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Abstract In this paper we are concerned with a family of elliptic operators represented as
sum of square vector fields: Lε = ∑m

i=1 X2
i + ε� in R

n , where � is the Laplace operator,
m < n, and the limit operator L = ∑m

i=1 X2
i is hypoelliptic. Here we establish Schauder’s

estimates, uniform with respect to the parameter ε, of solution of the approximated equation
Lεu = f , using a modification of the lifting technique of Rothschild and Stein. These
estimates can be used in particular while studying regularity of viscosity solutions of nonlinear
equations represented in terms of vector fields.
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1 Introduction

Let X1, . . . , Xm be smooth real vector fields on an open set� ⊂ R
n satisfying the Hörmander

condition of hypoellipticity

rank Lie(X1, . . . , Xm)(x) = n, ∀x ∈ �. (1)

It is well known that the operator

L =
m∑

i=1

X2
i (2)

is hypoelliptic, see [15]. However, in many applications it is necessary to study elliptic
regularization of this type of operators: For every fixed point x0 there exist ν and vector fields
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418 M. Manfredini

Xm+1, . . . , Xν (for example the complete list of commutators up to a fixed step s) such that

X1, . . . , Xm, Xm+1, . . . , Xν (3)

span the tangent space at x for every x ∈ �. Then the operator

Lε =
m∑

i=1

X2
i + ε2

ν∑

i=m+1

X2
i (4)

is uniformly elliptic in �. This approximation can be used, for example, to study interior
regularity of viscosity solutions of nonlinear problems, when the vector fields (Xi )i=1,...,m

depend on the solution: Xi = Xi (u,∇u).We refer to [7,9] for nonlinear differential equation
of this type, arising in complex analysis or mathematics finance.

To illustrate our results in a simple case we consider in R
3:

Lu = ∂2
1 u + (∂2 + u∂3)

2u = f, u = u0 on ∂�. (5)

This problem cannot be studied directly but, under very general assumptions on the open set
� and the boundary datum u0, the approximating problem:

Lεu = ∂2
1 u + (∂2 + u∂3)

2u + ε2∂2
3 u = f, u = u0 on ∂�, (6)

has a smooth solution uε . In order to prove the existence of a classical solution of (5) it is
natural to establish interior estimates uniform in ε for uε and then let ε goes to 0. Regularized
technique is a classical approach, indeed it allows us to work with smooth solutions of an
elliptic problem Lεu = f in order to obtain similar results for the limit equation.

Local Schauder estimates for solutions of Lεu = f hold with a suitable constant Cε
and the dependence of Cε on the variable ε > 0 is completely unknown, to the best of our
knowledge. However it is known that the control distance dε associated to Lε tends to the
control distance d of L as ε tends to 0. This has been proved in [17]. We also refer to [1,14],
where the relation between the metric dε and d is investigated.

We will prove the following a priori Schauder estimates for the approximated equation
Lεu = f that are uniform with respect to the regularization parameter ε:

Theorem 1.1 Let α ∈ ]0, 1[. Assume that u ∈ C2,α
dε
(�) such that Lεu ∈ Cα

dε
(�). Let 0 <

t < s be such that the ball Bdε (s) of radius s, with respect to the distance dε , is contained in
�. Then there exists a constant C, independent of ε, such that

||u||C2,α
dε
(Bdε (t))

≤ C (||Lεu||Cαdε (Bdε (s)) + ||u||L∞(Bdε (s))). (7)

We refer to Sect. 2 for a precise definition of Hölder spaces and distance dε .
In [2] the authors proved local Schauder estimates for operator of kind L =∑m

i, j=1 ai j Xi X j

and for their parabolic analogue, where (ai j (x))i j is a symmetric uniformly positive definite
matrix.

Let us briefly remember some other results in literature. In [26] Schauder estimates are
proved imposing an additional structure condition on the vector fields. Pointwise Schauder
estimates are given in [6]. Local Schauder estimates are established in [21] for a particular
class of nonsmooth vector fields. We also refer to [20] where Schauder estimates are proved
for Kolmogorov–Fokker–Planck operator. See also [18] for Hölder estimates. These works
contain more comprehensive lists of references.

