varepsilon,x_j} + O(\varepsilon^{N+\alpha}) \\ &= \frac{1}{2} \varepsilon^N \int\limits_{\mathbb{R}^N} (U^{p+1} - U^{q+1}) + O(\varepsilon^{N+\alpha}). \end{split}$$

Similarly we have

$$\frac{1}{p+1} \int_{\Omega} (\hat{V}_{\varepsilon,x_j})_{+}^{p+1} = \frac{1}{p+1} \int_{\Omega} U_{\varepsilon,x_j}^{p+1} + O\left(\varepsilon^{\alpha} \int_{\Omega} U_{\varepsilon,x_j}^{p}\right)$$
$$= \frac{1}{p+1} \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{p+1} + O\left(\varepsilon^{N+\alpha}\right),$$
$$\frac{1}{q+1} \int_{\Omega} \left(\hat{V}_{\varepsilon,x_j}\right)_{+}^{q+1} = \frac{1}{q+1} \varepsilon^{N} \int_{\mathbb{R}^{N}} U^{q+1} + O\left(\varepsilon^{N+\alpha}\right),$$

219

D Springer

and

$$\frac{1}{q+1} \int_{\Omega} (Q-1) \left(\hat{V}_{\varepsilon,x_j} \right)_{+}^{q+1} = \frac{1}{q+1} \int_{\Omega} (Q(x) - Q(x_j)) \left(\hat{V}_{\varepsilon,x_j} \right)_{+}^{q+1} + \frac{1}{q+1} (Q(x_j) - 1) \int_{\Omega} \left(\hat{V}_{\varepsilon,x_j} \right)_{+}^{q+1}.$$
 (8.2)

To estimate the first term, we decompose $\Omega = B_{\varepsilon R}(x_j) \cup (\Omega \setminus B_{\varepsilon R}(x_j))$ and using Taylor's theorem on Q we have,

$$\int_{\Omega} (Q(x) - Q(x_j))(\hat{V}_{\varepsilon,x_j})_+^{q+1} = \int_{B_{\varepsilon R}(x_j)} (Q(x) - Q(x_j))(\hat{V}_{\varepsilon,x_j})_+^{q+1} + \int_{\Omega \setminus B_{\varepsilon R}(x_j)} (Q(x) - Q(x_j))\left(\hat{V}_{\varepsilon,x_j}\right)_+^{q+1} \le C\varepsilon^{N+1} + C\varepsilon^{\alpha(q+1)}.$$

To estimate the second term in (8.2) we use

$$(\mathcal{Q}(x_j) - 1) \int_{\Omega} \left(\hat{V}_{\varepsilon, x_j} \right)_{+}^{q+1} = (\mathcal{Q}(x_j) - 1) \varepsilon^N \int_{\mathbb{R}^N} U^{q+1} + O\left(\varepsilon^{N+\alpha} \right)$$

Hence we have

$$\begin{split} I_{\varepsilon}\left(\hat{V}_{\varepsilon,x_{j}}\right) &= \frac{1}{2}\varepsilon^{N}\int_{\mathbb{R}^{N}} (U^{p+1} - U^{q+1}) - \frac{1}{p+1}\varepsilon^{N}\int_{\mathbb{R}^{N}} U^{p+1} \\ &+ \frac{1}{q+1}\varepsilon^{N}\int_{\mathbb{R}^{N}} U^{q+1} + (Q(x_{j}) - 1)\frac{1}{q+1}\varepsilon^{N}\int_{\mathbb{R}^{N}} U^{q+1} + O\left(\varepsilon^{N+\min\{1,\alpha\}}\right) \\ &= \varepsilon^{N}\left[\left(\frac{1}{2} - \frac{1}{p+1}\right)\int_{\mathbb{R}^{N}} U^{p+1} - \left(\frac{1}{2} - \frac{1}{q+1}\right)\int_{\mathbb{R}^{N}} U^{q+1}\right] \\ &+ (Q(x_{j}) - 1)\frac{1}{q+1}\varepsilon^{N}\int_{\mathbb{R}^{N}} U^{q+1} + O\left(\varepsilon^{N+\min\{1,\alpha\}}\right). \end{split}$$

