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Abstract We derive interior L p-estimates for solutions of linear elliptic systems with
oscillatory coefficients. The estimates are independent of ε, the small length scale of the
rapid oscillations. So far, such results are based on potential theory and restricted to periodic
coefficients. Our approach relies on BMO-estimates and an interpolation argument, gradients
are treated with the help of finite differences. This allows to treat coefficients that depend
on a fast and a slow variable. The estimates imply an L p-corrector result for approximate
solutions.
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1 Introduction

The classical (and most important) example of homogenization theory is the family of equa-
tions or systems for uε : � ⊂ R

n → R
m

−∇ · (
A (x, x/ε)∇uε(x)

) = f (x) in �, (1.1)

for a bounded domain � ⊂ R
n and f ∈ H−1(�), accompanied with the boundary con-

dition uε|∂� = 0. On the coefficients A one assumes the Y -periodicity in the second var-
iable, with Y = (0, 1)n the unit cube, see Fig. 1. Under appropriate assumptions on A,
it is known that the family of solutions uε converges strongly in L2(�) and weakly in
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Ω

Fig. 1 The function u = uε : � → R
m solves ∇ · (A∇u) = f , the coefficients A = A(x, x/ε) are periodic

in the fast variable and vary additionally on the macroscopic scale. The figure indicates the fast oscillations
of the coefficients

H1(�) to a limit function u0 ∈ H1
0 (�), which is the solution of the homogenized problem

−∇ · (A∗(x)∇u0(x)) = f (x). The most direct way to derive this result is the method of
two-scale convergence introduced by Allaire [1], which provides additionally a corrector
result: starting from the homogenized solution u0 one can study the two-scale expansion of
the solution in the form ηε(x) = u0(x) + εu1(x, x/ε) and prove that uε − ηε → 0 strongly
in H1(�).

Current interest in homogenization analysis stems from questions in the failure of mate-
rials. Of particular interest are norms of the strain that are sensitive to peaks. In these appli-
cations, one is usually interested in Lq -norms or the L∞-norm of the gradient rather than
L2-norms, see e.g. [16].

While homogenization theory is well developed in the Hilbert space setting, much less
is known for Lq -norms. We emphasize that the interest here is to have estimates that are
independent of the small parameter ε > 0. Obviously, regularity theory could be used to
find estimates for uε ∈ H2(�) and embedding results yield Lq -estimates for ∇uε—but due
to the oscillations of uε on the ε scale, the H2-norms will necessarily behave like 1/ε. A
more profound obstruction to regularity in Lq -spaces is given in [6]: Without the periodicity
assumption on A(x, .), no ε-independent estimate for ‖∇uε‖Lq (�′) can hold (except for q −2
small, in which case Meyers estimate holds).

Concerning positive results, fundamental contributions are due to Avellaneda and Lin
[2], where optimal (in terms of exponents) estimates in Lq -spaces were derived for the
solutions of the above equation. As in the related articles [3–5,7], the assumption is that
A(x, y) = A(y) does not depend on the slow variable, the regularity is A ∈ Cα(Y ). The
authors derive estimates for the singular kernels of the corresponding Greens-functions in
order to prove the regularity result for the solutions. Uniform regularity results for nonlinear
elliptic systems −∇ · A(x/ε,∇u(x)) = 0 in small dimensions were obtained in [14]. The
strength of these results is the global character, the estimates hold up to the boundary of the
domain. Results under weaker regularity assumptions on the coefficients can be deduced from
an approximation method of Caffarelli and Peral [7]. Based on local energy comparison and
Calderón–Zygmund type decomposition, the authors provide ε-uniform local W 1,p bounds
for elliptic equations −∇ · (A(x/ε)∇u(x)) = 0 with continuous periodic coefficients. For
an analysis of the behavior near macroscopic interfaces we refer to [15].
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Direct approach to L p estimates in homogenization theory 401

This work follows another approach. The improvement over existing work lies in the fact
that we study coefficients that may additionally depend on the slow variable, A = A(x, y).
Under the asssumption of uniform continuity and uniform ellipticity, L p estimates are shown
to hold globally. Under refined regularity assumptions on the coefficients the result can be
lifted to gradient estimates that hold in the interior.

Theorem 1 provides an estimate for ‖uε‖Lq (�′) with an optimal exponent. The method
uses no potential theory but rather follows the approach sketched, e.g., in [11]: the solution
operator is bounded as a map L2 → L2∗

, and as a map Ln → BMO. The L2-result is a
direct consequence of the Sobolev embedding, the BMO-result is based on a decomposition
of the solution on cubes. Inhomogeneous solutions with homogeneous boundary data are
treated by a perturbation argument, homogeneous solutions by comparison with the solu-
tions of the homogenized system. An interpolation argument between BMO and L2∗

yields
the Lq -estimate. The proof of Theorem 1 is given in Sect. 2.

In Theorem 2 we prove an estimate for ‖∇uε‖Lq (�′), again with the optimal exponent.
The method is based on finite difference quotients of the solutions. Finite differences solve
an equation of the same type if the x-differences are in accordance with the ε-periodicity of
the equation. For such finite differences we can apply Theorem 1 to find Lq -estimates. We
conclude with Lemma 2, the “local lemma”, which asserts that gradients can be estimated
by the ε-size finite differences. This program is carried out in Sect. 3. We note that this idea
was used in [19] for Lipschitz estimates in a perforated domain.

In Sect. 4 we prove the second part of Theorem 2, which transfers the estimates for com-
pactly supported solutions to interior estimates. The localization procedure is intricate, since
the product of a solution with a smooth cut-off function behaves badly under the application of
the operator with oscillatory coefficients. We circumvent this effect by using a multiplication
of the solution with two-scale approximations of cut-off functions.