In this paper we essentially follow the same approach introduced in [2] but we also study
the dependence on the variable ε. The main idea of the proof is to make use of a new lifting
method introduced in [8] which is a variant of the lifting method of Rothschild and Stein and

123



Uniform Schauder estimates 419

a Campanato-type generalization of Hölder continues functions introduced in [4,5,12,19]
and recently in [2], where an integral equivalent formulation of Hölder continuous function,
proved in [5] in Euclidean setting, has been extended in this setting. The lifting method has
been first introduced by Rothschild and Stein [23], and subsequently improved by [11,13,16].
In [8], adding suitable variables and vector fields, the operator Lε is lifted to a new operator
L̃ε (which is sum of squares of a family of stratified and nilpotent vector fields), to obtain a
lifting independent of the variable ε. Besides, by choosing the added vector in an accurate
way, the metric dε induced by the old vectors is the projection on the initial space of the lifted
metric d̃ε , according to estimate (22). Campanato’s definition and the generalization of a
Sánchez-Calle result, (Lemma 3.1), allows us to prove that a function u is Hölder continuous
with respect to dε if and only if its lifting ũ is a Hölder continuous function with respect to
the lifted distance d̃ε and

||ũ||Cα
d̃ε
(�̃) ≤ ||u||Cαdε (�) ≤ C ||ũ||Cα

d̃ε
(�̃),

with a suitable positive constant C independent of ε.
Additional basic roles are played by the representation formula in Theorem 4.2 and by the

Hölder continuity of integral operators, on metric-measure spaces which satisfy the doubling
property, recalled in Theorem 4.3.

The plain of the paper is the following. In Sect. 2 we introduce some notations, in Sect. 3
we recall the lifting procedure and in Sect. 4 we prove a representation formula and we give
the proof of Theorem 1.1.

2 Preliminaries and notations

In this section we recall the properties of a Hörmander type operator already proved by
[10,23,24]. Indeed, we lift the operator in (4) to a new operator of this type. Consider now
an arbitrary Hörmander type operator

L =
ν∑

i=1

X2
i in � ⊂ R

n (8)

where X1, . . . , Xν satisfy the rank condition (1) at every point. We say that a commutator has
degree s, and denote deg(X) = s, if X = [Xi1 , [Xi2 , . . . [Xis−1 , Xis ]] . . .] with i1, . . . , is ∈
{1, . . . , ν}. For a fixed point x0 there is a number s such that the set of all commutators of
degree smaller than s span the whole tangent space at every point in a neighborhood of x0.
Then we complete X1, . . . , Xν with the collection

Xν+1, . . . , X N (9)

of all the commutators of degree less or equal to s.
Different equivalent definitions of the control distance have been provided in [22].
If X1, . . . , Xν are free up to step s, (see [25]) then n = ν and the distance is defined in

terms of the exponential map. Indeed, for every fixed point x0 in R
n there exist a neighborhood

V of x0 and for every x ∈ V a neighborhood Ux of x in the Lie algebra, such that for every
x ∈ V the exponential mapping

u �−→ y = exp

(
n∑

i=1

ui Xi

)

(x) (10)
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420 M. Manfredini

is defined in Ux . The definition of distance d simply reduces to

d(x, y) =
n∑

i=1

|ui |
1

deg(Xi ) , x, y ∈ V . (11)

Suitable restricting V and choosing W ⊂⊂ V we can assume that for every x ∈ W the map
in (10) is defined on the same U ⊂ Ux and it is a diffeomorphism from U onto the image.
Its inverse map denoted �x satisfies U ⊆ �x (V ) for every x ∈ W. Finally

� : W × W → R
n, �(x, y) = �x (y) on W × W (12)

is smooth. For a fixed x , the function �x introduces a change of variable called canonical.
If g is a nilpotent graded Lie algebra, i.e. g is a direct sum decomposition g = ⊕p

j=1Vj

such that [V1, Vj−1] = Vj for 2 ≤ j ≤ p and [V1, Vp] = {0}, then g has a natural family of
automorphisms, called dilations, defined on each Vj as δλ(X) = λ j X , X ∈ Vj and λ > 0.
By the exponential map, the family {δλ}λ>0 can be lifted to a family of automorphisms of
the simply connected Lie group G corresponding to g. The group G, equipped with these
dilations, is called a homogeneous group and the natural number

