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Abstract Bistable reaction–diffusion equations are known to admit one-dimensional
travelling waves which are globally stable to one-dimensional perturbations—Fife and
McLeod [7]. These planar waves are also stable to two-dimensional perturbations—Xin [30],
Levermore-Xin [19], Kapitula [16]—provided that these perturbations decay, in the direc-
tion transverse to the wave, in an integrable fashion. In this paper, we first prove that this
result breaks down when the integrability condition is removed, and we exhibit a large-time
dynamics similar to that of the heat equation. We then apply this result to the study of
the large-time behaviour of conical-shaped fronts in the plane, and exhibit cases where the
dynamics is given by that of two advection–diffusion equations.
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1 Introduction

Consider the following scalar parabolic equation:

ut −�u = f (u) , (x, y) ∈ R
2, t > 0 (1.1)

u(0) = u0 , (x, y) ∈ R
2
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208 J.-M. Roquejoffre, V. Roussier-Michon

where u : R
+ × R

2 → R. The function f is of class C2(R) and it is assumed to be of the
‘bistable’ type. Namely, there exists θ ∈ (0, 1) such that

⎧
⎨

⎩

f (0) = f (θ) = f (1) = 0,
f < 0 on (0, θ) ∪ (1,+∞), f > 0 on (−∞, 0) ∪ (θ, 1),
f ′(0) < 0, f ′(1) < 1, f ′(θ) > 0.

Moreover, we shall assume that

1∫

0

f (u)du > 0.

This reaction–diffusion equation is a classical model for spreading and interacting
particules—see [1,8,17]—and the transport of information is often represented by some
particular solutions to (1.1) characterized by their time independent profile, uniformly trans-
lating at some constant speed c. Plugging the ansatz u(t, x, y) = φ(x, y + ct) yields the
elliptic equation

−�φ + c∂yφ = f (φ) in R
2, (1.2)

completed by the following conditions at infinity, understood in the pointwise sense in x :

φ(x,−∞) = 0, φ(x,+∞) = 1. (1.3)

Looking for planar travelling waves (i.e solutions of (1.2)–(1.3) independent of x), it is
well known, see [7], that there is a unique speed c0 > 0 and a unique profile φ0 (up to
translations) such that the ordinary differential equation

− φ′′
0 + c0φ

′
0 = f (φ0) in R, φ0(−∞) = 0, φ0(+∞) = 1 (1.4)

has a solution. The function φ0(y + c0t) is a planar solution of (1.1).
It is also known that (1.1) has genuinely nonplanar, conical-shaped, travelling wave

solutions. Taking a uniform limit in x in (1.3) automatically yields that φ is a planar wave
φ(x, y) = φ0(y+y0) for some translate y0 ∈ R; see [3]. Taking the limit in (1.3) pointwise—
as opposed to uniformly—in x , the papers [10–12]—see also [9,22]—prove the existence of
solutions (c, φ) = (c0/ sin α, φ) of (1.2)–(1.3) for some angle α ∈ (0, π/2) satisfying the
following properties:

(P1) 0 < φ < 1 in R
2,

(P2) φ(x, y) = φ̃(|x |, y), ∂|x |φ̃ ≥ 0, ∂yφ > 0,
(P3) the function φ satisfies

⎧
⎪⎨

⎪⎩

lim sup
A→+∞, y≥A−|x | cot α

(1 − φ(x, y)) = 0,

lim sup
A→−∞, y≤A−|x | cot α

φ(x, y) = 0.
(1.5)

(P4) the function φ is decreasing in any unit direction τ = (τx , τy) ∈ R
2 such that

τy < − cosα,
(P5) there is exponential convergence of φ(x, y) to the planar fronts φ0(±x cosα +

y sin α) in the directions (± sin α,− cosα); moreover the slopes of the level lines of φ con-
verge exponentially, in the same directions, to ∓ cot α. More precisely, if we set

X = x sin α − y cosα, Y = x cosα + y sin α (1.6)

and still denote φ(x, y) by φ(X, Y ) with an obvious abuse of notations,then the level line
{φ(X, Y ) = a} is described in the half-plane {x ≥ 0} by an equation {Y = ψa(X)}, and
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Nontrivial large-time behaviour in bistable reaction–diffusion equations 209

there is ω = ω(α, f ) > 0 such that, for all a ∈ (0, 1) and X > 0,

|ψ ′
a(X)| ≤ Cae−2ω|X | (1.7)

for some constant Ca = Ca(a, α, f, φ). Also, for all Y such that the point (X, Y + ψa(X))
is in the half-plane {x > 0}, we have

|φ(X, Y + ψa(X))− φ0(Y + φ−1
0 (a))| ≤ Cae−2ω(|X |+|Y |).

The constant Ca degrades as a converges to 0 or 1.
As far as the Cauchy problem for (1.1) is concerned, if u0 is a continuous function from R

2

to (0, 1) trapped between two (planar or conical) waves, then there exists a unique solution
u(t, x, y) of equation (1.1) emanating from u0 with the same properties as u0 for any time
t > 0.

One question of interest for this reaction diffusion equation (1.1) is the behaviour as t goes
to infinity of u(t, x, y). A prominent role is played by the family of the travelling waves,
and much is understood about their stability. What is already known is summarised in the
following set of properties:

(P6) Let u0(y) be a—one-dimensional—Cauchy datum to (1.1), satisfying

lim sup
y→−∞

u0(y) < θ, lim inf
y→+∞ u0(y) > θ.

Then there is y0 ∈ R and γ > 0 such that, if u(t, y) is the solution of (1.1) emanating from
u0, we have—Fife–McLeod [7] - u(t, y)−φ0(y + y0 +c0t) = O(e−γ t ), uniformly in y ∈ R.

(P7) Let u0(x, y) be a—possibly two-dimensional—Cauchy datum to (1.1), satisfying

ε := ‖u0 − φ0‖H1(R2) << 1. (1.8)

Then—see Xin [30], Levermore-Xin [19], Kapitula [16]—we have, for some ω > 0:
u(t, x, y)− φ0(y + c0t) = O(t−ω), uniformly in (x, y) ∈ R

2.
(P8) Let u0(x, y) be a—two-dimensional—Cauchy datum to (1.1), satisfying

|u0(x, y)− φ(x, y)| = O(e−2ω(|x |+|y|)), (1.9)

where ω is some positive number, and φ(x, y) a solution of (1.2)–(1.3)–(1.5) – hence a
conical-shaped solution. Then—see Hamel–Monneau–Roquejoffre [10]—we have, for some
γ > 0 uniformly in (x, y) ∈ R

2:

u(t, x, y)− φ(x, y + ct) = O(e−γ t )

(P9) Let u(t, x, y) be a time-global—i.e. defined on {(t, x, y) ∈ R
3}—solution of (1.1),

such that there is (X1, X2) ∈ R
2 × R

2 for which we have uniformly in (t, x, y) ∈ R
3

φ((x, y + ct)+ X1) ≤ u(t, x, y) ≤ φ((x, y + ct)+ X2).

where phi is still a conical-shaped wave. Then—see Hamel–Monneau–Roquejoffre [10]—we
have, for some X0 ∈ R

2: u(t, x, y) = φ((x, y + ct)+ X0).
Let us examine the differences between these four properties. Let u0 be a Cauchy datum

for (1.1), lying between two conical waves:

φ((x, y)+ X1) ≤ u0 ≤ φ((x, y)+ X2)

Define its ω-limit set as

ω(u0) = {ψ(x, y) ∈ C(R2) | ∃(tn)n → +∞ s.t. lim
n→+∞ u(tn, x, y + ctn) = ψ(x, y)}.
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210 J.-M. Roquejoffre, V. Roussier-Michon

It is important to note that the convergence in the above definition of the ω-limit set should
a priori be understood uniformly on every compact subset of R

2: at this stage, we only have
at our disposition the derivative estimates, which are not strong enough to imply uniform
convergence properties. In fact, ω(u0) might well be empty if we insist in talking about
uniform convergence on R

2.
There is a gap between the behaviour described in (P8) and that described in (P9). Applying

(P9) yields thatω(u0) is made up of solutions of (1.2)–(1.3). However, due to the translational
invariance of (1.2)–(1.3), ω(u0) may well be homeomorphic to a nontrivial compact subset
of R

2. On the contrary, applying (P8) yields thatω(u0) is reduced to a single conical wave and
is homeomorphic to a single point of R

2. It is therefore natural to ask whether a conclusion
similar to that of (P8) is kept, even if its assumptions are relaxed. See [20,21] for a result in
this direction: the difference u0 −φ is only supposed to vanish at infinity instead of doing it in
an exponential fashion; in return no particular rate of convergence holds. However, assuming
only that the initial datum lies between two waves is still weaker than this last assumption.
Finally, let us just remark that a similar gap exists between data which converge to a planar
wave at infinity—property (P7)—and data which simply sit between two planar waves—one
can prove, in a similar fashion as in (P9), that their ω-limit sets are made up of planar waves.

