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Abstract Second-order half-linear differential equation (H): (Φ(y′))′ + f (x)Φ(y) = 0
on the finite interval I = (0, 1] will be studied, where Φ(u) = |u|p−2u, p > 1 and the
coefficient f (x) > 0 on I , f ∈ C2((0, 1]), and limx→0 f (x) = ∞. In case when p = 2,
the equation (H) reduces to the harmonic oscillator equation (P): y′′ + f (x)y = 0. In this
paper, we study the oscillations of solutions of (H) with special attention to some geometric
and fractal properties of the graph G(y) = {(x, y(x)) : 0 ≤ x ≤ 1} ⊆ R2. We establish
integral criteria necessary and sufficient for oscillatory solutions with graphs having finite and
infinite arclength. In case when f (x) ∼ λx−α , λ > 0, α > p, we also determine the fractal
dimension of the graph G(y) of the solution y(x). Finally, we study the L p nonintegrability
of the derivative of all solutions of the equation (H).
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1 Introduction

We are concerned with the half-linear differential equation on the finite interval I = (0, 1]:
(Φ(y′))′ + f (x)Φ(y) = 0, x ∈ I, (1)
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where y = y(x) is a real function, y ∈ C2(I ) ∩ C( Ī ), Φ(u) = |u|p−2u, where p > 1 and
q = p/(p − 1) is the exponent conjugate to p, and

f (x) > 0 on I, f ∈ C2((0, 1]), and lim
x→0

f (x) = ∞. (2)

Under these conditions imposed on f (x), it is known that every solution y(x) of (1) with
prescribed initial conditions at some point x0 ∈ I exists on every closed sub-interval of I
and is unique, see [5, p. 170, Theorem 1.1] and [6].

As usual, a continuous function y(x) is said to be oscillatory on I if it has an infinite
number of zeros in I , see [2,21,23]. We are interested in the non-trivial oscillatory solutions
of (1) with special attention to some geometric properties of the graph G(y) of y(x) defined
by G(y) = {(t, y(t)) : 0 ≤ t ≤ 1} ⊆ R2. We say an oscillatory function y(x) is rectifiable
oscillatory on I if the arclength of G(y) is finite and unrectifiable oscillatory on I if the
arclength of G(y) is infinite, see Sect. 3.

When the coefficient f (x) is singular at x = 0, it can happen that oscillatory solutions of
(1) possess graphs with infinite arclength. A simple example is the equation (E): y′′+x−4 y =
0 where the general solution is given by y(x) = c1x sin 1

x + c2x cos 1
x , and any non-trivial

solution of (E) has graph of infinite arclength, see [15,16,25]. Functions of infinite arclength
on a finite interval are called fractal functions. A typical example is the Weierstrass’ example
of a continuous but nowhere differentiable function see [8, p. 162].

In an early paper [11], we have studied the harmonic oscillator equation (P): y′′+ f (x)y =
0, i.e. Eq. (1) when p = 2, with regard to rectifiable and unrectifiable oscillations. In case of
unrectifiable oscillation, solutions are fractal functions. In some special cases such as Euler-
type equations, i.e. f (x) = λx−α , λ > 0, unrectifiable solutions have fractional dimension
s = 3/2 − 2/α which is greater than 1 when α > 4. The proofs in the harmonic oscillator
case depend heavily on the linear nature of the solutions via asymptotic integration formula
developed by Wintner and Hartman [9, p. 371–372], see also [4].

Half-linear equations arise as one-dimensional p-Laplacian nonlinear elliptic equations.
These partial differential equations appear in mathematical models of the so-called electro-
rheological fluids, see [22].

For the half-linear equation (1), it is known that the solution space of (1) only preserves
homogeneity and not additivity, half of the characteristics of linear equations. The purpose
of this paper is to generalize our early results from [11] to the more general half-linear
equation (1). It turns out that for the study of rectifiable oscillations, one does not need to
use the additive property of solution-space as in the case of linear equations. Here we used,
instead of Wintner–Hartman’s result on asymptotic representation of the harmonic oscillator
equation, the nonlinear analogue as developed by Kiguradze and Chanturia [10] and Mirzov
[13]. Their method concentrates on the estimate of the energy function defined in terms
of a given solution. In some way, it resembles the Gradient method for partial differential
equation, see [1].

Contents of this paper are organized as follows. In Sect. 2, we discuss the nonlinear
analogue of asymptotic representation of solutions of Eq. (1). Section 3 devotes to the study
of integral criteria necessary and sufficient for rectifiable and unrectifiable oscillations. We
also prove results on perturbed and forced equations of (1) which showed certain stability
of rectifiable oscillations. In Sect. 4, we describe the geometric aspects of the graphs G(y)
of solutions curves in terms of its arclength, the box-dimension (also known as the upper
Minkowski–Bouligand dimension) and the upper Minkowski content. In Sect. 5, we estimate
from below the order of growth for singular behaviour of L p-norm of the derivative y′(x) of
all solutions y(x) of Eq. (1) near the boundary point x = 0.
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Rectifiable oscillations in second-order half-linear differential equations 519

2 On the transformation ( y, y′) → (ϕ, V )

In this section, a kind of asymptotic behaviour near x = 0 of all non-trivial solutions y(x)
of Eq. (1) is studied, which plays an essential role in the proof of main results. At the first,
we study a transformation (y, y′) → (ϕ, V ) given by

⎧
⎨

⎩

y(x) = (p − 1)
1
pq f − 1

pq (x)V
1
p (x)w(ϕ(x)),

Φ(y′(x)) = −(p − 1)−
1
pq f

1
pq (x)V

1
q (x)Φ(w′(ϕ(x))),

(3)

where x ∈ I and the functions ϕ(x) and V (x) satisfy corresponding differential equations,
namely (15) and (26), which will be determined in the process below. Here and in the sequel,
the function w = w(t), t > 0, is the so-called generalized sine function which is a solution
of half-linear differential equation,

(Φ(w′))′ + (p − 1)Φ(w) = 0, w(0) = 0, w′(0) = 1. (4)

It is known that w(t) satisfies (see [6]):

|w′(t)|p + |w(t)|p ≡ 1 for all t > 0, (5)

w(Tk) = 0, where Tk = 2kπ

p

1

sin(π/p)
for all k ∈ N, (6)

w′(Sk) = 0 and |w(Sk)| = 1, where Sk = 1

2
Tk for all k ∈ N. (7)

In our first main result, we give some asymptotic behaviours near x = 0 of the functions
ϕ(x) and V (x) given in (3), which will be important to establish the oscillatory property of
Eq. (1) as well as the finiteness and infiniteness of the graph G(y) of all non-trivial solutions
y(x) of Eq. (1).

Theorem 1 Let ϕ(x) and V (x) be from (3), where y(x) is a non-trivial solution of Eq. (1).
Let f (x) satisfy (2) and the following asymptotic condition at x = 0,

f −θ [
f −γ ]′′ ∈ L1(I ), (8)

where θ and γ are two arbitrarily given real numbers such that θ + γ = 1
p . Then we have:

ϕ′(x) < 0 for all x ∈ I and lim
x→0+ϕ(x) = ∞, (9)

0 < lim
x→0+ V (x) < +∞. (10)

As we will see, the hypothesis (8) is a principal asymptotic condition on the function
f (x). It can be represented by

f − 1
2p

[
f − 1

2p

]′′ ∈ L1(I ) or f − 1
pq

[

f
− 1

p2

]′′
∈ L1(I ). (11)

It is worth to remark that each of two conditions in (11) generalizes the so-called

Hartman–Wintner asymptotic condition: f − 1
4

[
f − 1

4

]′′ ∈ L1(I ). Analogously to (8), it is

a principal hypothesis on f (x) when p = 2, see Theorem A in Sect. 3. Furthermore, the
condition (8) is equivalent to (11) in the following sense.
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Lemma 1 Let f (x) satisfy (2). Let θ1, γ1, θ2, and γ2 be four arbitrarily given real positive
numbers such that θ1 + γ1 = θ2 + γ2. Then,

f −θ1
[

f −γ1
]′′ ∈ L1(I ) if and only if f −θ2

[
f −γ2

]′′ ∈ L1(I ).

Therefore, in order to check that a function f (x) satisfies the condition (8), it is enough to
find only one pair (θ, γ ), where θ + γ = 1

p , for which (8) holds true.
In the following lemma, we show that all functions f (x) which satisfy (8) must possess

some other essential asymptotic properties near x = 0.

Lemma 2 Let f (x) satisfy (2) and (8). Then we have:

f
1
p /∈ L1(I ), (12)

lim
x→0

f − 1
p −1

(x) f ′(x) = 0, (13)

[
f − 1

p −1 f ′]′ ∈ L1(I ). (14)

The importance of the properties (12), (13), and (14) can be realized by the following two
propositions, which will be proved at the end of this section.

