Characterization of balls by Riesz-potentials

Wolfgang Reichel

Received: 25 October 2007 / Revised: 22 January 2008 / Published online: 26 March 2008
© Springer-Verlag 2008

Abstract

For a bounded convex domain $G \subset \mathbb{R}^{N}$ and $2<\alpha \neq N$ consider the unitdensity Riesz-potential $u(x)=\int_{G}|x-y|^{\alpha-N} d y$. We show in this paper that $u=$ const. on ∂G if and only if G is a ball. This result corresponds to a theorem of L.E. Fraenkel, where the ball is characterized by the Newtonian-potential $(\alpha=2)$ of unit density being constant on ∂G. In the case $\alpha=N$ the kernel $|x-y|^{\alpha-N}$ is replaced by $-\log |x-y|$ and a similar characterization of balls is given. The proof relies on a recent variant of the moving plane method which is suitable for Green-function representations of solutions of (pseudo-)differential equations of higher-order.

Keywords Riesz-potential • Pseudo-differential operator • Moving plane method • Radial symmetry

Mathematics Subject Classification (2000) Primary: 31B30, 35J30 • Secondary: 31B35, 35S99

1 Introduction

In Newton's theory of gravitation the potential of a ball $B_{R}(0) \subset \mathbb{R}^{3}$ of constant mass density $\rho>0$ is given by

$$
u(x)=\frac{1}{4 \pi} \int_{B_{R}(0)} \frac{\rho}{|x-y|} \mathrm{d} y= \begin{cases}\rho\left(\frac{R^{2}}{2}-\frac{|x|^{2}}{6}\right), & |x| \leq R \\ \frac{\rho R^{3}}{3|x|}, & |x| \geq R\end{cases}
$$

Outside the ball the gravitational potential coincides with that of a single point centered at the origin whose mass equals the mass of the entire ball. This observation (and its generalization

[^0]to radially symmetric mass densities) allows to reduce celestial mechanics of stars and planets to the interaction of point masses. Similar properties hold for the Newtonian potential of an N-dimensional ball $N \geq 4$ and for the two-dimensional logarithmic potential of a disk in \mathbb{R}^{2}. Note that the gravitational potential of a ball of constant mass density is constant on the surface of the ball. This property in fact uniquely characterizes the balls, as it was shown by Fraenkel [7] through the following theorem.

Theorem 1 (Fraenkel 2000) Let $G \subset \mathbb{R}^{N}$ be a bounded open set and let ω_{N} be the surface measure of the unit-sphere in \mathbb{R}^{N}. Consider

$$
u(x)= \begin{cases}\frac{1}{2 \pi} \int_{G} \log \frac{1}{|x-y|} \mathrm{d} y, & N=2 \\ \frac{1}{(N-2) \omega_{N}} \int_{G} \frac{1}{|x-y|^{N-2}} \mathrm{~d} y, & N \geq 3\end{cases}
$$

If u is constant on ∂G then G is a ball.
One of the striking aspects of Fraenkel's theorem is that no regularity of G is assumed a priori. The goal of this paper is to prove for Riesz-potentials the following analogue of the above result. Unlike in Theorem 1 we need to a priori restrict the class of open sets.

Theorem 2 Let $G \subset \mathbb{R}^{N}$ be a bounded convex domain. For $\alpha>2$ consider

$$
u(x)= \begin{cases}\int_{G} \log \frac{1}{|x-y|} \mathrm{d} y, & N=\alpha, \tag{1}\\ \int_{G} \frac{1}{|x-y|^{N-\alpha}} \mathrm{d} y, & N \neq \alpha\end{cases}
$$

If u is constant on ∂G then G is a ball.
It is easy to see that the converse of both Theorems 1 and 2 hold. Suppose $G=B_{R}(0)$ is a ball centered at the origin. Then u is radially symmetric and hence u is constant on ∂G.

Let us give some heuristic arguments for Fraenkel's theorem. The Newtonian potential in Theorem 1 satisfies

$$
-\Delta u=1 \quad \text { in } G, \quad-\Delta u=0 \quad \text { in } \mathbb{R}^{N} \backslash \bar{G}
$$

and by assumption $u=\beta$ on ∂G. If one considers the two boundary value problems (here we assume $N \geq 3$)

$$
(*)\left\{\begin{array} { l }
{ - \Delta u _ { i } = 1 \text { in } G , } \\
{ u _ { i } = \beta \text { on } \partial G }
\end{array} \quad (* *) \left\{\begin{array}{l}
-\Delta u_{e}=0 \quad \text { in } \mathbb{R}^{N} \backslash \bar{G}, \\
u_{e}=\beta \text { on } \partial G, u_{e} \rightarrow 0 \quad \text { at } \infty
\end{array}\right.\right.
$$

then there exist unique solutions u_{i}, u_{e}, and they must coincide with u. The fact that u is a $C^{1}\left(\mathbb{R}^{N}\right)$ function means that next to the boundary values $u_{i}=u_{e}=\beta$ on ∂G also the normal derivatives of u_{i}, u_{e} have to coincide on ∂G. For an arbitrary domain G this would not be the case. Thus, $(*),(* *)$ together with matched normal derivatives is an overdetermined problem, which explains why the shape of G cannot be arbitrary. In fact, the only way to resolve $(*),(* *)$ and simultaneously match the normal derivatives is by G being a ball. Note that in Fraenkel's theorem no regularity of ∂G is assumed, so that in general normal derivatives of u_{i}, u_{e} cannot be understood in the classical sense.