The contribution of this paper is to prove that the ω-limit set of a Cauchy datum to (1.1)
is nontrivial in general. We will, in particular, construct Cauchy data u0, trapped between
two waves, such that ω(u0) is homeomorphic to a compact of R

2 with nonempty interior. To
this end, we will first have to understand what happens with planar fronts and extend those
results to conical fronts. In other words, this paper shows that the asymptotic stability of
planar (resp. conical) traveling waves proved in (P7) (resp. (P8)) breaks down as soon as the
assumptions are relaxed as low as “the initial datum u0 to (1.1) lies between two planar (resp.
conical) waves”. Comparing these results to (P6) highlights the gap between the dynamics
in dimension n = 1 and dimensions n ≥ 2.

Such nontrivial behaviour has already been observed in reaction-diffusion equations: see,
for instance work of the second author [27] or [31]: it is proved there that an expanding,
initially compactly supported solution of (1.1) does not necessarily attain eventual spherical
symmetry. See also [25] for different aspects of the problem in bounded domains. Concerning
the nonlinear supercritical heat equation ut − �u = u p in R

N for large N and p (Fujita
equation), there is an interesting parallel between our results and a series of works by Poláčik–
Yanagida [23,24]: for instance [23] presents the construction of a solution of the the Fujita
equation that oscillates indefinitely between two spatially localised steady solutions; in [24],
a Liouville property for entire solutions, close to Property (P9), is proved. Coming back to
travelling waves, one may guess that things can become much worse for the KPP equation—
same model as (1.1), but with this time f (u) = u(1 − u)—because of the existence of a full
range of planar wave velocities. This is indeed the case, as was proved by Hamel–Nadirashvili
[13,14]: in [13], it is proved that planar waves of different velocities may mix in order to
form generalised waves—i.e. entire solutions, whose front is localised, and which are not
travelling waves; in [14] the equation is proved to have an extermely complex dynamics: the
global attractor contains a set homeomorphic to the set of Borel measures! For a different
point of view on the KPP equation in spherical geometry, see the recent paper [32]. Still
remaining with the KPP equation, one may wonder what will happen to solutions initially
trapped between two waves of the same speed: once again nontrivial behaviour will occur;
it will be studied in the forthcoming paper [2].

The above considerations draw the plan of the paper: after presenting our results in Sect. 2
and deriving some consequences, we will prove in Sect. 3 that the large-time dynamics of
(1.1), complemented by a datum lying between two planar waves, is that of a one-dimensional
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Nontrivial large-time behaviour in bistable reaction–diffusion equations 211

heat equation. Such an equation is, counter-intuitively enough, known to exhibit nontrivial
dynamics, see Collet–Eckmann [5] and later papers such as, for instance [29]. Section 4 will
be devoted to conical-shaped—with the same angle α—data; we will prove that the resulting
dynamics is that of the product of two advection–diffusion equations. The last section is
really an appendix in which we shall recall, for the reader’s convenience, some classical
interpolation inequalities deduced from the scaling properties of the heat equation.

2 Results and their consequences

The large-time behaviour of (1.1) will be described by two asymptotic estimates—one for
the planar case, one for the conical case—in which we will show that the solution of (1.1)
evolves to a shifted travelling wave, with the property that the shift will be varying in space
and time. What will allow us to say something is that the shift will be slowly varying in time.

2.1 Main results

Let us start with almost planar initial data.

Theorem 2.1 Given u0 ∈ C(R2), assume the existence of two reals y1 ≤ y2 such that

∀(x, y) ∈ R
2 : φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2),

where φ0(y) is a solution of (1.4).

(i) There is t0 > 0 and a function s(t, x) ∈ C2([t0,+∞) × R) such that the solution
u(t, x, y) of (1.1), emanating from u0, satisfies, for all δ ∈ (0, 1):

sup
t≥t0,(x,y)∈R2

|u(t, x, y)− φ0(y + c0t + s(t, x))| = O(tδ−1). (2.1)

Moreover, for all δ ∈ (0, 1), there is Cδ(u0) > 0 such that the function σ(t, x) :=
ec0s(t,x)/2 satisfies, for t ≥ t0:

|σt − σxx | ≤ Cδ(u0)

(1 + t)2−2δ . (2.2)

(ii) Assume the existence of ε > 0 and of a smooth function s0(x) such that

sup
(x,y)∈R2

|u0(x, y)− φ0(y + s0(x))| + ‖∂xxσ0‖L∞(R) ≤ ε, (2.3)

where we have set σ0 = ec0s0/2. Then, if ε is small enough, we may choose

t0 = 0, and Cδ(u0) = O(εδ). (2.4)

We note that a result similar to [ii] was already proved by Brauner-Hulshof-Lunardi [4], in
the case of the following free boundary problem:

ut −�u = 0 in {u < 1}
[u] = 0, [uν] = −1 on ∂({u < 1}) (2.5)

Problem (2.5) is very much related to our equation (see [6]). It is indeed, at least in a formal
fashion (passing to the limit in a mathematically rigorous way is a difficult question) the
limit, as ε → 0, of the reaction-diffusion equation

ut −�u = 1

ε2 (1 − u)ϕ

(
u − 1

ε

)

.
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212 J.-M. Roquejoffre, V. Roussier-Michon

The function ϕ is, for instance, the characteristic function of the interval [−1,+∞).
Turn now to the conical case. Define the tilted coordinates (X±, Y±):

{
X+ = x sin α − y cosα, Y+ = x cosα + y sin α
X− = −x sin α − y cosα, Y− = −x cosα + y sin α

(2.6)

Theorem 2.2 Let φ(x, y) be the only solution of (1.2)–(1.3) that is even in x and satis-
fies φ(0, 0) = θ . Consider a Cauchy datum u0(x, y) ∈ C2(R2) satisfying the following
requirements.

• there exist a small ε > 0 and a couple (X1, X2) ∈ R
2 × R

2 such that:

φ((x, y)+ X1) ≤ u0(x, y) ≤ φ((x, y)+ X2), |X1 − X2| ≤ ε, (2.7)

• there holds ∂yu0 > 0. Moreover there is ρε ∈ (0, ε5], such that

lim sup
X±→+∞

‖∂X± X±u0(X±, .)‖L∞(R) ≤ ρ4
ε . (2.8)

Choose λ ∈ (0, 1), let the set {u0(x, y) = λ} be written as {Y+ = s+
0 (X+)} - resp. {Y− =

s−
0 (X−)} in the right half-plane {x > 0} - resp. in the left half-plane {x < 0} (the dependence

in λ is deleted for commodity). Define the functions σ±
0 (X±) as

σ±
0 (X±) =

{
ec0s±

0 (X±)/2 if X± ≥ 1

ec0s±
0 (1)/2 if X± ≤ 1

(2.9)

Let σ±(t, X±) be the solutions of the advection-diffusion equations

(∂t − ∂X± X± − c cosα∂X±)σ
± = 0

σ±(0, X±) = σ±
0 (X±)

(2.10)

Let u(t, x, y)be the solution of (1.1) emanating from u0. For a givenλ ∈ (0, 1), there exists
A > 0 such that the set {u(t, x, y) = λ} can be described as of the form {Y+ = χ+(t, X+)}
in the half-plane {x ≥ A} - resp. {Y− = χ−(t, X−)} in the half-plane {x ≤ −A}. Moreover
there is a constant Cε > 0 - possibly going to +∞ as ε → 0 - and another constant C > 0
independent of ε, such that there holds, for all δ ∈ (

0, 1
2

)
, and uniformly in (t, x, y) ∈

R+ × R
2:

|χ±(t, X±)− Logσ±(t, X±)| ≤ Cε

(
1

(1 + t)1−2δ + e−ω(|x |+|y|)
)

+ Cρδ/2ε . (2.11)

This theorem calls the following

Remark 2.3 (i) The assumption ∂yu0 > 0 is a commodity assumption that can certainly
be removed. See [10], Theorem 1.7, how it is possible to take into account fluctuations
at infinity. Notice, however, that the strong maximum principle and (2.7) imply that
∂yu(1, ., .) > 0 on a very large subset of R

2.
(ii) If we set u0 = φ, then we may take ρε = 0 by Property (P5). We wish to express here

that the level sets of u0 deviate from those of φ in a non-integrable fashion, but that
the oscillation is very mild - and in any case, smaller than the distance between u0 and
the travelling wave closest to it in the L∞ norm.