Proposition 1 Let ϕ(x) be from (3), where y(x) is a non-trivial solution of Eq. (1). Let

f (x) satisfy (2), (12), and (13). Then ϕ′(x) ∼ −(p − 1)−
1
p f

1
p (x) and ϕ′(x) < 0 for all x

sufficiently small, and limx→0+ ϕ(x) = ∞.

Proposition 2 Let V (x) be from (3), where y(x) is a non-trivial solution of Eq. (1). Let f (x)
satisfy (2), (13), and (14). Then 0 < limx→0+ V (x) < +∞.

In the sequel, we give some remarks concerning to the transformation (3), and the functions
ϕ(x) and V (x). In Appendix of the paper, it will be shown that ϕ(x) satisfies the following
differential equation,

ϕ′(x) = −1

(p − 1)
1
p

f
1
p (x)+ 1

p

f ′(x)
f (x)

Φ(w′(ϕ(x)))w(ϕ(x)). (15)

This equation does not depend on the specific transformation (3) as the following remark
shows.

Remark 1 The transformation (3) could be considered in a slightly general form,
⎧
⎨

⎩

y(x) = a f −A(x)V
1
p (x)w(ϕ(x)),

Φ(y′(x)) = −b f B(x)V
1
q (x)Φ(w′(ϕ(x))),

(16)

where x ∈ I and the constants a > 0, b > 0, A > 0, and B > 0 satisfy

a p = (p − 1)bq and Ap + Bq = 1. (17)

It is clear that (3) is a particular case of (16)–(17) when a = (p − 1)
1

p2 , b = 1/a, and
A = B = 1/(pq). In Appendix of the paper, it will be shown that the function ϕ(x) arising
from (16)–(17) also satisfies the differential equation (15), that is, the function ϕ(x) does
not depend on the constants a, b, A, and B, rather it depends only on the constant p and
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of course on the function f (x). In this sense, instead of (3), we can also use the following
transformation,

⎧
⎪⎨

⎪⎩

y(x) = (p − 1)
1

p2 f
− 1

p2 (x)V
1
p (x)w(ϕ(x)), x > 0,

Φ(y′(x)) = −(p − 1)
− 1

q2 f
1

q2 (x)V
1
q (x)Φ(w′(ϕ(x))), x > 0,

(18)

which is also a special case of (16)–(17).

Next, it is worth to mention that limx→0+ ϕ(x) = ∞ and limx→0+ V (x) > 0 can result
the oscillations of all solutions of (1) as in the following remark.

Remark 2 Under the assumptions (2), (12), (13), and (14), by Proposition 1 and Proposi-
tion 2 we know that limx→0+ ϕ(x) = ∞ and limx→0+ V (x) > 0. Therefore, any non-trivial
solution y(x) of (1) is oscillatory on I . Indeed, let Tk be from (6) and Sk from (7). Now,
according to (3) and (6), we observe that ak = ϕ−1(Tk) is a decreasing sequence of con-
secutive zeros of y(x) such that ak ↘ 0 and ak ∈ I for all k > k0 and some k0 ∈ N. The
existence of the inverse function ϕ−1(x) of ϕ(x) follows from ϕ′(x) < 0 for all x near 0 (see
Proposition 1 above). Also, sk = ϕ−1(Sk) is a sequence of consecutive zeros of y′(x) such
that sk ∈ (ak+1, ak), w′(ϕ(sk)) = 0 and |w(ϕ(sk))| = 1 for all k ∈ N.

The finiteness of limx→0+ V (x)will imply an apriori bound of y′(x) for all solutions y(x)
of (1) in the following way.

Remark 3 Let V (x) be from (3), let x ≈ 0, and C0 > 0 and C1 > 0. If V (x) ≤ C0, then

|y′(x)| ≤ C1 f
1

p2 (x) and |y′(x)| ≤ C1 f
1
pq (x),

where the last inequality holds provided p ≥ 2. Indeed, from (5) we obtain |w′(ϕ(x))| ≤ 1
for all x ∈ I . Therefore, from (3) immediately follows

|y′(x)| = (p − 1)
− 1

p2 f
1

p2 (x)V
1
p (x)|w′(ϕ(x))| ≤ C1 f

1
p2 (x).

It is clear that in the case when p ≥ 2, we have f
1

p2 (x) ≤ f
1
pq (x).

To the end of this section, we give the proofs of Lemma 1, Lemma 2, Proposition 1,
Proposition 2, and Theorem 1 which are stated above. In this direction, the proof of Lemma 1
as well as Lemma 2 is based on the following useful proposition which will be proved in
Appendix of the paper.

Proposition 3 Let ψ = ψ(x) be a real function such that ψ ∈ C2((0, 1]), ψ(x) > 0 on I ,
and ψ(0) = 0. If ψ A−1ψ ′′ ∈ L1(I ), where A > 1, then we have:

(i) ψ−A /∈ L1(I ),
(ii) ψ A−2(ψ ′)2 ∈ L1(I ) and limx→0 ψ

A−1(x)ψ ′(x) = 0,
(iii)

[
ψ A−1ψ ′]′ ∈ L1(I ).

Proof of Lemma 1 Let us suppose that

f −θ1
[

f −γ1
]′′ ∈ L1(I ). (19)

Since θ1 + γ1 = θ2 + γ2, we may set σ = θi + γi for i = 1, 2. By an easy calculation we
derive that

f −θi (x)
[

f −γi (x)
]′′ = γi (1 + γi ) f −σ−2(x)( f ′(x))2 − γi f −σ−1(x) f ′′(x), (20)
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where i = 1, 2. It is crucial that all powers appearing on the right-hand side of the equality
(20) does not depend on the numbers θi and γi but only on σ . Next, from (19) in particular
for ψ(x) = f −γ1(x) and A = θ1

γ1
+ 1, we obtain that ψ A−1ψ ′′ = f −θ1

[
f −γ1

]′′ ∈ L1(I ).
Hence, we may use Proposition 3 for this choice of ψ(x) and A. In this way, the conclusion
(ii) of Proposition 3 implies that

ψ A−2(ψ ′)2 ∈ L1(I ). (21)

Since ψ(x) = f −γ1(x), A = θ1
γ1

+ 1, and γ1 A = θ1 + γ1 = σ , from (21) we get

f −σ−2( f ′)2 ∈ L1(I ). (22)

Also, by means of (19), (20) for i = 1 and (22) we observe that

f −σ−1 f ′′ ∈ L1(I ). (23)

Now, the equality (20) for i = 2, and the statements (22) and (23) show that f −θ2
[

f −γ2
]′′ ∈

L1(I ) too. Thus, this lemma is proved. �
Proof of Lemma 2 The proof of this lemma is also an easy consequence of Proposition 3.
Indeed, from the assumption f −θ [

f −γ ]′′ ∈ L1(I ) in particular for ψ(x) = f −γ (x) and
A = θ

γ
+ 1, we have that ψ A−1ψ ′′ ∈ L1(I ) and hence, we may use Proposition 3. Since

ψ(x) = f −γ (x), A = θ
γ

+ 1, and γ A = θ + γ = 1/p, we observe that

ψ−A(x) = f
1
p (x) and ψ A−1(x)ψ ′(x) = −γ f − 1

p −1
(x) f ′(x).

Hence, from the conclusions (i), (ii), and (iii) of Proposition 3, we obviously obtain (12),
(13) and (14). It proves this lemma. �

Proof of Proposition 1 Multiplying (15) by 1/ f
1
p (x), we obtain

ϕ′(x)

f
1
p (x)

= −1

(p − 1)
1
p

+ 1

p

f ′(x)

f
1
p +1

(x)
Φ(w′(ϕ(x)))w(ϕ(x)). (24)

Substituting (5) and (13) into (24), we observe that

lim
x→0

ϕ′(x)

f
1
p (x)

= −1

(p − 1)
1
p

< 0,

and hence, −ϕ′(x) ∼ f
1
p (x) when x ≈ 0. It gives a constant c1 > 0 and an x1 ∈ I such that

ϕ′(x) ≤ −c1 f
1
p (x) < 0 for all x ∈ (0, x1). Integrating this inequality over (x, x1) for any

x ∈ (0, x1), we obtain by (12) that

ϕ(x) ≥ ϕ(x1)+ c1

x1∫

x

f
1
p (s)ds → +∞ when x → 0.

