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Abstract We discuss the asymptotic behavior of the least energy solution of a Dirich-
let problem in the zero mass case. If Q is a uniformly positive potential having k isolated
local minima, then we prove the existence of a positive multi-spike solutions having k peaks
concentrating at each local minima of the potential.
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1 Introduction

There has been considerable interest in understanding the behavior of positive solutions of
the elliptic problem

‘—ezAu = f(x,u) in Q (.

u=20 on 02

where ¢ > 0 is a parameter, f is a superlinear function and €2 is a smooth bounded domain in
RN. Let F(x,u) = f(;‘ f(x, t)dt. We consider the problems in the zero mass case i.e. when
f(x,0) =0and f,(x,0) = 0. Let f(x,u) = f(u). Then problem (1.1) can be viewed as
borderline problems because if f'(0) > 0, there is no non-trivial solutions for small & > 0
Berestycki and Lions [2] proved the existence of ground state solutions if f(u) behaves
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186 E. N. Dancer, S. Santra

like |u|? for large u and |u|? for small u where p and ¢ are supercritical and subcritical,
respectively.
In this paper we consider the problems,

—&2Au=uP —u? in Q

u>0 in Q (1.2)
u=~0 on 082,
—&2Au=u? — Q(x)ud in Q
u>0 in Q (1.3)
u=20 on 092

where | < g < p < %,Nz?)andQ(x) > b > 0 forall x € 2, Q is bounded and

smooth. Let U be a solution of

—Au= uP —ud in RN

u> 0 in RN
u—0 as |x| - oo (14
ue CXRM).

By [12] and [11], U is radial and unique. Locating the points of concentration is important
because they provide a concrete way of understanding the geometry of a class of solutions.
In this paper, we study problems concerning the asymptotic behavior of the mountain pass
solution and existence of multi-peak solutions for ¢ > 0 sufficiently small. Let N > 3 and
q* = % The exponent g* is somewhat critical to the problems considered above. Then

Theorem 1.1 Consider the problem (1.2). For q > g*, there exists &g > 0 such that for
every 0 < € < &, there exists a least energy positive solution u, € HOl (R2) of the problem
and ug has a unique point of maximum x.. Then u, concentrates at a minima of ¥ (x), where

Yy satisfies,

(1.5)

—AYy, =0 in Q
Yy = ———  on 9.

[x—y|N =2

Hence u, concentrates at a harmonic center of Q.

Note that in the case ¢ = 1, the least energy solution to the problem (1.2) has a unique
maxima x; as € tends to zero u, decays exponentially away from x, and d(x;, 0Q2) —
max,cq d(x, d€2). This implies that the solution concentrates at an interior point furthest
from the boundary of 2. This was studied by Ni and Wei [13]. Later Flucher and Wei [10],
proved that if f(u) = (u — l)i, then the least energy solution of (1.1) concentrates at the
harmonic center of €. Note that harmonic center in general is different from the point of
maximal distance from the boundary. With a slight modification of our proof we can prove
that results of Theorem 1.1 holds for the nonlinearity

m
fu) =ul — ZCjqu
j=1

where | < ¢g; < p,c; >0andm e N.
Leta = max{%, N — 2}. We have the following result:

Theorem 1.2 Consider the problem (1.3) and assume q # g*. Let Q has k isolated local
minima in Q say 71, 22, - - ., Zk- Lhen, there exists g > 0 such that for every 0 < ¢ < &,
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Singular perturbed problems in the zero mass case 187

there exists a positive solution u, € HO1 (R2) to the problem (1.2) possessing exactly k max-
ima xg j € Q such that x; ; — zj for j = 1,2,...,k and there exists a constant C > 0
independent of ¢, Q such that

811

ue(x) < C——
|x _xs,j|

away from z;.

In the case ¢ = 1, the existence of a single spike solution first studied by Floer and
Weinstein [8]. When 2 = R and f(u) = >, they constructed a single spike solution con-
centrating around any given non-degenerate critical point of the potential Q. Later Yong-Geun
[16,17], extended the result of Floer and Weinstein in the higher dimensional case. Wang
[19] showed that the mountain pass solution concentrate around a global minimum point of
Q. When Q = R", Del Pino and Felmer [5], proved an analogue of Wang’s result imposing
the condition on Q that there exists a bounded domain A with

inf inf Q.
H/{Q<lanAQ

They then prove that the above problem has a solution concentrating around a minimum of Q
in A. Moreover, in [6,7] they proved the existence of multi-peak solutions concentrating near
any finite set of local minima of a uniformly positive potential. Problem (1.2) was studied by
Dancer [3] in domains having some kind of symmetry. In fact, he proved that for sufficiently
small ¢ > 0, the positive solution is unique. Note that the positive solutions we obtain are
concentrating exactly at the local minima of V. Our main contribution is to cover the case
where g > 1. Before proving the main theorems, we look in to the difficulties associated
with the problem.

The solution of (1.4), U € DM2(RN) N L4+ (RY) and U decays algebraically.
Since our proof requires nondegeneracy results and U € D"2(RV) N LITH(RY), we
work in the larger space D''2(RV).

e Approximate solution to U may not be positive in €2 in the Dirichlet case. In the case
the problem (1.2) with Neumann boundary conditions, the approximate solution to U is
positive and satisty

(1.6)

9Ze _ ¢ on 9%

{—sZAZS +qUiT'Ze = UL + (g - DUS in @
v

where U, is a re-scaled version of U and one expects to obtain similar results to [14]
and [15].

e  Most surprising fact is the existence of the exponent ¢g* such that for all ¢ € (1, g*], the
asymptotic behavior of least energy solution of problem (1.1) cannot be studied by our
method. The natural question arises, is it possible to obtain a higher order expansion for
the case ¢ € (1, ¢*]? This runs into a major problem as U9~ ! is not integrable at infinity.
In fact, for ¢ = ¢*, we expect the entire solution U to satisfy U ~ r—N=2 (log r)~ "7
asr — 0o.

e The reduction method could in principle be applied to Q = 1, but it seems difficult to
determine the location of peaks by our method.

e Finally note that we cannot extend Theorem 1.2 to unbounded domains. The main reason
for that is we cannot obtain good boundary estimates as (7.7).
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188 E. N. Dancer, S. Santra

2 Preliminaries

Let us modify the problem (1.2) to

—&2Au = whH? —whH)? in Q
u>0 in Q (2.1)
u=>0 on 0%2.

It is easy to show that any solution of (2.1) is positive and is in fact a positive solution to
(1.2). Note that the associated functional to the problem (1.2) is

&2 1 1
b, (u) = / (?|Vu|2 _ m(qu)IHLI + q?(bﬁ)qﬂ) dx
Q

Note that @, satisfies Palais Smale condition and all the conditions of the mountain pass
theorem and hence there exist a mountain pass solution #, > 0 and a mountain pass critical
value

0 = inf max & t
< Ce inf, max, (v (1))

where
I ={y e C([0,1], Hy(@) : y(0) = 0, y(1) # 0, (¥ (1)) < 0}.
With a change of variable the problem (1.2) takes the form
—Au=uf —u? in Q

u>0 in Qg 2.2)
u=>0 on 082

where €2, is a re-scaled version of 2. The functional associated to the problem (2.2) is
1 1 1
1 — Z|\v 2 _ © oyl (gt d
e (u) /(2| ul p+1(u) +q+1(u) X

Qe

Note that I,(0) = 0, I, (tu) — —o0 ast — 400 and I, satisfies the Palais Smale con-
dition on HO1 (£2). Hence, we obtain a positive solution v, for each ¢ > 0 obtained by the
mountain pass theorem. Then the mountain pass critical value b, is given by

b, = inf 1, t
. Vlgrg zrerf&)i] (v (1))

where

Te = {y € C(10. 11, H} () : ¥(0) = 0, (1) # 0, L (¥ (1)) <0}

Note that as 0 is a strict local minima of /I, by > 0, Ve > 0. Also note that ®,(u) =
eV I (1) which implies that ¢, = eNb,. Let

Qe

N (@) = Jue HE (@) / Vul + / W+ = / wWhyr+!
Qe Qe

Lemma 2.1 We have for all ¢ > 0

b, = inf max I.(y())= inf [ (u)= inf max I (tu).
y€le 1€[0,1] UEN () ueH} (e),uz0 120
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Singular perturbed problems in the zero mass case 189

Proof For the sake of completeness we prove this well-known lemma. Let ¢ > 0 be fixed.
First note that

inf max I,(y(t)) < inf max . (tu) 2.3)
yels tel0,1] H()I(Qe) >0

We first claim that inf,cnr (@) Ie (1) = infueHO] (Q,) MaX=0 I (tu). Define h(t) = I.(tu).
Then as discussed earlier and due to the nature of the nonlinearity we have 2(0) = 0, h(¢) > 0
forsmall# > Oand h(z) < Ofort > O sufficiently large. Hence max;¢[o, +-o0)/1(?) is achieved.

