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Abstract For a bounded convex domain G ⊂ R
N and 2 < α �= N consider the unit-

density Riesz-potential u(x) = ∫
G |x − y|α−N dy. We show in this paper that u = const.

on ∂G if and only if G is a ball. This result corresponds to a theorem of L.E. Fraenkel,
where the ball is characterized by the Newtonian-potential (α = 2) of unit density being
constant on ∂G. In the case α = N the kernel |x − y|α−N is replaced by − log |x − y|
and a similar characterization of balls is given. The proof relies on a recent variant of the
moving plane method which is suitable for Green-function representations of solutions of
(pseudo-)differential equations of higher-order.

Keywords Riesz-potential · Pseudo-differential operator · Moving plane method · Radial
symmetry
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1 Introduction

In Newton’s theory of gravitation the potential of a ball BR(0) ⊂ R
3 of constant mass density

ρ > 0 is given by

u(x) = 1

4π

∫

BR(0)

ρ

|x − y| dy =

⎧
⎪⎪⎨

⎪⎪⎩

ρ

(
R2

2
− |x |2

6

)

, |x | ≤ R,

ρR3

3|x | , |x | ≥ R.

Outside the ball the gravitational potential coincides with that of a single point centered at the
origin whose mass equals the mass of the entire ball. This observation (and its generalization
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236 W. Reichel

to radially symmetric mass densities) allows to reduce celestial mechanics of stars and planets
to the interaction of point masses. Similar properties hold for the Newtonian potential of an
N -dimensional ball N ≥ 4 and for the two-dimensional logarithmic potential of a disk in
R

2. Note that the gravitational potential of a ball of constant mass density is constant on the
surface of the ball. This property in fact uniquely characterizes the balls, as it was shown by
Fraenkel [7] through the following theorem.

Theorem 1 (Fraenkel 2000) Let G ⊂ R
N be a bounded open set and let ωN be the surface

measure of the unit-sphere in R
N . Consider

u(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2π

∫

G

log
1

|x − y| dy, N = 2,

1

(N − 2)ωN

∫

G

1

|x − y|N−2 dy, N ≥ 3.

If u is constant on ∂G then G is a ball.

One of the striking aspects of Fraenkel’s theorem is that no regularity of G is assumed
a priori. The goal of this paper is to prove for Riesz-potentials the following analogue of the
above result. Unlike in Theorem 1 we need to a priori restrict the class of open sets.

Theorem 2 Let G ⊂ R
N be a bounded convex domain. For α > 2 consider

u(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

G

log
1

|x − y| dy, N = α,

∫

G

1

|x − y|N−α
dy, N �= α.

(1)

If u is constant on ∂G then G is a ball.

It is easy to see that the converse of both Theorems 1 and 2 hold. Suppose G = BR(0) is
a ball centered at the origin. Then u is radially symmetric and hence u is constant on ∂G.

Let us give some heuristic arguments for Fraenkel’s theorem. The Newtonian potential in
Theorem 1 satisfies

−�u = 1 in G, −�u = 0 in R
N \G

and by assumption u = β on ∂G. If one considers the two boundary value problems (here
we assume N ≥ 3)

(∗)

{
−�ui = 1 in G,

ui = β on ∂G
(∗∗)

{
−�ue = 0 in R

N \G,

ue = β on ∂G, ue → 0 at ∞
then there exist unique solutions ui , ue, and they must coincide with u. The fact that u is a
C1(RN ) function means that next to the boundary values ui = ue = β on ∂G also the normal
derivatives of ui , ue have to coincide on ∂G. For an arbitrary domain G this would not be the
case. Thus, (∗), (∗∗) together with matched normal derivatives is an overdetermined prob-
lem, which explains why the shape of G cannot be arbitrary. In fact, the only way to resolve
(∗), (∗∗) and simultaneously match the normal derivatives is by G being a ball. Note that in
Fraenkel’s theorem no regularity of ∂G is assumed, so that in general normal derivatives of
ui , ue cannot be understood in the classical sense.
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Characterization of balls by Riesz-potentials 237

Let us discuss similarly the Riesz-potentials of Theorem 2. First we recall fundamental
solutions G(x, y) of the pseudo-differential operators (−�)α/2 in R

N , α > 0. In case
1
2 (α − N ) �∈ N0 (i.e., either 0 < α < N or α ≥ N but α − N is not an even natural
number) then

G(x, y) = �
( N−α

2

)

2απ N/2�
(

α
2

) |x − y|α−N

whereas if α − N = 2k, k ∈ N0 then

G(x, y) = (−1)k

2α−1π N/2�
(

α
2

) |x − y|α−N log
1

|x − y| .