This prove Proposition 1. �
Proof of Proposition 2 At the first, in Appendix of the paper, the following two equalities
will be shown,

V (x) = (p − 1)
1
p f − 1

p (x)|y′|p + (p − 1)−
1
q f

1
q (x)|y|p, (25)
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and

V ′(x) =
[
(p − 1)

1
p f − 1

p (x)
]′ |y′|p +

[
(p − 1)−

1
q f

1
q (x)

]′ |y|p. (26)

For any nontrivial solution y(x) of (1), we have V (x) > 0 on I because of existence and
uniqueness of initial value problems. Let g(x) be defined by

g(x) = f − 1
p −1

(x) f ′(x). (27)

Since |y′|p = |Φ(y′)|q , the equalities (25) and (26) can be rewritten in the forms

V (x) = (p − 1)
1
p

[
f − 1

p (x)|Φ(y′)|q + (p − 1)−1 f
1
q (x)|y|p

]
, (28)

and

V ′(x) = −p−1(p − 1)
1
p g(x)

[|Φ(y′)|q − f (x)|y|p] . (29)

Next, with the help of Eq. (1), one can derive the following identity
(
g(x)Φ(y′)y

)′ = g′(x)Φ(y′)y + g(x)(Φ(y′))′y + g(x)Φ(y′)y′

= g′(x)Φ(y′)y + g(x)
[− f (x)|y|p + |Φ(y′)|q]

. (30)

Now, from (29) and (30), we derive that
[
V (x)+ p−1(p − 1)

1
p g(x)Φ(y′)y

]′ = p−1(p − 1)
1
p g′(x)Φ(y′)y.

Integrating this equality over (x, x1), we have

V (x) = M1 − cpg(x)Φ(y′)y − cp

x1∫

x

g′(s)Φ(y′(s))y(s)ds, (31)

where

cp = p−1(p − 1)
1
p and M1 = V (x1)+ cpg(x1)Φ(y

′(x1))y(x1).

Note that from (3) and (5), we have |Φ(y′)y| ≤ V (x) which together with (31) implies that:

V (x) ≤ M1 + cp|g(x)|V (x)+ cp

x1∫

x

|g′(s)|V (s)ds, (32)

and

V (x) ≥ M1 − cp|g(x)|V (x)− cp

x1∫

x

|g′(s)|V (s)ds. (33)

For every nontrivial solution y(x) of (1) we must have V (x1) > 0 by the uniqueness of
initial value problem for half-linear equations. Because of (13) and (27), we can choose x1

sufficiently small such that for all x ∈ (0, x1) we have cp|g(x)| ≤ 1/2 and 2cpe2cpG G ≤ 1,
where G = ∫ x1

0 |g′(x)|dx . Thus for all x ∈ (0, x1) we have from (32) and (33) that

V (x) ≤ 2M1 + 2cp

x1∫

x

|g′(s)|V (s)ds, (34)
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524 M. Pašić, J. S. W. Wong

and

V (x) ≥ 2M1 − 2cp

x1∫

x

|g′(s)|V (s)ds. (35)

Applying Gronwall’s inequality to (34) we obtain

V (x) ≤ 2M1e2cp
∫ x1

x |g′(s)|ds ≤ 2M1e2cp G .

Using this upper bound on V (x), we note that the right-hand side of (35) is non-negative.
Hence, we can use the reverse Gronwall’s inequality to obtain

2M1e−2cp
∫ x1

x |g′(s)|ds ≤ V (x) ≤ 2M1e2cp
∫ x1

x |g′(s)|ds,

which by (14) and (27) shows that limx→0+ V (x) = c0 exists and 0 < c0 < ∞. �
Now we are able to give the proof of Theorem 1.

Proof of Theorem 1 By an easy combination of Lemma 2, Proposition 1, and Proposition 2,
the desired proof of Theorem 1 follows immediately. �

3 Rectifiable and unrectifiable oscillations

In this section, we impose on the function f (x) an additional asymptotic condition near
x = 0 which can characterize the finiteness of arclength of graph G(y) of all solutions of
(1). At the first, we recall some definitions about rectifiable and unrectifiable oscillations of
continuous functions on a finite interval, which have been appeared for the first time in recent
papers [15,17,25]. In this sense, the arclength of the graph G(y) is defined as usual by,

length(G(y)) = sup
m∑

i=1

||(ti , y(ti ))− (ti−1, y(ti−1))||2,

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tm = 1 of the interval
Ī , and || ||2 denotes the norm in R2.

Definition 1 If length(G(y)) < ∞, then the graph G(y) is said to be rectifiable curve in
R2. Otherwise, G(y) is said to be unrectifiable curve in R2. An oscillatory function y on I
is said to be rectifiable (resp., unrectifiable) oscillatory on I , if its graph G(y) is a rectifiable
(resp., unrectifiable) curve in R2. Equation (1) is said to be rectifiable (resp., unrectifiable)
oscillatory on I , if all its non-trivial solutions are rectifiable (resp., unrectifiable) oscillatory
on I .

It is clear that the graph G(y) of the function y(x) = xc, c > 0, is a rectifiable curve
in R2. However, rectifiability of the graph G(y) of y(x) = xc sin x−d , x ∈ I , depends on
the positive powers c and d , in the sense that G(y) is a rectifiable (resp., unrectifiable) curve
in R2 provided c ≥ d (resp., c < d), see [24, Chapter 10]. Furthermore, rectifiability of
the oscillations of a linear differential equation of Euler type y′′ + λx−α y = 0, x ∈ I ,
(λ > 0 for α > 2 and λ > 1/4 for α = 2), depends on the parameter α in the sense that
this equation is rectifiable (resp., unrectifiable) oscillatory on I provided 2 ≤ α ≤ 4 (resp.,
α > 4), see [15,25]. In more general setting, one can study the rectifiable oscillations for the
linear differential equation y′′ + f (x)y = 0, x ∈ I , where the coefficient f (x) is positive
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and smooth in I , singular at x = 0, and satisfies the so-called Hartman–Wintner conditions
near x = 0 as in the following result, see Theorem 1.4 in [11].

Theorem A Let f ∈ C2((0, 1]), f (x) > 0 on I , and let f (x) satisfy the Hartman–Wintner
asymptotic condition at x = 0,

f − 1
4

[
f − 1

4

]′′ ∈ L1(I ). (36)

The linear differential equation y′′ + f (x)y = 0, x ∈ I , is rectifiable oscillatory on I
provided 4

√
f (x) ∈ L1(0, 1) and unrectifiable oscillatory on I provided 4

√
f (x) /∈ L1(0, 1).

In the first main result of the paper, we give a generalization of Theorem A from linear
to the half-linear differential equations. More precisely, we will show that the condition
4
√

f (x) ∈ L1(0, 1) when p = 2 will be generalized to the corresponding one f 1/p2
(x) ∈

L1(0, 1) when p > 1.

Theorem 2 Let f (x) satisfy (2) and (8).

(i) Equation (1) is rectifiable oscillatory on I if

lim
ε→0

1∫

ε

f
1

p2 (x)dx < +∞. (37)

(ii) Equation (1) is unrectifiable oscillatory on I if

lim
ε→0

1∫

ε

f
1

p2 (x)dx = +∞. (38)

Proof Firstly, we know that the rectifiability of the graph G(y) of a smooth function y(x)
defined on I , is equivalent to y′ ∈ L1(0, 1), see [7, Theorem 1, p. 217]. Now, let y(x) be any
solution of Eq. (1). From Proposition 1, Proposition 2, and Remark 2, we have that y(x) is
oscillatory on I . Moreover, according to Proposition 2, Remark 3, and assumption (37), we
obtain that y′ ∈ L1(0, 1), which ensures that y(x) is rectifiable oscillatory on I .

Next, let y(x) be a non-trivial solution of Eq. (1) and let t = ϕ(x) → ∞ when x → 0.
Let sn and Sn be two sequences of consecutive zeros of y′(x) and w′(t) respectively, see
(7) and Remark 2. Recall Sn = nπ

p (sin π
p )

−1, w(Sn) = 1, and sn = ϕ−1(Sn) for all n. In
order to prove that y(x) is unrectifiable oscillatory on I , it is enough to show that the series
∑

n |y(sn)| is divergent, see [15, Proposition 4.2]. Denote F(x) = f − 1
pq (x). Note that by

(3) and Proposition 2,

∑

n

|y(ϕ−1(Sn))| ≥ 2c0

3

∑

n

F(ϕ−1(Sn)). (39)

Denote Jn = [Sn, Sn+1], having length L = 2π
p (sin π

p )
−1. Let σn ∈ Jn be chosen so that

F(ϕ−1(σn)) ≥ F(ϕ−1(t)) for all t ∈ Jn . Observe that

F(ϕ−1(Sn)) ≥ F(ϕ−1(σn))− max
t∈Jn

|F ′(ϕ−1(t))||Sn − σn |,
so

F(ϕ−1(Sn)) ≥ F(ϕ−1(σn))− L max
t∈Jn

|F ′(ϕ−1(t))|. (40)
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From Proposition 1, we get a small enough x1 ∈ I such that

|ϕ′(x)| ≥ 1

2
(p − 1)−

1
p f

1
p (x) for all x ∈ (0, x1). (41)