(iii) The assumption that the initial datum is L∞-close to a front can also certainly be
removed. However, it is quite sufficient to display explicit examples of nontrivial
behaviour.
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Nontrivial large-time behaviour in bistable reaction–diffusion equations 213

2.2 Interpretation and consequences of Theorems 2.1 and 2.2

2.2.1 Interpretation of Theorem 2.1

The presence of the term Cδ(u0)

(1+t)2−2δ in Eq. (2.2) does allow us to conclude—because of the

time-integrability of this term—that the eventual dynamics of σ(t, x) = ec0s(t,x)/2 is the one
of the heat equation, but does not allow us to conclude that this dynamics is nontrivial. In
order to exhibit a nontrivial dynamics, we resort to Part [ii] of Theorem 2.1.

Let us consider an initial datum u0 satisfying (2.3). We note that the smallness assumption
concerns the derivatives of s0, but not the function s0 itself: hence this function has a lot of
room to oscillate. In particular, we may take

sup
R

s0 = 1, inf
R

s0 = 0, (2.12)

while keeping s′
0 and s′′

0 small. If σ 0(t, x) is the solution of the heat equation

σ 0
t = σ 0

xx , σ 0(0, .) = ec0s0/2 := σ0,

we denote by ω(σ0) the ω-limit set of σ0 with respect to the above dynamical system. Let
us construct s0 in such a way that we have ω(σ0) = [1, ec0/2]. Let (an)n be an increasing
sequence such that

lim
n→+∞

an+1

an
= +∞ (2.13)

and s0(x) defined by

s0(x) =
{

1 if a2n ≤ |x | < a2n+1

0 if a2n+2 ≤ |x | < a2n+3
(2.14)

with smooth matching in the intervals [a2n+1, a2n+2] and [a2n+3, a2n+4] - this is to keep the
derivatives of s0 small. We have

σ 0(t, 0) = 1√
2π

+∞∫

−∞
e−y2

σ0(
√

t y) dy . (2.15)

Let (tn)n be an increasing sequence such that

lim
n→+∞

an√
tn

= 0, lim
n→+∞

an+1√
tn

= +∞; (2.16)

this is possible by (2.13). A possible choice is an = (n + n0)! and tn = na2
n ; the integer n0

is chosen large enough so that s′
0 and s′′

0 are suitably small. In any case, Eq. (2.16) and the
dominated convergence theorem permit us to infer from (2.15):

lim
n→+∞ σ

0(t2n, 0) = ec0/2, lim
n→+∞ σ

0(t2n+3, 0) = 1.

This is exactly the behaviour that we were looking for.
The just constructed example is, of course, by no means new. It was first identified in [5],

where the reader may find a much more exhaustive study.
Apply Theorem 2.1 to u0: estimate (2.2) implies

‖σ(t, .)− σ 0(t, .)‖L∞(R) = O(εδ), uniformly in t . (2.17)
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From (2.12), for all x ∈ R, the function t → s(t, x) has an interval of asymptotic values of
length at least 1 − O(εδ). This implies the nontrivality of ω(u0), and this also implies that
the dynamics of the function σ(t, x) = ec0s(t,x) is εδ-close to a nontrivial dynamics of the
pure heat equation.

2.2.2 Interpretation of Theorem 2.2

This time, the difference between the two translates of the conical wave bounding the initial
datum u0 is small; however, we still have the freedom to choose how slowly the level lines
of u0 will oscillate at infinity. In particular, we may decide that their oscillation rate will be
much smaller than their amplitude, and this is the meaning of Condition (2.8). In particular,
we may take

sup
R

s±
0 = ε, inf

R

s±
0 = 0. (2.18)

while keeping the derivatives of both functions s±
0 of order ρ2

ε . Let us construct s±
0 in such

a way that ω(σ±
0 ) is non-trivial, where σ±

0 = ec0s±
0 /2 and where the ω-limit set is taken with

respect to the advection–diffusion equations (2.10), with solutions σ±(t, X±).
If (an)n is a sequence satisfying (2.13), and if s0(X±) is defined by (2.14), we have

σ±(t, 0) = 1√
2π

+∞∫

−∞
e−y2

σ±
0 (

√
t y + ct cosα) dy . (2.19)

If (tn)n satisfies (2.16), then we have

lim
n→+∞ σ±(t2n, 0) = ec0ε/2, lim

n→+∞ σ±(t2n+3, 0) = 1.

This, and much more, is explained in Vázquez–Zuazua [29].

Apply Theorem 2.2 to u0: if δ ∈
(

1

2
, 1

)

, estimate (2.11) implies:

‖χ±(t, .)− Logσ±(t, .)‖L∞({|(x,y)|≥ω−1|Logρε |}) = O(ρδ/2ε ), (2.20)

as soon as t > 0 is large enough. Now, choose any δ >
1

2
. From (2.20), for all x ∈

R, the function t → χ±(t, X±) has an interval of asymptotic values of length at least
ε(1+ O(ρδ/2ε ε−1)) = ε(1+ O(ε2δ−1)) = ε(1+oε→0(1)). As a consequence, we once again
recover the nontrivality of ω(u0).

2.3 Notations

Let us close the section by setting up some notations that will be used all along the paper. We
will extensively work with Hölder’s spaces defined as follows: If I is an open, not necessarily
bounded interval of R+, let us denote - as is classical - by C

α
2 ,α(I × R

n) the space of all
functions u(t, X) ∈ L∞(I × R

n) such that

‖u‖
Ċ
α
2 ,α(I×Rn)

:= sup
|u(t, X)− u(t ′, X ′)|
|t − t ′| α2 + |X − X ′|α < +∞, (2.21)

where the supremum is taken over all quadruples (t, t ′, X, X ′) ∈ I 2 × R
2n such that t �= t ′

and X �= X ′. The set C1+ α
2 ,2+α(I × R

n) is the space of functions u(t, X) ∈ L∞(I × R
n)
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Nontrivial large-time behaviour in bistable reaction–diffusion equations 215

such that ∂t u and ∂2
X u exist and belong to C

α
2 ,α(I × R

2). See [18] for an extensive study
of the properties of these spaces. The spaces Cα(Rn) and C2+α(Rn)—the functions of these
spaces do not depend of t—are defined similarly.

Let now φ0(y) be a solution of (1.4). If BUC(R) is the set of all bounded, uniformly
continuous functions of R, and if BUCk(R) is the set of all bounded, Ck functions of R

whose kth derivative is in BUC(R), define L0 by

D(L0) = BUC2(R), L0 = − d2

dy2 + c0
d

dy
− f ′(φ0).