The a priori bound on solutions provides an improvement of the previously mentioned
corrector result. In Corollary 1 we show, for f ∈ L p(�) and �′ ⊂ � a compact subset, that
the two-scale expansions ηε of solutions uε satisfy uε −ηε → 0 with the strong convergence
of W 1,q(�′).

Results

On a domain � ⊂ R
n we study the family of operators Lε acting on maps v : � → R

m as

Lεv(x) = −∇ · (A (x, x/ε) ∇v(x)) in �. (1.2)

Here, with a periodicity cell Y = (0, 1)n , we consider coefficients A = A(x, y) that satisfy

A : � × R
n → R

m2×n2
uniformly continuous and Y -periodic in y, (1.3)

uniform ellipticity: for ν > 0 holds Aαβ
i j ξ i

αξ
j
β ≥ ν|ξ |2 for all ξ ∈ R

n×m . (1.4)

For the gradient estimates of Theorem 2 further regularity conditions on the coefficient are
imposed:

A ∈ W 1,ρ(�, C0(Y )) for some ρ > n, (1.5)

A ∈ C0,1(�, W 1,n(Y )) ∩ C1,1(�, Ln(Y )). (1.6)

In our strongest result, we therefore assume the regularity A(x, .) ∈ C0(Y ) ∩ W 1,n(Y ) for
almost every x . We note that this condition is neither stronger nor weaker than Hölder con-
tinuity. Our main results are interior estimates for solutions of the boundary value problem.

123



402 C. Melcher, B. Schweizer

Theorem 1 Let the coefficients of the elliptic operator Lε satisfy (1.3) and (1.4), � ⊂ R
n

bounded, and u ∈ H1
0 (�) be a weak solution of

Lεu = div f in �.

Let �′ ⊂ � be compactly contained, p ∈ [2, n) and q = np/(n − p). Then there holds

‖u‖Lq (�′) ≤ c‖ f ‖L p(�), (1.7)

with a constant c depending on �, �′, A, and p, but independent of f and ε. If � ⊂ R
n is a

domain with C1-boundary, the above estimate holds globally, i.e., with �′ = �. In the case
p = n and �′ a cube, (1.7) holds with Lq replaced by BMO. In case p > n the estimate
holds with q = ∞.

Our second theorem lifts the orders of differentiability by one.

Theorem 2 On � ⊂ R
n we consider weak solutions U ∈ H1(�) of

LεU = F in �.

Let �′ ⊂ � be compactly contained, p ∈ [2, n) and q = np/(n − p). Then, with a constant
c depending on �, �′, A, and p, but independent of F and ε, there holds:

1. If the support of U is contained in �′ and A satisfies (1.3)–(1.5), then

‖∇U‖Lq (�) ≤ c ‖F‖L p(�). (1.8)

2. If A satisfies (1.3)–(1.6), then

‖∇U‖Lq (�′) ≤ c
(‖F‖L p(�) + ‖U‖H1(�)

)
. (1.9)

In the case p > n the above estimates hold with q = ∞.

2 BMO-estimates and interpolation

Proof of Theorem 1 We realize that the theorem holds trivially in the case p = 2, q = 2∗ =
2n/(n − 2) by the continuous embedding H1 → L2∗

for n ≥ 3 and H1 → BMO for n = 2.
Proposition 1 provides an BMO-estimate on compactly contained cubes Q ⊂ � for data in
Ln(�). We consider homogeneous Dirichlet conditions, the operator (Lε)−1div : L2(�) →
H1

0 (�), and its restriction to Q, i.e., the operators T ε f := ((Lε)−1div f )�Q ,

T ε : L2(�) → L2∗
(Q),

T ε : Ln(�) → BMO(Q).

An interpolation yields the inner Lq -estimate (1.7). For the interpolation result we refer to
Appendix A. For the global result we can take any cube Q ⊃ � so that � is compactly
included and apply Proposition 2 with the same interpolation argument. ��

We recall that for cubes Q0 ⊂ R
n the homogeneous space of functions of bounded mean

oscillation BMO(Q0) is defined via the semi-norm

‖u‖BMO(Q0) ≡ sup
Q⊂Q0

∫

Q

|u −
∫

Q

u|. (2.1)
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Direct approach to L p estimates in homogenization theory 403

According to a well-known result of John and Nirenberg [13] an equivalent semi-norm is
given by ‖u‖2

BMO = supQ⊂Q0

∫
Q |u − ∫

Q u|2. Observe that for a bounded measurable set

B ⊂ R
n and u ∈ L2(B), the function λ �→ ∫

B |u − λ|2 dx is minimal for λ = ∫
B u. Thus

there is a universal constant c = c(n) such that for a function u ∈ L1
loc(BR(0)) we have

‖u‖2
BMO(Q R(0)) ≤ c sup

⎧
⎪⎨

⎪⎩

∫

Br

|u −
∫

Br

u|2 : Br = Br (x) ⊂ BR(0)

⎫
⎪⎬

⎪⎭
, (2.2)

where Q R(0) := (−R, R)n ⊂ BR(0) denotes the cube of sidelength R centered at the origin.
The main steps in this section are the following. We have seen that the local part of Theo-

rem 1 is a consequence of the BMO-estimate of Proposition 1. We derive this Proposition with
Campanato’s device of a local decomposition of the solution, u = v + w, where v solves
a homogeneous problem. While the w-part can be handled directly, the v-part is treated
seperately in Lemma 1. In that Proposition, we consider the regime of large and small radii
separately. While small radii can be treated with standard Hölder estimates of Theorem 3,
large radii are treated with homogenization and compactness arguments similar to the one in
[2].

Proposition 1 (BMO inner estimate) Suppose that the coefficients of the elliptic operator
Lε satisfy (1.3) and (1.4). Let u be a weak solution of

Lεu = div f in BR(0).

Then
‖u‖BMO(Q R/2(0)) ≤ c

(‖ f ‖Ln(BR(0)) + ‖u‖H1(BR(0))

)
, (2.3)

where the constant c depends on R and A, but is independent of f and ε.