It follows that for (α − N )/2 �∈ N0 the potential u of Theorem 2 satisfies in the distributional
sense (χG is the characteristic function of the set G)

(−�)α/2u = const. χG in R
N

together with u = β on ∂G, u ∈ Cl(RN ) for 1 ≤ l < α. Note that for α = 2m the potential
u satisfies a polyharmonic equation in R

N . For general α > 2 there is no analogue of the two
boundary value problems (∗), (∗∗) as in the second-order case. It is therefore remarkable that
the mere information of ∂G being a level set of u completely determines u and G. Even in
the case α = 2m the boundary value problems analogous to (∗), (∗∗) are underdetermined
individually since only one boundary datum is prescribed. But if they are viewed as a system
coupled by the fact that u ∈ C2m−1(RN ) coincides with ui in G and ue outside G then they
become overdetermined.

We finish this discussion with the following two open problems:

(i) Is Theorem 2 true if the assumption of convexity of G is dropped?
(ii) Is there an analogous result as in Theorem 2 for potentials

u(x) =
∫

G

|x − y|α−N log
1

|x − y| dy?

The most interesting case would be the case where α − N = 2k with k ∈ N0 since
then the kernel function is (up to a normalization constant) the fundamental solution of
(−�)α/2.

The main reason why both questions remain open is the fact that the validity of Lemma 4 is
not clear under these assumptions, cf. the remark following Lemma 4.

In the Newtonian case a number of potential-theoretic characterizations of balls are known
in the literature. If instead of a volume potential one considers a single-layer potential u con-
centrated on ∂G with constant density, then G is a ball if and only if u is constant on ∂G. This
conjecture of P. Gruber (cf. Heil and Martini [10]) has been verified for different smoothness
classes of domains. The two-dimensional case was considered by Martensen [14],
Gardiner [8] and Ebenfelt et al. [6] and the higher-dimensional case by Reichel [18], Mendez
and Reichel [15] and Sirakov [21]. We mention that in [15] only convexity of the underlying
domain was assumed. Similar characterizations of annuli were given by Payne, Philippin [16]
and Philippin [17] and different single-layer characterizations of balls were achieved by
Shahgholian [20] and Mikyoung Lim [13].

Our approach is based on a new variant of the moving plane method. The classical moving
plane method is based on the pointwise maximum principle for second order elliptic equa-
tions. It was developed by Alexandrov [1], Serrin [19] and Gidas et al. [9]. Very recently
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238 W. Reichel

some important improvements of the moving plane method were achieved by Chang and
Yang [4], Berchio et al. [2], Li [12], Chen et al. [5], Jin and Li [11] and Birkner et al. [3].
These new variants of the moving plane method are applied to the integral equation resulting
from the Green-function representation, cf. Lemma 10 below. In this way symmetry results
for higher-order elliptic problems as well as pseudo-differential equations can be achieved
although pointwise maximum principles are not available.

The paper is organized as follows. In Sect. 2 we provide some basic estimates for the
far-field of the potential. In Sect. 3 the moving-plane procedure is carried out.

2 Estimates for the Riesz-potentials

Throughout the paper let α > 2 and let u denote the function defined in (1).

Lemma 3 Let l ∈ N with 1 ≤ l < α. Then u ∈ Cl(RN ) and differentiation of order l can
be taken under the integral.