L0 stands for the linearised operator of equation (1.4) around the wave φ0. Recall that 0 is a
simple isolated eigenvalue of L0 with eigenvector φ′

0. Therefore, see [15,16,28], the space
BUC(R) may be broken as

BUC(R) =<φ′
0 > ⊕R(L0) = N (L0)⊕ R(L0),

and the projector P onto N (L0) parallel to R(L0) is given by

(Pu)(y) =
⎛

⎝α

∫

R

e−c0zφ′
0(z)u(z) dz

⎞

⎠ φ′
0(y) =

⎛

⎝

∫

R

ψ0(z)u(z)dz

⎞

⎠ φ′
0(y). (2.22)

where ψ0(y) = αe−c0 yφ′
0(y) and α is chosen so that

∫

R
ψ0φ

′
0 = 1. We set

Q = I − P.

The spectral subspace corresponding to the eigenvalue 0 is defined by N (L0) = {u ∈
BUC2(R) | u = Pu} and its supplementary by R(L0) = {u ∈ BUC2(R) | Pu = 0}. Then,
R(L0) equipped with the L∞(R) norm is a Banach space and L0|R(L0) generates an analytic
semigroup which satisfies ‖et L0‖L(R(L0)) ≤ Ce−γ t for all t ≥ 0 and some given positive
constants C and γ .

Finally, we denote by C a generic positive constant, which may differ from place to place
even in the same chain of inequalities.

3 Almost planar fronts

The proof of Theorem 2.1, presented in this section, is broken into two parts. In the first part,
we assume that the initial datum is L∞-close to a wave, and more precisely that (2.3) holds.
In the second part, we prove that the problem may be reduced to the model situation of the
first part, provided a sufficiently large time has elapsed.

3.1 Local study

Here is the exact statement that we are going to prove here.

Theorem 3.1 Fix α ∈ (0, 1). Consider u0(x, y) ∈ C2+α(R2) for which we may find a couple
(s0(x), v0(x, y)), and two positive numbers C and ε such that

(i) s0 ∈ C2+α(R), v0 ∈ C2+α(R2); moreover, if σ0 = ec0s0/2 we have

‖v0‖C2+α(R2) ≤ ε, ‖σ0‖L∞(R) ≤ C, ‖∂xxσ0‖Ċα(R) ≤ ε. (3.1)
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(ii) For all x ∈ R we have Pv0(x, .) = 0; moreover we have the equality

u0(x, y) = φ0(y + s0(x))+ v0(x, y + s0(x)). (3.2)

Then, there exists a unique global in time solution u of Eq. (1.1) emanating from u0 and
there is a unique decomposition for any (t, x, y) ∈ R

+ × R
2

u(t, x, y) = φ0(y + c0t + s(t, x))+ v(t, x, y + c0t + s(t, x)), Pv(t, x, .) = 0 (3.3)

such that, for all δ ∈ (0, 1) we have

‖v(t)‖L∞(R2) = O

(
εδ

(1 + t)1−δ

)

and the function σ(t, x) := ec0s(t,x)/2 satisfies, for some Cδ > 0:

|σt − σxx | ≤ Cδεδ

(1 + t)2−2δ . (3.4)

Proof of Theorem 3.1. Since u0 ∈ C2+α(R2), there exists a unique solution u ∈ C1+α/2,2+α
(R+ × R

2) of Eq. (1.1) emanating from u0. Let u(t, x, y) undergo the three successive
transformations.

• Set u(t, x, y) = U (t, x, y + c0t + s(t, x))—the function s(t, x) is, at this stage, an
unknown that satisfies s(0, x) = s0(x)—the function U satisfies

Ut −�U − 2sxUxy − s2
x Uyy + (st + c0 − sxx )Uy = f (U ) (3.5)

where Uy denotes the derivative of U with respect to its third variable.
• Denoting by (t, x, y) the new system of coordinates and setting u(t, x, y) := U (t, x, y)—

the old reference frame will not be referred to anymore—we look for a decomposition of
u(t, x, y) as

u(t, x, y) = φ0(y)+ v(t, x, y), Pv(t, x, .) = 0, v(0, x, y) = v0(x, y).

Such a decomposition is certainly valid at time t = 0. To be valid for all later time, it must
go with an equation for s. To derive it, we look for s(t, x) as—Hopf–Cole transform—
σ(t, x) = ec0s(t,x)/2. Expand Eq. (3.5) about φ0; then project it, pointwise in x , onto
N (L0) and R(L0), this yield the system

{
vt + (−∂xx + L0)v = f1(σ, v)

σt − ∂xxσ = f2(σ, v)
(3.6)

where the fi ’s are functionals whose expressions can be explicitely computed from (3.5)
and the Taylor’s formula with integral remainder.

• Finally, let (σ∗, v∗) be the unique solution of the (linear) system
⎧
⎪⎪⎨

⎪⎪⎩

∂tv∗ + (−∂xx + L0)v∗ = 4

c2
0

(
∂xσ∗
σ∗

)2

Q(φ′′
0 )

∂tσ∗ − ∂xxσ∗ = 0
σ∗(0, x) = σ0(x), v∗(0, x, y) = v0(x, y)

(3.7)

The unknown (σ, v) is sought for under the form (σ∗+σ1, v∗+v1), and the new unknown
satisfy

⎧
⎨

⎩

∂tv1 + (−∂xx + L0)v1 = F1(σ1, v1)

∂tσ1 − ∂xxσ1 = F2(σ1, v1)

σ1(0, x) = 0, v1(0, x, y) = 0
(3.8)
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where the expressions of the functionals Fi are given by

F1(σ1, v1) = Q(Kφ0 [v]v2)+ 4

c0

σx

σ
Q(vxy)+ 4

c2
0

(σx

σ

)2
Q(vyy)

+ 4

c2
0

((
(σx

σ

)2 −
(
∂xσ∗
σ∗

)2
)

Q(φ′′
0 )−

2

c0

(
σt

σ
− σxx

σ
−

(σx

σ

)2
)

Q(vy)

)

F2(σ1, v1) = c0

2
σ

∫

R

ψ0(y)Kφ0 [v]v2 dy + 2σx

∫

R

ψ0(y)vxy dy

+ 2

c0

σ 2
x

σ

∫

R

ψ0(y)vyy dy −
(

σt − σxx + σ 2
x

σ

) ∫

R

ψ0(y)vy dy

where we have noted, for commodity: (σ, v) = (σ∗ + σ1, v∗ + v1) and

Kφ0 [v]v2 = f (φ0 + v)− f (φ0)− f ′(φ0)v = v2

2

1∫

0

(1 − ζ ) f ′′(φ0 + ζv) dζ .

The expressions of F1 and F2 look formidable, but they are only standard quadratic terms in
the unknowns that we wish to keep small i.e. v1 and σ1. From now on, we fix δ ∈ (0, 1). All
the constants in the rest of the section will depend on δ.

Lemma 3.2 (Estimates on (σ∗, v∗)) Under the assumptions of Theorem 3.1, we have, for
some C > 0 independent of ε:

‖σ∗(t)‖L∞(R) ≤ C,

‖∂xσ∗(t)‖∞ ≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xxσ∗(t)‖∞ ≤ Cε
δ

2+α

(1 + t)1−δ

‖σ∗‖Ċα,
α
2

≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xσ∗‖Ċα,
α
2

≤ Cε
δ

2+α

(1 + t)1−δ

‖v∗(t)‖L∞(R2) ≤ Cε
2δ

2+α

(1 + t)1−δ ,

‖∂xv∗(t)‖∞ ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2 , ‖∂yv∗(t)‖∞ ≤ Cε
2δ

2+α

(1 + t)1−δ

‖∂xyv∗(t)‖∞ ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2 , ‖∂yyv∗(t)‖∞ ≤ Cε
2δ

2+α

(1 + t)1−δ

‖v∗‖Ċα,α/2 ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2 , ‖∂yv∗‖Ċα,α/2 ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2

‖∂xyv∗‖Ċα,α/2 ≤ Cε
4δ

2+α

(1 + t)2−2δ , ‖∂yyv∗‖Ċα,α/2 ≤ Cε
3δ

2+α

(1 + t)3/2−3δ/2

These estimates will be proved in Appendix.