On the other hand, we know that for $i \neq j$

$$U_{1,\frac{x_i-x_j}{\varepsilon}} = U\left(\frac{|x_i-x_j|}{\varepsilon}\right) + O\left(\varepsilon^{\alpha}\right)$$

D Springer

and using Remark 5.2,

$$\begin{split} \frac{\varepsilon^2}{2} \sum_{i \neq j} \int_{\Omega} D\hat{V}_{\varepsilon,x_i} D\hat{V}_{\varepsilon,x_j} &= \frac{1}{2} \sum_{i \neq j} \int_{\Omega} \left(U_{\varepsilon,x_j}^p - U_{\varepsilon,x_j}^q \right) \hat{V}_{\varepsilon,x_i} \\ &= \frac{1}{2} \sum_{i \neq j} \int_{\Omega} \left(U_{\varepsilon,x_j}^p - U_{\varepsilon,x_j}^q \right) U_{\varepsilon,x_i} + O(\varepsilon^{N+\alpha}) \\ &= \frac{\varepsilon^N}{2} \sum_{i \neq j} \int_{\mathbb{R}^N} \left(U^p - U^q \right) U_{1,\frac{x_i - x_j}{\varepsilon}} + O\left(\varepsilon^{N+\alpha}\right) \\ &= \frac{\varepsilon^N}{2} \sum_{i \neq j} \int_{\mathbb{R}^N} \left(U^p - U^q \right) U_{1,\frac{x_i - x_j}{\varepsilon}} + O\left(\varepsilon^{N+\alpha}\right) \\ &= C\varepsilon^N \sum_{i < j} U\left(\frac{|x_i - x_j|}{\varepsilon}\right) + O\left(\varepsilon^{N+\alpha}\right). \end{split}$$

Similarly

$$\begin{split} \int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j}} \right)^{q+1} &= \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}} \right)^{q+1} + O\left(\int_{\Omega} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j}} \right)^{q} \varepsilon^{\alpha} \right) \\ &= \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}} \right)^{q+1} + O\left(\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}} \right)^{q} \varepsilon^{\alpha} \right) \\ &= \int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_{j}} \right)^{q+1} + O(\varepsilon^{N+\alpha}). \end{split}$$

If we note that

$$\begin{aligned} &||a+b|^{q+1} - |a|^{q+1} - |b|^{q+1} - (q+1)a^q b - (q+1)ab^q| \\ &= O(1)a^{\frac{q+1}{2}}b^{\frac{q+1}{2}} & \text{if } 1 < q < 2 \\ &||a+b|^{q+1} - |a|^{q+1} - |b|^{q+1} - (q+1)a^q b - (q+1)ab^q| \\ &= O(1)|a|^q |b| + O(1)|a||b|^q & \text{if } q \ge 2 \end{aligned}$$

and the decomposition technique used in Lemma 7.1, we find that

$$\int_{\Omega} \left(\sum_{j=1}^{k} U_{\varepsilon, x_j} \right)^{q+1} - \sum_{j=1}^{k} \int_{\Omega} U_{\varepsilon, x_j}^{q+1}$$
$$= \int_{\Omega} \left(\sum_{j=2}^{k} U_{\varepsilon, x_j} \right)^{q+1} - \sum_{j=2}^{k} \int_{\Omega} U_{\varepsilon, x_j}^{q+1} + (q+1) \int_{\Omega} \left(\sum_{j=2}^{k} U_{\varepsilon, x_j} \right)^{q} U_{\varepsilon, x_1}$$