Let us discuss similarly the Riesz-potentials of Theorem 2. First we recall fundamental solutions $G(x, y)$ of the pseudo-differential operators $(-\Delta)^{\alpha / 2}$ in $\mathbb{R}^{N}, \alpha>0$. In case $\frac{1}{2}(\alpha-N) \notin \mathbb{N}_{0}$ (i.e., either $0<\alpha<N$ or $\alpha \geq N$ but $\alpha-N$ is not an even natural number) then

$$
G(x, y)=\frac{\Gamma\left(\frac{N-\alpha}{2}\right)}{2^{\alpha} \pi^{N / 2} \Gamma\left(\frac{\alpha}{2}\right)}|x-y|^{\alpha-N}
$$

whereas if $\alpha-N=2 k, k \in \mathbb{N}_{0}$ then

$$
G(x, y)=\frac{(-1)^{k}}{2^{\alpha-1} \pi^{N / 2} \Gamma\left(\frac{\alpha}{2}\right)}|x-y|^{\alpha-N} \log \frac{1}{|x-y|} .
$$

It follows that for $(\alpha-N) / 2 \notin \mathbb{N}_{0}$ the potential u of Theorem 2 satisfies in the distributional sense (χ_{G} is the characteristic function of the set G)

$$
(-\Delta)^{\alpha / 2} u=\text { const. } \chi_{G} \quad \text { in } \mathbb{R}^{N}
$$

together with $u=\beta$ on $\partial G, u \in C^{l}\left(\mathbb{R}^{N}\right)$ for $1 \leq l<\alpha$. Note that for $\alpha=2 m$ the potential u satisfies a polyharmonic equation in \mathbb{R}^{N}. For general $\alpha>2$ there is no analogue of the two boundary value problems $(*),(* *)$ as in the second-order case. It is therefore remarkable that the mere information of ∂G being a level set of u completely determines u and G. Even in the case $\alpha=2 m$ the boundary value problems analogous to $(*),(* *)$ are underdetermined individually since only one boundary datum is prescribed. But if they are viewed as a system coupled by the fact that $u \in C^{2 m-1}\left(\mathbb{R}^{N}\right)$ coincides with u_{i} in G and u_{e} outside G then they become overdetermined.

We finish this discussion with the following two open problems:
(i) Is Theorem 2 true if the assumption of convexity of G is dropped?
(ii) Is there an analogous result as in Theorem 2 for potentials

$$
u(x)=\int_{G}|x-y|^{\alpha-N} \log \frac{1}{|x-y|} \mathrm{d} y ?
$$

The most interesting case would be the case where $\alpha-N=2 k$ with $k \in \mathbb{N}_{0}$ since then the kernel function is (up to a normalization constant) the fundamental solution of $(-\Delta)^{\alpha / 2}$.

The main reason why both questions remain open is the fact that the validity of Lemma 4 is not clear under these assumptions, cf. the remark following Lemma 4.

In the Newtonian case a number of potential-theoretic characterizations of balls are known in the literature. If instead of a volume potential one considers a single-layer potential u concentrated on ∂G with constant density, then G is a ball if and only if u is constant on ∂G. This conjecture of P. Gruber (cf. Heil and Martini [10]) has been verified for different smoothness classes of domains. The two-dimensional case was considered by Martensen [14], Gardiner [8] and Ebenfelt et al. [6] and the higher-dimensional case by Reichel [18], Mendez and Reichel [15] and Sirakov [21]. We mention that in [15] only convexity of the underlying domain was assumed. Similar characterizations of annuli were given by Payne, Philippin [16] and Philippin [17] and different single-layer characterizations of balls were achieved by Shahgholian [20] and Mikyoung Lim [13].

Our approach is based on a new variant of the moving plane method. The classical moving plane method is based on the pointwise maximum principle for second order elliptic equations. It was developed by Alexandrov [1], Serrin [19] and Gidas et al. [9]. Very recently
some important improvements of the moving plane method were achieved by Chang and Yang [4], Berchio et al. [2], Li [12], Chen et al. [5], Jin and Li [11] and Birkner et al. [3]. These new variants of the moving plane method are applied to the integral equation resulting from the Green-function representation, cf. Lemma 10 below. In this way symmetry results for higher-order elliptic problems as well as pseudo-differential equations can be achieved although pointwise maximum principles are not available.

The paper is organized as follows. In Sect. 2 we provide some basic estimates for the far-field of the potential. In Sect. 3 the moving-plane procedure is carried out.

2 Estimates for the Riesz-potentials

Throughout the paper let $\alpha>2$ and let u denote the function defined in (1).
Lemma 3 Let $l \in \mathbb{N}$ with $1 \leq l<\alpha$. Then $u \in C^{l}\left(\mathbb{R}^{N}\right)$ and differentiation of order l can be taken under the integral.

Proof The result is standard. We give a proof for the reader's convenience. We consider the case $\alpha \neq N$; the proof for $\alpha=N$ is just a slight variant. Let $\eta:[0, \infty) \rightarrow[0,1]$ be a C^{∞} function with $\eta \equiv 0$ on $[0,1]$ and $\eta \equiv 1$ on $[2, \infty)$. Let $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ be a multi-index of order $|\mu|=l$ and let $c_{1}(l), c_{2}(l), \ldots$ denote constants which only depend on l. For $\epsilon>0$ let $\eta_{\epsilon}(t):=\eta(t / \epsilon)$ and define

$$
u_{\epsilon}(x):=\int_{G} \frac{\eta_{\epsilon}(|x-y|)}{|x-y|^{N-\alpha}} \mathrm{d} y, \quad v_{\mu}(x):=\int_{G} D_{x}^{\mu} \frac{1}{|x-y|^{N-\alpha}} \mathrm{d} y .
$$