Proof of Theorem 3.1 (continued). By a standard analytic semigroup argument—see [15],
Chap. 3—system (3.8), endowed with the initial datum (σ1, v1)(t = 0) = (0, 0), has a unique
local in time solution (σ1, v1) ∈ C1+ α

2 ,2+α([0, T ∗[×R)× C1+ α
2 ,2+α([0, T ∗[×R

2) for some
T ∗ > 0. Let T > 0 be the largest time T ′ such that, forall t ∈ [0, T ′], we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖σ1(t)‖L∞(R) ≤ ε
2δ

2+α

‖∂xσ1(t)‖L∞(R) ≤ ε
2δ

2+α√
1 + t

‖∂xxσ1‖Ċ
α
2 ,α((t,2t)×R)

+ ‖∂tσ1‖Ċ
α
2 ,α((t,2t)×R)

≤ ε
2δ

2+α

(1 + t)1+ α
2

‖v1(t)‖L∞(R2) ≤ ε
2δ

2+α

1 + t

‖∂yyv1‖Ċ
α
2 ,α((t,2t)×R2)

≤ ε
2δ

2+α

1 + t

‖∂xxv1‖Ċ
α
2 ,α((t,2t)×R2)

+ ‖∂xyv1‖Ċ
α
2 ,α((t,2t)×R2)

≤ ε
2δ

2+α

(1 + t)1+ α
2

(3.9)

Since at time t = 0, σ1 = 0 and v1 = 0, the definition of T makes sense and by continuity,
T > 0. We claim that T = T ∗ which also implies T = T ∗ = +∞. Indeed, if T < T ∗, for
any t ∈ [0, T ], inequalities (3.9) hold and by appendix 5.4,

‖F2(t)‖L∞ ≤C
(‖v(t)‖2∞ + ‖σx (t)‖∞‖vxy(t)‖∞ + ‖σx (t)‖2∞‖vyy(t)‖∞

)

+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2∞)‖vy(t)‖∞

≤ ε
4δ

2+α

(1 + t)2(1−δ)

‖F2‖Ċ
α
2 ,α((t,2t)×R)

≤ ε
5δ

2+α

(1 + t)
5
2 (1−δ)

Let us deal with σ1. We have

σ1(t, x) =
t∫

0

e(t−s)∂xx F2(s) ds;

from the above estimates on F2 norms and Proposition 5.4, we have the following more
precise estimates

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖σ1(t)‖L∞(R) ≤ ε
4δ

2+α ‖σ1‖Ċ
α
2 ,α((t,2t)×R)

≤ ε
4δ

2+α√
1 + t

‖∂xσ1(t)‖L∞(R) ≤ ε
4δ

2+α√
1 + t

‖∂xσ1‖Ċ
α
2 ,α((t,2t)×R)

≤ ε
4δ

2+α

1 + t

‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ ≤ ε
4δ

2+α

1 + t
‖∂tσ1‖Ċ

α
2 ,α

+ ‖∂xxσ1‖Ċ
α
2 ,α

≤ cε
4δ

2+α

(1 + t)1+ α
2

We now plug these last inequalities into the equation for v1. By Appendix 5.4 there holds

‖F1(t)‖L∞(R2) ≤C
(‖v(t)‖2∞ + ‖σx (t)‖∞‖vxy(t)‖∞ + ‖σx (t)‖2∞‖vyy(t)‖∞

)

+ C(‖∂xσ1(t)‖∞‖σ∗(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2∞)‖vy(t)‖∞

≤Cε
4δ

2+α

1 + t
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In a similar way, we get the same decay, rate for ‖F1‖Ċ
α
2 ,α((t,2t)×R2)

and thus,

‖v1(t)‖L∞(R2) + ‖∂yyv1(t)‖L∞(R2) ≤
t∫

0

e−γ (t−τ) ε
4δ

2+α

1 + τ
dτ ≤ ε

4δ
2+α

1 + t
.

Finally, using Proposition 5.4 once again, we get

‖∂xxv1‖Ċ
α
2 ,α

+ ‖∂xyv1‖Ċ
α
2 ,α

≤ Cε
4δ

2+α

(1 + t)1+ α
2
.

Thus, at time t = T , the inequalities satisfied by the norms of σ1 and v1 are better than
expected and we contradict the maximal nature of T . Thus T = T ∗ = +∞ and estimates
(3.9) are satisfied for all times. This concludes the proof of Theorem 3.1. ��
3.2 Global study

The aim of this section is to bridge the gap between Theorems 2.1 and 3.1. We assume here
that the initial datum lies between two waves and we show that, provided a large time has
elapsed, the solution satisfies the assumptions (3.1) and (3.2) of Theorem 3.1, that is to say
the model situation (2.3) in which the solution u can be split, in each point x ∈ R, into a
translate of the wave φ0 and a small perturbation v0.

Theorem 3.3 Given u0 ∈ C(R2), assume the existence of y1 ≤ y2 such that

∀(x, y) ∈ R
2 : φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2),

where φ0(y) is a solution of (1.4). We denote by u(t, x, y) the solution of equation (1.1)
emanating from u0. Fix α ∈ (0, 1). Then, for any ε > 0, there exist some time tε > 0 and
some function sε ∈ C2+α(R) such that

‖u(tε, x, y)− φ0(y + sε(x))‖C2+α(R2) ≤ ε

‖∂xx sε‖Ċα(R) ≤ ε

Let us postpone the proof of this theorem to the end of this section and use it for the

Proof of Theorem 2.1. Let u0 ∈ C(R2) be as in the assumptions of Theorem 2.1. Let y1 and
y2 be two real numbers such that

∀(x, y) ∈ R
2 , φ0(y + y1) ≤ u0(x, y) ≤ φ0(y + y2) .

Let u(t, x, y) be the unique solution to the Cauchy problem

∂t u −�u = f (u) t > 0 , (x, y) ∈ R
2

u(0, x, y) = 0 (x, y) ∈ R
2

Fix α ∈ (0, 1) and ε > 0. By Theorem 3.3, there exist tε > 0 and a function sε ∈ C2+α(R)
such that

‖u(tε, x, y)− φ0(y + sε(x))‖C2+α(R2) ≤ ε

‖∂xx sε‖Ċα(R) ≤ ε .
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Let us define the following functions

v0(x, y + sε(x)) = u(tε, x, y)− φ0(y + sε(x))

s0(x) = sε(x)

σ0(x) = ec0s0(x)/2

Then, s0 ∈ C2+α(R), v0 ∈ C2+α(R2), ‖v0‖C2+α(R2) ≤ ε and there exists a constant C > 0
such that ‖σ0‖∞ ≤ C . In ordrer to use Theorem 3.1, we just need to estimate the norm Ċα(R)

of ∂xxσ0, which is easily computed from the previous estimates, interpolation inequalities
developed in Appendix 5.1 and Taylor’s formula for the exponential function. Thus,

‖∂xxσ0‖Ċα ≤ Cε
4

(2+α)2(1+α)

where C > 0 is some positive constant.

Letting ε̃ = ε
4

(2+α)2(1+α) , we finally have (v0, s0) ∈ C2+α(R) × C2+α(R2), the estima-
tes ‖v0‖C2+α(R2) ≤ ε̃, ‖∂xxσ0‖Ċα(R) ≤ ε̃. By modifying v0 and σ0 in an ε̃-fashion—this
only requires the Implicit functions Theorem—we may also assume that the decomposition
u0(x, y) = φ0(y + s0(x))+v0(x, y + s0(x)), with Pv0(x, .) = 0, holds. Applying Theorem
3.1, there exists a unique decomposition for t > tε

u(t, x, y) = φ0(y + c0t + s(t, x))+ v(x, y + c0t + s(t, x)) and Pv(x, .) = 0

where s and v satisfy the expected estimates. ��
Turn to the proof of Theorem 3.3, which will be divided in a few lemmas for clarity. The

idea is to show that the distance in y between the fonction u(t, x, .) and the family of the
travelling waves {φ0(.+ y0)}y0∈R goes to zero as t goes to infinity.

Lemma 3.4 Under the assumptions of Theorem 3.3, limt→+∞ ∂t u = 0 uniformly in
(x, y) ∈ R

2.