D Springer

$$+(q+1)\int_{\Omega} U_{\varepsilon,x_{1}}^{q} \sum_{j=2}^{k} U_{\varepsilon,x_{j}} + O\left(\varepsilon^{N+\alpha}\right)$$
$$= (q+1)\sum_{i< j} \int_{\Omega} U_{\varepsilon,x_{j}}^{q} U_{\varepsilon,x_{i}} + \varepsilon^{N} O\left(U^{1+\lambda}\left(\frac{|x_{i}-x_{j}|}{\varepsilon}\right) + \varepsilon^{\alpha}\right).$$

As a result we obtain

$$\int_{\Omega} F\left(\sum_{j=1}^{k} U_{\varepsilon,x_{j}}\right) - \int_{\Omega} \sum_{j=1}^{k} F(U_{\varepsilon,x_{j}}) = \left\{\int_{\Omega} F\left(\sum_{j=1}^{k} U_{\varepsilon,x_{j}}\right) - \int_{\Omega} \sum_{j=1}^{k} F(U_{\varepsilon,x_{j}}) - \sum_{i\neq j} F(U_{\varepsilon,x_{j}}) U_{\varepsilon,x_{i}}\right\} - \sum_{i\neq j} f(U_{\varepsilon,x_{j}}) U_{\varepsilon,x_{i}} = \sum_{i\neq j} f(U_{\varepsilon,x_{j}}) U_{\varepsilon,x_{i}} + O\left(\varepsilon^{N+\alpha}\right) + \varepsilon^{N} O\left(U^{1+\lambda}\left(\frac{|x_{i}-x_{j}|}{\varepsilon}\right) + \varepsilon^{\alpha}\right).$$
(8.3)

where $f(u) = u^p - u^q$ and $\lambda > 0$. Now let us estimate

$$\begin{split} &\int_{\Omega} (\mathcal{Q}-1) \left\{ (\sum_{j=1}^{k} U_{\varepsilon,x_j})^{q+1} - \sum_{j=1}^{k} U_{\varepsilon,x_j}^{q+1} \right\} \\ &= \int_{\Omega} (\mathcal{Q}(x) - \mathcal{Q}(x_i)) \left\{ \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q+1} - \sum_{j=1}^{k} U_{\varepsilon,x_j}^{q+1} \right\} \\ &+ (\mathcal{Q}(x_i) - 1) \int_{\Omega} \left\{ \left(\sum_{j=1}^{k} U_{\varepsilon,x_j} \right)^{q+1} - \sum_{j=1}^{k} U_{\varepsilon,x_j}^{q+1} \right\} \\ &= \varepsilon^N \mathcal{O} \left(\sum_{i=1}^{k} |\mathcal{Q}(x_i) - 1|^2 + \sum_{i < j} U^{1+\lambda} \left(\frac{|x_i - x_j|}{\varepsilon} \right) + \varepsilon^{\min\{1,\alpha\}} \right). \end{split}$$

We have used the fact that

$$(\mathcal{Q}(x_i) - 1) \int_{\Omega} \left\{ \left(\sum_{j=1}^{k} U_{\varepsilon, x_j} \right)^{q+1} - \sum_{j=1}^{k} U_{\varepsilon, x_j}^{q+1} \right\}$$
$$= \varepsilon^N O\left(|\mathcal{Q}(x_i) - 1| + \varepsilon \right) \sum_{i < j} U\left(\frac{|x_i - x_j|}{\varepsilon} \right)$$
$$= \varepsilon^N O\left(|\mathcal{Q}(x_i) - 1|^2 + \sum_{i < j} U^2 \left(\frac{|x_i - x_j|}{\varepsilon} \right) + \varepsilon \right). \tag{8.4}$$

This proves the result.