Proof Let x ∈ BR/2(0) and Br = Br (x) with 0 < r < min{R/4, 1}. We show that there is
a constant C > 0, depending only on A, such that for any 0 < ρ < r/2

∫

Bρ

|u −
∫

Bρ

u|2 ≤ C
(
‖ f ‖2

Ln(B2r )
+ ‖u‖2

H1(B2r )

)
.

To this end we decompose u = v + w where v is the weak solution of the homogeneous
problem Lεv = 0 on Br with v|∂ Br = u|∂ Br . With Poincaré’s inequality

∫

Bρ

|u −
∫

Bρ

u|2 ≤ 2
∫

Bρ

|v −
∫

Bρ

v|2 + c ρ2
∫

Br

|∇w|2.

Using that w ∈ H1
0 (�) solves Lεw = div f , Young’s and Hölder’s inequality imply

∫

Br

|∇w|2 ≤ c
∫

Br

| f |2 ≤ c rn−2‖ f ‖2
Ln(Br )

. (2.4)

As a consequence of (2.7) of Lemma 1 below, we find that
∫

Bρ

|u −
∫

Bρ

u|2 ≤ C
(ρ

r

)n
∫

Br/2

|v −
∫

Br/2

v|2 + c rn ‖ f ‖2
Ln(Br )

.
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Taking into account that v is an Lε-minimal extension of u in Br we find
∫

Br/2

|v −
∫

Br/2

v|2 ≤ c r2
∫

Br

|∇v|2 ≤ c r2
∫

Br

|∇u|2.

But then Caccioppoli’s inequality

r2
∫

Br

|∇u|2 ≤ c
∫

B2r

|u −
∫

B2r

u|2 + c r2
∫

B2r

| f |2 (2.5)

and Hölder’s inequality ‖ f ‖2
L2(B2r )

≤ crn−2‖ f ‖2
Ln(B2r )

imply

∫

Bρ

|u −
∫

Bρ

u|2 ≤ C
(ρ

r

)n
∫

B2r

|u −
∫

B2r

u|2 + c rn ‖ f ‖2
Ln(B2r )

.

By a standard iteration method, cf. [10] Chap. III, Lemma 2.1 or [12], the factor rn in the
last term can be replaced by ρn . Adapting constants we find

∫

Bρ

|u −
∫

Bρ

u|2 ≤ C

⎡

⎢
⎣

∫

B2r

|u −
∫

B2r

u|2 + ‖ f ‖2
Ln(B2r )

⎤

⎥
⎦

for any 0 < ρ < r/2. This completes the proof. ��
It remains to derive uniform bounds for the homogeneous problem. The main strategy will

be to reduce everything to the following basic regularity result for elliptic systems with con-
tinuous coefficients in divergence form, that is originally due to Campanato [9] and Morrey
[17]:

Theorem 3 (cf. [10] Chap. III Theorem 3.1) Suppose that A ∈ C0(BR(0)) is uniformly
elliptic. If v ∈ H1(BR(0)) is a weak solution of ∇ · (A(x)∇v) = 0 in BR(0), then ∇v

belongs to the Morrey space L2,λ(BR/2(0)) for any 0 < λ < n. More specifically, for any
γ ∈ [0, 1), the estimate

ρ2
∫

Bρ(0)

|∇v|2 ≤ C
( ρ

R

)2γ

R2
∫

BR/2(0)

|∇v|2 (2.6)

holds true for any 0 < ρ < R/2 with a constant C that only depends on A and γ .

More precisely, the bounds only depend on the ellipticity properties and the modulus of
continuity of A. Thus, the proposition holds in a uniform fashion for equi-continuous and
uniformly elliptic families (Aε)ε>0 of coefficient matrices.

In order to apply Theorem 3 we distinguish two regimes determined by the size of ρ rela-
tive to ε. For small radii ρ � ε estimate (2.7) follows from a scaling argument that provides
a standard situation. In the opposite regime of large radii when ρ � ε, Theorem 3 will be
applied to the homogenized problem and we conclude with a compactness argument similar
to the one in [2].

Lemma 1 (Cγ inner estimate for the homogeneous problem) Let the coefficients of the ellip-
tic operator Lε satisfy (1.3) and (1.4), and let γ ∈ (0, 1). There exist constants R0, C0 > 0
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Direct approach to L p estimates in homogenization theory 405

that depend only on γ and the coefficients A with the following property: If r < R0 and v is
a weak solution of

Lεv = 0 in Br (0),

then v ∈ Cγ (Br/2(0)). More precisely, for any Bρ = Bρ(x) with 0 < ρ < r/2 and
x ∈ Br/2(0) holds ∫

Bρ

|v −
∫

Bρ

v|2 ≤ C0

(ρ

r

)2γ
∫

Br/2

|v −
∫

Br/2

v|2. (2.7)

Proof After translation it is enough to prove (2.7) for x = 0.
1. Large radii. In this step of the proof we consider only radii ρ > ε/ε0, where the

universal constant ε0 > 0 is determined below. The estimate is based on an improvement
estimate for the (squared) mean oscillation. More precisely, we show that there exist ε0 > 0
and θ ∈ (0, 1) such that

∫

Bθρ

|v −
∫

Bθρ

v|2 ≤ θ2γ

∫

Bρ

|v −
∫

Bρ

v|2. (2.8)

From (2.8), the decay estimate (2.7) follows by a k-fold iteration, with k determined by
θk+1r < 2ρ ≤ θkr . The constant in (2.7) depends only on θ . In order to prove (2.8) we first
observe that the inequality is scaling invariant. Rescaling x and ε by ρ we obtain

Lε
ρv := −∇ · (A(ρ x, x/ε)∇v) = 0 in B1 = B1(0).