Also note that 4'(¢t) = 0 implies ||u||H Loy = g(t) where
g(t) _ tp 1/ ( )P+1 [q_l / (u+)q+l )
Qe Qe

It is easy to see that g is an increasing function of + whenever g(¢) > 0. Thus there exists
a unique ¢ such that |u|| Hl©@ = g(t). Hence there exist a unique point 6 (u) such that
K (@wu) = 0 and O(u)u € N (). This implies that N, (€2,) is radially homeomorphic
to HOl (2:)\{0} if we prove that 0 : HOl (2:)\{0} — R is continuous. In order to do so let
Uy — uin HY (Q)\{0}. Then u, — u in Hy (Q) and u, — u in L7 () for all r < 143
and

/ Vun? = 077 (uy) / ()" =09 ) / ()" 24)
Qb‘ Qe QE

which proves there exist constants m > 0 and M > 0 independent of n such that m <
0(u,) < M. By passing to the limit in (2.4) the whole sequence {6 (u,)} converges as u, is
convergent and hence 0 (u) = 6y where Oyu € N, which proves our claim.

Next, we claim that inf, e, max;e[o,1] Ie (¥ (t)) = inf,enr (@,) Le(u). It is easy to see that
infy er, max;cpo,17 I (¥ (t)) > inf,enr (q,) Ie (1) by (2.3). It is enough to prove that any y €
', intersects N;. Note that I (1) > 0 for ||u||H01 @ sufficiently small and I.(y (1)) < O
which implies the required result. O

Lemma 2.2 There exists a C > 0 independent of € such that b, < C for sufficiently small ¢.
Hence along a subsequence b, converges as ¢ — 0.

Proof Let ¢1 > 0 be the eigenfunction corresponding to the first eigenvalue A; of —A
in Q with respect to the zero Dirichlet boundary conditions. Let fQ <p]2 = 1. Note that
supp ¢1 C Q C €2, for sufficiently small €. Choose at > 0 such that I, (t¢1) < 0. We claim
that in fact ¢ is uniformly bounded. We have

1 2
I (tp1) = §|Vf901| -

1
t p+1 - (¢ qg+1 d
l(qm) +q+1(§01) X

Qe

1 [p-H ,

=)»1f2§/‘/’12 / / .
p+1

QS £
SIS P Lk / /
=2 /T

Q Q
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190 E. N. Dancer, S. Santra

which implies 17~! < C. Now the right-hand side is independent of €. Since p > ¢ > 1, we
can find > 0 such that I, (f¢1) < O for all &£ small. Now

b, = inf max I, (y(t
e = inf max I (y ().

Define y; : [0, 1] — HO1 (L2,) such that y; (1) = rfp;. Hence we have

b, < I 1) <C
e S max, (1) =
where C > 0 independent of ¢, as required. O

Lemma 2.3 The function Y (y) is positive and continuous in Q x Q. Also ¥y (x) — 400
asdist(x,02) — 0.

Proof The result can be found in Bandle and Flucher [1]. O
As a result,

h(x) = ¥ (x)

is strictly positive in €2, locally bounded and i (x) — 400 as x — 9€2. Hence it achieves a
minimum in the interior of .

Remark 2.4 Since

b= inf I.(u)=1I;(v
I e(u) = I¢ (ve)

_ (-1 v +1
ba—ls(va)—( )/l €|+(q+l p+])/vé’ (2.5)

&

we have

which implies that [o, [V, |2, Jo, v vP ! and Jo. v are uniformly bounded. First note that

from (1.2), max,eq ue > 1. Also note that by Gidas- Spruck [9] we obtain ||v, Loy < C

and from Schauder estimates, it follows that there exists C > 0 such that ||v, || 2.6 RNy <C
[()c

for some 0 < B < 1. Hence by the Ascoli-Arzela’s theorem there exists an U # 0 such that
lve — U||C120L_(RN) — 0 ase — 0.

Blowing up around z, (where z. is a point of maximum of v,) we easily see by a limit
argument and the strong maximum principle U satisfies (1.4). (That U — 0 as [x| — +oo
will be proved in the next section.) The only case we have difficulty is if z, is within order 1
of 9€2;. In this case, we obtain a non-trivial solution of the half space problem.

—Au =uP —u? in Rﬁ
u=>0 on yy =0 (2.6)
ue C?(RY)

Suppose U is a solution of (2.6) which achieves its maximum, then by [4] it follows that
gyl//v in RY and hence U cannot achieve a maximum, a contradiction. Using the above
argument, it is easy to show that d(z., 02¢) — +o00 as ¢ — 0. We call U to be the entire

solution.
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Singular perturbed problems in the zero mass case 191

3 Asymptotics of the entire solution

Lemma 3.1 Then U satisfies
VU € L>RY), U e LP*'(RN) and U e LT RY).
Moreover,

Iim U(x) =0,

|x]— 400

and U is radially decreasing about the origin, U is the unique positive decaying solution
of (1.4). For q # q*,

1
U(r)N,Tx
asr — —l—oowhereoz:max{qzj,N—Z}.

Proof Note that from (2.5) it follows easily that [py VU2, Sy UP*t! and Sy Uat! are
finite. Hence applying one sided Harnack inequality [18], we have

1/g+1

max U <c¢ / Ut
B (x)
By (x)

where x € RY is an arbitrary point and ¢ is a constant depending on N. Hence we have
Ux)— 0 as|x] > 400

Applying the result in [12], we obtain that U is radial. The uniqueness of U follows from
[11]. Also note that —U,, — =LU, = (UP —U%), U(0) > 1 and hence for large r, Uy > 0,
which implies that U, is increasing and hence lim,_, ;o |U,| = U, (0) = 0.

First, we obtain the decay for the case « = N — 2. Consider the problem Au; = 0 in
RN\BR(O). Let u; = r~“~2 and hence there exist C > 0 such that U — Cu; < 0 in

dBg and

—AU = Cuy) <0 in RM\Bg

and U — Cr~ V=2 — 0asr — +oo. Note that if U — Cu, is positive somewhere on
RN \Br(0), it has a positive maxima which contradicts the fact that A(U — Cu;) > 0 in
RN\ Bg(0). Hence U < Cr2~N in RN\ Bg.

In the case ¢ < %, we claim that there exists a C; > 0 such that Cir~ T > U(r) for
r sufficiently large. Define

2

1 1 1
H(r) == (U) + ——urt' - ——yat!
2 p+1 qg+1

Then H (r) is a decreasing function. For large r, U’(r) is small and hence it follows that
H(r) — 0asr — +4o0. Note that H(r) > 0 and hence for large  we have

2
\U'(r* > (ﬁ - e) Uit
q
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192 E. N. Dancer, S. Santra

for some € > 0 small and hence

>k

o)

- 2
Hence we have U 5t > kr for large r which implies that U < Cyr~ -1 for large r.
Define v(r) = U (r)r*. Then v is bounded and satisfies

oy - 222D, GNERED, ety im0 @
that is
oyt 1= 2ra -, _ew —j"‘ — 2 el yp 4 -0
where @« = max {%, N — 2}. For N > 3 we use the transformations r = elN—Z’Tll and

w(t) = v(r) in the above equation, we have

w’(t) = a(N —2a — 2)(N — 20 — 1) 2w

5 Crel—pIN-2u-1)
—(N —2a —1)7%¢ W-2T w?
_, @ra(—gIV-20-1)
+(N =20 —1)""e IN=2a—T] w? (3.2)

Let g(7) be the right-hand side of (3.2). Note that (N —2¢—2) < 0 and (”““l 1;‘1_)2'{:_*12‘“*””
< 0, hence w” has definite sign after a certain stage and hence lim,_, ; ow'(t) = [ (where
[ may be +00). For the case I > 0 and / < 0 we can deduce that w(t) — -+oo and
w(t) — —oorespectively ast — +o0o which contradicts the fact that w (¢) is bounded. There-
fore, w'(t) — O0ast — +o0o. Now g(¢) is integrable and as a result w’ () = — ffoo g(s)ds.
Hence w’(#) has definite sign after a certain stage and hence we conclude that there exists
/> 0 such that

lim w(t) = u.
 Jim ) =mn

We claim that when o = ﬁ, then u > 0. If u = 0, then by (3.2), w”(¢) < 0 forz > 0.
Thus there exists #, large such that w'(f;) < 0. Note that w(¢) > 0 in (0, +00). Hence
w'(t) < w'(fz) < 0 fort > rp and this implies w(t) — —oo as t — +00, a contradiction.
Hence 1 > 0.

Fora = N —2,and N > 3, we use the same technique as above to obtain u > 0.