Proof [Proof of Theorem 1.2] Define

$$G_{\varepsilon}(x) = I_{\varepsilon}\left(\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_{j}} + \omega_{\varepsilon,x}\right)$$

and consider the problem

$$\min_{x\in D_{k,\varepsilon}}G_{\varepsilon}(x).$$

To prove that $\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} + \omega_{\varepsilon,x}$ is a solution of (6.1), we need to prove that x is a critical point of $G_{\varepsilon}(x)$.

For any $x \in D_{k,\varepsilon}$, we have from Lemma 8.1,

$$G_{\varepsilon}(x) = I_{\varepsilon} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j}} \right) + O(\|I_{\varepsilon, x}\|_{\varepsilon} \|\omega_{\varepsilon, x}\|_{\varepsilon} + \|\omega_{\varepsilon, x}\|_{\varepsilon}^{2} + R_{\varepsilon}(\omega_{\varepsilon, x}))$$

$$= I_{\varepsilon} \left(\sum_{j=1}^{k} \hat{V}_{\varepsilon, x_{j}} \right) + \varepsilon^{N} O\left(\varepsilon^{\frac{2\gamma\tau}{\min[q, 2]} + \kappa}\right)$$

$$= k\varepsilon^{N} c - c_{1}\varepsilon^{N} \sum_{i < j} U\left(\frac{|x_{i} - x_{j}|}{\varepsilon}\right) + c_{2}\varepsilon^{N} \sum_{i=1}^{k} (Q(x_{i}) - 1)$$

$$+ \varepsilon^{N} O\left(|Q(x_{i}) - 1|^{2} + U^{1+\lambda} \left(\frac{|x_{i} - x_{j}|}{\varepsilon}\right) + \varepsilon^{\min[\alpha, 1]}\right)$$

$$+ \varepsilon^{N} O\left(\varepsilon^{\frac{2\gamma\tau}{\min[q, 2]} + \kappa}\right). \tag{8.5}$$

Let $x_{\varepsilon} \in D_{k,\varepsilon}$ be a point of minimum of G_{ε} in $D_{k,\varepsilon}$. Choose $\tilde{x}_{\varepsilon} = (\tilde{x}_{\varepsilon,1}, \dots, \tilde{x}_{\varepsilon,k})$ such that

$$|\tilde{x}_{\varepsilon,j}-z_j| \le \varepsilon^{\frac{1}{2}} \qquad j=1,2,\ldots,k$$

and

$$|\tilde{x}_{\varepsilon,i} - \tilde{x}_{\varepsilon,j}| \ge \frac{1}{2k}\sqrt{\varepsilon} \quad i \ne j.$$

Then we have $U\left(\frac{|\tilde{x}_{\varepsilon,i}-\tilde{x}_{\varepsilon,j}|}{\varepsilon}\right) \leq C\varepsilon^{\frac{\alpha}{2}}$ for $i \neq j$ and the mean value theorem yields

$$|\mathcal{Q}\left(\tilde{x}_{\varepsilon,i}\right)-1| \leq C |\tilde{x}_{\varepsilon,i}-z_i|^2 \leq C\varepsilon \quad i=1,2,\ldots,k.$$

Thus $\tilde{x}_{\varepsilon} \in D_{k,\varepsilon}$.

Hence it follows from (8.5) that

$$G_{\varepsilon}\left(\tilde{x}_{\varepsilon}\right) = ck\varepsilon^{N} + \varepsilon^{N}O\left(\varepsilon^{\frac{2\gamma\tau}{\min[q,2]}+\kappa}\right).$$
(8.6)

But since $G_{\varepsilon}(\tilde{x}_{\varepsilon}) \ge G_{\varepsilon}(x_{\varepsilon})$ we have from (8.5) and (8.6)

$$-c_1 \sum_{i < j} U\left(\frac{|x_{\varepsilon,i} - x_{\varepsilon,j}|}{\varepsilon}\right) + c_2 \sum_{i=1}^k (\mathcal{Q}(x_{\varepsilon,i}) - 1) \le O\left(\varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}} + \kappa}\right).$$