In view Caccioppoli’s inequality (2.5) for f = 0, it is enough to show
∫

Bθ

|v −
∫

Bθ

v|2 ≤ λ θ2γ

∫

B1/2

|∇v|2 (2.9)

for a small constant λ > 0 that compensates the constant c of (2.5).
We first verify (2.9) with some suitable θ = θ0 for solutions v of the corresponding

homogenized equation at x = 0:

L∗
0v = −∇ · (A∗(0)∇v) = 0 in B1/2 = B1/2(0).

Recall that the coefficients A∗(0) = A(0, ·)∗ are strictly elliptic. Thus by Theorem 3 for
γ ∗ = 1

2 (1 + γ ) and Poincaré’s inequality we obtain

θ−2
∫

Bθ

|v −
∫

Bθ

v|2 dx ≤ C θ(1−γ ) θ2γ

∫

B1/2

|Dv|2 dx (2.10)

for any θ ∈ (0, 1/2] where C = C(γ ). We select θ0 to be the maximal θ ∈ (0, 1/2] so that
C θ(1−γ ) ≤ λ/2 (which is sufficient for the assertion) and fix θ = θ0.

Let us extend this result by compactness to small but finite 0 < ε < ε0 and 0 < ρ < ρ0.
We argue by contradiction and suppose that there exist sequences εk → 0 and ρk → 0, and
a corresponding sequence (vk) of weak solutions of Lεk

ρk v = 0 in B1 so that
∫

Bθ

|vk −
∫

Bθ

vk |2 > λ θ2γ

∫

B1/2

|∇vk |2.
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We define a sequence of blow-up functions

wk =
⎛

⎜
⎝

∫

B1/2

|∇vk |2
⎞

⎟
⎠

−1/2 ⎛

⎜
⎝vk −

∫

Bθ

vk

⎞

⎟
⎠

that satisfy the equation Lεk
ρk wk = 0 in B1 which we write as

Lεk
0 wk = (

Lεk
0 − Lεk

ρk

)
wk = ∇ · fk in B1. (2.11)

Note that as k → ∞
fk = [A(ρk x, x/εk) − A(0, x/εk)] ∇wk → 0 strongly in L2(B1/2) (2.12)

by uniform L2 boundedness of ∇wk and uniform continuity of the coefficients A(·, y). By
assumption we have ∫

Bθ

|wk |2 > λ θ2γ for any k ∈ N. (2.13)

Since
∫

Bθ
wk = 0, Poincaré’s inequality implies an L2 estimate for (wk). In particular, for

a subsequence we find wk ⇀ w weakly in H1(B1/2). By standard homogenization results,
(2.11) and (2.12) imply that w is a weak solution of the homogenized equation L∗

0w = 0 in
B1/2. By lower semicontinuity

∫
B1/2

|∇w|2 ≤ 1. Thus (2.10) and Poincaré’s inequality imply
∫

Bθ

|w|2 ≤ λ

2
θ2γ . (2.14)

But this is a contradiction to (2.13) since (wk) is strongly pre-compact L2.
2. Small radii. In order to treat radii 0 < ρ < ε/ε0 we rescale by ε/ε0 (for the argument

we can assume that ε0 = 1). The rescaled coefficients y �→ A (ε y, y) are equi-continuous
and uniformly elliptic as ε → 0. Accordingly, weak solutions vε ∈ H1(B1) of the rescaled
equation

∇ · (A (ε y, y) ∇vε(y)) = 0 in B1

are (uniformly) locally Hölder continuous with exponent γ ∈ (0, 1) and exhibit, in view of
(2.6), Poincaré’s and Caccioppoli’s inequality, an estimate

∫

Bρ/ε

|vε −
∫

Bρ/ε

vε|2 ≤ C
(ρ

ε

)2γ
∫

B1

|vε −
∫

B1

vε|2

for any 0 < ρ < ε with a constant C that only depends on γ and A. Hence we get in the
original scaling

∫

Bρ

|v −
∫

Bρ

v|2 ≤ C
(ρ

ε

)2γ
∫

Bε

|v −
∫

Bε

v|2.

This matches with the regime of large radii (ε0 = 1) and completes the proof. ��
Remark 1 (Hölder estimates) In the case p > n, the decay power in (2.4) can be improved.
In combination with Lemma 1, this implies uniform Hölder estimates and, in particular,
L∞-estimates for u. The detailed arguments can be found e.g. in [10], Chapt. III.
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Global BMO-estimates

This section is devoted to the statement of global estimates in Theorem 1. Let us therefore
assume that � is a domain of class C1 that is compactly contained within some cube Q.
After trivial extension we have u ∈ H1

0 (Q). The goal is to extend the local estimate (2.3) to
the global estimate ∫

B

|u −
∫

B

u|2 ≤ c
(
‖ f ‖2

Ln(�) + ‖∇u‖2
L2(�)

)
(2.15)

for any ball B ⊂ Q and some universal constant c that only depends on A and �. Observe
that ‖∇u‖L2(�) ≤ C(�)‖ f ‖Ln(�). Hence (2.15) implies:

Proposition 2 (BMO global estimate) Suppose that � ⊂ R
n is a bounded domain of class

C1. Let the coefficients of the elliptic operator Lε satisfy (1.3) and (1.4). Let u ∈ H1
0 (�; R

m)

be a weak solution of

Lεu = div f in �.

Then for any cube Q that compactly contains �

‖u‖BMO(Q) ≤ c ‖ f ‖Ln(�), (2.16)

where the constant c only depends on A and �, but is independent of f and ε.