∑p
j=1 j (dimVj ) is called

the homogeneous dimension of G, see [23].
If the vector fields X1, . . . , Xν defined on R

n are free up to step s, then, in general, the Lie
algebra generated by the vector fields is not a nilpotent graded Lie algebra and in particular
there is not an underlying structure of homogeneous group G on R

n such that the vector
fields are left translation invariant on G with respect to composition law and such that they
are homogeneous with respect to the dilations. But, due to the fact that the vector fields
X1, . . . , Xν are free up to step s and together with their commutators of order s span the
tangent space at every point, the following number is constant and it has the same rule of the
homogeneous dimension in the homogeneous setting

Q =
n∑

i=1

deg(Xi ). (13)

In particular, for any compact set K ⊂ R
n there exists R > 0 such that for any x ∈ K and

0 < r < R the Lebesgue measure of the ball is

C0 r Q ≤ |Bd(x, r)| ≤ C1 r Q, (14)

with suitable positive constants C0, C1 depending only on K .
Let us go back to the properties of a general operator L . Note that, if the family of Lie

algebra generated by (Xi )i=1,...,ν is not free, it is always possible to lift it to a Lie algebra
free up to a step s, via the lifting procedure introduced by Rothschild and Stein. Precisely

Theorem 2.1 (Theorems 4 and 5 in [23]) Let X1, . . . , Xν be C∞ vector fields, which, toge-
ther with their commutators up to step s, span the tangent space at a point x0. Then we can
find new variables x̂ and vector fields defined in a neighborhood of x0

X̃i (x, x̂) = Xi (x)+ Zi , Zi =
l∑

j=1

a j
i (x, x̂)

∂

∂ x̂ j
i = 1, . . . , ν

such that the system (X̃i )i=1,...,ν is free up to order s and span RÑ , where Ñ = n + l. In the
coordinate given by � in (12)

X̃i ( f (�ξ (·)))(η) = (Yi f + Rξi f )(�ξ (η)) on U i = 1, . . . , ν
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Uniform Schauder estimates 421

where Yi are homogeneous left invariant vector fields and Rξi are differential operator of
local degree ≤ 0 (according to definition p. 272 in [23]), depending smoothly on ξ .

In order to simplify notations we give the following definitions

Definition 2.1 We say that K is a regular kernel of type λ > 0 with respect to the vectors
X1, . . . , Xν , the distance d , in an open set W , and we denote K ∈ Fλ(X, d,W ), if there
exists a positive constant C such that, one has

|K (x, y)| ≤ C
dλ(x, y)

|Bd(x, d(x, y))| , for every x, y ∈ W with x �= y (15)

and

|K (x, y)− K (z, y)| ≤ C
d(z, x)

d(z, y)Q−λ+1 (16)

for every x, y, z ∈ W with d(z, y) ≥ Md(z, x), M ≥ 1.
If λ = 0 we also require that there exists positive constant C such that for any 0 < a < b

∫

a≤d(x,y)≤b

K (x, y)dy ≤ C (b − a) (17)

and (see condition (2.9) in [2])

lim
δ→0

∣
∣
∣
∣
∣
∣
∣

∫

d(x,y)≥δ
K (x, y)dy −

∫

d(x1,y)≥δ
K (x1, y)dy

∣
∣
∣
∣
∣
∣
∣
≤ C d(x, x1)

β (18)

for every β ∈ ]0, 1[.
Definition 2.2 We say that T is a operator of type λ > 0 if K (x, y) is a kernel of type λ and

T f (x) =
∫

K (x, y) f (y) dy.

T is a operator of type 0 if K (x, y) is a kernel of type 0 and there exists a smooth function
a such that

T f (x) = p.v.
∫

K (x, y) f (y) dy + a(x) f (x)

where the integral is a principal value integral.