For N = 3, note that (N — 2a — 1) = (N — 3) = 0 and hence (3.1) reduces to

1
Upr + 721) — pU=pyr _ (=9 ya

Hence we obtain forr > 0, v, < 0as r% > (. This implies that lim,_, y 5, v, = 0 by similar
argument to above. Hence

+oo
1 1 1
v (r) = — / (S—zv(s) + N vP(s) — P Uq(S)) ds.

r

As aresult v, has a definite sign and hence lim, _, ; o v(r) exists. Applying the same technique
as in the case o = q—%l we obtain lim,_, oo U (r) > 0. O
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Singular perturbed problems in the zero mass case 193

Corollary 3.2 Asr — 400 we have,

 ifa=
|Up| ~ rl . 2
if o = qu

=

-2
(3.3)
rea=T
Proof Since #N-1u,), is positive after a certain stage, which implies that N -1 U,) is
increasing after a certain stage lim,_ 400 7V '|U,| = [ exists finitely as the right-hand
side is integrable if ¢ # ¢*; and non-zero when ¢« = N — 2. (Otherwise it will contradict
Lemma 3.1.) Hence 0 < [on (U? — U%)dx < +00 as lim, _, for P —UsNdr =
lim, s 400 PN U =[5 (UP — U9 rN1dr. As aresult Uy | ~ r~ V=D as r — +oo.
When o = q%l, then ¥ ~D U, (r) = 0. We have as r — +00

(erlUr) ~UdrN-1
r

and note that g > N and integrating we obtain

+00 +00 +0o0
—rN_lUrz/(sN_lUs) N/quN_IN/s_“q+N_1ds
N
r r r

which implies that

|Uy| ~ rmeath,
[}

Remark 3.3 Note that if g = g*, it is easy to show that in fact lim,_, 40 ¥V "1 U,| < 400.
Note that in fact the limit is zero since otherwise U™ is not integrable at infinity which
contradicts the fact that lim,_ oo ¥V~ '|U,| exists and thus lim,— 400 rN-2U = 0. Hence
Jpy Ufdx < +o0.
Remark 3.4 Let us define a space D = DL2(RN) N L4T1(RY). Define a norm on D as

1/2 1/g+1

lullp = /|w|2 + /|u|q+' VueD
RN RN

Note that (D, ||u||p) is a reflexive Banach space. We claim that D < LP+!(RV) is a con-
tinuous embedding provided p + 1 < % In order to prove this first note that there exists

0 < 0 < 1 such that ﬁ = q% + 12_*9 we have by interpolation and Sobolev inequality
0 1-6
Nl Lot < lleellpgen llell ) o
6 1-6
< Cllully g llull i
0 1-60
= Clullpliulp
= Cllullp. (3.4

Hence the embedding is continuous. Note thatas | < g < p < 2* — 1, by (3.4) follows that
U € D.Define I, : D — R as

1 1 1
co(u) /(2| ul P+1|u| + L]+1|u|

RN
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194 E. N. Dancer, S. Santra

Now we need to show that I, satisfies Palais Smale condition on D. Let u,, be a sequence
in D such that Ioo (u,) < C and I (up)u, = o(1)||uy || p. Then we obtain that u,, satisfies

- - N +1
( p—i—l)/l tnl +(q_|_1 p+1)/|”"|q =C+ o lunlp

Hence there exists C; > 0 such that

/IVMnIZﬂL/WnIqul =C+oD)llunlp

which implies that

/|Vun|2 < C+o)unllp
RN

/ a1 | = €+ o) llun o
RN
Hence
lunllp < min {(C + o(D)llunlp)/?, (C + o) |unllp)'/47"}

which implies that «,, is bounded in D.
In order to prove the Palais Smale condition we prove the following lemma.

Lemma 3.5 Let D, be the subspace of D consisting of radially symmetric functions. Then

D, — LPYYRYN) is a compact embedding provided 2 < p + 1 < %

Proof Suppose T is a bounded setin D,. Ifu € T,

[o.¢]
u(r) = —/u/(s)ds
"
and hence by Cauchy—Schwartz inequality, and the definition of the norm on D
() < Cr="",

where C > 0 is independent of u. Thus |u(r)| < € ifu € T and r > R. Hence

[e.¢] e.¢]
/|u(r>|f"“r”“ :/|u(r)|P“f|u<r)|‘f“rN‘1
R R
o0
<e [ WY < el
R

Now, we know that bounded sets in D, will converge strongly in LP+! (RV) on compact sub-
sets and hence we can use the usual diagonalization argument to obtain a strongly convergent
subsequence in L?+!(R") from a sequence in 7. O
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Singular perturbed problems in the zero mass case 195

As a matter of fact I, satisfies all the conditions of the mountain pass theorem in D,.
Hence there exists a ¢ > 0 such that

= inf max [ 1)) = inf max I (¢
€= Jer e oy (@) ueD, 10 oo (1)
where

I'={y e C(0,1]: Dy); y(0) = 0, Io(y (1)) = 0}

Hence there exists a positive radial solution of (1.4) obtained by the mountain pass theorem.
Hence by Lemma 2.2, U is a mountain pass solution of (1.4).

4 Kernel of A + pUP~! — qU?~! in D12 (RN)

Let U be the radial solution to (1.4). In this section, we want to prove that A+ pUP 1 —q U771
is Fredholm on D'2(RY). Let us write

¢ =D dr(r)Si(0)

k=1
where r = |x|,0 = I%I e SV1; and —Agn-18r = LSk where Ay = k(N — 2 + k);
k € Z* U {0} and whose multiplicity is given by My — My_ where My = ((lx,tkl;!}c)!! for

k > 2. Note that Ay = 0 has algebraic multiplicity one and A; = (N — 1) has algebraic
multiplicity N. Then ¢y satisfy an infinite system of ODE given by,

N -1
r

A
o+ o + (pU"‘1 —qUiT — r—’;) ¢ =0, re(0,o00) .1)

Also note that (4.1) has two linearly independent solutions z; x and z . Let
N —1 A
AL@) = 9"+ ——¢' + (pU'”‘1 —quiT! - r—ﬁ) ¢

Also recall that if one solution z; 4 to (4.1) is known, a second linearly independent solution
can be found in any interval where z; x does not vanish as

2 1-N
22,k(r) =Z1,1<(r)/z1’kr dr

where f denotes antiderivatives. One can obtain the asymptotic behavior of any solution z
as r — oo by examining the indicial roots of the associated Euler equation. Note that in the
case o = q%], the limiting equation becomes

r2¢" + (N = Dre' = (¢ + 3¢ =0 42)
where r2U?~! — ¢ > 0 asr — oo and when @ = N — 2, the limiting equation becomes
r?¢" + (N — Dr¢/ — aep =0 4.3)
whose indicial roots are given by

— _ 2 .
sz V(N=2) ;4(q§+xk) ifk£0
/(N—2)2
N;Z (N ? +4q¢ if k 0

Ky =
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196 E. N. Dancer, S. Santra

In this way we see that the asymptotic behavior is ruled by z(r) ~ r~* as r — +00; where
W satisfies the problem

luz—(N—zm—wcﬂk):o if o = 2 s
W= (N =-2u—2=0 ifa=N-2

Lemma 4.1 Ifk =0, Eq. (4.1) has no nontrivial solution in DLZ(RM),

Proof This follows exactly as in [11]. O

Lemma 4.2 [fk = 1, then all solutions of equation (4.1) are constant multiples of U’.

Proof In this case A = N — 1 and hence we have z;,1(r) = —U’(r) is a solution to the

problem (4.1) and is positive (0, 400). Hence we define
r
z1,2(r) = Zl,l(r)/ZLl(S)*zsl*Nds
1

Let us check how zj2(r) behaves at infinity. By Corollary 3.2, when « = N — 2 then
U, | ~ r1=V at infinity and hence zj 2(r) ~ r as r — 0o as a result z1 » does not belong to
D2 (RM).

Again when o = ﬁ, then |U,| ~ r~*9%! as r — oo and hence 1 2(r) ~ r®4—N+1

and

asaq > N, z12 ¢ D"?(RY). Hence any family of solutions of (4.1) is given by ¢ = cU’(r)
for some ¢ € R. O

Lemma 4.3 Ifk > 2, Eq. (4.1) admits only trivial solution in DV2(RN).

Proof We will show that if Ay (@) = 0, then ¢, = 0. Note that —U’ is a positive solution
of Aj. Let us study the first eigenvalue of the problem
Ai(p) =1 in RN
5 4.5)
fRN ¢° =1
We know from Lemma 3.1 that U, > 0 after a certain stage and wheno = N —2, U, ~ %N
and when o = qzj, U, ~ w%q as r — o0o. Note that if A; > 0, then fRN ¢ U’ = 0 and
hence there exists a point in R"Y such that ¢; changes sign. But ¢; is the first eigenfunction
corresponding to A1 and hence it has a definite sign. Hence A; < 0. Thus A is an operator
having no positive eigenvalues. Hence for k > 2, ¢y = k(N —2+4+k) — (N — 1) > 0. Now
k(N —24k) — (N — 1)1

A=Ay — 2

2
where 7 is the identity. Hence 0 = (— A (¢r), ¢x) > ck fRN % and as ¢ € C(RV), we have
¢k =0. O

Lemma 4.4 Ker (—A — pUP~! +qUI™1) = [w L, ] in DV2(@RM).

daxy > Oxy

Proof From the previous lemmas, we deduce that for any ¢ € Ker(—A — pUP~! +qU471),
then ¢ = U’(r)S; where S satisfies

—Agn-181 = A151.
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Now Ker(—Agn-1—A11)is N-dimensional and hence Ker(—Agv-1 —A1/) = span{Sy 1, ...,
S1.N} = span RN . Hence

Ker (—A — pUP™' +qU™") = span {U' (") S1.1, ..., U’ (r)S1 n}
U U
_span[a—m,...,m].

m}

Remark 4.5 Also note that there is always a nontrivial bounded radial solution to the lin-
earized equation. As a result, the operator is not nondegenerate in the space of bounded
functions.