Proof The result is standard. We give a proof for the reader’s convenience. We consider the
case α �= N ; the proof for α = N is just a slight variant. Let η : [0,∞) → [0, 1] be a C∞-
function with η ≡ 0 on [0, 1] and η ≡ 1 on [2,∞). Let µ = (µ1, . . . , µN ) be a multi-index
of order |µ| = l and let c1(l), c2(l), . . . denote constants which only depend on l. For ε > 0
let ηε(t) := η(t/ε) and define

uε(x) :=
∫

G

ηε(|x − y|)
|x − y|N−α

dy, vµ(x) :=
∫

G

Dµ
x

1

|x − y|N−α
dy.

Note that
∣
∣Dµ

x |x − y|α−N
∣
∣ ≤ const. |x − y|α−N−l with α − N − l > −N . Therefore vµ(x)

exists for all x ∈ R
N . Furthermore

|Dµuε(x) − vµ(x)| ≤
∫

G

Dµ
x

((
1 − ηε(|x − y|))|x − y|α−N

)
dy

≤ c1(l)
∑

|ν|+|ν′|=l

∫

G

Dν
x

(
1 − ηε(|x − y|))Dν′

x |x − y|α−N dy

≤ c2(l)
∑

|ν|+|ν′|=l

∫

G

ε−|ν||x − y|α−N−|ν′| dy

≤ c3(l)ε
α−l → 0 as ε → 0.

Thus Dµuε converges uniformly on R
N to vµ for all multi-indices µ with |µ| < α. This

establishes the proof. ��
In the following we assume that G is convex and that u = const. = β on ∂G.

Lemma 4 If N ≥ α then u(x) < β for x ∈ R
N \G and u(x) > β for x ∈ G. If N < α then

u(x) > β for x ∈ R
N \G and u(x) < β for x ∈ G.

Remark In the computations below we use that the kernel function |x − y|α−N has mono-
tonicity and sub-/superharmonicity properties. In general this is not the case for kernels of
the form |x − y|α−N log 1/|x − y|. Moreover, it is an open problem how to overcome the
convexity assumption of G in the proof below.
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Characterization of balls by Riesz-potentials 239

Proof Lemma 3 shows that u is a C2(RN )-function since α > 2. Note that �|x |α−N =
(α − N )(α − 2)|x |α−N−2 and � log 1

|x | = (2 − N )|x |−2. Let us first consider the case
N ≥ α > 2. In this case u is superharmonic and hence inside G the function u is larger than
the value β of u on ∂G. In the case 2 ≤ N < α the function u is subharmonic and hence
inside G the function u is smaller than its value β on the boundary. It remains to consider u
outside G. We show that the convexity of G implies that u has no local extremum outside
G. Since either u(x) → 0,∞ or −∞ as |x | → ∞ this implies that u is smaller (larger) than
β outside G. So let x ∈ R

N \G. By the convexity of G we can separate x from G through a
hyperplane, i.e., there exists a unit vector e ∈ R

N and a point z0 ∈ R
N \G such that

(y − z0) · e < 0 < (x − z0) · e for all y ∈ G.

In particular (x − y) · e > 0 for all y ∈ G. Since

∇u(x) · e = cα,N

∫

G

(x − y) · e

|x − y|N−α+1 dy

and the integrand is strictly positive we see that u has no local extremum outside G. ��
By Lemma 4 we see that G is a sub- or super-level set of u. This observation led Fraenkel

[7] to rewrite u as the Newtonian potential of the nonlinear density function fH (u(x) − β)

over all of R
N , where fH is the Heaviside-function. Hence u fulfilled a nonlinear integral

equation in R
N with no explicit appearance of the set G. The same is clearly true in the

context of Riesz-potentials as expressed by the following corollary.

Corollary 5 Let fH (t) = 1 for t > 0 and fH (t) = 0 for t ≤ 0 be the Heaviside-function and
χG be the characteristic function of G. Then χG = fH (u−β) if N ≥ α and χG = fH (β−u)

if N < α. Hence

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

RN

log
1

|x − y| fH (u(y) − β) dy, N = α,

∫

RN

fH (u(y) − β)

|x − y|N−α
dy, N > α,

∫

RN

fH (β − u(y))

|x − y|N−α
dy, N < α.