Let us introduce the function spaces used to establish Schauder estimates:

Definition 2.3 (Hölder space) Letα ∈ ]0, 1[ and let d be a distance associated to X1, . . . , Xν .
We denote by Cα

d (�) the Hölder space induced by d . Let k ∈ N, we say that u ∈ Ck,α
d (�) if

Xi1 · · · Xih u ∈ Cα
d (�)

for i j ∈ {1, . . . , ν}, ∑h
j=1 i j ≤ k. We define

||u||Cαd (�) = sup

{ |u(x)− u(y)|
d(x, y)α

: x, y ∈ �, x �= y

}

+ ||u||L∞(�),

and

||u||Ck,α
d (�)

=
∑

∑h
j=1 i j ≤k

||Xi1 · · · Xih u||Cαd (�).
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3 The lifting procedure

We first note that the notion of degree of each vector field is not preserved by the approximating
operator (4). Indeed at every point the vector fields (Xi )i=m+1,...,ν , are the complete list of
the commutators, so that it would be natural to associate to them a degree grater that 1,
but multiplying them by ε, we get the vector fields defining Lε , which could be considered
of degree 1. In order to overcome this difficulty in [8] the authors introduced a new lifting
method: The vector fields (εXi )i=m+1,...,ν are lifted to new vector fields linearly independent
of the commutators. In order to do so, we define ν − m new vector fields free and nilpotent
of step s, in term of completely new variables. These vector fields will be denoted

X̃m+1, . . . , X̃ν in R
Ñ = R

n × R
µ. (19)

In this way the new vector fields have the same step of the starting ones and

X1, . . . , Xm, . . . , X̃m+1 + εXm+1, . . . , X̃ν + εXν

are linearly independent from their commutators. We call this list of vectors (X̃ε,i )i=1,...,ν

and define a lifted regularized operator as

L̃ε =
ν∑

i=1

X̃2
ε,i in R

Ñ .

We will need a third operator L̃ , with the same structure of L̃ε , but independent of ε. We
simply eliminate the dependence on ε in the vector defining L̃ε choosing the new family as

X̃1 = X1, . . . , X̃m = Xm, . . . , X̃m+1, . . . , X̃ν,

and defining

L̃ =
ν∑

i=1

X̃2
i in R

Ñ .

See [8] for more details.
The family (X̃i )i=1,...,ν will be completed to a basis of the space

X̃1, . . . , X̃n, X̃n+1, . . . , X̃ Ñ (20)

with the list of all commutators ordered as the list (X̃ε,i )i=n+1,...,Ñ .
It is possible to define a Lie algebra isomorphism ψε between the vector fields defining

L̃ε and L̃ in the follow way:

ψε(X̃i ) = X̃ε,i , i = 1, . . . , ν

and ψε can be extended on the whole algebra via the bracket. Since ψε is linear and lower
diagonal, with 1 on the diagonal, it has Jacobian determinant 1. The function ψε induces, via
the exponential map, a change of variables on R

Ñ

�ε : R
Ñ → R

Ñ , �ε = Exp ◦ ψε ◦�0. (21)

Since the function Exp and �0 are local diffeomorphisms, with determinant 1 in 0, and
independent of ε, the Jacobian determinant of�ε is locally bounded by constants independent
of ε, see [8].
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Uniform Schauder estimates 423

In what follows, the generic point of the lifted space R
Ñ is denoted by x̃ = (x, x̂), where

x ∈ R
n is the initial variable and x̂ ∈ R

µ the added ones.
If d̃ is the distance associated to (X̃i )i=1,...,Ñ and d̃ε the distance associated to (X̃ε,i )i=1,...,Ñ

then the following relation holds:

d̃ε(x̃, ỹ) = d̃(�ε(x̃),�ε(ỹ)).

In particular, this provides a estimate of the measure of the balls of the metric d̃ε : there exist
positive constants C0 and C1 independent of ε such that

C0r Q̃ ≤ |Bd̃ε
(x̃, r)| ≤ C1r Q̃,

where Q̃ is defined in (13) with respect to the basis X̃1, . . . , X̃ Ñ .
Let us study the relation between the metric induced by the family of vector fields

(Xε,i )i=1,...,ν , and their lifted counterpart.
The following crucial lemma is a generalization of the projection result of Sánchez-Calle

in [24]:

Lemma 3.1 For every compact set K ⊂ R
n there exist positive constants C1,C2, inde-

pendent of ε, such that if χBd̃ε
((x,0),r) is the characteristic function of the ball Bd̃ε

((x, 0), r),
then for every x ∈ K and r > 0,

C1
r Q̃

|Bdε (x, r)|
≤

∫

χBd̃ε
((x,0),r)(y, ŷ)d ŷ ≤ C2

r Q̃

|Bdε (x, r)|
. (22)

The second inequality in (22) has been proved Lemma 4.3 in [8], the proof of the first one
is very similar and we omit it.