5 Profile of spikes

Let z be a point of minimum of 4 in 2. Let us define U, ;(x) = U (XS;Z), then U, ; satisfies

—&2AU,, =Ul, —UZ, inRN )
Ug. >0 in RV, -
Also let Vg, . be the unique solution of
2AT p q :
—&e“AV, . =U; ;- U in
AE,Z &,2 &,2 (52)
Ve, =0 on 9%2.

Then by the maximum principle f/gyz < U ; in Q. Note that VE, . may not be a positive
solution of (5.2).

Lemma 5.1 For sufficiently small ¢ > 0,

Usz: — Ve = (C +0(1)e Y, (5.3)
for some constant C > 0.
Proof Subtracting (5.1) from (5.2) we have

_SzA (US,Z — ‘/}S,Z) = 0 in Q
Ue.z — Vs,z = U, onoQ.

5.4

Now U, ; = (|:x+—oz(|}’) €% on 0€2, by Lemma 3.1. Hence by the maximum principle and the defi-

nition of ¥, Uy — Ve, = (C+0(1)e Y, and U — Ve, (z+¢y) = (C +o(1) Y (z+ey)e®
in Q¢ ;. O

Remark 5.2 Note that from Lemma 3.1, we have U, ; ~ ¢%|x — z|™* when |x — z| is large.

Forag > N,
1 1 1
Juert = [ verts fuer

RN RN\Q Q
= [z 4 o (o)
Q
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and e*9+D) = ¢N+2,(1). Hence we have

/Usq’jl =8N/Uq+1 +8N+O{0(1)'

Q RN

Lemma 5.3 Let ¢ be the mountain pass value of (1.4) and % <q < %—i’% Then, we have

C
ce <&V lc+ EeN*Z m&nh /(U” — UTYdx + o(eVN %)
RN

Proof First note that by the mean value theorem,

[0 = [weor s @ [ (e - ve)
Q Q Q

+o(1)eNtN=2 (5.5)

Hence, by the equation satisfied by \78, . and integration by parts,
~ g2 . 1 ~ p+1 1 ~ q+1
o, (Vs,z) = 7|vva,z| - m (Vs,z)+ + m (Vs,z)+
Q
Lo g\
= E (Us,z - Us,z) Vs,z
Q

1 (‘7 )p+1+ 1 (‘A/ )q+l
p+1 U g+1\ "4

/ (l (U2 = UL.) (Ve = (C +0(1)yeV )
Q

2

) )
p+1 U5 g+1\ "4

1 C+o(l) y_
3 [ (et ey - SR [y wr - vty
2 2

Q Q

! (v )p+1 b (v )'H] (5.6)
p+1 )4 qg+1 )y '
o Q

Here we have used (5.5), Remark 5.2 and that U, ; has algebraic decay. Since v, (x) is
bounded on 2 and v, (z + ex) converges pointwise to /2, we can use the dominated conver-
gence theorem to conclude that fo UP —UDY,(z+¢ex) = h(z) fRN(UI’ —U?) + o(1).
Thus we have
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X 1 1 L1 1 1
Qe (Vez) = (5 - m) / ull’ - (5 - m) / Uit
Q Q

1
+ (] — 7) Cngz/(Ungz - Ug,z)wzdx
Q

2
+o(1)gN 2N

— 1_; SN/UP+1— 1_; 8N/Uq+l
2 p+1 2 g+1
RN N

R

+%8N+N_2h(z)/ (UP = U9) + NN 20(1)

C
_ N L ON-2 . P _ 174 N-2
=& |c+ 28 m&nh/(U U )dx—i—o(s ) (5.7

RN

Let z. € (0, +00) be the unique constant such that

) (ta VE,Z) = max ¢ (tf/m)

>0

Hence
<<I>; (ts ‘78,2) s ‘78,2> =0 (5-8)

We claim that #, — 1 as ¢ — 0. By the equation satisfied by \78, . we have

(v o\ _ 2v0 2 (v VL (v )\
D, (Vez), Ver) = 7\ VVe " — (Ve + (Ve
+ +
Q
PO q % ~ p+1 ~ q+1
= Ué‘,zVS,z - Us,z Ve,z - (Va,z) + (Vg,z)
+ +
Q

= 0(1)eNtN=2 (5.9)
and analyzing the higher order terms, and using the fact that
/ VU = / yrt! _ / ya+l
RN RN RN
there exists a ¢’ > 0 such that

Py N N ) A ~ p+1 ~ q+1
P, (Vs,z) (Vezo Verz) = e VVe "= p (Vs,z)+ +4q (Vs,z)+

Qe

= sN/ (—(p = DU + (g — DHUIH) + 0(1)e

RN
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= [~p-0 [urt - @b [1vur o)

< eV (5.10)

which implies

N ~ p+1 ~ q+1
(2 - 1)/52|vv&z|2— s —1)/(VM)+ + (e - 1)/(\/“)+ =o()e"
Q Q

Q

and letting Vg,z(x) = Veqz(sx + z) in 2, we have

(2 - 1)/|VVS,Z|2— (! — 1)/(‘7&1)?1 + (! - 1)/ VSZ RRP
a

Qe Qe

which implies that #, — 1 = o(1).

D (ue) < maé‘ D, ([‘A/s,z) = q:'e(ts‘}a‘)
>

- ( A ) ¥ — 1)<q>’ (VS,Z) , VS,Z> + %(rg — 120! (sgx?m) <V£,z, Vm)

< & (Vi) + 0(DeV N2

C
<N c—|—ESN_zmsiznh/(Up—U‘f)dx—l—o(sN_z)
RN

where &, lies in between ¢, and 1. Hence we have

c
co < eV c+EeN_2mS%nh/(Up—U‘f)dx—i-o(eN_z) : (5.11)

RN

Lemma 5.4 For sufficiently small ¢ > 0, u, has a unique maximum.

Proof First note by Lemma 5.3, &2 fQ |Vu£|2 < C and hence by Moser iteration, u.(x)
is uniformly bounded. Thus applying Schauder estimates we obtain a C > 0 such that
lleDugl|lp~ < C.If possible, let z. 1 and z. > are two distinct local maxima of u,. Then it
casily follows that u,(ze,1) > 1 and ue(zs2) > 1. Suppose z; = ““—2. Suppose along
a subsequence |z¢| — & € [0, 4-00). Let z = lim,_,o “~'==-2. Then if § > 0, then define
Ve (¥) = ug(ey + z¢,2) then it follows from Remark 2.4, vg — U in C% (RY) and satisfies

loc

—AU = UP —U? inRV
U@ = U'@$)=0
U—-0 as x| — oo
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which is a contradiction as U’(r) < 0 for r € (0, +00). Now suppose § = 0. Then v, — U
in C12OC (RN and U has a unique critical point at 0 (since U (0) > 1 and U is a radial). Thus
v has a critical point in a neighborhood of zero which is a contradiction. Hence |z.| — +00
ase — 0.

We claim that u, has exactly one maximum for sufficiently small ¢ > 0. First, note that
as u, is a mountain pass solution and hence it has Morse index at most one. Let Z; . and
22.¢ be two maxima of v,. Then by the above result |21 ; — 22| = +00 as ¢ — 0. Now
by [3] p. 145, it was proved that there exist r < 0 and / exponentially decreasing such that
—Ah — f'(U)h = rh and hence [y |Vh|> — f/(U)h* < 0. Now using an appropriate cut
off function we can obtain the same property for # with compact support. Now define a two-
dimensional space spanned by 41 (x) = h(x +Zz1¢) and ho(x) = h(x +Z2) Where x € €.
Note that the support supp h1 N supp hy = ¥ as |21, — 22.¢| — +00. Hence we obtain
a two dimensional space on which er VR[> — £ (ve)h? = Jan IVhi|? = f/(UR? <0
for i = 1, 2. Note that we are using the fact that v, — U in C12Dc (RM) and h; has compact
support. Hence u, has Morse index at least two, a contradiction. O

Now we require to obtain the second-order lower bound. To tl}is context, we first note
that U — Ve o (ze + €y) = (C +0o(1) ¥, (ze +€y)e” in Q. Let Ve = Ve o, (ze +€y), and
e = ug(ze + €y). Then

A (@ = Vi) = f o) = ) = 1 (We) @ — U)
where WS is between i, and U. Hence

i 0) = () ) () (- 0),

Thus
“A (ﬁs - \78) _ (WS) (ﬁg - \75) =7 (Ws) (Vs - U) in Q.
. (5.12)
(128 V£> =0 on 082,
Define
~ Ug — Vs
Yo = CeN2n(z,)
where z. is the point of maximum of .. Then
—Age — f' (Wa) @e = [’ (Wa) Se in £ (5.13)
Qe =0 on 082,
where
(% -v)
£ CeN2h(z)
Lemma 5.5 For sufficiently small ¢ > 0, then up to a subsequence
e = Q0
uniformly as ¢ — 0 and @ satisfies
—Ago — f'W)go + f'(U) = 0 in RV
wo— 0 as |x| — oo (5.14)

wo € CHRYN)N L®®RN)
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Proof Note that since — 0o we have W is uniformly bounded and hence

by Lemma 5.1, S is uniformly bounded. Note that by the decay property of i, and U
W, < E ‘N 5 for |x| sufficiently large. Hence f’ (W,) < 0 for |x| > Ro and f (W,) < W

where r > 2. Hence we can choose C x> asa super-solution of (5. 13) for |x| > Ry if we
choose 7 > 2 but close to 2 and C > 0 is large. Hence we can bound C > 0 if we have a
uniform bound ¢, on |x| = Rp. Thus we have a uniform decay for ¢, if we can bound ¢, on
|x] = Ryp.