Proof The—by now classical (see [26])—idea is to use a sliding method both in time and
space. Pick h > 0, t > 0 and s ≥ t . Define uk(s, x, y) = u(s + h, x, y + k). Then, ∂t uk =
�uk − c0∂yuk + f (uk). By the maximum principle, u stays between two travelling waves;
therefore there holds limy→−∞ u(s, x, y) = 0 and limy→+∞ u(s, x, y) = 1 uniformly in
(s, x) ∈ [t,+∞)× R. Thus, because φ0 is increasing there is A > 0 such that

∀k ≥ A , ∀s ≥ t , ∀(x, y) ∈ R
2 , u(s, x, y) ≤ uk(s, x, y)

Setting

k∗(t) = inf{k > 0 | ∀s ≥ t , ∀(x, y) ∈ R
2 , u(s, x, y) ≤ uk(s, x, y)}

we shall prove that limt→+∞ k∗(t) = 0. Denote by l the limit of this positive non-increasing
function k∗ and let us prove by contradiction that l = 0.

Indeed, if l > 0, we are able to build a sequence (tn)n∈N going to infinity, such that (k∗(tn))n
converges to l as n → +∞, and for any n ∈ N, there is (sn, xn, yn) ∈ [tn,+∞)× R

2 with

lim
n→+∞

(
u(sn, xn, yn)− u(sn + h, xn, yn + k∗(tn))

) = 0 . (3.10)

Denote by vn(s, x, y) = u(s + sn, x + xn, y) for s > −sn . Then, vn satisfies ∂tvn =
�vn − c∂yvn + f (vn) and by standard parabolic estimates, Ascoli’s Theorem and up to a
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sub-sequence, (vn)n∈N converges locally uniformly in (s, x, y) ∈ R
3 towards a function v∞

which is a global solution to

∂tv∞ = �v∞ − c∂yv∞ + f (v∞) .

Because u is between two fixed translates of φ0, we may assume that (yn)n converges to
some y∞ ∈ R. From Property (P9) we have v(t, x, y) = φ0(y + y∞). However, passing
to the limit in (3.10) when n goes to infinity, we get v∞(h, 0, k∗) = v∞(0, 0, 0). This is
impossible; φ0 cannot be periodic. Then, l = 0 and limt→+∞ k∗(t) = 0.

Now, notice that our argument is valid irrespective of the sign of h. Indeed, we only have
to assume that |h| ≤ 1 and start the argument from t > 1. This implies:

lim
t→+∞ (u(t + h, x, y)− u(t, x, y) = 0) uniformly in (x, y) ∈ R

2. (3.11)

To prove that limt→+∞ ‖∂t u(t, ., .)‖∞ = 0, we argue as follows: pick any ε > 0; from (3.11)
with h = ε there is tε > 0 such that

∀t ≥ tε, ∀(x, y) ∈ R
2, |u(t + ε, x, y)− u(t, x, y)| ≤ ε2. (3.12)

For t ≥ tε and (x, y) ∈ R
2; (3.12) and the mean value theorem yield the existence of

tε,x,y ∈ [t, t + ε] such that

ut (tε,x,y, x, y) = u(t + ε, x, y)− u(t, x, y)

ε
, hence |ut (tε,x,y, x, y)| ≤ ε.

On the other hand, utt is uniformly bounded due to the parabolic estimates; therefore we
have |ut (t, x, y)| = O(ε). ��
Lemma 3.5 Under the assumptions of Theorem 3.3, limt→+∞ ∂x u = 0 and limt→+∞ ∂xx u =
0 uniformly in (x, y) ∈ R

2.

Proof Proof of lemma 3.4 can be followed along the same lines since the time invariance and
the space invariance in the x variable are the same in (1.1). Finally, parabolic regularisation
gives the result for the second derivative in x . ��
Lemma 3.6 Under the assumptions of Theorem 3.3,

lim
t→+∞ sup

x∈R

dist (u(t, x, .), {φ0}) = 0

where {φ0} denotes the set of all translates of the one dimensional profile φ0.

Proof We prove lemma 3.6 by reducing it to the absurd. If the conclusions of lemma 3.6
were false, there would exist δ > 0 and some sequences (tn, xn) ∈ R

+ × R such that tn goes
to infinity and d(u(tn, xn, .), {φ0}) > δ. Define, for all (t, x, y) ∈ R

+ × R
2, vn(t, x, y) =

u(t + tn, x + xn, y). The idea is to show that vn converges to a function v∞ which satisfies
Eq. (1.4) and by uniqueness is a travelling wave, which contradicts the above assumptions.

The function vn verifies ∂tvn = �vn − c∂yvn + f (vn) for t > −tn . Once again, using
parabolic estimates, Ascoli’s Theorem and up to a subsequence, vn converges to a function
v∞ global solution to ∂tv∞ = �v∞ − c∂yv∞ + f (v∞). Using Lemmas 3.4 and 3.5, we get
limn→+∞ ∂tvn = limn→+∞ ∂xxvn = 0. Then, v∞ verifies ∂yyv∞ − c∂yv∞ + f (v∞) = 0.

Let us have a look at the limiting conditions satified by v∞. Since u satisfies uniformly
in (t, x) ∈ R

+ × R, lim
y→±∞ u(t, x, y) = 1 or 0, v∞ satifies the same limit conditions and

by uniqueness, there exists a real b such that v∞(t, x, y) = φ0(y − b) and c = c0. This
contradicts the initial assumption on u. ��
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Let us notice that, since u0 is between two travelling waves, we haveω(u0) ⊂ {φ0(y − b),
b ∈ [y1, y2]}. The inclusion may be strict.

Proof of Theorem 3.3. Let u0 be a function trapped between two travelling waves as in
Theorem 3.3. Define u(t) the solution of (1.1) with u0 as initial condition. By the above
lemmas, we know that

lim
t→+∞ ∂t u(t, x, y) = 0 uniformly in (x, y) ∈ R

2

lim
t→+∞ ∂x u(t, x, y) = 0 uniformly in (x, y) ∈ R

2

lim
t→+∞ sup

x∈R

dist (u(t, x, .), {φ0}) = 0

We have therefore a function s(t, x) such that

∀ε > 0 , ∃tε > 0 : ∀(t, x, y) ∈ [tε;+∞)× R
2 |u(t, x, y)− φ0(y − s(t, x))| ≤ ε

Let us denote by s1 the piecewise constant function defined by s1(t0, x) = s(t0, k) when
x ∈ [k, k + 1), k ∈ Z. Thus

|u(t0, x, y)− φ(y − s1(t0, x))| ≤ |u(t0, x, y)− u(t0, k, y)| + |u(t0, k, y)−φ(y−s(t0, k))|
≤ ‖∂x u(t0, x, y)‖L∞(k,k+1)|x − k| + ε ≤ 2ε .

We thus construct the function s1 such that

∀ε > 0 , ∃t0 > 0 | ∀(x, y) ∈ R
2 , |u(t0, x, y)− φ(y − s1(t0, x))| ≤ 2ε .

Let us show that the jumps of s1 are not much larger than a few ε’s. Let (p, q) ∈ Z
2.

|s1(t0, p)− s1(t0, q)| ≤ |φ0(y − s1(t0, p))− φ0(y − s1(t0, q))|
inf [y1,y2] φ′

0

≤ C(4ε + ‖∂x u(t0)‖L∞(p,q)|p − q|)
≤ C(4 + |p − q|)ε

where C−1 is the infimum of φ′
0 on the compact set [y1, y2]. Then, for all integer k, |s1(t0,

k + 1)− s1(t0, k)| ≤ 5ε and s1 is bounded in the compact set [y1, y2].
Finally, let us define some mollifier ρ ∈ C∞

0 (R) such that s0 = ρ ∗ s1 on each interval
[k − 1

2 , k + 1
2 ] satisfies s0(t0) ∈ C2+α(R) and ‖∂xx s0(t0)‖Ċα([k− 1

2 ,k+ 1
2 ]) ≤ 5ε.