The local inclusions between the balls with respect the distances d and dε proved Lemma
4.4 in [8], ensure that, in our setting, local estimates uniform in ε with respect to dε are local
estimates uniform in ε with respect to the distance d .

Let u : � ⊂ R
n → R. Consider its lifting ũ defined in the follow way: ũ : �̃ ⊂ R

Ñ → R

where �̃ = �× I , I ⊂⊂ R
µ and ũ(x, x̂) = u(x).

Lemma 3.2 Let u : � ⊂ R
n → R and let ũ : �̃ ⊂ R

Ñ → R be its lifting. Then u ∈ Cα
dε
(�)

if and only if ũ ∈ Cα

d̃ε
(�̃). Besides, there exists a positive constant C, independent of ε, such

that
||ũ||Cα

d̃ε
(Bd̃ε

(r)) ≤ ||u||Cαdε (Bdε (r)) ≤ C ||ũ||Cα
d̃ε
(Bd̃ε

(r)), (23)

for r small enough such that Bd̃ε
(r) ⊂ �̃ and Bdε (r) ⊂ �.

By Lemma 3.1 and reasoning as in the proof of Proposition 8.3 in [2] (using the Campanato
definition of Hölder continuous functions), we obtain the assertion of Lemma 3.2. The
constant C in (23) depends only on the constant C1 in (22) and on some other constants
independent of ε. Hence, C is independent of ε.

There are suitable cut-off functions associated to the distance d̃ε , independent of ε in the
following sense:

Lemma 3.3 (Cut-off functions) For any 0 < s < r , x̃0 ∈ R
Ñ there exists φε ∈ C∞

0 (R
Ñ )

such that 0 ≤ φε ≤ 1, φε ≡ 1 on Bd̃ε
(x̃0, s), sprt φε ⊂ Bd̃ε

(x̃0, r) and for every k ∈ N there
exists Ck, independent of ε, such that

|X̃ε,i1 · · · X̃ε,ihφε | ≤ Ck

(r − s)k
on sprt φε
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and

||X̃ε,i1 · · · X̃ε,ihφε ||Cαd̃ε ≤ Ck

(r − s)k+1 ,

for r − s small enough and for i j ∈ {1, . . . , Ñ }, ∑h
j=1 i j ≤ k.

Proof Consider the balls Bd̃(�ε(x̃0), s) and Bd̃(�ε(x̃0), r) and choose φ as in Lemma 6.2

in [2]: φ ∈ C∞
0 (R

Ñ ), 0 ≤ φ ≤ 1, φ ≡ 1 on Bd̃(�ε(x̃0), s), sprt φ ⊂ Bd̃(�ε(x̃0), r) which
satisfies the conditions of lemma.

We set

φε(x̃) = φ(�ε(x̃)),

where the function �ε is the change of variables defined in (21).
Note that

X̃ε,iφε(x̃) = (X̃iφ)(�ε(x̃)),

and remember that the Jacobian determinant of �ε is locally bounded by constants inde-
pendent of ε. This implies that φε satisfies the condition of lemma. ��

4 Representation formulas

Remark 4.1 Let us consider a kernel K ∈ Fλ(X̃ , d̃,W ) and the function�ε defined in (21).
Then the kernel

Kε(x̃, ỹ) = K (�ε(x̃),�ε(ỹ))

belongs to Fλ(X̃ε, d̃ε,U ), for some U , and satisfies the estimates in Definition 2.1 with the
same constants as K , then with constants independent of ε.