Lemma 6 Let q = 1
vol G

∫
G y dy be the barycentre of G and let v(x) = u(x + q). Then

v(x) =
⎧
⎨

⎩

vol G log
1

|x | + h(x) if N = α,

vol G|x |α−N + h(x) if N �= α

where h satisfies |h(x)| ≤ C |x |α−N−2, |∇h(x)| ≤ C |x |α−N−3 for some constant C > 0.

Proof Let N �= α. A direct application of Taylor’s theorem to the function g(t) :=
|x − tη|α−N yields

|x − η|α−N = |x |α−N − (α − N )|x |α−N−2x · η + k(x, η) (2)
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240 W. Reichel

where there exists a constant C > 0 and a radius R0 > 0 such that

|k(x, η)| ≤ C |x |α−N−2, |∇x k(x, η)| ≤ C |x |α−N−3 for all |x | ≥ R0, η ∈ G − q. (3)

Here R0 > 0 is chosen such that G − q ⊂ BR0(0). Note that

v(x) =
∫

G

1

|x + q − y|N−α
dy =

∫

G−q

1

|x − η|N−α
dη.

Since the barycentre of G − q is zero the claim of the lemma follows from integrating (2).
The estimate for h(x) := ∫

G−q k(x, η) dη follows from (3). The proof for N = α is similar.
��

3 Proof of Theorem 2 by the method of moving planes

For a point x ∈ R
N let xλ = (2λ− x1, x ′) be the reflection of x at the hyperplane Tλ := {x ∈

R
N : x1 = λ}. Hence |xλ|2 − |x |2 = 4λ(λ − x1). Also define the half-space Hλ := {x ∈

R
N : x1 < λ} and note that ∂ Hλ = Tλ. On Hλ define the function wλ(x) := v(x) − v(xλ).

We will show that for α ≤ N (α > N ) the function wλ satisfies

wλ(x) > 0(< 0) in Hλ,
∂wλ

∂x1
(x) = 2

∂v

∂x1
(x) < 0(> 0) on Tλ (4)

for all λ > 0. By continuity this implies for α ≤ N that v(x1, x ′) ≥ v(−x1, x ′) for all x ∈ R
N ,

x1 ≥ 0 while for α > N the reverse inequality holds. In both cases the corresponding reverse
inequalities also hold by repeating the moving plane argument with the −x1-direction. Hence
v(−x1, x ′) = v(x1, x ′) for all x ∈ R

N and moreover v is strictly monotone in the positive
x1-direction. Repeating the moving-plane argument with an arbitrary unit-direction instead
of the x1-direction one obtains that the function v is radially symmetric with respect to the
origin and moreover radially strictly monotone. Together with the fact that ∂(G − q) is a
level-surface of the function v this implies that G − q must be a ball centered at the origin.
Thus, Theorem 2 is proved if we show (4) for all values of λ > 0. This will be done next.
Theorem 2 follows from the preceeding explanation and Lemma 10 and Lemma 12.

Lemma 7 For every λ > 0 there exists a value R(λ) > 0 such that for all x ∈ Hλ with
|x | ≥ R(λ) we have

wλ(x)

{
> 0 if 2 < α ≤ N ,

< 0 if α > N .

The function R(λ) and a value λ0 > 0 can be chosen such that R(λ) is non-increasing in λ

and constant for λ ≥ λ0 > 0.

Proof According to the value of α we divide the proof into several cases. If h is the function
of Lemma 6 then

v(x) − v(xλ) =
{

vol G(|x |α−N − |xλ|α−N ) + h(x) − h(xλ), α �= N ,

vol G(− log |x | + log |xλ|) + h(x) − h(xλ), α = N .