It possible let ¢, be unbounded. Then ||¢.|lcc — 00 (up to a subsequence). Define
Ve = A . Then ||Y¢]looc = 1. Hence the right-hand term in (5.13) is uniformly small

Pg II

and thus by the argument in the previous paragraph . has a uniform decay for large |x|.
Thus the maximum of 1, must occur at k, where |k.| < R for sufficiently small €. Let k
be a subsequential limit of k.. By Schauder estimates we obtain ||, is bounded for

dist(z0,09)
&

||C1~9

loc
some 6 € (0, 1] and hence by the Arzela-Ascoli’s theorem there exists ¥ € C ! such that
e — 1/fo||C11 — 0as & — 0. Then v satisfies

—AYo— f'(Uo= 0 in RY
Yo(k) = 1 (5.15)
Yo(x) > 0 as |x| - oo.

Note that we use the fact that dist(k., 0€2;) — oo in order to conclude that the above problem
is not a half space problem. We can now use C|x|~V~2) as a super-solution to deduce that

|x|¥ =249 is bounded. This implies that ¥ € L35 (RM). On the other hand we have,

/|vwo|2=/f’w)w& < o0,
]RN N

As aresult, Yo € DV2(RY) Nker(—A — f/(U)). Since o # 0 and since by Lemma 4.4,

ker(—A — f/(U)) = {3—5’1, gTUz’ e %} we have

N
oUu
w=3a05
o i

where not all a;’s are zero. Since U is radial, U "(0) = 0 and AU(0) # 0, it follows that
Yo(0) = 0 and V/p(0) # 0. We obtain a contradiction by proving Vi/4(0) = 0. Note that
Vi (0) = 0 and VU (0) = 0 and hence
() R LA ——C O}
eNTThE ) @elle eV 2h(ze) I @ellLee
Thus V¥, (0) = 0 and by ClloC convergence we have Vi (0) = 0. This gives a contradiction.
Hence ¢, is uniformly bounded.

By our earlier argument with a super-solution, we obtain that ¢, decays uniformly, while by
elliptic regularity theory applied to (5.13) we have ¢, converges uniformly to ¢g in C10C ®RN)
where ¢ satisfies the problem (5.14). By uniform decay of ¢,, we can conclude that 9 — 0
as |x| — oo. Hence ¢. — ¢g as ¢ — 0 uniformly. This completes the proof. O

Remark 5.6 Hence we have u, = U, ;, — Ce¥"2(4,, — @oh(ze) + o(1)) in Q and by using
the fact that z, is the only maximum of u., we have

max Uy < CeN—2
Q\QﬁBrR(Zs)
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Lemma 5.7 We have,

C
e >eV e+ ESN_2h(z£) /(UP —U%dx +o (eN_z)

RN

Proof Multiplying both sides of (5.14) by U € D2(R") and integrating by parts we obtain,
-1 [ra-q-1 [vie=p [0r—q [ U1, (5.16)
RN RN RN RN

Alsonote thatu, = U, ;, — C8N72(¢z5 —@oh(ze)+o(1)) in Q. Choose a R > 0 sufficiently
large such that U (r) < 1 for r > R, and by using Taylors expansion,

ul ™ = vl
QNBeg(ze) QNBeR(ze)
~ (4 DCEN 2 / UL., (W, — goh(ze)
QﬂBsR(Zs)

+o(1)eNtN-2,

Then by Remark 5.6 we have,

2
e 1 1
— @ _ v — p+1 g+l
Ce e(ug) /(2 [Vig| ‘p_'_ ]7(148)_’_ + 7+ 1(148)4.
Q
1 1
= Ef(”s)us — Fug) ) + Ef(ue)ue — F(ug)
QNB:g(ze) Q\QNBR(ze)
1 1 1 1
= / e ——)ult =z = —— Judt) o)V N2
2 p+1 2 g+1
QNBeg(ze)
11 o1 1 .
Sy w (o N) [ e
p+1 2 qg+1
QNB:r(zs) QNBeR(ze)
p—1 _
_TCEN 2 / Uslfzngg
QﬁBER(Zs)
q—1 _
+TC8N 2 / Ul .,
QNB:R(z¢)
p—1 _
e e [ vl
QﬂBsR(Ze)
g—1_ n_ _
—TCSN h(ze) / U, 00 +o(1)eVN TN =2,
QNBgr(ze)
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By our decay estimates and Remark 5.2, we have

p+1 p+1 p+1
/ Us,z, =/ £2e Ue.z.

QNBeg(ze) RN RN\QﬂBgR(Zg)
:gN/UP“ +o(1)eN+N=2,
RN

Also by Taylors expansion in Bgr(z¢), we have ¥, (z) — h(ze) = o(1)

ULV, = hize) / UL, +o()eV

QNBeg(ze) QN B (ze)

= h(zp)eV / UP + o(1)eV

]RN
= h(zo)eV / U? +o(1)eVN.
RN

Hence we have
Ce = ot EN/UPH— L 8N/Uq+1
2 p+1 2 q+1
RN RN

—1 —1
—”TCeNW*Zh(zE) / U’ + qTCeNW*Zh(zg) / U
RN RN
—1
+pTC5N+N_2h(Ze)/Up(/70
RN
—1
—qTCSN”—Zh(zs) / Ulgg + o(1)eV V=2,
RN

using (5.16) we deduce

C
ce > eV e+ ESN_Qh(ZS) /(UP —U% + o0V

RN

[m}

Remark 5.8 As a result of Lemmas 5.3 and 5.5, we obtain h(ze) — ming k. Hence
Theorem 1.1 is proved. Note that for ¢ = q%]’ from Corollary 3.2 we have fRN gr —
U%)dx = 0 and as a result we cannot obtain any information on the point of concentration

of spikes.
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6 Multi-peak solutions

We modify the problem (1.3) to

—2Au=whH? - 0x)whH)? in Q
u=>0 in Q (6.1)
u=20 on 0€2.

Choose § > 0 such that Q(x) > Q(z;) forall x € Bs(z;)\{z;} and Bs(z;) N Bs(z;) = ¥ for
i # j.Let Q(z;j) = b; > 0. Then for any b > 0, let W be the unique radial solution

—AW = WP —bpW? in RN
W>0 in RN (6.2)
W —0 as |x| — oo.

1 —1
Define the transformation, W(x) = br=a U b2(p1’*‘1) x ). Then U satisfies the problem (1.4).

We can assume that Q(z;) are all equal. This is not needed but it simplifies the notation. In
this case, we can re-scale so that b; = 1 for all j. Let y > 0 be small and T > 0 is defined
in Lemma 7.1. For x = (x1, ..., x;), define

2yt
Dy = [X et j=1,....kixj€Bs(z)), |0x)) — 1| < el
Xi — Xj 2y .
Ul ——= < & min{g.,2} 1 ;é Jji-

&

Also let V. be the unique solution of

—? AV, = UL~ U, in Q@ (6.3)
Ve:=0 on 92
Define a norm on HO1 (2)
ol = [ 1vupax ©4)
Q

For any x € Dy, let

' Ve, ‘
Ecxx =110 e Hy(Q), (v, =0;l=1,...,N,j=1,...,k
0xj
wherer:(le,...,xjN)eRN.

Choose R > 0 sufficiently large such that U (x) < 1 for |x| > R.
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Remark 6.1 Let2* = % We derive an important inequality which we will use in the later

stage of our proof. We have by the Sobolev and Holder inequalities,

1
/|w| < |Berl? /|w|2

Ber Ber

y 2
< Ce? 2]

Ber

1

2

Bl

N 1_1 o
< Ce?|Beg|?2™ 7 |l
BsR

1
2
N
<Ce2 82/|Da)|2
Q

< Ce7lole 6.5)

for some constant C > 0 independent of ¢.