For example, if K is a kernel of type λ > 0 then

|Kε(x̃, ỹ)| ≤ C(d̃(�ε(x̃),�ε(x̃))
λ−Q̃ = C(d̃ε(x̃, ỹ))λ−Q̃ ≤ C

d̃ε(x̃, ỹ)λ

Bd̃ε
(x̃, dε(x̃, ỹ))

, (24)

with C independent of ε.
Besides, if K ∈ Fλ(X̃ , d̃,W ) with λ ≥ 1 then X̃ε,i Kε ∈ Fλ−1(X̃ε, d̃ε,U ). The proof is a

slight variant of the proof of Theorem 8 in [23], in fact

(X̃ε,i Kε(x̃, ·))(ỹ) = (X̃i K )(�ε(x̃), ·))(�ε(ỹ)).
The next theorem provides a representation formula for u in terms of integral operators.

The idea of this theorem is based on the parametrix method in [24].

Theorem 4.1 Let ã ∈ C∞
0 (U ) and let p ∈ N. There exist kernels K̃ε ∈ F2(X̃ε, d̃ε,U ) and

H̃ε,p ∈ Fp(X̃ε, d̃ε,U ), satisfying estimates in Definition 2.1 with constants independent of
ε, such that for every x̃ , ỹ ∈ U we have

L̃ ỹ
ε (K̃ε(x̃, ỹ)) = ã(x̃)δỹ(x̃)+ H̃ε,p(x̃, ỹ) (25)

where δỹ is the Dirac distribution at ỹ and L̃ ỹ
ε means that the differentiation is in the

ỹ-variable.
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Besides, if T̃ε and T̃ε,p are the operators of kernels K̃ε and H̃ε,p respectively, then for

every compactly supported function ũ ∈ C2,α
d̃ε
(U ) we have

L̃ε (T̃ε ũ) = ã ũ + T̃ε,p ũ. (26)

Analogously, it is possible to find an operator T̃ε of type 2 and an operator T̃ε,p of type p
such that

T̃ε (L̃ε ũ) = ã ũ + T̃ε,p ũ. (27)

Proof We approximate the vector fields X̃1, . . . , X̃ν as in Theorem 2.1. We consider the
approximating operator LỸ = ∑ν

i=1 Ỹ 2
i and its fundamental solution �Ỹ , see [10].

We now choose

K̃0(ξ, η) = �Ỹ (�(η, ξ)),

so that K̃0 ∈ F2(Ỹ , d̃,W ). Since, Ỹi approximates X̃i up to a differential operator of degree
less or equal to zero then K̃0 ∈ F2(X̃ , d̃,W ).

Further, we define

K̃ε,0(x̃, ỹ) = K̃0(�ε(x̃),�ε(ỹ)).

By Remark 4.1, the kernel K̃ε,0 belongs to F2(X̃ε, d̃ε,U ) and satisfies (15), (16) with
constants independent of ε.

Note that

(X̃ε,i Kε,0(x̃, ·))(ỹ) = X̃i (K0(�ε(x̃), ·))(�ε(ỹ))
= X̃i (�Ỹ (�(·,�ε(x̃)))(�ε(ỹ)) = (Ỹi�Ỹ (·)+ Ri�Ỹ (·))(�(�ε(ỹ),�ε(x̃))),

where Ri is a differential operator of degree ≤ 0 according to [23]. Then, we check that

L̃ ỹ
ε (ã(x̃) K̃ε,0)(x̃, ỹ) = ã(x̃)

∑

i

(Ỹi + Ri )
2(�Ỹ (·))(�(�ε(ỹ),�ε(x̃))) =

(for a suitable kernel H̃0 of type 1)

= ã(x̃)δ�ε(ỹ)(�ε(x̃))+ H̃0(�ε(x̃),�ε(ỹ)) = a(x̃)δỹ(x̃)+ H̃ε,0(x̃, ỹ),

where H̃ε,0(x̃, ỹ) belongs to F1(X̃ε, d̃ε,U ) with constants in (15), (16) independent of ε.
We now define

K̃ε,1(x̃, ỹ) = ã(x̃) K̃ε,0(x̃, ỹ)− (H̃0 ∗ K̃0)(�ε(x̃),�ε(ỹ)).