Case 1 2 < α < N . Assume first that |xλ|2 ≤ 2|x |2. By convexity of the function s �→ s
α−N

2

for s > 0 we have

|x |α−N − |xλ|α−N >
N − α

2
|xλ|α−N−24λ(λ − x1) ≥ C1|x |α−N−2λ(λ − x1)
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Characterization of balls by Riesz-potentials 241

where C1 := (N − α)2
α−N

2 . By Lemma 6 |h(x) − h(xλ)| ≤ 2C |x |α−N−3(λ − x1). Hence

v(x) − v(xλ) > |x |α−N−3(λ − x1)
(

vol GC1|x |λ − 2C
)

> 0

provided |x | > 2C
vol GC1λ

. Next assume that |xλ|2 ≥ 2|x |2. Then

|x |α−N − |xλ|α−N ≥ |x |α−N (1 − 2
α−N

2 ) =: C2|x |α−N ,

where C2 > 0. Again by Lemma 6 |h(x) − h(xλ)| ≤ 2C |x |α−N−2. Thus

v(x) − v(xλ) ≥ |x |α−N
(

vol GC2 − 2C

|x |2
)

> 0

provided |x | >

√
2C

vol GC2
. Hence the statement of the lemma follows if we set

R(λ) := max

{
2C

vol GC1λ
,

√
2C

vol GC2

}

.

Case 2 α = N . The structure of proof is the same as in Case 1. Assume first that |xλ|2 ≤
2|x |2. The convexity of the function s �→ − log s for s > 0 implies

− log |x | + log |xλ| > |xλ|−22λ(λ − x1) ≥ 1

2
|x |−2λ(λ − x1).

With the estimate for h as above we find v(x) − v(xλ) > 0 provided |x | > 4C
vol Gλ

. Likewise,
if |xλ|2 ≥ 2|x |2 then

− log |x | + log |xλ| ≥ 1

2
log 2

and with the estimate for h as above we find v(x) − v(xλ) > 0 provided |x | >
√

4C
vol G log 2 .

Hence we may set

R(λ) := max

{
4C

vol Gλ
,

√
4C

vol G log 2

}

.

Case 3 N < α < N + 2. Again we assume first that |xλ|2 ≤ 2|x |2. The concavity of the

function s �→ s
α−N

2 for s > 0 implies

|x |α−N − |xλ|α−N <
N − α

2
|xλ|α−N−24λ(λ − x1) ≤ −C1|x |α−N−2λ(λ − x1)

with C1 := (α − N )2
α−N

2 . Using the estimate for h as in Case 1 we find

v(x) − v(xλ) < |x |α−N−3(λ − x1)
( − vol GC1|x |λ + 2C

)
< 0

provided |x | > 2C
vol GC1λ

. For |xλ|2 ≥ 2|x |2 we get

|x |α−N − |xλ|α−N ≤ |x |α−N (1 − 2
α−N

2 ) =: −C2|x |α−N
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242 W. Reichel

where C2 > 0. Together with the estimate |h(x) − h(xλ)| ≤ 2C |x |α−N−2 we obtain

v(x) − v(xλ) < |x |α−N
(

− vol GC2 + 2C

|x |2
)

< 0

provided |x | >

√
2C

vol GC2
. Therefore it suffices to set

R(λ) := max

{
2C

vol GC1λ
,

√
2C

vol GC2

}

.

Case 4 α ≥ N + 2. For |xλ|2 ≤ 2|x |2 the convexity of s �→ s
α−N

2 for s > 0 implies

|x |α−N − |xλ|α−N <
N − α

2
|x |α−N−24λ(λ − x1) =: −C1|x |α−N−2λ(λ − x1)

where C1 = 2(α − N ) > 0. For h we obtain this time a different estimate:

|h(x) − h(xλ)| ≤
{

2C |xλ|α−N−3(λ − x1) if α − N − 3 ≥ 0,

2C |x |α−N−3(λ − x1) if α − N − 3 < 0

≤ D|x |α−N−3(λ − x1),

where either D = 2
α−N−1

2 C or D = 2C . Thus

v(x) − v(xλ) < |x |α−N−3(λ − x1)
( − vol GC1|x |λ + D

)
< 0

provided |x | > D
vol GC1λ

. Finally, if |xλ|2 ≥ 2|x |2 then

|x |α−N − |xλ|α−N ≤ |xλ|α−N (2
N−α

2 − 1) =: −C2|xλ|α−N

where C2 > 0. Together with the estimate |h(x) − h(xλ)| ≤ 2C |xλ|α−N−2 we conclude

v(x) − v(xλ) < |xλ|α−N
(

− vol GC2 + 2C

|xλ|2
)

< 0

provided |x | >

√
2C

vol GC2
(recall that |xλ| ≥ |x | in Hλ). Therefore let us set in this case

R(λ) := max

{
D

vol GC1λ
,

√
2C

vol GC2

}

.