Thus we have

$$0 \le Q(x_{\varepsilon,i}) - 1 \le O\left(\varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}} + \kappa}\right) \qquad i = 1, 2, \dots, k$$

and

$$-U\left(\frac{|x_i - x_j|}{\varepsilon}\right) \le O\left(\varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}}+\kappa}\right) \quad i \neq j.$$

This implies

$$U\left(\frac{|x_i - x_j|}{\varepsilon}\right) \le O\left(\varepsilon^{\frac{2\gamma\tau}{\min\{q,2\}} + \kappa}\right) \qquad i \neq j.$$

Hence x_{ε} is an interior point of $D_{k,\varepsilon}$ and hence is a critical point as required. It easily follows $\sum_{j=1}^{k} \hat{V}_{\varepsilon,x_j} + \omega_{\varepsilon,x}$ is a positive solution of (1.3). This finishes the proof.

Remark 8.2 Consider the problem,

$$\begin{cases} -\varepsilon^{2} \operatorname{div} (a(x)\nabla u) = u^{p} - Q(x)u^{q} & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(8.7)

where *a* is a smooth function satisfying $a(x) \ge \mu > 0$ in Ω . Note that for some $x_0 \in \mathbb{R}^N$, the limiting problem to (8.7) is

$$\begin{cases} -a(x_0)\Delta u = u^p - Q(x_0)u^q & \text{in } \mathbb{R}^N \\ u > 0 & \text{in } \mathbb{R}^N \\ u(x) \to 0 & \text{as } |x| \to +\infty \end{cases}$$
(8.8)

By a change of variable of the form $u(x) = Q^{\frac{1}{p-q}}(x_0)v\left(\frac{Q^{\frac{p-1}{2(p-q)}}(x_0)}{a^{1/2}(x_0)}x\right)$, then v satisfies the problem (1.4). Define $\zeta : \Omega \to \mathbb{R}$ by

$$\zeta(x) = \frac{Q^{\frac{N(p-1)+2(p+1)}{2(p-q)}}(x)}{a^{\frac{N}{2}}(x)}$$

in Ω . Let ζ has k isolated local minima. Then using the results of Theorem 1.2 it seems likely that one can show that for sufficiently small $\varepsilon > 0$, there exists a positive solution u_{ε} having k peaks with each peak concentrating at a local minima of ζ .

References

- 1. Bandle, C., Flucher, M.: Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U = e^U$ and $\Delta U = U^{(n+2)/(n-2)}$. SIAM Rev. **38**(2), 191–238 (1996)
- Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)
- Dancer, E.N.: On the positive solutions of some singularly perturbed problems where the nonlinearity changes sign. Top. Methods Nonlinear Anal. 5(1), 141–175 (1995)
- 4. Dancer, E.N.: Some notes on the method of moving planes. Bull. Austral. Math. Soc. **46**(3), 425–434 (1992)
- Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

- Del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)
- Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)
- Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)
- Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. PDE 8(6), 883–901 (1981)
- Flucher, M., Wei, J.: Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z. 228(4), 683–703 (1998)
- 11. Kwong, M. K., Zhang, L.: Uniqueness of the positive solution of $\Delta u + f(u) = 0$ in an annulus. Differ. Int. Equ. 6, 588–599 (1991)
- 12. Li, Y., Ni, W.M.: Radial symmetry of positive solutions of a nonlinear elliptic equations in \mathbb{R}^N . Commun. PDE **18**(4), 1043–1054 (1993)
- Ni., W. M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48(7), 731–768 (1995)
- Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44(7), 819–851 (1991)
- Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993)
- Yong-Geun, Oh.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)
- Yong-Geun, Oh.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)_a. Commun. PDE 13(12), 1499–1519 (1988)
- Trudinger, N.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)
- Wang, X.: On concentration of positive bound states of nonlinear Schrodinger equation. Commun. Math. Phys. 153, 229–244 (1993)