We only sketch the proof of the global estimate (2.15). The general device is well estab-
lished, cf. e.g. [11,12] and the literature therein: In order to complement the local bounds we
essentially have to show that they remain valid when balls are replaced by relative balls
�(x0, r) = � ∩ Br (x0) centered at a boundary point x0 ∈ ∂�. Indeed, the claim of
Theorem 3 persists for R < R0 and with a modified constant C = C0 both depending
on the C1 structure of the boundary. Note that rescaling in space by a magnifying factor only
flattens the boundary and will not increase these constants. In particular, the arguments from
the proof of Lemma 1 carry over with slight modifications utilizing Dirichlet conditions:
there are constants R0 > 0 and C0 < ∞ that only depend on A, the C1 structure of ∂�, and
γ , with the following property: If r < R0 and v is a weak solution of

Lεv = 0 in �(x0, r) with v = 0 on ∂� ∩ Br (x0).

then for any 0 < ρ < r/2
∫

�(x,ρ)

|v −
∫

�(x,ρ)

v|2 ≤ C0

(ρ

r

)2γ
∫

�(x, r
2 )

|v −
∫

�(x, r
2 )

v|2. (2.17)

In combination with a decomposition and an iteration argument as in the proof of
Proposition 1, this yields for 0 < 4ρ < R < R0

∫

�(x0,ρ)

|u −
∫

�(x0,ρ)

u|2 ≤ c
(
‖ f ‖2

Ln(�(x0,R)) + ‖∇u‖2
L2(�(x0,R))

)
. (2.18)

The constant only depends on A and �, but it is independent of ε and f . Then the result can
be deduced by a standard covering argument, see e.g. [11,12].
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3 Finite difference method

Theorem 2 provides uniform estimates for the gradient of solutions. Our approach is to con-
sider difference quotients that are aligned with the periodicity of the problem, that is, with u
evaluated at points x and x +εed , where ed is a coordinate vector in R

n . Such difference quo-
tients satisfy an equation of the same type and we can apply Theorem 1 to find estimates. The
“local lemma”, Lemma 2 below, allows to transfer the estimate for the difference quotients
to an estimate for the gradient.

Proof of Theorem 2, item 1 We observe that Poincaré’s inequality yields the estimate
‖U‖H1 ≤ c‖F‖L2 . Our aim is to find better integrability properties of ∇U . We first study
the case q < ∞. The main idea of our proof is to study the discrete difference quotients of
the form

vd := ∇ε
dU (x) := U (x + εed) − U (x)

ε
,

where ed ∈ R
n is the d’th unit vector, d = 1, . . . , n, and v = (v1, . . . , vn). The functions vd

are compactly supported in � for ε sufficiently small. They satisfy the equation

Lεvd(x) = (∇ε
d F)(x) + div

(∇ε
d A(x)∇U (x + εed)

)
. (3.1)

For ease of notation and without loss of generality we assume d = n and write x = (x ′, xn)

with x ′ ∈ R
n−1 and xn ∈ R. We can write ∇ε

n F = div (0, . . . , 0, F̃n) by setting

F̃n(x ′, xn) = 1

ε

xn+ε∫

xn

F(x ′, ξ) dξ.

Since F̃n is constructed as a local average of F , Jensens inequality allows to compare the
L p-norms, ‖F̃n‖L p ≤ ‖F‖L p . We now apply Theorem 1 to vd .

‖vd‖Lq (�) ≤ c
(
‖F̃d‖L p(�) + ‖∇ε

d A(., ./ε)∇U (. + εed)‖L p

)

≤ c
(‖F‖L p(�) + ‖∇ε

d A‖Lρ(�,C0(Y )) · ‖∇U‖Lq−δ

)

for some δ > 0, since, by assumption, we have the strict inequality 1/ρ < 1/n = 1/p−1/q .
We next use Lemma 2 below to transfer this estimate into a result on ∇U . We start by

writing the Lq -norm as a sum over local Lq -norms. We use Q0 = (0, 1)n and take the sum
over all j ∈ Z

n such that ε j ∈ �.
∫

�

|∇U |q =
∑

j

∫

ε( j+Q0)

|∇U |q .

In the single cell ε( j + Q0) we use the local lemma for the rescaled functions u(y) =
U (ε j + εy), f (y) = ε2 F(ε j + εy), and g(y) = εv(ε j + εy). In their scaling laws, they are
related to the original functions by ∇yu = ε∇xU , L1u = f , and ∇1u = ε∇εU = εv = g.
Inequality (3.5) implies for every s ≥ 2

‖∇yu‖Lq (Q0) ≤ c
(‖g‖Lq (Q4) + ‖ f ‖L p(Q5) + εα‖∇yu‖Ls (Q5)

)
,

where α depends only on A and c is independent of g, f , ε, and s. The sets Ql are the enlarged
cubes Ql = (−l, l)n . Scaling back to the original variables and taking the q’th power yields
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for the single cell
∫

ε( j+Q0)

|∇xU |q = εnε−q‖∇yu‖q
Lq (Q0)

≤ cεn−q

⎛

⎜
⎝εqε−n

∫

ε( j+Q4)

|v|q + ε2q

⎛

⎜
⎝ε−n

∫

ε( j+Q5)

|F |p

⎞

⎟
⎠

q/p

+ εαqεq

⎛

⎜
⎝ε−n

∫

ε( j+Q5)

|∇U |s
⎞

⎟
⎠

q/s⎞

⎟
⎠

= c
∫

ε( j+Q4)

|v|q +
⎛

⎜
⎝

∫

ε( j+Q5)

|F |p

⎞

⎟
⎠

q/p

+ εn+αq−nq/s

⎛

⎜
⎝

∫

ε( j+Q5)

|∇U |s
⎞

⎟
⎠

q/s

,

where in the last equality we used n + q − nq/p = 0. Summing over all j we find for q > s

‖∇U‖q
Lq (�) ≤ c

⎛

⎜
⎝‖v‖q

Lq (�) + max
j

⎛

⎜
⎝

∫

ε( j+Q5)

|F |p

⎞

⎟
⎠

(q/p)−1

∑

j

⎛

⎜
⎝

∫

ε( j+Q5)

|F |p

⎞

⎟
⎠

+εn+αq−nq/s max
j

⎛

⎜
⎝

∫

ε( j+Q5)

|∇U |s
⎞

⎟
⎠

(q/s)−1

∑

j

⎛

⎜
⎝

∫

ε( j+Q5)

|∇U |s
⎞

⎟
⎠

⎞

⎟
⎠

≤ c
(

‖v‖q
Lq (�) + ‖F‖q

L p(�) + εn+αq−nq/s‖∇U‖q
Ls (�)

)
.