Lemma 6.2 For any w € H(} () and ¢ > O sufficiently small, there exists a C > 1 inde-
pendent of € such that

% q—1 2
lolle < sz/|Vw|2dx+q D Uess | | =Cllole.
Q j=1

Proof Note that the left hand side of the inequality follows trivially. Now let us estimate
the term

q—1 q—1

k k
/ D Uen;| o= / D Uer| o
o \=l UBer(x)) \=!

g—1

k
+ / SUy| o
Q\UBr(x) \=1

<C / w* + Ce®l@D / w’. (6.6)
Ber(x;) Q\UBgg(x;)

Note that ¢*@—D fQ\uBgR(x,-) w? < &2 [, |[Vow|? and by (6.5) we obtain that the above inequal-
ity holds. o
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7 The reduction

In this section, we will reduce the proof of Theorem 1.2 to find a solution of the form
Zl;z 1 Ve,x; +  for (6.1) to a finite dimensional problem. We will prove that for each x €
Dy ¢, there is a unique w; x € E; x x such that

k
<I¢£ ZVE,Xj + e, x 777> =0 VneE .
Jj=1

&

Let
k
k(x,w) =1, ZV £.xj + we x

If we expand k(x, @) near w = 0 as

k(x, ®) = k(x,0) +l¢ x () + %Qe,x(wv o) + Re(w)

where
k k P
Lo (w) = 2/ DV, ., Dw — Z w
=2 i N
k
+/Q ZVM/ (7.1)
Q j=1
« p—1
Qcx(w, ) = / e*DwDn — p / D Ver; | wn
Q Q@ \U=l 4
k -1
+q / QD Veus | om, (72)
and
Re(w) = Jie(@) + 2.0 (). (7.3)
Here
X p+1 « p+1
1 . 1 .
new = [(Sbvo) - (X0
Q Jj=1 + o \U=l 4
k p » k p—1
—/ Z ox, T O —5/ ZVMI. w? (7.4)
Q Jj=1 + Q j=1 +
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and

k q+1 . g+1

1 N 1 N

Jre(w) = m/ Q Z Ver; to - m Q Z Vex;
Q j=1 + Q Jj=1 +
k q X q—1
A q N
—/Q D Ve, +o _E/Q D Ve | @ (7.5)
Q J=l + Q j=l +

We will prove in Lemma 7.1 that [, () is a bounded linear functional in E, y x. Hence
it will follow by the Riesz representation theorem, that there exists [, , € E¢ x x such that

(lgx, w)e =g x(@) YweE Eexk-

In Lemma 7.2 we will prove that Q, (w, ) is a bounded linear operator from E y x to
E¢ x k such that

(Qexw,Me = Qex(@,n) VYw,n€ Eeyp.
Thus finding a critical point of k(x, w) is equivalent to solving the problem in E; x x:
lex + Qexow+ R; (@) =0. (7.6)

We will prove in Lemma 7.3 that the operator Qg , is invertible in E; , x. In Lemma 7.4,
we will prove that if @ belongs to a suitable set, R} (w) is a small perturbation term in (7.6).
Thus we can use the contraction mapping theorem to prove that (7.6) has a unique solution
for each fixed x € Dy ¢.

Lemma 7.1 The functional I x : HO1 () — R defined in (7.1) is a bounded linear func-
tional. Moreover,

k
N |xi_xj| T
l =20 ) —1 Ul ——
e xlle = & J;Q(x,) |+; ( - )+e

where T = min{«, o} > 0.

Proof We have

k P k q
hel) =S / 2DV, Do / Seo| o+ / 0 (z Ve, |
Q o \J Q

+
p k q
:Z/(Uspxj Usqz,)w_/ ZAsxj CU+/Q<Z As,xj w
j=14 o \u=l N 5 j=1 N
k ko P ko 4
=Z/(foj ng])a)—/ D Ve, a)+/ D Vews | @
j=14 o \u=l n o \u=l N
k q
+/(Q—1) D Ver; | @
Q j=1 +
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In order to estimate the last term we decompose the domain into Q = (Q\ U Bgg(x;)) U
(UB¢Rg(x;)). Since Q is bounded we have

k a k 1
/(Q—l) D Ve | 0= / Q=D (D Ve, | @
& = + o UBRG) j=1 +
& q
+ / Q-S| o
Q\UB. (x;) J=1 +
& q
< / @-D(SVesy| ote / o]
UB.r(x) =1 + Q\UBc (i)
k k 4
<> / Q=D (D Ve, w+C8aq/|Da)|2
=g px) = + Q

Here we have used the decay estimates of V. On the other hand using Taylors theorem on Q
in Bgg(x;) and using (6.5) we have

0(x) = Q(x;) +(DQ(x;), x — xi) + O(e?).
Hence

k
©-1 (X Ve | w=clowr=11 [ lol+efo(c¥1) ol
j=1

Ber(xi) J + Beg(xi)
N

e20 (100i) — 11 +257!) Jol.

Using Taylors theorem and our estimate for Uy ;= \A/g, xXjs

q
/ ZUS X + Z(Va X —Ue x, w
2 +
k q q—1
=/ > Ve, w+0(1)8“/ D Uesj| o
Q \U/=l Q \J=l

In order to estimate the second term we decompose the domain into 2 = (2\ U B.r(x;)) U
(UB¢g(x;)) and we have from (6.5)

g—1
N
£ D Uer;| o= Cer™ol,

Ber(x)) \J=!
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210 E. N. Dancer, S. Santra

and by decay estimates,

q—1

k
e / D Ve, w < Cs"‘q/|a)|
Q

QUBeg(x) \J=!

N
=Ce2 "l

where 0 = % — 1. We will use the following basic facts, in our proof

la +b|? — |al? — b|? = O(1) (|a|%|b|%) if 1<g<2
la+bl7 —lal? = |b|? = O(D)lal’"b| if ¢ =2.

For the case ¢ > 2, we have

q

k k

-1
E Us,xj E / sxjw+0 E /Ueq.xj- Us,x,'|w|
j=1 j=1%

Q J#LQ

In order to estimate the second term we decompose the domain into 2 = (2\ U Bgg(x;)) U
(UBgr(x;)) and we have

qg—1 q—1 q—1
/ VS U, ol = / VS U, ol + / Ue'U, ol
Q Q\UBeg(xi)) UBgr(xi)

Now from (6.5) we have

Nl
1l

—1 2 1
ULl U, ol < / vivu?, / |w|?
Ber(xi) Ber (xi) R (Xi)
3
2 1
< /U‘q v | el
Bsr(xi)
1
2
N
<o /Uf%’,_PUZ lolle

N Xi — Xj
=e20|\U llolle.
€
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On the boundary we have from decay estimates and since ag > N,

—1
Ug,xj Ue,xi|w| < Ce™ ||

Q\UB¢r(xi)) Q\UB¢r(xi))

< Ce% / |w] )
Q

Nl—=

Q
N
< CeZe% || (7.8)
In the case when 1 < g < 2,
k q k . 4
[ (e ) 0=X [tsoro (3 [ vl vl
Q \U=1 i=lg J#FQ

and we proceed as in the case ¢ > 2.

g 4 4 N X = x|
Ua,x,-Ue,x,-|a)| <C US,X/|CU| <Ce2U e ”w”af
Beg(xi) Beg(xi)
N lxi — xjl
<Ce2U|\—) Il
&

as U (lx‘ — ‘) is small. Hence we obtain

k k
lex(@) = Z/(Ua xj Uaxl)a) / Z‘,}S,Xj a)+/ o Z‘/}s,x_,» @
i=1g J=1 + Q j=1 +
=¢%0 ZIQ(x])—IIJrZU( ' )+s lolle.

J#

Lemma 7.2 The bilinear form Qg () defined in (7.2) is a bounded linear. Moreover
[Qe.x (@, M| < Cllollelnlle

where C is independent of ¢.

Proof Note that there exists a C > 0, such that

p—1 q—1

k
[0 | onzc[(Xtew) ol =clotil.
o \U=l j=1

+ Q
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212 E. N. Dancer, S. Santra

and
q—1

k
& [Dobn+q [0 Ve, wn| = Cloliin,
Q Q Jj=l

+

Lemma 7.3 There exists p > 0 independent of €, such that

Q¢ xwlle = pllwlle VYo€E;xk x €D,

Proof Note that Q is uniformly positive and bounded. Purely for simplicity, we assume
O = 1. Suppose thereexistsasequence e, — 0, x;, € Dy g,,Withx;, — zj, 0, € Eg, x, k
N

N
Il Qs,,a)n”sn =0 (gnz )

Let w; , = wp(eny + xi ) and Q, = {y : £,y + x;,, € 2} such that

such that [|w, ||, = &, and

/|Da),,n|2 =g N 8,2,/|Dwn|2 =1 (7.9)
Qu Q

Hence there exists w; € D2(RY) such that Qin — i € DL2(RN) and hence Win — W €
L3 (RM). We claim that

—Aw; = pUP~ w; —qU?'w; in RN

that is for all n € CJ°(RY),

/DwiDr]:p/Upfla)m—q/U‘Flwm. (7.10)

RN RN RN
Now
k p—1 X q—1
5 " ~
/8n le’lDr/ - p/ Vgn-,xj.n @)+ q/ VE”’X(/J' @nT]
Q Q j=1 + Q j=1 +

= (an,xnwna Ne

N
=0 (3,,2) Inlle,

which implies
p—1 q-1

k k
/ D(Z)i,n Dn — P/ Z ‘N/s,,,x,'_,l CT)i,nﬁ + ‘I/ z ‘78,,,va,1 CT)i,nﬁ
=1

Qn Qn J +
= o) |17ll, (7.11)

Q

B
.
n

+
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where
Va,,,xj-,,l = Vs,,,x_,g,, (eny + xi,n),

il =/|Dﬁ|2,

Qy

Esn,xn,k= ﬁ:/DﬁDWn,j,l =0¢,
Q2

9 ‘75"~)‘j,n (8n)'+Xi,n)