Note that $\left|D_{x}^{\mu}\right| x-\left.y\right|^{\alpha-N} \mid \leq$ const. $|x-y|^{\alpha-N-l}$ with $\alpha-N-l>-N$. Therefore $v_{\mu}(x)$ exists for all $x \in \mathbb{R}^{N}$. Furthermore

$$
\begin{aligned}
\left|D^{\mu} u_{\epsilon}(x)-v_{\mu}(x)\right| & \leq \int_{G} D_{x}^{\mu}\left(\left(1-\eta_{\epsilon}(|x-y|)\right)|x-y|^{\alpha-N}\right) \mathrm{d} y \\
& \leq c_{1}(l) \sum_{|\nu|+\left|\nu^{\prime}\right|=l} \int_{G} D_{x}^{v}\left(1-\eta_{\epsilon}(|x-y|)\right) D_{x}^{\nu^{\prime}}|x-y|^{\alpha-N} \mathrm{~d} y \\
& \leq c_{2}(l) \sum_{|\nu|+\left|\nu^{\prime}\right|=l} \int_{G} \epsilon^{-|\nu|}|x-y|^{\alpha-N-\left|\nu^{\prime}\right|} \mathrm{d} y \\
& \leq c_{3}(l) \epsilon^{\alpha-l} \rightarrow 0 \text { as } \epsilon \rightarrow 0 .
\end{aligned}
$$

Thus $D^{\mu} u_{\epsilon}$ converges uniformly on \mathbb{R}^{N} to v_{μ} for all multi-indices μ with $|\mu|<\alpha$. This establishes the proof.

In the following we assume that G is convex and that $u=$ const. $=\beta$ on ∂G.
Lemma 4 If $N \geq \alpha$ then $u(x)<\beta$ for $x \in \mathbb{R}^{N} \backslash \bar{G}$ and $u(x)>\beta$ for $x \in G$. If $N<\alpha$ then $u(x)>\beta$ for $x \in \mathbb{R}^{N} \backslash \bar{G}$ and $u(x)<\beta$ for $x \in G$.

Remark In the computations below we use that the kernel function $|x-y|^{\alpha-N}$ has monotonicity and sub-/superharmonicity properties. In general this is not the case for kernels of the form $|x-y|^{\alpha-N} \log 1 /|x-y|$. Moreover, it is an open problem how to overcome the convexity assumption of G in the proof below.

Proof Lemma 3 shows that u is a $C^{2}\left(\mathbb{R}^{N}\right)$-function since $\alpha>2$. Note that $\Delta|x|^{\alpha-N}=$ $(\alpha-N)(\alpha-2)|x|^{\alpha-N-2}$ and $\Delta \log \frac{1}{|x|}=(2-N)|x|^{-2}$. Let us first consider the case $N \geq \alpha>2$. In this case u is superharmonic and hence inside G the function u is larger than the value β of u on ∂G. In the case $2 \leq N<\alpha$ the function u is subharmonic and hence inside G the function u is smaller than its value β on the boundary. It remains to consider u outside G. We show that the convexity of G implies that u has no local extremum outside G. Since either $u(x) \rightarrow 0, \infty$ or $-\infty$ as $|x| \rightarrow \infty$ this implies that u is smaller (larger) than β outside G. So let $x \in \mathbb{R}^{N} \backslash \bar{G}$. By the convexity of G we can separate x from G through a hyperplane, i.e., there exists a unit vector $e \in \mathbb{R}^{N}$ and a point $z_{0} \in \mathbb{R}^{N} \backslash \bar{G}$ such that

$$
\left(y-z_{0}\right) \cdot e<0<\left(x-z_{0}\right) \cdot e \text { for all } y \in G .
$$

In particular $(x-y) \cdot e>0$ for all $y \in G$. Since

$$
\nabla u(x) \cdot e=c_{\alpha, N} \int_{G} \frac{(x-y) \cdot e}{|x-y|^{N-\alpha+1}} \mathrm{~d} y
$$

and the integrand is strictly positive we see that u has no local extremum outside G.
By Lemma 4 we see that G is a sub- or super-level set of u. This observation led Fraenkel [7] to rewrite u as the Newtonian potential of the nonlinear density function $f_{H}(u(x)-\beta)$ over all of \mathbb{R}^{N}, where f_{H} is the Heaviside-function. Hence u fulfilled a nonlinear integral equation in \mathbb{R}^{N} with no explicit appearance of the set G. The same is clearly true in the context of Riesz-potentials as expressed by the following corollary.

Corollary 5 Let $f_{H}(t)=1$ for $t>0$ and $f_{H}(t)=0$ for $t \leq 0$ be the Heaviside-function and χ_{G} be the characteristic function of G. Then $\chi_{G}=f_{H}(u-\beta)$ if $N \geq \alpha$ and $\chi_{G}=f_{H}(\beta-u)$ if $N<\alpha$. Hence

$$
u(x)= \begin{cases}\int_{\mathbb{R}^{N}} \log \frac{1}{|x-y|} f_{H}(u(y)-\beta) d y, & N=\alpha \\ \int_{\mathbb{R}^{N}} \frac{f_{H}(u(y)-\beta)}{|x-y|^{N-\alpha}} d y, & N>\alpha \\ \int_{\mathbb{R}^{N}} \frac{f_{H}(\beta-u(y))}{|x-y|^{N-\alpha}} d y, & N<\alpha\end{cases}
$$