Inserting the v-estimate from above and exploiting ‖∇ε
d A‖Lρ(�,C0(Y )) ≤ c from (1.5), we

find

‖∇U‖Lq (�) ≤ c
(
‖F‖L p(�) + ‖∇U‖Lq−δ(�) + ε(n+αq−nq/s)/q‖∇U‖Ls (�)

)

≤ c
(
‖F‖L p(�)+η‖∇U‖Lq (�)+Cη‖U‖H1(�)+ε(n+αq−nq/s)/q‖∇U‖Ls (�)

)
,

where η > 0 can be chosen arbitrarily small such that we can absorb the second term of the
right hand side into the left hand side. With the observation from the beginning of the proof
we finally have

‖∇U‖Lq (�) ≤ c
(
‖F‖L p(�) + ε(n+αq−nq/s)/q‖∇U‖Ls (�)

)
. (3.2)

We note that the exponent of ε is positive for (q/s)−1 > 0 small. We can therefore conclude
the result by using (3.2) a finite number of times with indices sk and sk+1 = qk = �sk ,
� > 1 fixed, starting with s0 = 2. We note that we have to iterate only until sk > n/α,
therefore the number of iterations is independent of q .

The case q = ∞. Only minor changes in the above arguments are necessary to treat the
case q = ∞. Theorem 1 provided the estimate for the finite difference quotients v, which
now reads

‖v‖L∞(�) ≤ c
(‖F‖L p(�) + ‖∇U‖Ls

)
,
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Q

Q5

2

m

u

Fig. 2 Sketch of the geometry. Indicated are, for the two-dimensional case, the cubic domain Q5 of the
solution u, and the domain Q2, for which L2-estimates are derived

for some large s < ∞, the constant c then depends on s. The local lemma implies

sup
ε( j+Q0)

|ε∇xU |

≤ c

(

sup
ε( j+Q4)

|εv| + ε2−(n/p)‖F‖L p(ε( j+Q5)) + εα−(n/s)‖ε∇xU‖Ls (ε( j+Q5))

)

.

Dividing by ε and taking the supremum over j we find, for s = n/α,

‖∇U‖L∞(�) ≤ c
(
‖v‖L∞(�) + ‖F‖L p(�) + εα− n

s ‖∇U‖Ls (�)

)

≤ c
(‖F‖L p(�) + ‖∇U‖Ls

)
.

Together with the Ls-estimate of the first part of the proof (q < ∞), this provides the desired
L∞-estimate. ��

The key in our finite difference approach was the local lemma, which we show next.
Loosely speaking, the lemma asserts the following: locally, the gradient of a solution is as
good as we can expect from the finite differences and from the right hand side.

The situation is as sketched in Fig. 2. We consider cubes Ql = (−l, l)n , l = 1, . . . , 5,
solutions u : Q5 → R

m , and investigate the gradient ∇u on the smallest cube Q1. We assume
that for � ⊂ R

n the coefficients are maps A : �× R
n → R

n2×m2
which are [0, 1]n-periodic

in y, continuous, and uniformly elliptic. For some exponent α ∈ (0, 1), which provides a
small factor in the final estimate, we assume that for every y the map A(., y) is Hölder-con-
tinuous with exponent 2α with a y-independent upper bound. The assumptions are met by A
satisfying (1.3)–(1.5).

Lemma 2 (Local lemma) Let K ⊂ � ⊂ R
n be compact, ξ ∈ K a parameter, f ∈ L p(Q5)

a right hand side, and ε > 0 sufficiently small. Let the pair (p, q) satisfy either p ∈ [2, n),
q ≤ np/(n − p), or p > n, q = ∞. We consider solutions u : Q5 → R

m of

∇ · (A(ξ + εy, y)∇u(y)) = f (y) ∀y ∈ Q5. (3.3)

We assume to have a control on difference quotients of length 1,

u(y + ed) − u(y) = gd(y) ∀y ∈ Q4, (3.4)
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for d = 1, . . . , n, g : Q4 → R
m×n ∈ Lq . Then

‖∇u‖Lq (Q1) ≤ c
(‖g‖Lq (Q4) + ‖ f ‖L p(Q5) + εα‖∇u‖L2(Q5)

)
(3.5)

with c depending on q and A, but independent of f , g, u, ε, and ξ .

Proof We first show the estimate by a contradiction argument for p = 2, q = 2, and on
the set Q2 instead of Q1. To this end, let us assume that the estimate fails for some A in
dimension n. We then find sequences uk , gk , f k , ξ k → ξ , and εk of solutions of (3.3) and
(3.4) such that, after rescaling and subtraction of averages,

gk → 0 in L2(Q4), f k → 0 in L2(Q5), εα
k ∇uk → 0 in L2(Q5), (3.6)

‖∇uk‖L2(Q2) = 1,

∫

Q2

uk = 0. (3.7)

We see that necessarily εk → 0. We observe that each function gk
d : Q4 → R

m is an
H1-solution of

∇ · (A(ξ k + εk y, y)∇gk
d(y)) = f k(y + ed) − f k(y)

−∇ ·
([

A(ξ k + εk y + εked , y) − A(ξ k + εk y, y)
]

× ∇uk(y + ed)
)

.

The difference of the coefficients in the squared brackets is pointwise bounded by Cε2α
k .