��
Lemma 8 There exists λ∗ > 0 such that for all λ > λ∗ we have

wλ(x)

{
> 0 if 2 < α ≤ N ,

< 0 if α > N .

in Hλ.

Proof The proof is again divided according to the value of α. Let R(λ) be the function
defined in Lemma 7.

Case 1 2 < α < N . Let c1 := min|x |≤R(1) v(x). Hence c1 > 0, and since v(x) decays to
0 as |x | → ∞ there exists a value λ∗ ≥ 1 such that |x | ≥ λ∗ implies v(x) ≤ c1/2. Let
now λ > λ∗. Consider x ∈ Hλ with |x | > R(1). For such x we have |x | > R(λ) and hence
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Characterization of balls by Riesz-potentials 243

v(x) > v(xλ) by Lemma 7. Now consider x ∈ Hλ with |x | ≤ R(1). Since |xλ| ≥ λ > λ∗
we find v(x) ≥ c1 > v(xλ), and the claim is proved.

Case 2 α = N . The proof is as above, but now c1 is not necessarily positive. But now v(x)

decays to −∞ as |x | → ∞ so that we can choose the value λ∗ ≥ 1 such that |x | ≥ λ∗
implies v(x) ≤ c1 − 1. The rest of the proof is the same.

Case 3 α > N . Choose c1 := max|x |≤R(1) v(x) so that c1 > 0. This time v(x) tends to ∞
as |x | → ∞ so that we can choose λ∗ ≥ 1 such that |x | ≥ λ∗ implies v(x) ≥ 2c1. Similar
consideration as before imply the claim. ��
Lemma 9 Let λ > 0.

(a) For all x, y ∈ Hλ:

2 < α < N : 1

|x − y|N−α
>

1

|xλ − y|N−α
,

α = N : log
1

|x − y| > log
1

|xλ − y| ,

α > N : 1

|x − y|N−α
<

1

|xλ − y|N−α
.

(b) For all x ∈ Tλ, y ∈ Hλ:

2 < α < N : ∂

∂x1

1

|x − y|N−α
< 0,

∂

∂x1

(
1

|x − y|N−α
+ 1

|x − yλ|N−α

)

= 0,

α = N : ∂

∂x1
log

1

|x − y| < 0,
∂

∂x1

(

log
1

|x − y| + log
1

|x − yλ|
)

= 0,

α > N : ∂

∂x1

1

|x − y|N−α
> 0,

∂

∂x1

(
1

|x − y|N−α
+ 1

|x − yλ|N−α

)

= 0.

Proof The proof of (a) follows from

|xλ − y|2 = 4 (λ − x1)︸ ︷︷ ︸
>0

(λ − y1)︸ ︷︷ ︸
>0

+|x − y|2.

The proof of the first part of (b) follows from

∂

∂x1
|x − y| = x1 − y1

|x − y| = λ − y1

|x − y| > 0

and the chain rule. For the second part of (b) note that if x ∈ Tλ and y ∈ Hλ then |x − y| =
|xλ − yλ| = |x − yλ|. Hence for every C1-function g we have that

∂

∂x1

(
g(|x − y|) + g(|x − yλ|)) = g′(|x − y|)

|x − y|
(
(x1 − y1) + x1 − (2λ − y1)

) = 0

since x ∈ Tλ. ��
Lemma 10 Let λ > 0.

(a) Suppose 2 < α ≤ N. If wλ ≥ 0 in Hλ then wλ > 0 in Hλ and ∂wλ

∂x1
(x) < 0 on Tλ.

(b) Suppose α > N. If wλ ≤ 0 in Hλ then wλ < 0 in Hλ and ∂wλ

∂x1
(x) > 0 on Tλ.
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Proof We give the proof in the case 2 < α < N ; the proof in the case α ≥ N is very similar.
Note first that by Corollary 5 we have

v(x) =
∫

RN

fH (v(y) − β)

|x − y|N−α
dy =

∫

Hλ

. . . dy +
∫

RN \Hλ

. . . dy

=
∫

Hλ

fH (v(y) − β)

|x − y|N−α
+ fH (v(yλ) − β)

|x − yλ|N−α
dy.