Lemma 6 Let $q=\frac{1}{\operatorname{vol} G} \int_{G} y d y$ be the barycentre of G and let $v(x)=u(x+q)$. Then

$$
v(x)= \begin{cases}\operatorname{vol} G \log \frac{1}{|x|}+h(x) & \text { if } N=\alpha \\ \operatorname{vol} G|x|^{\alpha-N}+h(x) & \text { if } N \neq \alpha\end{cases}
$$

where h satisfies $|h(x)| \leq C|x|^{\alpha-N-2},|\nabla h(x)| \leq C|x|^{\alpha-N-3}$ for some constant $C>0$.
Proof Let $N \neq \alpha$. A direct application of Taylor's theorem to the function $g(t):=$ $|x-t \eta|^{\alpha-N}$ yields

$$
\begin{equation*}
|x-\eta|^{\alpha-N}=|x|^{\alpha-N}-(\alpha-N)|x|^{\alpha-N-2} x \cdot \eta+k(x, \eta) \tag{2}
\end{equation*}
$$

where there exists a constant $C>0$ and a radius $R_{0}>0$ such that

$$
\begin{equation*}
|k(x, \eta)| \leq C|x|^{\alpha-N-2}, \quad\left|\nabla_{x} k(x, \eta)\right| \leq C|x|^{\alpha-N-3} \quad \text { for all }|x| \geq R_{0}, \eta \in G-q \tag{3}
\end{equation*}
$$

Here $R_{0}>0$ is chosen such that $\bar{G}-q \subset B_{R_{0}}(0)$. Note that

$$
v(x)=\int_{G} \frac{1}{|x+q-y|^{N-\alpha}} \mathrm{d} y=\int_{G-q} \frac{1}{|x-\eta|^{N-\alpha}} \mathrm{d} \eta
$$

Since the barycentre of $G-q$ is zero the claim of the lemma follows from integrating (2). The estimate for $h(x):=\int_{G-q} k(x, \eta) d \eta$ follows from (3). The proof for $N=\alpha$ is similar.

3 Proof of Theorem 2 by the method of moving planes

For a point $x \in \mathbb{R}^{N}$ let $x^{\lambda}=\left(2 \lambda-x_{1}, x^{\prime}\right)$ be the reflection of x at the hyperplane $T_{\lambda}:=\{x \in$ $\left.\mathbb{R}^{N}: x_{1}=\lambda\right\}$. Hence $\left|x^{\lambda}\right|^{2}-|x|^{2}=4 \lambda\left(\lambda-x_{1}\right)$. Also define the half-space $H_{\lambda}:=\{x \in$ $\left.\mathbb{R}^{N}: x_{1}<\lambda\right\}$ and note that $\partial H_{\lambda}=T_{\lambda}$. On \bar{H}_{λ} define the function $w_{\lambda}(x):=v(x)-v\left(x^{\lambda}\right)$. We will show that for $\alpha \leq N(\alpha>N)$ the function w_{λ} satisfies

$$
\begin{equation*}
w_{\lambda}(x)>0(<0) \quad \text { in } H_{\lambda}, \quad \frac{\partial w_{\lambda}}{\partial x_{1}}(x)=2 \frac{\partial v}{\partial x_{1}}(x)<0(>0) \quad \text { on } T_{\lambda} \tag{4}
\end{equation*}
$$

for all $\lambda>0$. By continuity this implies for $\alpha \leq N$ that $v\left(x_{1}, x^{\prime}\right) \geq v\left(-x_{1}, x^{\prime}\right)$ for all $x \in \mathbb{R}^{N}$, $x_{1} \geq 0$ while for $\alpha>N$ the reverse inequality holds. In both cases the corresponding reverse inequalities also hold by repeating the moving plane argument with the $-x_{1}$-direction. Hence $v\left(-x_{1}, x^{\prime}\right)=v\left(x_{1}, x^{\prime}\right)$ for all $x \in \mathbb{R}^{N}$ and moreover v is strictly monotone in the positive x_{1}-direction. Repeating the moving-plane argument with an arbitrary unit-direction instead of the x_{1}-direction one obtains that the function v is radially symmetric with respect to the origin and moreover radially strictly monotone. Together with the fact that $\partial(G-q)$ is a level-surface of the function v this implies that $G-q$ must be a ball centered at the origin. Thus, Theorem 2 is proved if we show (4) for all values of $\lambda>0$. This will be done next. Theorem 2 follows from the preceeding explanation and Lemma 10 and Lemma 12.
Lemma 7 For every $\lambda>0$ there exists a value $R(\lambda)>0$ such that for all $x \in H_{\lambda}$ with $|x| \geq R(\lambda)$ we have

$$
w_{\lambda}(x) \begin{cases}>0 & \text { if } 2<\alpha \leq N \\ <0 & \text { if } \alpha>N\end{cases}
$$

The function $R(\lambda)$ and a value $\lambda_{0}>0$ can be chosen such that $R(\lambda)$ is non-increasing in λ and constant for $\lambda \geq \lambda_{0}>0$.
Proof According to the value of α we divide the proof into several cases. If h is the function of Lemma 6 then

$$
v(x)-v\left(x^{\lambda}\right)= \begin{cases}\operatorname{vol} G\left(|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N}\right)+h(x)-h\left(x^{\lambda}\right), & \alpha \neq N \\ \operatorname{vol} G\left(-\log |x|+\log \left|x^{\lambda}\right|\right)+h(x)-h\left(x^{\lambda}\right), & \alpha=N\end{cases}
$$

Case $1 \quad 2<\alpha<N$. Assume first that $\left|x^{\lambda}\right|^{2} \leq 2|x|^{2}$. By convexity of the function $s \mapsto s^{\frac{\alpha-N}{2}}$ for $s>0$ we have