Let us now prove that u − φ0(y − s0) satifies the conclusions of Theorem 3.3. We set
S0(x) = s0(t0, x) and v(t, x, y) = u(t, x, y)−φ0(y − S0(x)) on (t0, t0 + 1). Thus, v satifies
the parabolic equation

∂tv = �v − c∂yv + f (φ0 + v)+ φ′′
0 − S′′

0φ0 − S′
0φ

′
0

and by [18] on (t0 + 1
2 , t0 + 3

2 ) × R
2, there exists some time Tε in this interval satifying

‖v(Tε)‖C2+α(R2) ≤ Cε. This ends the proof of Theorem 3.3. ��

4 Conical fronts

To prove Theorem 2.2, the idea is to combine the results developped by [12] on the asymptotic
behaviour of the conical wave and the previous Sect. 3 on almost planar fronts. What allows
us to conclude is an exponential stability result in [10].
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Nontrivial large-time behaviour in bistable reaction–diffusion equations 223

First, recall the expression of the tilted coordinates (X±, Y±):
{

X+ = x sin α − y cosα, Y+ = x cosα + y sin α
X− = −x sin α − y cosα, Y− = −x cosα + y sin α

(4.1)

The system (X+, Y+) will be used in the right half-plane, the system (X−, Y−) in the left
half-plane. From now on, we will only work in the right half plane and all following calcula-
tions can be done in a symmetric way in the left half plane. We will therefore delete all ±. For
a given function V ∈ C(R2), we will indifferently use the notation V (x, y) or V (X, Y ) . . .
according to the system of coordinates we consider.

Let now u0 satisfy the assumptions of Theorem 2.2, namely u0 is sandwiched between
two conical waves, distant from each other by a small translation. By Property (P5)—recall
that it says that a conical wave is exponentially close to a planar wave in the directions X
and up to some translation that we may, without loss of generality, assume to be zero—there
is some large Xε > 0, and a function w0(X, Y ), defined when X is larger than Xε , such that

u0(X, Y ) = φ0(Y )+ w0(X, Y ), |w0(X, Y )| ≤ ε. (4.2)

Using Property (P5) and the inequality inf(a, b) ≤ √
ab, valid for any set of positive numbers

a and b, we derive the following estimate, as soon as X ≥ Xε:

|w0(X, Y )| ≤ √
εe−ω|Y |, |Dw0(X, Y )| + |D2w0(X, Y )| ≤ ρεe

−ω|Y |. (4.3)

Extend the functions w0 as

w0(X, Y ) = w0(Xε, Y ) if X ≤ Xε − 1, ‖∂X Xw0‖∞ ≤ Cρε.

Finally, consider the solutions of the Cauchy Problem

(∂t −�− c cosα∂X + c0∂Y )p = f (p) , t > 0, (X, Y ) ∈ R
2

p(t = 0, X, Y ) = φ0(Y )+ w0(X, Y ) , (X, Y ) ∈ R
2 (4.4)

Notice that the functions p(t, X + ct cosα, Y ) satisfy the assumptions of Theorem 2.1. Let
us apply it: setting ξ = X + ct cosα we may decompose p as

p(t, ξ, Y ) = φ0(Y + S(t, ξ))+ w(t, ξ, Y )

where the functions �(t, X) = ec0 S(t,X)/2 and the function w satisfy, for every δ ∈ (0, 1):

(∂t − ∂X X − c cosα∂X )� = O

(
εδ

(1 + t)2−2δ

)

‖eω|Y |w(t)‖C2(R2) ≤ Cδρε
(1 + t)1−δ

(4.5)

The constant Cδ may vary from one line of (4.5) to another, but will never depend on ε.
For a positive number X0, let us denote by C(X0, α, µ) the cone with vertex the point

(X = X0, Y = 0), with axis the line {X ≥ X0, Y = 0}, and with angle µ > 0. Let us once
and for all fix

• a number µ ∈ (0,min(α, π2 − α)),
• a smooth, nonnegative, even function ρ(x, y) with unit mass, suppported in the unit ball

whose derivatives are small.

If 1A denotes the characteristic function of the set A, let us set

γ = ρ ∗ 1C(2Xε,α,µ), γ0 = 1 − γ. (4.6)
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The following properties are clear, if ε > 0 is small enough:

suppγ0 ∩ suppγ ⊂ C(Xε, α, µ)\C(4Xε, α, µ) (4.7)

Finally, let u(t, x, y) be the solution of (1.1) emanating from u0. In the reference frame of
the wave φ, (1.1) becomes

ut −�u + c∂yu = f (u), (t > 0, (x, y) ∈ R
2); (4.8)

this new system of coordinates, still denoted by (x, y) will be used without further mention.
The system (X, Y ) will also be deduced from this new system by (4.1).

Let us finally set

u(t, x, y) = γ (X, Y )p(t, X, Y )+ γ0(x, y)φ(x, y)+ v(t, x, y) (4.9)

Theorem 2.2 will be proved through the following intermediate result.

Proposition 4.1 Under the assumptions of Theorem 2.2, for all δ ∈ (0, 1), there is a constant
Cδ > 0, independent of ε such that

‖v(t)‖∞ ≤ Cδ(ρε +
√
ε

(1 + t)1−δ ). (4.10)

Proof Let us set, for a function U (t, x, y) ∈ C2,1(R+ × R
2):

NL[U ] = Ut −�U + cUy − f (U ). (4.11)

Also, introduce the space

Xω = {u(x, y) ∈ BUC(R2)| eω(|x |+|y|)u(x, y) ∈ BUC(R2)}.
The operator L is defined as

D(L) = {u ∈ Xω |�u ∈ Xω}; ∀u ∈ D(L), Lu = −�u + c∂yu − f ′(φ)u. (4.12)

Let us compute NL[u], using the expression (4.9). For two given functions ψ(x, y) and
v(x, y) let us set, for commodity

Kψ [v] = 1

2

1∫

0

(1 − ζ ) f ′′(ψ + ζv) dζ (4.13)

1. The region {γ0 = 1}. In this area we have u = φ + v, therefore

NL[u] = vt + Lv + Kφ[v]v2 := vt + Lv + H1(t, x, y, v)v.

2. The region {γ = 1}. In this area, we have γ0 = 0. Set—still for notational commodity:

φ0(x, y) = φ0(Y ). (4.14)

We obtain:

NL[u] = vt + Lv + ( f ′(φ)− f ′(p))v + K p[v]v2 := vt + Lv + H1(t, x, v)v.

The important feature to notice is that, in the area {γ = 1} we have, from Property (P5),
Assumption (2.7) and Property (4.5),

|H1(t, x, y, 0)| ≤ | f ′(p)− f ′(φ0)| + | f ′(φ0)− f ′(φ)|
≤ C(ρε + e−ωXε ).

(4.15)

The last quantity goes to 0 as ε goes to 0.
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3. The region {γ0 �= 0} ∩ {γ �= 0}. Here we have γ �= 1. Notice that, once this area is
examined, we will have computed N L[u] in the whole plane. Let us set

ψ(x, y) = φ(x, y)− φ0(x, y);
we have

NL[u] =ut −�u + cuy − f (u)

=vt −�v + cvy + γ f (p)+ γ0 f (φ)− f (γ p + γ0φ + v)+ r

where

r = −p�γ − φ�γ0 − 2∇ p · ∇γ − 2∇φ · ∇γ0 + cpγy + cφ∂yγ0 .

Expand the nonlinear terms:

γ f (p)+γ0 f (φ)− f (γ p+γ0φ + v) = γ ( f (p)− f (φ))+ f (φ)− f (φ + γ (p − φ)+ v)

= γ f ′(φ)(p − φ)+ γ (p − φ)2 Kφ[p − φ]
+ f (φ)− f (φ + γ (p − φ))

−v f ′(γ0φ + γ p)− v2 Kγ0φ+γ p[v]
= γ f ′(φ)(p − φ)+ γ (p − φ)2 Kφ[p − φ]

−γ f ′(φ)(p − φ)− γ 2(p − φ)2 Kφ[γ (p − φ)]
−v f ′(γ0φ + γ p)− v2 Kγ0φ+γ p[v]

= γ (p − φ)2 Kφ[p − φ] − γ 2(p−φ)2 Kφ[γ (p−φ)]
−v f ′(γ0φ + γ p)− v2 Kγ0φ+γ p[v]

The final expression for NL[u] is therefore

NL[u] = vt + Lv + H1(t, x, y, v)v + H2(t, x, y),

where we have set

H1(t, x, y, v) =( f ′(φ)− f ′(γ0φ + γ p))v − Kγ0φ+γ p[v]v2

H2(t, x, y) =r + (p − φ)2(γ Kφ[p − φ] − γ 2 Kφ[γ (p − φ)])
We have, from property (4.5):

‖γ (w − ψ)‖D(L) ≤ Cρε, ‖∂t (γ (w − ψ))‖Xω ≤ Cδρε
(1 + t)1−δ .