Also, from (13) and (27), we get a small enough x2 ∈ I such that

2L(p − 1)1/p

pq
|g(x)| < 1

4
for all x ∈ (0, x2). (42)

Let x0 = min{x1, x2}. Since limn→∞ Sn = ∞, we can choose n0 sufficiently large so that
ϕ−1(t) ∈ (0, x0) for all t ≥ Sn0 . Now we use (41) and (42) to estimate F ′(ϕ−1(t)) for all t
such that x = ϕ−1(t) ∈ (0, x0) as follows:

∣
∣
∣
∣

d

dt
F(ϕ−1(t))

∣
∣
∣
∣ = 1

pq

∣
∣
∣
∣
∣
∣

g(x) f
1

p2 (x)

ϕ′(x)

∣
∣
∣
∣
∣
∣
≤ 2(p − 1)1/p

pq

∣
∣
∣
∣g(x) f

1
p2 (x) f − 1

p (x)

∣
∣
∣
∣

≤ 2(p − 1)1/p

pq
|g(x)|F(ϕ−1(t)) <

1

4L
F(ϕ−1(t)),

thus

max
t∈Jn

|F ′(ϕ−1(t))| ≤ 1

4L
F(ϕ−1(σn)), n ≥ n0. (43)

Using (43) in (40), we obtain

F(ϕ−1(Sn)) ≥ 3

4
F(ϕ−1(σn)), n ≥ n0. (44)

Using (44) in (39) we obtain
∑

n

|y(sn)| =
∑

n

|y(ϕ−1(Sn))| ≥ c0

2

∑

n≥n0

F(ϕ−1(σn))

= c0

2

∑

n>n0

f − 1
pq (ϕ−1(σn)) ≥ p

4π
c0

(

sin
π

p

) ∑

n≥n0

Sn+1∫

Sn

f − 1
pq (ϕ−1(t))dt

= p

4π
c0

(

sin
π

p

) ∞∫

τ0

f − 1
pq (ϕ−1(t))dt, (45)

where τ0 = Sn0 . Now by (41) we estimate from below the last integral in (45),

∞∫

τ0

f − 1
pq (ϕ−1(t))dt = −

ϕ−1(τ0)∫

0

f − 1
pq (x)ϕ′(x)dx

≥ c1

ϕ−1(τ0)∫

0

f − 1
pq (x) f

1
p (x)dx =

ϕ−1(τ0)∫

0

f
1

p2 (x)dx .

Hence, according to (38) and (45), from the last inequality follows that the series
∑

n |y(sn)|
is divergent which implies that y(x) is unrectifiable oscillatory on I . �
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As a consequence of the previous criterion for the rectifiable and unrectifiable oscillations
of Eq. (1) on I , we can derive some sufficient conditions for rectifiable and unrectifiable
oscillations of (1) on I related to (37) and (38).

Corollary 1 Let f (x) satisfy (2) and (8).

(i) Equation (1) is rectifiable oscillatory on I if p ≥ 2 and

lim
ε→0

1∫

ε

f
1
pq (x)dx < +∞. (46)

(ii) Equation (1) is unrectifiable oscillatory on I if 1 < p ≤ 2 and

lim
ε→0

1∫

ε

f
1
pq (x)dx = +∞. (47)

Proof The condition p ≥ 2 gives q ≤ p and so, f
1

p2 (x) ≤ f
1
pq (x) for x ≈ 0, which

together with (46) ensures (37). Hence, the conclusion (i) of this corollary follows from the
same conclusion (i) of Theorem 2. Also, the condition 1 < p < 2 implies that p < q and so,

f
1

p2 (x) ≥ f
1
pq (x) for x ≈ 0, which together with (47) gives (38). Therefore, the conclusion

(ii) of this corollary follows from the same conclusion (ii) of Theorem 2. Finally, in the case
p = 2, the condition (47) becomes 4

√
f (x) /∈ L1(0, 1) and the unrectifiable oscillations of

(1) immediately follows from Theorem 1.4 in [11]. �
Remark 4 We note that conditions (37), (38), and also conditions (46), (47) are mutually
exclusive to one another. Therefore conditions (37) and (46) are necessary and sufficient
conditions for rectifiable oscillations. Likewise, conditions (38) and (47) are necessary and
sufficient conditions for unrectifiable oscillations.

As the first application of Theorem 2, we show that the number α = p2 could be taken
as the so-called critical value for rectifiable oscillations of the linear differential equations of
Euler type in the following way.

Theorem 3 Let f (x) satisfy (2) and (8), and let f (x) ∼ λx−α near x = 0, where α > p.
Then Eq. (1) is rectifiable oscillatory on I provided p < α < p2 and unrectifiable oscillatory
on I provided α ≥ p2.

Proof It is enough to check that for f (x) ∼ λx−α near x = 0, we have: if α < p2 (resp.,
α ≥ p2), then the condition (37) (resp., 38) is satisfied. �
In the following examples, we give some applications of Theorem 3 and Theorem 2.

Example 1 We consider the p-generalized Euler type differential equation,

(Φ(y′))′ + λx−αΦ(y) = 0, x ∈ I, (48)

where α > p and λ > 0. It is easy to check that the function f (x) = λx−α satisfies the
condition (11) and also, f 1/p2 ∈ L1(I ) if and only if p < α < p2. Therefore, by means of
Theorem 3 and Lemma 1, we observe that (48) is rectifiable oscillatory on I if p < α < p2

and unrectifiable oscillatory on I if α ≥ p2.
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528 M. Pašić, J. S. W. Wong

Example 2 Let λ > 0, β > 0, and γ ∈ R. The half-linear differential equation,

(Φ(y′))′ + λx−γ eβ/xΦ(y) = 0, x ∈ I, (49)

is unrectifiable oscillatory on I by Theorem 2. Indeed, since x Ae−B/x ∈ L1(I ) and x AeB/x /∈
L1(I ) for any A ∈ R and B > 0, in particular for f (x) = λx−γ eβ/x we have:

f − 1
2p (x)

[
f − 1

2p (x)
]′′

= λ
− 1

p

4p2

[
(γ 2 − 2pγ )x

γ
p −2 + 2β(γ − 2p)x

γ
p −3 + β2x

γ
p −4

]
e

−β
px ∈ L1(I )

and

f 1/p2
(x) = λ

− 1
p x

− γ

p2 e
β

p2x /∈ L1(I ).

Now, Theorem 2 ensures the unrectifiable oscillations of Eq. (49).

Next, we can prove similar results for the perturbed differential equation

(Φ(y′))′ + ( f (x)+ h(x))Φ(y) = 0, x ∈ I, (50)

as the linear case in [11]. The following theorem is an extension of Theorem 3.2 which also
improves Theorem 1.8 in [11].

Theorem 4 Let f (x) satisfy (2) and (8). If h(x) satisfies f −2 f ′h ∈ L1(I ) then we have:

(i) Equation (50) is rectifiable oscillatory on I if (37) holds,
(ii) Equation (50) is unrectifiable oscillatory on I if (38) holds.

Proof Let y(x) be a non-trivial solution of (50) and let V (x) be defined by (25). Then y(x)
satisfies the following identity which is similar to (25),

V (x) = M1 − cpg(x)Φ(y′)y − cp

x1∫

x

g′(s)Φ(y′(s))y(s)ds

+ cp

x1∫

x

g(s)h(s)|y(s)|pds, (51)

where cp = p−1(p − 1)
1
p . The last integral in (51) can be estimated by

cp

x1∫

x

g(s)h(s)|y(s)|pds ≤ 1

q

x1∫

x

|g(s)h(s)| f − 1
q (s)V (s)ds

≤ 1

q

x1∫

x

| f −2(s) f ′(s)h(s)|V (s)ds. (52)

Using (52), we can derive upper and lower bounds for V (x) similar to (34) and (35),

V (x) ≤ M2 + M3

x1∫

x

[|g′(s)| + | f −2(s) f ′(s)h(s)|] V (s)ds, (53)
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and

V (x) ≥ m2 − m3

x1∫

x

[|g′(s)| + | f −2(s) f ′(s)h(s)|] V (s)ds. (54)

Using (53) and (54), we can repeat a similar argument leading to (34) and (35), and show
that V (x) is bounded from above and below by positive constants in the right neighbourhood
of 0. Hence limx→0 V (x) exists as a positive finite number. The remaining proof is the same
as that of Theorem 2. �
Example 3 Let λ > 0, β ∈ (0, 1), and α > p. We consider the half-linear Euler–Weber type
differential equation,

(Φ(y′))′ + 1

xα

(

λ+ δ sin x

| ln x |β
)

Φ(y) = 0, x ∈ I. (55)

This equation is a logarithm perturbation of (48). According to Theorem 4, Eq. (55) is
rectifiable oscillatory on I if p < α < p2 and unrectifiable oscillatory on I if α ≥ p2.
In order to show that, it is enough to check that the functions f (x) = λx−α and h(x) =
δx−α| ln x |−β sin x satisfy f −2 f ′h ∈ L1(I ) and also that, f 1/p2 ∈ L1(I ) if and only if
p < α < p2.