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N}>\frac{N-\alpha}{2}\left|x^{\lambda}\right|^{\alpha-N-2} 4 \lambda\left(\lambda-x_{1}\right) \geq C_{1}|x|^{\alpha-N-2} \lambda\left(\lambda-x_{1}\right)
$$

where $C_{1}:=(N-\alpha) 2^{\frac{\alpha-N}{2}}$. By Lemma $6\left|h(x)-h\left(x^{\lambda}\right)\right| \leq 2 C|x|^{\alpha-N-3}\left(\lambda-x_{1}\right)$. Hence

$$
v(x)-v\left(x^{\lambda}\right)>|x|^{\alpha-N-3}\left(\lambda-x_{1}\right)\left(\operatorname{vol} G C_{1}|x| \lambda-2 C\right)>0
$$

provided $|x|>\frac{2 C}{\operatorname{vol} G C_{1} \lambda}$. Next assume that $\left|x^{\lambda}\right|^{2} \geq 2|x|^{2}$. Then

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N} \geq|x|^{\alpha-N}\left(1-2^{\frac{\alpha-N}{2}}\right)=: C_{2}|x|^{\alpha-N}
$$

where $C_{2}>0$. Again by Lemma $6\left|h(x)-h\left(x^{\lambda}\right)\right| \leq 2 C|x|^{\alpha-N-2}$. Thus

$$
v(x)-v\left(x^{\lambda}\right) \geq|x|^{\alpha-N}\left(\operatorname{vol} G C_{2}-\frac{2 C}{|x|^{2}}\right)>0
$$

provided $|x|>\sqrt{\frac{2 C}{\text { vol } G C_{2}}}$. Hence the statement of the lemma follows if we set

$$
R(\lambda):=\max \left\{\frac{2 C}{\operatorname{vol} G C_{1} \lambda}, \sqrt{\frac{2 C}{\operatorname{vol} G C_{2}}}\right\} .
$$

Case $2 \alpha=N$. The structure of proof is the same as in Case 1. Assume first that $\left|x^{\lambda}\right|^{2} \leq$ $2|x|^{2}$. The convexity of the function $s \mapsto-\log s$ for $s>0$ implies

$$
-\log |x|+\log \left|x^{\lambda}\right|>\left|x^{\lambda}\right|^{-2} 2 \lambda\left(\lambda-x_{1}\right) \geq \frac{1}{2}|x|^{-2} \lambda\left(\lambda-x_{1}\right) .
$$

With the estimate for h as above we find $v(x)-v\left(x^{\lambda}\right)>0$ provided $|x|>\frac{4 C}{\operatorname{vol} G \lambda}$. Likewise, if $\left|x^{\lambda}\right|^{2} \geq 2|x|^{2}$ then

$$
-\log |x|+\log \left|x^{\lambda}\right| \geq \frac{1}{2} \log 2
$$

and with the estimate for h as above we find $v(x)-v\left(x^{\lambda}\right)>0$ provided $|x|>\sqrt{\frac{4 C}{\operatorname{vol} G \log 2}}$. Hence we may set

$$
R(\lambda):=\max \left\{\frac{4 C}{\operatorname{vol} G \lambda}, \sqrt{\frac{4 C}{\operatorname{vol} G \log 2}}\right\} .
$$

Case $3 N<\alpha<N+2$. Again we assume first that $\left|x^{\lambda}\right|^{2} \leq 2|x|^{2}$. The concavity of the function $s \mapsto s^{\frac{\alpha-N}{2}}$ for $s>0$ implies

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N}<\frac{N-\alpha}{2}\left|x^{\lambda}\right|^{\alpha-N-2} 4 \lambda\left(\lambda-x_{1}\right) \leq-C_{1}|x|^{\alpha-N-2} \lambda\left(\lambda-x_{1}\right)
$$

with $C_{1}:=(\alpha-N) 2^{\frac{\alpha-N}{2}}$. Using the estimate for h as in Case 1 we find

$$
v(x)-v\left(x^{\lambda}\right)<|x|^{\alpha-N-3}\left(\lambda-x_{1}\right)\left(-\operatorname{vol} G C_{1}|x| \lambda+2 C\right)<0
$$

provided $|x|>\frac{2 C}{\operatorname{vol} G C_{1} \lambda}$. For $\left|x^{\lambda}\right|^{2} \geq 2|x|^{2}$ we get

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N} \leq|x|^{\alpha-N}\left(1-2^{\frac{\alpha-N}{2}}\right)=:-C_{2}|x|^{\alpha-N}
$$

where $C_{2}>0$. Together with the estimate $\left|h(x)-h\left(x^{\lambda}\right)\right| \leq 2 C|x|^{\alpha-N-2}$ we obtain

$$
v(x)-v\left(x^{\lambda}\right)<|x|^{\alpha-N}\left(-\operatorname{vol} G C_{2}+\frac{2 C}{|x|^{2}}\right)<0
$$

provided $|x|>\sqrt{\frac{2 C}{\text { vol } G C_{2}}}$. Therefore it suffices to set

$$
R(\lambda):=\max \left\{\frac{2 C}{\operatorname{vol} G C_{1} \lambda}, \sqrt{\frac{2 C}{\operatorname{vol} G C_{2}}}\right\} .
$$

Case $4 \alpha \geq N+2$. For $\left|x^{\lambda}\right|^{2} \leq 2|x|^{2}$ the convexity of $s \mapsto s^{\frac{\alpha-N}{2}}$ for $s>0$ implies