Then K̃ε,1 ∈ F2(X̃ε, d̃ε,U ) and satisfies (15), (16) with constants independent of ε. Besides,
we infer

L̃ ỹ
ε (K̃ε,1)(x̃, ỹ) = L̃ ỹ

ε (ã K̃ε,0)(x̃, ỹ)− L̃ ỹ
ε (H̃0 ∗ K̃0)(�ε(x̃),�ε(ỹ))

= a(x̃)δỹ(x̃)+ H̃0(�ε(x̃),�ε(ỹ))− L̃ ỹ
ε (H̃0 ∗ K̃0)(�ε(x̃),�ε(ỹ)) =

(for a suitable differential operator R of degree ≤ 1)

= ã(x)δỹ(x̃)+ R(H̃0 ∗ K̃0)(�ε(x̃),�ε(ỹ)) = ã(x)δỹ(x̃)+ H̃1(�ε(x̃),�ε(ỹ)).
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We put

H̃ε,1(x̃, ỹ) = H̃1(�ε(x̃),�ε(ỹ)).

Hence, H̃ε,1 ∈ F2(X̃ε, d̃ε,U ) and it satisfies (15), (16) with constants independent of ε.
Iterating this procedure we define

K̃ε,p(x̃, ỹ) = ã K̃ε,p−1(x̃, ỹ)− (H̃p−1 ∗ K̃0)(�ε(x̃),�ε(ỹ)).

By repeating the above arguments we get the assertion.
If T̃ε is the operator of kernel K̃ε and T̃ε,p the operator of kernel H̃ε,p then it follow easily

that they verify (26). ��

Taking two derivatives along the vector fields X̃ε,i of both side the representation formula
in Theorem 4.1 we obtain:

Theorem 4.2 Let ã ∈ C∞
0 (U ). For every p ∈ N and i, j ∈ {1, . . . , ν} there exist operators

T̃ε of type zero and T̃ε,p of type p such that

X̃ε,i X̃ε, j (ã ũ) = T̃ε (L̃ε ũ)+ T̃ε,p ũ. (28)

The kernels defining the operators T̃ε and T̃ε,p satisfy conditions in Definition 2.1 with
constants independent of ε.

The next theorem concerning the Hölder continuity of singular and fractional integrals is
proved in [2]:

Theorem 4.3 Let T be an operator of type λ ≥ 0 with kernel K ∈ Fλ(X̃ε, d̃ε,U ). If r is
sufficiently small then T is continuous on Cα

d̃ε
(Bd̃ε

(r)) and there exists a positive constant C

such that

||T u||Cα
d̃ε
(Bd̃ε

(r)) ≤ C ||u||Cα
d̃ε
(Bd̃ε

(r))

for every u ∈ Cα

d̃ε
(Bd̃ε

(r)) with compact support.

The constant C in the above theorem depends on the constants in Definition 2.1 but not
explicitly on ε.

4.1 Proof of Theorem 1.1

We briefly explain how to prove the theorem, (see the computations in [2] for more details).
The proof is based on three steps:

1. Schauder estimates for ũ compactly supported in some small ball Bd̃ε
(r) with constant

independent of ε. Using representation formula in Theorem 4.2 for the derivatives
X̃ε,i X̃ε, j , applying Theorem 4.3 and arguing as in [2], we obtain, for r sufficiently
small,

||ũ||C2,α
d̃ε
(Bd̃ε

(r)) ≤ C (||L̃ε ũ||Cα
d̃ε
(Bd̃ε

(r)) + ||ũ||L∞(Bd̃ε
(r))), (29)

where C, r are independent of ε. Indeed C depends on the constants in Definition 2.1
which are independent of ε.
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2. Schauder estimates for ũ not necessarily with compact support. Arguing as in [2], as a
consequence of the existence of suitable cut-off functions (Lemma 3.3) and an interpola-
tion inequality (see Theorem 7.4 in [2]) we get: for r sufficiently small and 0 < t < s < r

||ũ||C2,α
d̃ε
(Bd̃ε

(t)) ≤ C

(s − t)β
(||L̃ε ũ||Cα

d̃ε
(Bd̃ε

(s)) + ||ũ||L∞(Bd̃ε
(s))), (30)

where C, r, β are independent of ε.
3. Schauder estimates for u. Combining step 2 and Lemma 3.2 we obtain the thesis. ��
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