Multiplication of this equation with gk
dη with a cut-off function η ∈ C∞

0 (Q4) yields

‖gk‖H1(Q3)
≤ c

(
‖gk‖L2(Q4)

+ ‖ f k‖L2(Q5)
+ εα

k ‖∇uk‖L2(Q5)

)
→ 0.

This, together with (3.4) and (3.7) implies

‖uk‖H1(Q3)
≤ C.

Choosing a subsequence we may assume for some limit function u ∈ H1(Q3)

uk → u strongly in L2(Q3) and weakly in H1(Q3),

and u is a weak solution of

∇ · (A(ξ, y)∇u(y)) = 0.

The strong convergence of uk implies that u satisfies relation (3.4) with g ≡ 0 on Q2. Hence
u is a periodic solution of the homogeneous problem and must therefore be constant, thus,
by (3.7), u ≡ 0. Finally, exploiting that uk is a solution of (3.3), we conclude

‖uk‖H1(Q2) ≤ c
(
‖uk‖L2(Q3)

+ ‖ f k‖L2(Q3)

)
→ 0,

which contradicts (3.7).
The general estimate on Q1 with exponent p ≥ 2, for q ≤ np/(n − p), follows from

interior regularity estimates for solutions with bounded H1-norm on Q2. ��
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4 Two-scale expansions

In this section we exploit the two-scale expansion of solutions and complete the proof of
Theorem 2. We always assume the situation of Theorem 2, item 2, in particular the regularity
assumption A ∈ C0,1(�, W 1,n

per (Y )) ∩ C1,1(�, Ln(Y )) from (1.6).
We perform all calculations in the scalar case m = 1, the case m > 1 introduces only

notational difficulties. Let wk = wk(x, y) be the solutions of the cell-problems

∇y · (
A(x, y)[∇ywk(x, y) + ek]

) = 0 in Y,

wk(x, .) Y -periodic.

We first check boundedness properties of wk . The uniform continuity of A allows to conclude,
for every compact subset �′ ⊂ � and every s < ∞, the uniform bound ‖wk(x, ·)‖W 1,s ≤
C(�′) for all x ∈ �′, i.e., wk ∈ L∞(�′; W 1,s(Y )), see e.g. [11], p. 73. But even a much
stronger estimate can be shown. An arbitrary x-derivative W (x, y) = ∂xl wk(x, y) satisfies
the equation

∇y · (
A(x, y)[∇y W (x, y)]) = −∇y · (

∂xl A(x, y)[∇ywk(x, y) + ek]
)
.

For every x ∈ �, the right hand side is the divergence of a bounded function in L p(Y ) for
every p < ∞. We conclude the uniform boundedness of

wk ∈ C0,1(�′, W 1,s(Y )).

Second derivatives can be treated in the same way to find bounds for wk ∈ C1,1(�′, Ls(Y )).
With the help of the functions wk we may, for an arbitrary smooth function η0, construct

the two-scale approximation function

ηε(x) = η0(x) + ε

n∑

k=1

∂kη0(x)wk(x, x/ε). (4.1)

The function is constructed in such a way that the application of Lε yields a bounded object.

∇ηε(x) =
n∑

k=1

∂kη0(x)[ek + ∇ywk(x, x/ε)] + ε

n∑

k=1

∇x (∂kη0(x)wk(x, x/ε))

Lεηε(x) = −
n∑

k=1

∇x · (A(x, x/ε) ∂kη0(x) [ek + ∇ywk(x, x/ε)])

−ε

n∑

k=1

∇ · (A(x, x/ε) · ∇x (∂kη0(x)wk(x, x/ε))).

In the case m > 1 we use also scalar test-functions ηε : � → R, but they are interpreted as
representing a variation in direction β ∈ {1, . . . , m}, the cell solutions are w

β
k : Y → R

m ,
and in the last line above we then calculate Lε(ηεeβ) : � → R

m .

Proof of Theorem 2, item 2 We consider an H1-solution U of LεU = F on BR = BR(0) ⊂
R

n for F ∈ L p(BR). Our aim is to derive, for some � ∈ (0, 1), an estimate

‖∇U‖Lq (B�R) ≤ c
(‖F‖L p(BR) + ‖U‖H1(BR)

)
. (4.2)

By a covering argument, this yields the claimed estimate on arbitrary compactly contained
subsets �′ ⊂⊂ �.
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Let η0 ∈ C∞
0 (BR/2) be a cut-off function with η0 ≡ 1 on BR/4. We use ηε of (4.1) with

support in BR/2. The function V ε := U · ηε satisfies

LεV ε(x) = −∇ · (
A(x, x/ε)∇U (x)ηε(x)

) − ∇ · (
U (x)A(x, x/ε)∇ηε(x)

)

= ηε(x)LεU (x) − 2∇U (x)A(x, x/ε)∇ηε(x) + U (x)Lεηε(x).

The regularity estimates for wk imply uniform bounds for any s < ∞,

∇ηε ∈ Ls(BR), Lεηε ∈ Ln(BR).

Inserting this above we find for q = np/(n − p) the estimate

‖LεV ε‖L p(BR) ≤ c
(‖F‖L p(BR) + ‖∇U‖L p+δ(BR) + ‖U‖Lq (BR)

)

≤ c
(‖F‖L p(BR) + ‖U‖W 1,p+δ(BR)

)

for some small δ > 0. We can apply Theorem 2, item 1 to V ε and find the Lq(BR)-estimate
for ∇V ε. We note that in BR/4 the gradients coincide, ∇V ε = ∇U ε, therefore

‖U‖W 1,q (BR/4) ≤ c
(‖F‖L p(BR) + ‖U‖W 1,p+δ(BR)

)
. (4.3)

We can iterate this estimate, starting with p = 2. We arrive at an arbitrary q (including
q = ∞) after a number of iterations that depends only on n and δ. This yields (4.2).