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N}<\frac{N-\alpha}{2}|x|^{\alpha-N-2} 4 \lambda\left(\lambda-x_{1}\right)=:-C_{1}|x|^{\alpha-N-2} \lambda\left(\lambda-x_{1}\right)
$$

where $C_{1}=2(\alpha-N)>0$. For h we obtain this time a different estimate:

$$
\begin{aligned}
\left|h(x)-h\left(x^{\lambda}\right)\right| & \leq \begin{cases}2 C\left|x^{\lambda}\right|^{\alpha-N-3}\left(\lambda-x_{1}\right) & \text { if } \alpha-N-3 \geq 0, \\
2 C|x|^{\alpha-N-3}\left(\lambda-x_{1}\right) & \text { if } \alpha-N-3<0\end{cases} \\
& \leq D|x|^{\alpha-N-3}\left(\lambda-x_{1}\right),
\end{aligned}
$$

where either $D=2^{\frac{\alpha-N-1}{2}} C$ or $D=2 C$. Thus

$$
v(x)-v\left(x^{\lambda}\right)<|x|^{\alpha-N-3}\left(\lambda-x_{1}\right)\left(-\operatorname{vol} G C_{1}|x| \lambda+D\right)<0
$$

provided $|x|>\frac{D}{\operatorname{vol} G C_{1} \lambda}$. Finally, if $\left|x^{\lambda}\right|^{2} \geq 2|x|^{2}$ then

$$
|x|^{\alpha-N}-\left|x^{\lambda}\right|^{\alpha-N} \leq\left|x^{\lambda}\right|^{\alpha-N}\left(2^{\frac{N-\alpha}{2}}-1\right)=:-C_{2}\left|x^{\lambda}\right|^{\alpha-N}
$$

where $C_{2}>0$. Together with the estimate $\left|h(x)-h\left(x^{\lambda}\right)\right| \leq 2 C\left|x^{\lambda}\right|^{\alpha-N-2}$ we conclude

$$
v(x)-v\left(x^{\lambda}\right)<\left|x^{\lambda}\right|^{\alpha-N}\left(-\operatorname{vol} G C_{2}+\frac{2 C}{\left|x^{\lambda}\right|^{2}}\right)<0
$$

provided $|x|>\sqrt{\frac{2 C}{\text { vol } G C_{2}}}$ (recall that $\left|x^{\lambda}\right| \geq|x|$ in H_{λ}). Therefore let us set in this case

$$
R(\lambda):=\max \left\{\frac{D}{\operatorname{vol} G C_{1} \lambda}, \sqrt{\frac{2 C}{\operatorname{vol} G C_{2}}}\right\} .
$$

Lemma 8 There exists $\lambda^{*}>0$ such that for all $\lambda>\lambda^{*}$ we have

$$
w_{\lambda}(x) \begin{cases}>0 & \text { if } 2<\alpha \leq N \\ <0 & \text { if } \alpha>N\end{cases}
$$

in H_{λ}.
Proof The proof is again divided according to the value of α. Let $R(\lambda)$ be the function defined in Lemma 7.

Case $12<\alpha<N$. Let $c_{1}:=\min _{|x| \leq R(1)} v(x)$. Hence $c_{1}>0$, and since $v(x)$ decays to 0 as $|x| \rightarrow \infty$ there exists a value $\lambda^{*} \geq 1$ such that $|x| \geq \lambda^{*}$ implies $v(x) \leq c_{1} / 2$. Let now $\lambda>\lambda^{*}$. Consider $x \in H_{\lambda}$ with $|x|>R(1)$. For such x we have $|x|>R(\lambda)$ and hence
$v(x)>v\left(x^{\lambda}\right)$ by Lemma 7. Now consider $x \in H_{\lambda}$ with $|x| \leq R(1)$. Since $\left|x^{\lambda}\right| \geq \lambda>\lambda^{*}$ we find $v(x) \geq c_{1}>v\left(x^{\lambda}\right)$, and the claim is proved.

Case $2 \alpha=N$. The proof is as above, but now c_{1} is not necessarily positive. But now $v(x)$ decays to $-\infty$ as $|x| \rightarrow \infty$ so that we can choose the value $\lambda^{*} \geq 1$ such that $|x| \geq \lambda^{*}$ implies $v(x) \leq c_{1}-1$. The rest of the proof is the same.

Case $3 \alpha>N$. Choose $c_{1}:=\max _{|x| \leq R(1)} v(x)$ so that $c_{1}>0$. This time $v(x)$ tends to ∞ as $|x| \rightarrow \infty$ so that we can choose $\lambda^{*} \geq 1$ such that $|x| \geq \lambda^{*}$ implies $v(x) \geq 2 c_{1}$. Similar consideration as before imply the claim.

Lemma 9 Let $\lambda>0$.
(a) For all $x, y \in H_{\lambda}$:

$$
\begin{aligned}
& 2<\alpha<N: \frac{1}{|x-y|^{N-\alpha}}>\frac{1}{\left|x^{\lambda}-y\right|^{N-\alpha}}, \\
& \alpha=N: \quad \\
& \alpha>N: \log \frac{1}{|x-y|}>\log \frac{1}{\left|x^{\lambda}-y\right|}, \\
&|x-y|^{N-\alpha}<\frac{1}{\left|x^{\lambda}-y\right|^{N-\alpha}} .
\end{aligned}
$$

(b) For all $x \in T_{\lambda}, y \in H_{\lambda}$:

$$
\begin{aligned}
2<\alpha & <N: \quad \frac{\partial}{\partial x_{1}} \frac{1}{|x-y|^{N-\alpha}}<0, \quad \frac{\partial}{\partial x_{1}}\left(\frac{1}{|x-y|^{N-\alpha}}+\frac{1}{\left|x-y^{\lambda}\right|^{N-\alpha}}\right)=0, \\
\alpha & =N: \quad \frac{\partial}{\partial x_{1}} \log \frac{1}{|x-y|}<0, \quad \frac{\partial}{\partial x_{1}}\left(\log \frac{1}{|x-y|}+\log \frac{1}{\left|x-y^{\lambda}\right|}\right)=0, \\
\alpha & >N: \quad \frac{\partial}{\partial x_{1}} \frac{1}{|x-y|^{N-\alpha}}>0, \quad \frac{\partial}{\partial x_{1}}\left(\frac{1}{|x-y|^{N-\alpha}}+\frac{1}{\left|x-y^{\lambda}\right|^{N-\alpha}}\right)=0 .
\end{aligned}
$$