Therefore

v(x) − v(xλ) =
∫

Hλ

fH (v(y) − β)

(
1

|x − y|N−α
− 1

|xλ − y|N−α

)

dy

+
∫

Hλ

fH (v(yλ) − β)

(
1

|x − yλ|N−α
− 1

|xλ − yλ|N−α

)

dy

=
∫

Hλ

(
fH (v(y) − β) − fH (v(yλ) − β)

)
(

1

|x − y|N−α
− 1

|xλ − y|N−α

)

︸ ︷︷ ︸
>0 by Lemma 9(a)

dy.

(5)

Moreover, fH (v(y) − β) − fH (v(yλ) − β)
) ≥ 0 since fH is non-decreasing and wλ ≥ 0 by

assumption. If we assume for contradiction that fH (v(y) − β) ≡ fH (v(yλ) − β) for almost
all y ∈ Hλ then we would find v(x) − v(xλ) ≡ 0 in Hλ, which contradicts Lemma 7 and
the assumption λ > 0. Therefore there exists a subset Mλ ⊂ Hλ of positive measure such
that fH (v(y) − β) > fH (v(yλ) − β) for all y ∈ Mλ. As a consequence we see from (5) that
wλ(x) > 0 for all x ∈ Hλ.

To see the second part of the claim, note that for x ∈ Tλ we have ∂wλ

∂x1
(x) = 2 ∂v

∂x1
(x) so

that

1

2

∂wλ

∂x1
(x)=

∫

Hλ

fH (v(y)−β)
∂

∂x1

(
1

|x − y|N−α

)

︸ ︷︷ ︸
<0 by Lemma 9(b)

+ fH (v(yλ) − β)
∂

∂x1

(
1

|x − yλ|N−α

)

dy

Moreover, we have seen that fH (v(y) − β) > fH (v(yλ) − β) on a subset Mλ ⊂ Hλ of
positive measure. Therefore, for all x ∈ Tλ we find

1

2

∂wλ

∂x1
(x) <

∫

Hλ

fH (v(yλ) − β)
∂

∂x1

(
1

|x − y|N−α
+ 1

|x − yλ|N−α

)

dy = 0

due to Lemma 9(b). This establishes the claim. ��
For the final part of this section let us define the set

J :=
{

{λ > 0 : wλ > 0 in Hλ} if 2 < α ≤ N ,

{λ > 0 : wλ < 0 in Hλ} if α > N .

Lemma 11 The set J ⊂ (0,∞) is open.
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Proof We give the proof only in the case 2 < α ≤ N . Assume that J is not open. Then for
some λ ∈ J there exists a sequence λn → λ as n → ∞ and xn ∈ Hλn such that wλn (xn) ≤ 0.
Let R(λ) be the function from Lemma 7. Clearly |xn | ≤ R(λ/2), because |xn | > R(λ/2)

would imply |xn | > R(λn) for large n and hence wλn (xn) > 0 for large n, which cannot hold.
Hence, by extracting a subsequence if necessary, we may assume that xn → x0 ∈ BR(λ/2)(0),
x0 ∈ H(λ). Since wλ > 0 in Hλ we must have x0 ∈ Tλ. Thus, by Lemma 10(a) we find
∂v
∂x1

(x0) < 0, which contradicts v(xn) ≤ v(xλn
n ) for large n. ��

The proof of Theorem 2 will be completed through the following, final lemma.

Lemma 12 The set J = (0,∞).

Proof Again let us stay with the case 2 < α ≤ N . Let (µ,∞) be the largest open interval
contained in J . By Lemma 8, µ is a finite value in [0,∞). Assume for contradiction that
µ > 0. Then wµ ≥ 0 in Hµ and by Lemma 10(a) we see that wµ > 0 in Hµ so that µ ∈ J .
A contradiction is reached since by Lemma 11 we know that J is open. ��
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