T .Letn e C§° (RYM). Then we can choose ajin € R such that
] :

and VI/,,,‘,-J =¢&,
fin=10— > > ajmWnji
j=11=1
Note that W,,, j,1 satisfies the problem
7o —1 Xin—Xjn —1 Xiin—Xjn U :
—AWn g1 = (”Up (y_ e )_qu (y_ o ))37: R N ORES)
Wpji =0 on 092,

Leta = %] Then we claim that Wn,j,l is bounded in D'2(£2,,). Now using Holder’s
and Hardy’s inequality we have

- _ . dU -~
[ 19000 = [ (P! = qui™) 0
Qn Qn

2

=

<C /Uq_IW,ij’[ <C /|VVT/n,j,l|2 (713)
2, &2

Hence an |VWn, il 12 is uniformly bounded and as a result there exists W such that
W, ji— W inD"?
at least for a subsequence. Hence
Wy ji— W in L]
Note that W satisfies the problem,
—AW = ([7U1”1 —qU”’*I)gTUI in RN
{fRN VWP = fp (pUP = qU?1) GTW.

ax;

(7.14)

We claim that W, ;; — W in D', First note that

U - U -
UPT =Wy jul < C [ U =W, il
0x;

ax;
Q) Qp
- 40U -~
[ 190 = p [0
Q2 Qn
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214 E. N. Dancer, S. Santra

0x;
Qn
_>p/U1’—1 Yw - /U‘I—‘—UW
0x; 0x;
RN R
= /|VW|2. (7.15)

Here we have used that W,,,j,[ converges weakly in L?" . Hence Wn,j,l - W = % in D2
strongly. Now for i # j, we have

7 in—xin\"! N 17
<'7, Wn,j,z> = / {pU (y—u) —qU (y_w) ]n
€n &n d9x]

QuNsupp n
=o(1)

Fori = j we have
l('l» Wﬂ,j,[)’ E C

Hence using a coordinate transformation we obtain aj;, = (I + O an~'m, Wn, j,1) where I
is the identity matrix and O (1) has small off diagonal elements. Hence aj;, — Oasn — oo
for i # j. Putting the value of 7, in (7.11) and letting n — oo, we have

/DwiDn—p/Up*lmerq/U"*lwm

RV RN RV
al U 1 1
:Zal Do,D— —p | U wi— +q | UT 0w —
ax; ax; 9x]
=1 RY RV RY

where a; = lim,,, o0 @1,. Using Lemma 4.4, we have

aUu U aUu
/Dw,-D——p/Up_lwi——i—q/Uq_la)i—=O
0x; ax; 0x;

RN RN RN
and
/Da)iDn—p/Up_lw,-n—i-q/U”_lwm:O
RN RN RN

Hence we have (7.10).
Since w; € DV2(RY), it follows by nondegeneracy

N
U
- b —
wi Z laxl
=1
Since @&; , € Ee, x, .k letting n — oo in (7.11), we have

aU
Dwo;D— =0
0x;
RN
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Singular perturbed problems in the zero mass case 215

which implies by = 0 forall/ = 1,2, ..., N. Thus w; = 0. Hence for any R > 0 we have

/ lon]? = o(e)).

BsnR(Xi,n)
Now
k p=1 k p=1 k p-l
(7 2 % 2 7 2
/ Z &Xjn w, = / VS«Xj,n Wy + / Z VS,Xj,n Wy
Q@ \=l + UBeyr(xi) N=1 + QUBg r(xia) V=1 +
k p=l
2 2
= Wy + / Z U&Xj.n wy
UBe, r (xin) QUBg R (i) \=! +
. k -1
N ap—q) 2
< o(1)el +euP1 / > Ues,, ?
Q\UBeyr(xi) 7! +
N a(p—q) 2
<oey +ep " Vol -
Hence
-1
. p
N 2 ‘, 2
o (8,, ) > <Qan,x,, (wn), wn>£,, > ”wn”g” - P/ Vs,x_,-_n wy,
o \J=! +
> el —o(1)el (7.16)

which implies a contradiction. ~
For the case « = N — 2. We claim that W), ;; is bounded in DV2(2,). As % e L? and
N(N —2)(g — 1) > N, we have

- _ . oU -~
/IVWn,j,1|2=/(PUp b —qut 1)871 n,j.l
Qp Q

1

2
<cC /Uz(q*“vi/,ijj
Q
_2

I
-
=
S
L
—
=
~
™

A

@)
>
51

(7.17)
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216 E. N. Dancer, S. Santra

as floo m < 00, which implies that W,,,.,-J is bounded in D12($2,,). there exists
W such that

Wy ji— W in D2
and hence

- N

Wi, jg — Win Lj, .

Note that W satisfies the problem,
—AW = (pUP~! —quiHL in RV
[ ? I o (7.18)

Jav VWP = [on (pUP™! = qUI=H 5T W.

We claim that Wn, ji— Win D2 First note that for any compact subset Q' C €2, we have

_,0U - U - U -
/Uq l71Wn,j,l:/Uq laTCan,j,l‘f‘ / Ui laTCan,j,l-

Q 4 A\

19U 5 g-19U
U Wyji— | U w
ax; " 0xy
Q/

Q

Hence the first integral

Using the fact that (N — 2)(¢g — 1) > 2 and Hardy inequality, we obtain

/Uq_le,j,zEC / "N 02
Q,\Q Qu\
sc [ wrig,
Q\
<C / IV Wil (7.19)
Q\

As a result we obtain

U - U
/ Ui =W, i — / Uit —w.
ax; ’ 0x;
Q\ RN\
Hence
- U -
2 -1
/IVWn,j,zl = P/Up aTch"’j’l
Q, Q2
U ~
_ Uil w,
q/ 0x; nid
Qp
N /UP—‘ W—q/Uq_laUW
9 ox;
RN RN
= /|VW|2. (7.20)
RN
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Singular perturbed problems in the zero mass case 217

Hence W, j; — W = g—ijl in D2 strongly. The remainder of the proof follows exactly as
above. O

Lemma 7.4 Let R.(w) be the functional defined by (7.3). Let w € H& (2), then

. min{p+1,3} min{g+1,3} min{g+1,3}
_ min{p+1,3} B3 N(1—mnig+l.o0 E3
Re()| < CeVI=5 Do), 7 4 Ce (. )nwng ’
+o(D)lwl? (7.21)
and
 min{p.2} min{p.2} N(1—minig.2} minlg.2)
IR (@)l < Ce"' 7T Do, * 4 Ce (1= )nwne ’
+o(Mlele. (7.22)
Proof As before we have R (w) = J1 ¢(®) + J2,¢(w). Then
[J1e(@)] < / [J1e(@)] + / [J1,e(@)]
UBeR(xi) S\UBeR(x;)
k p—1
< / loo™™MPHL 4 p o / D Ve, o
UBeg (xi) Q\UBeg(x) V1 +
Here we have used (7.4). However,
min(p:rl,.'ﬂ
/ |w|min{P+1,3] < CSN(I—imin(p;rl.B)) / |(,()|2*
UBeR(xi) Ber(x;)
N(1_ minlp+1.3) min{p+1,3}
< ¢V )nwug ’

Moreover, by the algebraic decay of \76, x; We obtain,

p—1

k
0 / SV,

Pl s CO(1)8“<P—‘>/w2 < C0(1)82/|Va)|2
Q\UBer(x) =1 + Q

Hence the result follows. m]

Lemma 7.5 There exists an o > 0 such that for ¢ € (0, gol, there exists a C! map ey
Dy — H, such that w, x € E¢ x x we have

<Is/ Z As,xj + we x|, 77> =0, Vne Es,x,k~

j=l1 .
Moreover, we have

N pas
lwe xlle < Ce2 gminfa2} e

where k > 0 is sufficiently small.
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218 E. N. Dancer, S. Santra

Proof Wehave l; x + Q¢ xw + R.(w) = 0. As Q;}C exists, the above equation is equivalent
to solving

0: ey + 0+ 07 R.(w) = 0.
Define
G(@)=—0;tex — Q7 1 RL(®) Yo € E¢ i

Hence the problem is reduced to finding a fixed point of the map G.