Proof The proof of (a) follows from

$$
\left|x^{\lambda}-y\right|^{2}=4 \underbrace{\left(\lambda-x_{1}\right)}_{>0} \underbrace{\left(\lambda-y_{1}\right)}_{>0}+|x-y|^{2} .
$$

The proof of the first part of (b) follows from

$$
\frac{\partial}{\partial x_{1}}|x-y|=\frac{x_{1}-y_{1}}{|x-y|}=\frac{\lambda-y_{1}}{|x-y|}>0
$$

and the chain rule. For the second part of (b) note that if $x \in T_{\lambda}$ and $y \in H_{\lambda}$ then $|x-y|=$ $\left|x^{\lambda}-y^{\lambda}\right|=\left|x-y^{\lambda}\right|$. Hence for every C^{1}-function g we have that

$$
\frac{\partial}{\partial x_{1}}\left(g(|x-y|)+g\left(\left|x-y^{\lambda}\right|\right)\right)=\frac{g^{\prime}(|x-y|)}{|x-y|}\left(\left(x_{1}-y_{1}\right)+x_{1}-\left(2 \lambda-y_{1}\right)\right)=0
$$

since $x \in T_{\lambda}$.
Lemma 10 Let $\lambda>0$.
(a) Suppose $2<\alpha \leq N$. If $w_{\lambda} \geq 0$ in H_{λ} then $w_{\lambda}>0$ in H_{λ} and $\frac{\partial w_{\lambda}}{\partial x_{1}}(x)<0$ on T_{λ}.
(b) Suppose $\alpha>N$. If $w_{\lambda} \leq 0$ in H_{λ} then $w_{\lambda}<0$ in H_{λ} and $\frac{\partial w_{\lambda}}{\partial x_{1}}(x)>0$ on T_{λ}.

Proof We give the proof in the case $2<\alpha<N$; the proof in the case $\alpha \geq N$ is very similar. Note first that by Corollary 5 we have

$$
\begin{aligned}
v(x) & =\int_{\mathbb{R}^{N}} \frac{f_{H}(v(y)-\beta)}{|x-y|^{N-\alpha}} \mathrm{d} y=\int_{H_{\lambda}} \ldots \mathrm{d} y+\int_{\mathbb{R}^{N} \backslash H_{\lambda}} \ldots \mathrm{d} y \\
& =\int_{H_{\lambda}} \frac{f_{H}(v(y)-\beta)}{|x-y|^{N-\alpha}}+\frac{f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)}{\left|x-y^{\lambda}\right|^{N-\alpha}} \mathrm{d} y .
\end{aligned}
$$

Therefore

$$
\begin{align*}
v(x)-v\left(x^{\lambda}\right)= & \int_{H_{\lambda}} f_{H}(v(y)-\beta)\left(\frac{1}{|x-y|^{N-\alpha}}-\frac{1}{\left|x^{\lambda}-y\right|^{N-\alpha}}\right) \mathrm{d} y \\
& +\int_{H_{\lambda}} f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)\left(\frac{1}{\left|x-y^{\lambda}\right|^{N-\alpha}}-\frac{1}{\left|x^{\lambda}-y^{\lambda}\right|^{N-\alpha}}\right) \mathrm{d} y \\
= & \int_{H_{\lambda}}\left(f_{H}(v(y)-\beta)-f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)\right) \underbrace{\left(\frac{1}{|x-y|^{N-\alpha}}-\frac{1}{\left|x^{\lambda}-y\right|^{N-\alpha}}\right)}_{>0 \text { by Lemma } 9(\mathrm{a})} \mathrm{d} y . \tag{5}
\end{align*}
$$

Moreover, $\left.f_{H}(v(y)-\beta)-f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)\right) \geq 0$ since f_{H} is non-decreasing and $w_{\lambda} \geq 0$ by assumption. If we assume for contradiction that $f_{H}(v(y)-\beta) \equiv f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)$ for almost all $y \in H_{\lambda}$ then we would find $v(x)-v\left(x^{\lambda}\right) \equiv 0$ in H_{λ}, which contradicts Lemma 7 and the assumption $\lambda>0$. Therefore there exists a subset $M_{\lambda} \subset H_{\lambda}$ of positive measure such that $f_{H}(v(y)-\beta)>f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)$ for all $y \in M_{\lambda}$. As a consequence we see from (5) that $w_{\lambda}(x)>0$ for all $x \in H_{\lambda}$.

To see the second part of the claim, note that for $x \in T_{\lambda}$ we have $\frac{\partial w_{\lambda}}{\partial x_{1}}(x)=2 \frac{\partial v}{\partial x_{1}}(x)$ so that

$$
\frac{1}{2} \frac{\partial w_{\lambda}}{\partial x_{1}}(x)=\int_{H_{\lambda}} f_{H}(v(y)-\beta) \underbrace{\frac{\partial}{\partial x_{1}}\left(\frac{1}{|x-y|^{N-\alpha}}\right)}_{<0 \text { by Lemma } 9(\mathrm{~b})}+f_{H}\left(v\left(y^{\lambda}\right)-\beta\right) \frac{\partial}{\partial x_{1}}\left(\frac{1}{\left|x-y^{\lambda}\right|^{N-\alpha}}\right) \mathrm{d} y
$$