Remark 5 Let f (x) = λx−α ,λ > 0,α > 0, and h(x) = µx−β sin x ,β > 0. The requirement
that f −2 f ′h ∈ L1(I ) amounts to α > β. In particular, the differential equation

y′′ + (λx−4 + µx−3 sin x)y = 0, (56)

where λ > 0, is unrectifiable oscillatory which cannot be concluded from [11]. This shows
that Theorem 4 improves upon our earlier result even when p = 2. In other words, the method
of proof is superior than that based upon the usual Wintner–Hartman asymptotic formula in
our earlier paper [11].

In case of rectifiable oscillation, the conclusion (i) of Theorem 4 can be further improved
to include equations with a forcing term. In this connection, let us consider the equation,

(Φ(y′))′ + ( f (x)+ h(x))Φ(y) = e(x), x ∈ I, (57)

where f (x) and h(x) are same as before, and the forcing term e(x) satisfies e ∈ C((0, 1]).
Theorem 5 Let f (x) and h(x) satisfy the conditions from Theorem 4, and let E(x) =
f
−2− 1

p2 (x) f ′(x)e(x). If

E ∈ L1(I ), (58)

then all solutions of (57) are rectifiable oscillatory if (37) holds.

Proof We proceed in the same manner as in the proof of Theorem 4. We find instead of (53)
the following upper bound for V (x):

V (x) ≤ M2 + M3

x1∫

x

[|g′(s)| + | f −2(s) f ′(s)h(s)|] V (s)ds

+ 1

q

x1∫

x

|g(s)e(s)| f − 1
pq (s)V

1
p (s)ds. (59)
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Note that p > 1 implies ( f − 1
q V )

1
p ≤ 1+ 1

p f − 1
q V and condition (58) implies that G ∈ L1(I ),

where G(x) = g(x)e(x) f − 1
pq (x). Using this in (59), one can conclude that the function V (x)

is bounded by a constant depending on initial conditions of y(x) at x = x1. Thus, rectifiable
oscillation of y(x) follows from (25) with an application of (37). �
Remark 6 Let f (x) = λx−α , λ > 0, α > 0, and h(x) = µx−β sin x , 0 < β < α. We can
conclude from Theorem 5 that the forced linear differential equation

y′′ + (λx−4 + µx−3 sin x)y = x−γ cos x, (60)

where 4
3γ < α < 4, is rectifiable oscillatory. This gives further improvement of our early

result for the harmonic oscillator. Note that γ in (60) can be zero which corresponds to
periodic forcing and γ can also be negative. Rectifiable oscillations are preserved under
periodic forcing when the forcing term e(x) and perturbing term h(x) become singular as
long as they are dominated by f (x).

4 The s-dimensional fractal oscillations

In this section, we give some sufficient conditions on the function f (x) such that for all
solutions of Eq. (1), the graph G(y) is a fractal and smooth curve in R2. It will be established
that the following kind of fractal dimension of G(y), denoted by dimM G(y) and called by
Minkowski–Bouligand dimension (or the box-counting dimension), see [12,18,24], satisfies:
dimM G(y) = s ∈ (1, 2), where the fractional value s only depend on the asymptotic
behaviour of f (x) near x = 0. As usual, it is defined by

dimM G(y) = lim sup
ε→0

(

2 − log |Gε(y)|
log ε

)

,

where |Gε(y)| denotes the Lebesgue measure of the ε-neighbourhood Gε(y) of the graph
G(y) which is defined by,

Gε(y) = {(t1, t2) ∈ R2 : d((t1, t2),G(y)) ≤ ε}, ε > 0,

and d((t1, t2),G(y)) denotes the distance from (t1, t2) to G(y).
Furthermore, it is known (see [24, Chapter 9]) that the so-called one dimensional upper

Minkowski content of a rectifiable graph G(y), denoted by M1(G(y)), can characterize the
arclength of G(y) in the sense that M1(G(y)) = length(G(y)) < ∞. Moreover, since y(x)
is a non-trivial continuous function on I , we have that 0 < M1(G(y)) < ∞. Here, the
s-dimensional upper Minkowski content of G(y), s ∈ [1, 2), is as usual defined by

Ms(G(y)) = lim sup
ε→0

(2ε)s−2|Gε(y)|, s ∈ [1, 2).

Hence, if dimM G(y) = s > 1, it is worth to know whether 0 < Ms(G(y)) < ∞? In this
direction, we recall the following definition which appears for the first time in [16], see also
in [11].

Definition 2 Let s ∈ [1, 2). A graph G(y) is said to be an s-set in R2 if dimM G(y) = s
and 0 < Ms(G(y)) < ∞. An oscillatory function y(x) on I is said to be the s-dimensional
fractal oscillatory on I if its graph G(y) is an s-set in R2. An oscillatory linear differential
equation y′′ + f (x)y = 0 on I is said to be the s-dimensional fractal oscillatory on I if all
its nontrivial solutions y(x) are the s-dimensional fractal oscillatory on I .

123



Rectifiable oscillations in second-order half-linear differential equations 531

It is clear that, if G(y) is an s-set in R2, s ∈ [1, 2), then for the asymptotic behaviour of
|Gε(y)| we have c0ε

2−s ≤ |Gε(y)| ≤ c1ε
2−s , where c0 > 0 and c1 > 0 are independent of

ε > 0.
Let us remark that in [16], it is proved that the linear differential equation of Euler type

(P)α: y′′ + λx−α y = 0, x ∈ I , is the 1-dimensional fractal oscillatory on I if 2 < α < 4
and the s-dimensional fractal oscillatory on I if α > 4, where s = 3/2 − 2/α. Moreover, in
Theorem 1.12 from [11], this result has been enlarged to linear differential equations as in
the following theorem.

Theorem B Let f ∈ C2((0, 1]), f (x) > 0 on I and let f (x) satisfy the Hartman–Wintner
condition (36). Let f (x) ∼ λx−α near x = 0, where α > 2. Then the linear differential
equation y′′ + f (x)y = 0, x ∈ I , is the 1-dimensional fractal oscillatory on I provided 2 <
α < 4 and the s-dimensional fractal oscillatory on I provided α > 4, where s = 3/2 − 2/α.

In a case when α = 4 and f (x) = λx−α , the graph G(y) is degenerated in the sense of
fractal oscillations. More precisely, for all solutions y(x) of the equation y′′ + λx−4 y = 0,
x ∈ I , in [16, Theorem 1.5] has been proved that dimM G(y) = 1 and M1(G(y)) = ∞.

In the following second main result of the paper, Theorem B will be generalized to the case
of Eq. (1) for any p > 1. Also, the unrectifiable oscillations which is presented in Theorem 3
above is described here from the fractal geometry point of view.

Theorem 6 Let f (x) satisfy (2) and (8), and let f (x) ∼ λx−α near x = 0, where α > p.
Then Eq. (1) is the 1-dimensional fractal oscillatory on I provided p < α < p2 and the
s-dimensional fractal oscillatory on I provided α > p2, where s = 2 − 1

q − p
α

.

The proof of this theorem is mainly based on a zero-points analysis given in the following
lemma.

Lemma 3 Let f (x) be as in Theorem 6. Let y(x) be a solution of Eq. (1) and let ak ∈ I and
sk ∈ (ak+1, ak) be decreasing sequences of consecutive zeros of y(x) and y′(x) respectively,
obtained as in Remark 2. Then there are k0 ∈ N, ε0 > 0, and positive constants ci , i =
0, 1, 2, 3, 4, such that for all k ∈ N, k > k0 and ε ∈ (0, ε0) there hold true:

c1a
α
p

k+1 ≤ ak − ak+1 ≤ c2a
α
p

k , (61)

c3

(
1

k + k0

) p
α−p ≤ ak ≤ c4

(
1

k − k0

) p
α−p

, (62)

and

|y(sk)| ≥ c0s
α
pq

k ≥ c0a
α
pq

k+1. (63)

Furthermore, for any ε ∈ (0, ε0) there is an k(ε) ∈ N such that k(ε) > k0 and

ak − ak+1 ≤ ε

2
for each k > k(ε). (64)

Proof The proofs of the statements (61) and (62) will be presented in Appendix of the paper.
These results in the case for p = 2 have been already shown in [16, Lemmas 3.3 and 3.5].
See also Lemmas 4.1 and 4.3 from [11].