YT

. N o _
Choose y > 0 small. For any w| € E; yx and wy € E¢ x ; with |lw1]le < &2 eminle2],
YT

lwalle < &2 &l
IG(@1) = G@)ll: < ClIR;(@1) = Ri@))]..
Note that
(RL(@1) = Ri@2), n), = (J] o(@1) = J{ o@2), n), + (S5 o (@1) = 3., (@2), ),

From Lemma 7.4, we have
_ min{p,2} .
(RL(@1) = RL(w2). n), < CeNU™7T Doy — an |72 ],
min{q,2} .
+ CeM T D g — wn |

+o(Dllwr — o2 lllnlle-

Hence we have
min{

p.2}
T ot — wo|

IR (1) = Ri(@))le = CeN!I™ pinte:2)

_ min{g,2} i
+ €N D o) — |74+ o(D)l|wr — w2l

<o(D)|lwr — w2lle-

Hence G is a contraction as
1G(w1) = G(@)lle < Co(Dllwr — w2l
. N o _rT .
Also for w € Eg x j with |lw|l; < eZemnle.2] and ¢ > O sufficiently small

IG(@)lle < Clilexlle + ClIRL(@)lle

N 2T N oYt L
< Ce 2 gmin{q.2] + g2 & min{g,2}

N oyt
Ce7 gmmig TK

IA

YT

N
£ 2 g minfq.2} (723)

IA

. N _2rT__
if ||l¢]|e < &7 eminfe.2], Hence

G:E.,rNB vt (0) = EgxxkNB

N -
& 2 gmin{g.2}

e (0)

N
£ 2 ¢ minfg

is a contraction map if ||/ || < &2 emin{2.2] . Hence by the contraction mapping principle there

exists aunique w € Ec x x N B y _»r_(0) such that w = G(w) and
o &2 g minfg,2}

NPTtk
lwe xlle = IG(we x)lle < CeZgminta.2l ™0,
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Singular perturbed problems in the zero mass case 219

8 Existence of interior peaks

Lemma 8.1 For any positive integer k, we have

ZV”] — ke c—clsNZU(|xl_ f|)+c 8NZ(Q(xJ)—1)

1<j

+8N0 Z |Q(x1) _ 1|2 + ZUIJF)L ('xz xj|) +e min{l,a} (81)

i<j

where c1, c2, A > 0, and c is the mountain pass critical value of the limiting problem.

Proof We have

k k

~ ~ 1 ~ N
> Vs ) = 20 (V) 45 2 [ €DV DY
j=1 j Q

From Remark 5.2 we have

2

e N B R L[ oa s

7 |DV£,xj| :E Us,xj-vs,xj_i Ug,x_,-vs,xj
Q

1 1
= E/Uspxj(Us xj Ce%) — E/Ug,xj(Us,x]- —Ce%)
Q
1 1
= /U;’;j‘ /Uﬁjj + 0N
Q
— E81\’ /(Up-‘rl _ Uq+1) + 0(8N+a).

RN

Similarly we have

p+1 _ 1 p+l p
p+1/(vex1) —m stj +0 ga/Us,ch

Q Q
- ileN/U”“—FO(sNW),
14 e
1 ~ q+1 1
?/(Ve,xi) = +15N/Uq+1+0(gN+a)’
Y+
q A q ke
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220 E. N. Dancer, S. Santra

and

o Q

1 A q+1
+ﬁ<Q(xj)—1)/(Vs,x,.)+ .82
Q

To estimate the first term, we decompose 2 = Bgg(x;) U (Q\Bg Rr(x j)) and using Taylor’s
theorem on Q we have,

/ Q@) — Q) (Ve )4 = / () — Q) (Ve )4t
Q

Ber(xj)

~ q+1
v [ om0 (V)
Q\Ber(x))

< CeNt 4 cg@tD)

To estimate the second term in (8.2) we use

(Q(xj) — 1)/ (Vs,xj)i+l = (Q(x;) — De" / Uit 1 o (8N+a)
Q

RN

Hence we have

A 1 1
I (V ) — N/ Up-‘rl _Uq+1 - N/Up+1
e\ Vex; 28 ( ) p+18
RN RN

+L8N/U‘1+‘ +(QGkxj) — 1)

1 EN/Uq+1+0(8N+min{l,ot})

q+1 q+1
RN RN
— eV | (5-—— /UP“_ ot /Uq+1
RN BN
1 .
+(Qkx;) -1 +18N/Uq+1+0(8N+mm{l,a})'
q

RN

On the other hand, we know that for i # j

|xi — x|
Ul’m = U(?) +0(8a)

B
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and using Remark 5.2,

2
& ~ N
?Z / DV DV, =

i#JQ

Similarly

/

q+1

M»
>
o
«
&
Il

T
50\

| |
O— O~

If we note that

%Z/ (fo_/. -

i#]Q

1
5 Z/ (UE]TX/’ - Ug,xj‘) Us,x,- + 0(€N+a)

i#jQ

Y

l;éjRN

T

i#JgN

q ~
Us,x_,-) Ve,x,-

—Uq)U

B

—Uq)U

Xj—X;j

L,

&

ceN ZU (lezile) +0 (8N+°‘).

i<j

k
P
J=1

k
2 Vs,
j=1

q+1

k
2 Vs,
j=1

o \/=I
k q
+0 > Ve,
o \U=l
+ 0N,

lla +b|7+! — a9 — |b|7T! — (g + Da?b — (g + Dab!|

g+l

= 0()aT bF

if 1<g<?2

lla + b7+ — a9 — |b|7T! — (g + Da?b — (g + Dab?|

= 0(D)lal?|b| + O(D)lallb]?

if ¢g=>2

and the decomposition technique used in Lemma 7.1, we find that

/

Q

k
P
j=1

k
- [ (X
j=2

Q

q+1

q+1 X
1
-3 vt

j=1g

k
> fuey

=24

| X=X + 0 (8N+a)

+0 (£N+“>

k q
+@+1D / D Uen; | Ue,
Q \/=2
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+(q+1)/ “.ZUHJ +0 (V)

j=2
q N 1 [ 1xi — xj] a
=@+ [ Ul Uy +eNO (U —)+e).
i<jg

As a result we obtain

k k k
JF(Zve )~ ] zF<vs,x.,->=| [# (2 ) = [ weny
j=1 Q J=1 Q Jj=1 Jj=1

Q

>~

- Z f(Ue,Xj)Us,x,- + Z f(Ue.Xj)Us,xi
i#] i#]

= fWUex)Usx, + O (8N+ot)
i#]

+eV0 (U‘“ (M) n e"‘) .83
&

where f(u) = uP — u? and A > 0. Now let us estimate

k
/ Q-1 Uei)t! - Z vt
Q j=1 j=1

q+1

k k
= / QW) = Qe 1 [ D Ve, | =D U]
Q j=1 j=1
k oy
+(Qxi) — 1)/ SUes, | D UL
Q j=1 j=1

N 141X = X emin{l.a}
=&"0 -1 U
=¢ E 10(x;) — 1 +§ ( - )

i<j

We have used the fact that
p g+
(Q(xi)—l)/ > Uy, Uﬁi}
Q j=1

_8N0(|Q(xl)_1|+8)zU(|x1 —X]|

i<j
X, X
=eVo | 10(xi) — 117 +ZU2(" J|)+g . (8.4)
i<j
This proves the result. o
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Proof [Proof of Theorem 1.2] Define

k
Ge(x) =1, Z ‘A/E,xl' + we x
Jj=1

and consider the problem

min G.(x).
X€Dg ¢

To prove that ZI;-:1 VMJ. + w;,x 1s a solution of (6.1), we need to prove that x is a critical
point of G, (x).
For any x € Dy ¢, we have from Lemma 8.1,

k
Ge() =Ie | D Ve | + OUlexlellwelle + lloe o]l + Re(we.x))
j=1

k
~ _2yT
=1 E Ve,xj + SNO (8 min{g.2} +K)
j=1

=keVe—c1e" DU (u) +e2e™ D) — 1)

— & :
i<j i=1
Xi — % )
4 8N0 (|Q(xl) _ 1|2 + U1+)\. (M) + 81‘1‘1111{0!,1})
e
2yt
e (simiﬂwvz) +K) . (8.5)
Let x, € Di . be a point of minimum of G, in Dy . Choose X, = (55,1, R )?g,k) such that
|fa,j—Zj|§8% j=1,2,...k

and
- - 1 .
|x£,i_xs,j|2ﬂ\/g L #J.

Then we have U (lx“zix”l) < Ce? fori # j and the mean value theorem yields

10 (%) — 1l < Clie; —zil> < Ce i=1,2,... k.

Thus x; € Dj .
Hence it follows from (8.5) that

2yt
G, (%s) = cke™ +eNo (s ity 27 ”). (8.6)

But since G, (X)) > G¢(x.) we have from (8.5) and (8.6)

k
P . 2yt
N (w) +e2 ) Q) -1 <0 (Smﬂ).

i<j i=1
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Thus we have

-ZL+K .
0< Q) —1=<0|emnta? i=1,2,...,k

Ly 2yt
U (|x,87xj|) <0 (87@“@,2)""‘) i#j.
[x; — x| T .
U Y < 0 |emnia2 i#j.

Hence x, is an interior point of Dy . and hence is a critical point as required. It easily follows
le‘.z 1 Ve,x; + e x 1s a positive solution of (1.3). This finishes the proof. O

and

This implies

Remark 8.2 Consider the problem,

—&2div (a(x)Vu) = u? — Q(x)u? in Q
u>0 in Q (8.7)
u=20 on Q2

where a is a smooth function satisfying a(x) > p© > 0 in Q. Note that for some xo € RV,
the limiting problem to (8.7) is

—a(xo)Au = uP — Q(xg)u? in RY
u> 0 in RY (8.8)
u(x) — 0 as |x| = 400

_p=1
1 -
By a change of variable of the form u(x) = Qr=7 (xg)v (W}c), then v satisfies the

problem (1.4). Define ¢ : 2 — R by

N(p—D+2(p+1)
-0 (x)
()= —F—"—

az(x)
in 2. Let ¢ has k isolated local minima. Then using the results of Theorem 1.2 it seems likely

that one can show that for sufficiently small ¢ > 0, there exists a positive solution u#, having
k peaks with each peak concentrating at a local minima of ¢.
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