Moreover, we have seen that $f_{H}(v(y)-\beta)>f_{H}\left(v\left(y^{\lambda}\right)-\beta\right)$ on a subset $M_{\lambda} \subset H_{\lambda}$ of positive measure. Therefore, for all $x \in T_{\lambda}$ we find

$$
\frac{1}{2} \frac{\partial w_{\lambda}}{\partial x_{1}}(x)<\int_{H_{\lambda}} f_{H}\left(v\left(y^{\lambda}\right)-\beta\right) \frac{\partial}{\partial x_{1}}\left(\frac{1}{|x-y|^{N-\alpha}}+\frac{1}{\left|x-y^{\lambda}\right|^{N-\alpha}}\right) \mathrm{d} y=0
$$

due to Lemma 9(b). This establishes the claim.
For the final part of this section let us define the set

$$
J:= \begin{cases}\left\{\lambda>0: w_{\lambda}>0 \text { in } H_{\lambda}\right\} & \text { if } 2<\alpha \leq N, \\ \left\{\lambda>0: w_{\lambda}<0 \text { in } H_{\lambda}\right\} & \text { if } \alpha>N .\end{cases}
$$

Lemma 11 The set $J \subset(0, \infty)$ is open.

Proof We give the proof only in the case $2<\alpha \leq N$. Assume that J is not open. Then for some $\lambda \in J$ there exists a sequence $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and $x_{n} \in H_{\lambda_{n}}$ such that $w_{\lambda_{n}}\left(x_{n}\right) \leq 0$. Let $R(\lambda)$ be the function from Lemma 7. Clearly $\left|x_{n}\right| \leq R(\lambda / 2)$, because $\left|x_{n}\right|>R(\lambda / 2)$ would imply $\left|x_{n}\right|>R\left(\lambda_{n}\right)$ for large n and hence $w_{\lambda_{n}}\left(x_{n}\right)>0$ for large n, which cannot hold. Hence, by extracting a subsequence if necessary, we may assume that $x_{n} \rightarrow x_{0} \in \overline{B_{R(\lambda / 2)}(0)}$, $x_{0} \in \overline{H(\lambda)}$. Since $w_{\lambda}>0$ in H_{λ} we must have $x_{0} \in T_{\lambda}$. Thus, by Lemma 10(a) we find $\frac{\partial v}{\partial x_{1}}\left(x_{0}\right)<0$, which contradicts $v\left(x_{n}\right) \leq v\left(x_{n}^{\lambda_{n}}\right)$ for large n.

The proof of Theorem 2 will be completed through the following, final lemma.
Lemma 12 The set $J=(0, \infty)$.
Proof Again let us stay with the case $2<\alpha \leq N$. Let (μ, ∞) be the largest open interval contained in J. By Lemma $8, \mu$ is a finite value in $[0, \infty)$. Assume for contradiction that $\mu>0$. Then $w_{\mu} \geq 0$ in H_{μ} and by Lemma 10(a) we see that $w_{\mu}>0$ in H_{μ} so that $\mu \in J$. A contradiction is reached since by Lemma 11 we know that J is open.

References

1. Alexandrov, A.D.: A characteristic property of the spheres. Ann. Mat. Pura Appl. 58, 303-354 (1962)
2. Berchio, E., Gazzola, F., Weth, T.: Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems. J. Reine Angew. Math. (to appear)
3. Birkner, M., López-Mimbela, J.A., Wakolbinger, A.: Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 83-97 (2005)
4. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of nth order differential equations in conformal geometry. Math. Res. Lett. 4, 91-102 (1997)
5. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59, 330-343 (2006)
6. Ebenfelt, P., Khavinson, D., Shapiro, H.S.: A free boundary problem related to single-layer potentials. Ann. Acad. Sci. Fenn. Math. 27, 21-46 (2002)
7. Fraenkel, L.E.: Introduction to maximum principles and symmetry in elliptic problems, Cambridge tracts in mathematics, vol. 128, Cambridge University Press, London (2000)
8. Gardiner, S.J.: An equilibrium measure characterization of circles. Forum Math. 14, 953-954 (2002)
9. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979)
10. Heil, E., Martini, H.: Special convex bodies. In: Gruber P., Wills J. (ed.) Handbook of Convex Geometry. Elsevier, Amsterdam 347-385 (1993)
11. Jin, C., Li, C.: Symmetry of solutions to some systems of integral equations. Proc. Amer. Math. Soc. 134, 1661-1670 (2006)
12. Li, Y.Y.: Remark on some conformally invariant integral equations, the method of moving spheres. J. Eur. Math. Soc. 6, 153-180 (2004)
13. Lim, M.: Symmetry of a boundary integral operator and a characterization of a ball. Illinois J. Math. 45, 537-543 (2001)
14. Martensen, E.: Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets. Z. Angew. Math. Mech. 72, T596-T599 (1992)
15. Mendez, O., Reichel, W.: Electrostatic characterization of spheres. Forum Math. 12, 223-245 (2000)
16. Payne, L., Philippin, G.: On some maximum principles involving harmonic functions and their derivatives. SIAM J. Math. Anal. 10, 96-104 (1979)
17. Philippin, G.: On a free boundary problem in electrostatics. Math. Meth. Appl. Sci. 12, 387-392 (1990)
18. Reichel, W.: Radial symmetry for elliptic boundary value problems on exterior domains. Arch. Ration. Mech. Anal. 137, 381-394 (1997)
19. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304-318 (1971)
20. Shahgholian, H.: A characterization of the sphere in terms of single-layer potentials. Proc. Am. Math. Soc. 115, 1167-1168 (1992)
21. Sirakov, B.: Symmetry for exterior elliptic problems and two conjectures in potential theory. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 135-156 (2001)

[^0]: W. Reichel (\boxtimes)

 Institut für Analysis, Universität Karlsruhe, Englerstr. 2, 76128 Karlsruhe, Germany
 e-mail: wolfgang.reichel@math.uni-karlsruhe.de