Next, let y(x) be a non-trivial solution of Eq. (1). According to (3), Proposition 2 and
Remark 2, for all sufficiently large k ∈ N, we have that y′(sk) = 0, V (sk) ≥ c and
|w(ϕ(sk))| = 1, and hence,

|y(sk)| = (p − 1)
1
pq f − 1

pq (sk)V
1
p (sk)|w(ϕ(sk))| ≥ c f − 1

pq (sk). (65)
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Now, the inequality (63) follows from (65) and from assumption that f (x) ∼ λx−α near
x = 0.

Next, it is clear that for any ε ∈ (0, ε0) there is a k(ε) ∈ N such that k(ε) > k0 and

d0ε
− α−p

α + k0 < k(ε) < 2d0ε
− α−p

α − k0 − 1, (66)

where d0 and ε0 are defined by

d0 =
(

2c2c
α
p

4

) α−p
α

and ε0 =
(

d0

2k0 + 2

) α
α−p

. (67)

Indeed, (2d0ε
− α−p

α −k0 −1)− (d0ε
− α−p

α +k0) = d0ε
− α−p

α −2k0 −1 > 1 for all ε ∈ (0, ε0).
Furthermore, (61), (62), (66), and (67), show that for k > k(ε),

|ak − ak+1| ≤ c2a
α
p

k ≤ c2c
α
p

4

(
1

k − k0

) α
p

p
α−p ≤ c2c

α
p

4 d
− α
α−p

0 ε
α−p
α

α
α−p = ε

2
,

which proves the desired inequality (64). Thus, this lemma is shown. �
Proof of Theorem 6 Let s = 2 − 1

q − p
α

. It is clear that α > p2 implies s > 1. Let y(x) be a
nontrivial solution of Eq. (1) and ak ∈ I be a decreasing sequence of its consecutive zeros.
In order to prove this theorem, we need to show that

Ms(G(y)) > 0 and dimM G(y) ≥ s, (68)

and

Ms(G(y)) < ∞ and dimM G(y) ≤ s. (69)

At the first, from (61), (62), (63), and (66), we obtain

∑

k≥k(ε)

|y(sk)|(ak − ak+1) ≥ c
∑

k≥k(ε)

a
α
pq

k+1a
α
p

k+1 = c
∑

k≥k(ε)

a
α
p (

1
q +1)

k+1

≥ c
∑

k≥k(ε)

(
1

k + 1 + k0

) α
α−p (

1
q +1)

≥ c

(
1

k(ε)+ 1 + k0

) α
α−p (

1
q +1)−1

≥ cε
1
q + p

α . (70)

According to [14, Lemma 2.1], see also [16, Lemma 4.1], we know that: for a continuous
function y(x) on Ī and decreasing sequence ak ∈ I of consecutive zeros of y(x) such that
ak ↘ 0, if there is a natural number k(ε) and an ε0 > 0 such that |ak − ak+1| ≤ ε for all
ε ∈ (0, ε0) and for all k ≥ k(ε), then

|Gε(y)| ≥
∑

k≥k(ε)

|y(sk)|(ak − ak+1) for all ε ∈ (0, ε0). (71)

According to Lemma 3 we may apply this fact to solution y(x) and its sequence ak . Hence,
(64), (70), and (71) implies that

|Gε(y)| ≥ cε
1
q + p

α for allε ∈ (0, ε0), (72)

where ε0 is given in (67). Multiplying (72) by (2ε)s−2, and passing to the limit superior when
ε tends to 0, we obtain that

Ms(G(y)) = lim sup
ε→0

(2ε)s−2|Gε(y)| ≥ c0 lim sup
ε→0

ε
s−2+ 1

q + p
α = c0 > 0, (73)
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where c0 = c2s−2. Also, from (72) we derive that

dimM G(y) = lim sup
ε→0

(

2 − log |Gε(y)|
log ε

)

,

≥ lim sup
ε→0

(

2 − log c

log ε
− log ε

1
q + p

α

log ε

)

= 2 − 1

q
− p

α
= s. (74)

Thus, the desired statement (68) immediately follows from (73) and (74).
Next, we are going to prove the statement (69), that is, we need to estimate Gε(y) from

above. At the first, Gε(y) = Gε(yI1)∪Gε(yI2)∪Gε(yI3), where yIi (x) denotes the restriction
of y(x) on Ii ⊆ Ī and Ii are defined by I1 = [0, ak(ε)], I2 = [ak(ε), ak0 ], and I3 = [ak0 , 1].
Hence,

|Gε(y)| ≤ |Gε(yI1)| + |Gε(yI2)| + εLG(yI3) ≤ |Gε(yI1)| + |Gε(yI2)| + εM0, (75)

where LG(yI3) denote the arclength of y(x) over the interval I3, and M0 is the arclength of
y(x) over [ak0 , 1] which is finite. Therefore, in order to estimate |Gε(y)|, we need to estimate
|Gε(yI1)| and |Gε(yI2)|. Here k(ε) is determined in (66), and k0 is chosen so that (61) and
(62) hold, and also, since f (x) ∼ λx−α near x = 0, where α > p, for a λ2 > 0 and for this
k0, we have that f (x) ≤ λ2x−α for all x ∈ (0, ak0). It together with (3), (5), and Proposition 2
gives that

|y(sk)| ≤ c1s
α
pq

k ≤ c1a
α
pq

k for all k > k0. (76)

Also, from (62) and (66) follows that for all ε ∈ (0, ε0),

ak(ε) ≤ c4

(
1

k(ε)− k0

) p
α−p ≤ c5(ε

α−p
α )

p
α−p = c5ε

p
α . (77)

Now, according to (76) and (77) we derive that |y(sk(ε))| ≤ cε
1
q and so,

|Gε(yI1)| ≤ 2(ak(ε) + 2ε)(|y(sk(ε))| + ε) ≤ c6(ε
p
α
+ 1

q + ε1+ p
α + ε

1+ 1
q + ε2).

Since α > p2, it is clear that p
α

+ 1
q < 1, and hence,

|Gε(yI1)| ≤ c6ε
p
α
+ 1

q . (78)

Furthermore, from (61), (62), and (76), we derive that

|Gε(yI2)| ≤
k(ε)∑

k=k0+1

ε (2|y(sk)| + ak − ak+1) ≤ c7ε

k(ε)∑

k=k0+1

(a
α
pq

k + a
α
p

k )

≤ c7ε

k(ε)∑

k=k0+1

a
α
pq

k ≤ c8ε

k(ε)∑

k=k0+1

(
1

k − k0

) p
α−p

α
pq ≤ c9ε

(
1

k(ε)+ 1 − k0

) α
q(α−p)−1

because α
q(α−p) < 1 since α > p2, which together with (66) gives that

|Gε(yI2)| ≤ c9ε (k(ε)+ 1 − k0)
1− α

q(α−p) ≤ c10ε
p
α
+ 1

q . (79)
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Since p
α

+ 1
q < 1, from (75), (78), and (79), we observe that

|Gε(y)| ≤ cε
p
α
+ 1

q . (80)

Multiplying (80) by (2ε)s−2, where s = 2 − 1
q − p

α
and passing to the limit superior when ε

tends to 0, we obtain that

Ms(G(y)) = lim sup
ε→0

(2ε)s−2|Gε(y)| ≤ c1 lim sup
ε→0

ε
s−2+ 1

q + p
α = c1 < ∞, (81)

where c1 = c2s−2. Also, from (80) we derive that

dimM G(y) = lim sup
ε→0

(

2 − log |Gε(y)|
log ε

)

,

≤ lim sup
ε→0

(

2 − log c

log ε
− log ε

1
q + p

α

log ε

)

= 2 − 1

q
− p

α
= s. (82)

Note that (69) follows from (81) and (82). Now by (68) and (69), the proof of this theorem
is complete. �

5 Singular behaviour of L p norm of y′(x)

In this section, we pay attention to L p nonintegrability of the derivative y′(x) of all solutions
y(x) of Eq. (1) on the interval I , where f (x) ∼ λx−α near x = 0 and α > p.

We know that the regularity of the function F in the p-Laplacian equation (E p): (Φ(y′))′ =
F at any interior point x0 is closely related to L p integrability of all solutions of (E p) in
an open neighbourhood of x0; in most general setting, see in [19,20]. It is comparable with
our attention here to prove that the order of growth for singularity of f (x) at boundary point
x = 0 implies the order of growth for L p nonintegrability of all solutions of Eq. (1) near
x = 0.

At the first, we show that the L1 integrability of y′(x) depends on a relation between α
and p2 in this way.

Corollary 2 Let f (x) satisfy (2) and (8), and let f (x) ∼ λx−α near x = 0, where α > p.
Then for all solutions y(x) of Eq. (1) we have:

(i) y′ ∈ L1(I ) provided p < α < p2;
(ii) y′ /∈ L1(I ) provided α ≥ p2.