We note that, in order to start the iteration process with p = 2, we need a bound for
∇U ∈ L2+δ

loc . This estimate is a consequence of Meyers estimate [18] in the scalar case.
For systems, the estimate follows from reverse Hölder inequalities and Gehring’s Lemma
(cf. e.g. [11] p. 24 and p. 107, or [12]). In both cases, the estimate is independent of the
modulus of continuity of the coefficients. ��
Application to a corrector result

On a domain � ⊂ R
n we study the homogenization problem

Lεuε = f in �, uε = 0 on ∂�

with coefficients A(x, y) of the operator satisfying (1.3)–(1.6). We denote by η0 : � → R

the solution of the homogenized problem

L∗η0 = f in �, η0 = 0 on ∂�,

and by ηε from (4.1) the approximate solution to the ε-problem. For f ∈ L2, the following
corrector result holds ([1], Theorem 2.6): If

η1(x, y) =
n∑

k=1

∂kη0(x)wk(x, y) (4.4)

is such that η1, ∇xη1, and ∇yη1 are admissible, then

uε − ηε → 0 strongly in H1(�). (4.5)

For the concept of admissibility we refer to [1], Definition 1.4, and the discussion thereafter.

Corollary 1 Let coefficients A satisfy (1.3)–(1.6) and let f ∈ L p(�). For q ′ < q = np/

(n − p) and �′ a compactly included subdomain of � there holds

uε − ηε → 0 strongly in W 1,q ′
(�′). (4.6)
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Proof It suffices to verify the admissibility hypothesis for (4.5) and to provide uniform
Lq(�′)-estimates for ∇uε and ∇ηε. Then the convergence of (4.5) implies the strong con-
vergence in intermediate Lebesgue spaces as claimed. We note that Theorem 2, item 2,
provides the uniform bound for ∇uε ∈ Lq(�′) with q = np/(n − p) > p. The boundedness
of ∇ηε ∈ Ls(�′) for every s < ∞ was already observed in the proof of Theorem 2, item 2.

It remains to analyze the regularity properties of η0 and η1. The homogenized operator
L∗ has Hölder-continuous coefficients A∗(x), hence ∇xη0 ∈ Lq(�). Furthermore, every
x-derivative ∂kη0 of η0 satisfies the equation

−∇ · (A∗∇∂kη0) = ∂k f + ∇ · (∂k A∗ · ∇η0).

The right hand side is the divergence of a function in L p(�) and we conclude η0 ∈ W 2,p(�′).
Regarding η1 we have to study the cell problem. We find

∇xη1(x, y) =
n∑

k=1

(∇∂kη0(x)wk(x, y) + ∂kη0(x)∇xwk(x, y)) ,

hence ∇xη1 ∈ L p(�, C0(Y )), and

∇yη1(x, y) =
n∑

k=1

∂kη0(x)∇ywk(x, y) ⇒ ∇yη1 ∈ L p(�, C0(Y )).

Therefore η1, ∇xη1, and ∇yη1 are admissible and (4.5) holds. This concludes the proof. ��

Appendix A: Remarks on the interpolation argument

The interpolation argument requires an off-diagonal version of the well-known interpolation
theorem of Stampacchia, cf. [20], that only requires an (L∞, BMO) bound at the upper end-
point. For the readers’ convenience we briefly sketch the argument in our specific situation,
mainly based on the classical Marcinkiewizc interpolation theorem along the lines of [8].

We let Q ⊂ � ⊂ R
n and suppose that T is linear and bounded as a mapping T :

L2(�) → L2∗
(Q) (2∗ = 2n/(n − 2)) and T : Ln(�) → BMO(Q), respectively. We take

any subdivision {Qi }i∈I of the cube Q. Accordingly, we define

T f (x) =
∫

Qi

|T f −
∫

Qi

T f | if x ∈ Qi .

Then T is subadditive and bounded as a mapping T : L2(�) → L2∗
(Q) and T : Ln(�) →

L∞(Q), respectively. We infer from the Marcinkiewicz interpolation theorem, cf. [21],
Chapt. V, Theorem 2.4, that T : L p(�) → Lq(Q) continuously for any admissible (p, q)

pair, i.e.,

1

p
= 1 − θ

2
+ θ

2∗ and
1

q
= 1 − θ

n
for some θ ∈ (0, 1),

i.e., q = np/(n − p) with 2 < p < n, with bounds that are independent of the choice of
subdivisions. Thus taking the supremum over the set � of subdivisions of Q (and associated
operators T ) we find
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sup
{Qi }∈�

∑

i∈I

|Qi |
⎛

⎜
⎝

∫

Qi

|T f −
∫

Qi

T f |
⎞

⎟
⎠

q

= sup
T ∈�

‖T f ‖q
Lq (Q) ≤ C ‖ f ‖q

L p(�)

with a constant C that only depends on θ and the known bounds on T . By a result of John
and Nirenberg, cf. [13], the latter quantity bounds the weak Lq norm of T̃ f = T f −∫

Q T f .

Thus, for any admissible pair (p, q), the operator T̃ is weakly bounded. Further interpolation
and application of the Marcinkiewicz interpolation theorem implies in turn

‖T̃ f ‖Lq (Q) ≤ C ‖ f ‖L p(�) thus ‖T f ‖Lq (Q) ≤ C

⎛

⎜
⎝‖ f ‖L p(�) +

∫

Q

|T f |
⎞

⎟
⎠

where C only depends on the previously known bounds on T and p ∈ (2, n). Now, if we
take as in our application T = L−1

ε div : f �→ u with end-point bounds that are independent
of ε > 0, we get with Hölder’s inequality

‖T̃ f ‖Lq (Q) ≤ C ‖ f ‖L p(�) thus ‖L−1
ε f ‖Lq ≤ C(n, p, Q)

(‖ f ‖L p(�) + ‖u‖L2(�)

)

for n > 2, any p ∈ (2, n) and q = np/(n − p).
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