Proof Since the rectifiability of the graph G(y) of a smooth function y(x) on I is equivalent
to the integrability of y′(x), see the proof of Theorem 2, the conclusions (i) and (ii) of this
corollary easy follow from Theorem 3. �

Because of Corollary 2, it is worth to consider the L p nonintegrability of the derivative
y′(x) on I . We will show that y′(x) does not L p integrable on I for any case of α > p. Also,
we determine a lower bound for the singular behaviour of L p norm of y′(x) on the interval
(ε, 1) when ε → 0.

Theorem 7 Let f (x) satisfy (2) and (8), and let f (x) ∼ λx−α near x = 0, where α > p.
Then y′ /∈ L p(I ) for all solutions y(x) of Eq. (1) and

lim inf
ε→0

log ||y′||L p(ε,1)

log 1/ε
≥ α

p2 − 1

p
> 0, (83)
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where ||y′||L p(ε,1) denotes the L p norm of y′(x) on (ε, 1). Moreover, if α ≥ p2 then

lim inf
ε→0

log ||y′||L p(ε,1)

log 1/ε
≥ 1

q
. (84)

Proof Since p > 1 and y(ak+1) = y(ak) = 0 for all k ∈ N, and y ∈ C1(I ), we have that
y ∈ W 1,p

0 (ak+1, ak) and by using [3, Theorem 9.12] we obtain a constant c > 0 depending
only on p such that

sup
(ak+1,ak )

|y(x)| ≤ c(ak − ak+1)
1− 1

p ||y′||L p(ak+1,ak ), k ∈ N. (85)

Let k0 ∈ N be from Lemma 3 and let k(ε) ∈ N be from (66). We claim that

k(ε) ≥ k0 + 1 for all ε ∈ (0, ε0), (86)

where ε0 is from (67). Also, there is a constant c0 > 0 which does not depend on ε such that

ak(ε)+1 ≥ c0ε
p
α for all ε ∈ (0, ε0). (87)

Indeed, from (66) and (67), for all ε ∈ (0, ε0), we derive that

k(ε) ≥ k0 + d0ε
− α−p

α ≥ k0 + d0ε
− α−p

α

0 = k0 + d0

(
d0

2k0 + 2

)− α−p
α

α
α−p ≥ k0 + 1.

Also, by (62) and (66), for all ε ∈ (0, ε0), we obtain that

ak(ε)+1 ≥ c3

(
1

k(ε)+ k0 + 1

) p
α−p ≥ c4ε

α−p
α

p
α−p = c4ε

p
α .

Now, because of (85), (86), and (87), for all ε ∈ (0, ε0), we can write that

||y′||p
L p(c0ε p/α,1)

≥ ||y′||p
L p(ak(ε)+1,ak0+1)

=
k(ε)∑

k=k0+1

||y′||p
L p(ak+1,ak )

≥ c−p
k(ε)∑

k=k0+1

[
sup(ak+1,ak )

|y(x)|
]p

(ak − ak+1)p−1 . (88)

Let us remark that by combining (61), (62) and (63), for all k > k0, we have:

sup
(ak+1,ak )

|y(x)| = |y(sk)| ≥ c1

(
1

k + 1 + k0

) α
q(α−p)

, (89)

ak − ak+1 ≤ c2

(
1

k − k0

) α
α−p

. (90)

Since p − 1 = p/q and

k − k0

k + 1 + k0
≥ 1

2k0 + 2
for all k ≥ k0 + 1,
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by putting (89) and (90) into (88) and by (66), we obtain

||y′||p
L p(c0ε p/α,1)

≥ c3

k(ε)∑

k=k0+1

(
k − k0

k + 1 + k0

) α
α−p (p−1)

≥ c3

(
1

2k0 + 2

) α
α−p (p−1) k(ε)∑

k=k0+1

1 = c4(k(ε)− k0) ≥ c4d0ε
− α−p

α ,

that is, ||y′||L p(c0ε p/α,1) ≥ c5ε
− α−p

pα for all ε ∈ (0, ε0). Hence,

||y′||L p(ε,1) ≥ c6ε
− α−p

pα
α
p = c6ε

− α−p
p2 for all ε ∈ (0, c0ε

p
α

0 ).

Tacking the logarithm and the limit inferior in the previous inequality, we get

lim inf
ε→0

log ||y′||L p(ε,1)

log 1/ε
≥ α − p

p2 ≥ α

p2 − 1

p
> 0,

since α > p. Thus, the desired inequality (83) is proved. Finally, if α ≥ p2 then α
p2 − 1

p ≥
1− 1

p = 1
q and so, (84) immediately follows from (83). Thus, this theorem is proved. �

Appendix

At the end of this paper, we give the proofs of some technical results which have been used
in the previous sections.

Proof of (15) From (16) we derive:
{ |y(x)|p = a p f −Ap(x)V (x)|w(ϕ(x))|p, x > 0,

|y′(x)|p = bq f Bq(x)V (x)|w′(ϕ(x))|p, x > 0.
(91)

It is clear that (Φ(u))′ = (p − 1)|u|p−2u′.
At the first, in all points x ∈ (0, 1)where y(x) �= 0, from Eq. (1) follows (Φ(y′))′/Φ(y) =

− f (x). According to (16) and (17), it implies
(
Φ(y′)
Φ(y)

)′
= (Φ(y′))′

Φ(y)
− Φ(y′)
(Φ(y))2

(p − 1)|y|p−2 y′(x)

= − f (x)− (p − 1)
|y′|p

|y|p
= − f (x)− (p − 1)

bq f Bq(x)V (x)|w′(ϕ(x))|p

a p f −Ap(x)V (x)|w(ϕ(x))|p

= − f (x)− f (x)
|w′(ϕ(x))|p

|w(ϕ(x))|p
= − f (x)

|w(ϕ(x))|p
, (92)

where in the last equality, the identity (5) is used. In the same way, from Eq. (4) follows
(Φ(w′))′/Φ(w) = −(p − 1) and

(
Φ(w′(ϕ(x)))
Φ(w(ϕ(x)))

)′
=

(
Φ(w′(ϕ(x)))

)′

Φ(w(ϕ(x)))
−Φ(w′(ϕ(x)))

(
1

Φ(w(ϕ(x)))

)′

= −(p − 1)ϕ′(x)− (p − 1)
|w′|p

|w|p
ϕ′(x) = − p − 1

|w(ϕ(x))|p
ϕ′(x),

where in the last equality, the identity (5) is used.
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On the other hand, it is clear that

Φ(y) = a p−1 f −A(p−1)(x)V
p−1

p (x)Φ(w(ϕ(x))),

and so,

(
Φ(y′)
Φ(y)

)′
=

[
−b f B(x)V

1
q (x)Φ(w′(ϕ(x)))

a p−1 f −A(p−1)(x)V
p−1

p (x)Φ(w(ϕ(x)))

]′

= −b

a p−1

[

f B+A(p−1)(x)
Φ(w′(ϕ(x)))
Φ(w(ϕ(x)))

]′

= −b f B+A(p−1)(x)

a p−1

[

(B+A(p − 1))
f ′(x)
f (x)

Φ(w′(ϕ(x)))
Φ(w(ϕ(x)))

− p − 1

|w(ϕ(x))|p
ϕ′(x)

]

.

(93)

From (92) and (93) follows that

(B + A(p − 1))
f ′(x)
f (x)

Φ(w′(ϕ(x)))
Φ(w(ϕ(x)))

− p − 1

|w(ϕ(x))|p
ϕ′(x)

= a p−1

b

f 1−B−A(p−1)(x)

|w(ϕ(x))|p
. (94)

Let us remark that from (17) follows

B + A(p − 1)

p − 1
= 1

p
,

a p−1

b(p − 1)
= (p − 1)−

1
p , and 1 − B − A(p − 1) = 1/p. (95)

Hence, from (94) and (95) we derive the desired differential equation (15). �

Proof of (25) and (26) From (16) we obtain that:

{ |w(ϕ(x))|p = a−p f Ap(x)V −1(x)|y(x)|p, x > 0,

|w′(ϕ(x))|p = b−q f −Bq(x)V −1(x)|y′(x)|p, x > 0.
(96)

Now, by putting (96) into (5) in particular for a = (p−1)
1

p2 , b = 1/a, and A = B = 1/(pq),
the desired equality (25) for the function V (x) immediately follows.

Next, it is clear that the equality (26) is a particular case of the following fact which says
that for any real numbers e and E ,

d

dx

[
(p − 1)e f E (x)|y′|p + e f E+1(x)|y|p

]

= d

dx

[
(p − 1)e f E (x)

]
|y′|p + d

dx

[
e f E+1(x)

]
|y|p,

where y is any solution of Eq. (1). Indeed, from Eq. (1) we have that

(|y′|p)′ = − 1

p − 1
f (x)

(|y|p)′
,
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which implies that

d

dx

[
(p − 1)e f E (x)|y′|p + e f E+1(x)|y|p

]

=
(
(p − 1)e f E (x)

)′ |y′|p + (p − 1)e f E (x)
(|y′|p)′ +

(
e f E+1(x)

)′ |y|p

+ e f E+1(x)
(|y|p)′

= d

dx

[
(p − 1)e f E (x)

]
|y′|p + d

dx

[
e f E+1(x)

]
|y|p.

�

Proof of Proposition 3 Since ψ A−1ψ ′′ ∈ L1(I ), there is a constant K > 0 such that

K =
1∫

0

ψ A−1(x)|ψ ′′(x)|dx < ∞.

Hence,

ψ A−1(1)ψ ′(1)− ψ A−1(s)ψ ′(s)− (A − 1)

1∫

s

ψ A−2(x)(ψ ′(x))2dx

=
1∫

s

ψ A−1(x)ψ ′′(x)dx ≥ −K . (97)

On the first hand, from (97) follows,

ψ A−1(s)ψ ′(s) ≤ K + ψ A−1(1)|ψ ′(1)| − (A − 1)

1∫

s

ψ A−2(x)(ψ ′(x))2dx

≤ K + ψ A−1(1)|ψ ′(1)|,
which gives (ψ A(x))′ ≤ c for all x ∈ I . Since ψ(0) = 0, we observe that ψ A(x) ≤ cx ,
x ∈ I , which shows that 1/ψ A(x) ≥ c/x and hence, 1/ψ A /∈ L1(I ). Thus, the conclusion
(i) of this proposition is proved.

On the other hand, from (97) we obtain that,

(A − 1)

1∫

s

ψ A−2(x)(ψ ′(x))2dx ≤ K + ψ A−1(1)|ψ ′(1)| − ψ A−1(s)ψ ′(s).

Sinceψ(0) = 0 andψ(x) > 0 for all x ∈ I , from the mean value theorem we get a sequence
sn ∈ I such that sn → 0 and ψ ′(sn) > 0. Putting for s = sn in the previous inequality and
passing to the limit, we obtain that

1∫

0

ψ A−2(x)(ψ ′(x))2dx = lim
sn→0

1∫

sn

ψ A−2(x)(ψ ′(x))2dx ≤ K + ψ A−1(1)|ψ ′(1)|
A − 1

,
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which proves that ψ A−2(ψ ′)2 ∈ L1(I ) which together with (97) implies that there exists
constant c such that lims→0 ψ

A−1(s)ψ ′(s) = c. If c �= 0, then

1∫

0

1

ψ A(x)
dx =

1∫

0

ψ A−2(x)(ψ ′(x))2

(ψ A−1(x)ψ ′(x))2
dx < ∞,

which is not possible since 1/ψ A /∈ L1(I ). Hence, c = 0 and the conclusion (ii) is proved.
Finally, the conclusion (iii) easily follows from the facts that ψ A−2(ψ ′)2 ∈ L1(I ),

ψ A−1ψ ′′ ∈ L1(I ), and (ψ A−1(x)ψ ′(x))′ = (A − 1)ψ A−2(x)(ψ ′(x))2 + ψ A−1(x)ψ ′′(x).
Hence, all conclusions of this proposition are proved. �
Proof of (61) We firstly show the left inequality in (61). In this direction, according to the
assumption that f (x) ∼ λx−α near x = 0, where α > p, there is a constant λ > 0 such that
limx→0

f (x)
xα = λ. It gives two constants λ1 and λ2 such that 0 < λ1 < λ < λ2 and for which

there is a δ > 0 such that
λ1

xα
≤ f (x) ≤ λ2

xα
for all x ∈ (0, δ). (98)

Next, let y(x) be a non-trivial solution of Eq. (1), and let ak ∈ I (resp., sk ∈ I ) be a
decreasing sequence of consecutive zeros of y(x) (resp., of y′(x)), see Remark 2. Since
ak ↘ 0 as k → ∞, there is a k0 ∈ N such that ak ∈ (0, δ) for all k > k0. Also, since Eq. (1)
can be rewritten in the form

(p − 1)|y′(x)|p−2 y′′(x) = − f (x)|y(x)|p−2 y(x), (99)

and since f (x) > 0, it is clear that the inequality y(x) > 0 on (ak+1, ak) (resp., y(x) < 0)
implies that y(x) is a concave (resp. a convex) function on (ak+1, ak) and in this case y′(x) > 0
(resp., y′(x) < 0) on (ak+1, sk). For this moment, let

y(x) > 0 and y′(x) > 0 on (ak+1, sk). (100)

The opposite case of (100): y(x) < 0 and y′(x) < 0 on (ak+1, sk), can be analogously con-
sidered. Now, by integrating Eq. (1) over (x, sk)where x ∈ (ak+1, sk) and k > k0, we obtain

y′(x) =
⎡

⎣

sk∫

x

f (t)y p−1(t)dt

⎤

⎦

1
p−1

.

Integrating previous equality over the interval (ak+1, sk), we obtain

y(sk) =
sk∫

ak+1

⎡

⎣

sk∫

x

f (t)y p−1(t)dt

⎤

⎦

1
p−1

dx . (101)

Now, from (98), (100), and (101) easily follows

y(sk) ≤
(
λ2

aαk+1

) 1
p−1

y(sk)(ak − ak+1)
p

p−1 , k > k0.

Hence, we observe that

λ
− 1

p
2 a

α
p

k+1 ≤ ak − ak+1 for all k > k0,

which proves the left inequality in (61).
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To prove the right inequality of (61), we compare Eq. (1) with

(Φ(u′))′ + λ1

aαk
Φ(u) = 0, x ∈ I. (102)

Apply Sturm Comparison Theorem to Eqs. (1) and (102) with f (x) satisfying (98), we know
that between two consecutive zeros of u(x), there must lie one zero of y(x), see [5, p. 177,
Theorem 2.4]. Let bn ∈ I be the sequence of consecutive zeros of u(x). So ak ∈ (bn, bn−1)

where y(ak) = u(bn) = u(bn−1) = 0, 0 < bn < ak < bn−1 < 1 and n depends on k. The
next zero ak+1 of y(x) must lie between (bn+1, bn−1). This shows that

ak − ak+1 < bn−1 − bn+1 ≤ 2(bn − bn+1), (103)

because solutions of (102) are periodic and of equal length between zeros.
To estimate bn−1 − bn+1, we make a scale change through a transformation of variables:

v(ξ) = u(x), ξ = µk x of Eq. (102):

(Φ(v̇))· + (p − 1)Φ(v) = 0, (104)

where µk = [λ1/(p − 1)] 1
p a−α/p

k and “dot” denotes differentiation with respect to ξ . Since
ak → 0 as k → ∞, so ξ = µk x → ∞ for every fixed x ∈ I as k → ∞ and zeros of u(x)
correspond to that of v(ξ). Now consider (104) on the semi-infinite interval and note that the
distance between any two consecutive zeros of v(ξ) is constant dp = 2π

p (sin π
p )

−1. Thus the
length of the interval [bn, bn−1] is given by dp/µk . Hence it follows from (103) that

ak − ak+1 ≤ 2dp

(
p − 1

λ1

) 1
p

aα/p
k for all k ≥ k0.

This proves the right inequality of (61). �
Proof of (62) Let y(x) be a non-trivial solution of Eq. (1). Let ϕ(x) be from (3) and let Tk be
from (6). As in Remark 2, let ak = ϕ−1(Tk) ∈ I such that y(ak) = 0 (the inverse function
ϕ−1(x) of function ϕ(x) exists because of (9)). Now by means of Proposition 1, there exists
x0 ∈ (0, 1] such that

c0

2

x0∫

x

f
1
p (s)ds + ϕ(x0) ≤ ϕ(x) ≤ 2c0

x0∫

x

f
1
p (s)ds + ϕ(x0), (105)

where c0 = (p − 1)−1/p and ϕ(x0) depends on y(x0) and y′(x0) by (3). Note that ϕ(ak) =
Tk = dpk, where dp = 2π

p (sin π
p )

−1 by (6), so (105) implies

c0

2

x0∫

ak

f
1
p (s)ds + ϕ(x0) ≤ ϕ(ak) = dpk ≤ 2c0

x0∫

ak

f
1
p (s)ds + ϕ(x0). (106)

Using (98), we obtain from (106),

pλ1c0

2(α − p)

[

a
p−α

p
k − 1

]

≤ dpk − ϕ(x0) ≤ 2pλ2c0

α − p

[

a
p−α

p
k − 1

]

. (107)

Choose a natural number k0 > max
[
ϕ(x0),

pλ1c0
2(α−p)

]
, we then deduce from (107) the desired

inequalities for ak in (62). �
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