This implies

‖(H1(t, x, y, 0), eω(|x |+|y|)H2(t, x, y))‖C2({γ0 �=0,γ �=0}) ≤ Cρε

‖∂t (H1(t, x, y, 0), eω(|x |+|y|)H2(t, x, y))‖L∞({γ0 �=0,γ �=0}) ≤ Cδρε
(1 + t)1−δ

(4.16)

Therefore the part that is nonlinear in v can be decomposed into a quadratic part in v plus a
small, exponentially decaying, part.

4. Decomposition of the function v and conclusion. Recall the following result—[10],
Theorem 4.1: L is a sectorial operator of Xω, whose spectrum lies in a cone of the complex
plane with positive vertex. Hence there is λ0 > 0 such that

‖e−t L‖L(Xω) ≤ Ce−λ0t . (4.17)
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The equation to solve for v is therefore

vt + Lv + H1(t, x, y, v)v + H2(t, x, y) = 0 (4.18)

with the estimates (4.16) extending to the whole real plane - indeed, H2 = 0 outside {γ0 �=
0, γ �= 0}. To get estimate (4.10) for v, we proceed as follows.

• Let v0
1(t, x, y) be the unique solution of

Lv1 + H2(t, x, y) = 0 ,

we have ‖v1‖D(L) ≤ Cρε and ‖∂tv1‖D(L) ≤ Cρε
(1 + t)1−δ . By the implicit functions

Theorem, there is a unique solution to

Lv1 + H1(t, x, y, v1)v1 + H2(t, x, y) = 0, ‖v1 − v0
1‖D(L) ≤ Cρ2

ε . (4.19)

We have, in addition:

‖∂t (v1 − v0
1)‖Xω ≤ Cρ2

ε

(1 + t)1−δ . (4.20)

• Set, finally: v2 = v−v1. We argue as in the proof of Theorem (2.22): suppose that t1 > 0
is the maximal time such that we have

‖v2(t, ., .)‖Xω ≤ C
√
ε

(1 + t)1−δ .

Note that this is the only place where we use the poorer order of magnitude for v(0),
which is of order ε. We have

v2(t, x) = e−t Lv2(0)−
t∫

0

e(t−s)L (H1(s, x, y, v)v − H1(s, x, y, v1)v1 + ∂tv1) ds

which implies, for t ≤ t1:

‖v2(t)‖Xω ≤ C
√
εe−λ0t + C

t∫

0

e−λ0(t−s)
(

ρε|v(s)| + ρ2
ε + ρε

(1 + s)1−δ

)

ds

≤ Cε

(1 + t)1−δ

implying in turn that t1 = +∞, provided ε is small enough.

This ends the proof of Proposition 4.1. ��
Proof of Theorem 2.2 We have ∂Y u > 0; therefore the level set {u(t, X, Y ) = λ} is a union
of curves {Y = χ(t, X)}. Also, we may assume, without loss of generality, that φ0(0) = λ.
For any t > 0 and (x, y) in the right half plane, we have

Y = χ(X) ⇔ γ p + γ0φ + v = λ

⇔ γφ0(Y + S(t, X))+ γ0φ0(Y − ψλ(X))

= λ+ O

(

e−2ω(|X |+|Y |) + ρε + ρε

(1 + t)1−δ

)
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thanks to Theorem (2.1), Proposition (4.1) and Property (P5). Since λ = φ0(0) = φ(Y −χ
(X)), we get

γ0|χλ − ψλ| + γ |S + χλ| = O

(

e−2ω(|X |+|Y |) + ρε + ρε

(1 + t)1−δ

)

Finally, all we have to do is to compare � and σ . We recall that �(t, X) = ec0 S(t,X)/2 and σ
is defined in Theorem 2.2 by (2.10) as the solution of the advection–diffusion equation

(∂t − ∂X X − c cosα∂X )σ = 0
σ(0, X) = σ0(X)

(4.21)

where σ0 is definied by (2.9) as

σ0(X) =
{

ec0s0(X)/2 if X ≥ 1
ec0s0(1)/2 if X ≤ 1

(4.22)

Thus, by (4.5) and (4.21)

�(t, X)− σ(t, X) =et (∂X X +c cosα∂X )(σ0(X)− σ0(X))

+
t∫

0

e(t−s)(∂X X +c cosα∂X )O

(
εδ

(1 + s)2−2δ

)

=O

(

εδ + 1

(1 + t)1−2δ

)

This implies (2.11). ��

5 Appendix: some interpolation inequalites

5.1 Basic Cα inequalities

We state here three standard propositions, whose proofs will be omitted. Take α ∈ (0, 1) and
f ∈ L∞(R).

Proposition 5.1 If f ∈ L∞(R) and f ′ ∈ Ċα(R) then f ∈ C1+α(R) and there exists C > 0
such that

‖ f ′‖L∞(R) ≤ C‖ f ‖
α

1+α
L∞(R)‖ f ′‖

1
1+α
Ċα(R)

Proposition 5.2 If f ∈ L∞(R) and f ′′ ∈ Ċα(R) then f ∈ C2+α(R) and there exists C > 0
such that

‖ f ′′‖L∞(R) ≤ C‖ f ‖
α

2+α
L∞(R)‖ f ′′‖

2
2+α
Ċα(R)

Proposition 5.3 If f ∈ C2+α(R), there exists C > 0 such that

1. ‖ f ′‖∞ ≤ C‖ f ‖
1
2∞‖ f ′′‖

1
2∞ ≤ C‖ f ‖

1+α
2+α∞ ‖ f ′′‖

1
2+α
Ċα(R)

2. ‖ f ′‖Ċα(R) ≤ C‖ f ′‖
α

1+α∞ ‖ f ′′‖
1

1+α
Ċα(R)

≤ C‖ f ‖
α

2+α∞ ‖ f ′′‖
2

2+α
Ċα(R)

3. ‖ f ‖Ċα(R) ≤ C‖ f ‖
α

1+α∞ ‖ f ′‖
1

1+α
Ċα(R)

≤ C‖ f ‖
α(3+α)

(2+α)(1+α)∞ ‖ f ′′‖
2

(2+α)(1+α)
Ċα(R)
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5.2 Estimates on σ∗

The aim of the subsection is to prove one part of Lemma 3.2. We recall that σ0 and σ∗ are
defined in Theorem 3.1 by the following inequalities and equations:

σ0 ∈ C2+α(R) , ‖σ0‖∞ ≤ C , ‖∂xxσ0‖Ċα(R) ≤ ε

∂tσ∗ − ∂xxσ∗ = 0 (t, x) ∈ R
+ × R

σ∗(0, x) = σ0(x) x ∈ R

Let us prove the estimates of Lemma 3.2.
Estimates on the integral kernal of the heat equation lead to the existence of a constant

C > 0 such that, for all t ∈ R
+,

‖σ∗(t)‖∞ ≤ C , ‖∂xxσ∗(t)‖∞ ≤ C‖∂xxσ0‖∞ ≤ Cε
2

2+α

and

‖∂xxσ∗(t)‖Ċα(R) ≤ C‖∂xxσ0‖Ċα(R) ≤ Cε

Interpolating those estimates, we get bounds on all the derivatives up to the second order of
σ∗ in both norms L∞ and Ċα .

In the same way, we know time dependent estimates on the heat kernel:

‖∂xσ∗‖∞ ≤ C√
t
‖σ0‖∞ .

We can deduce from this inequality and from Proposition 5.3 similar time dependent estimates
on the L∞ and Ċα norm of the derivatives of σ∗.

Finally interpolating the first ones with the second ones, we get for any δ ∈ (0, 1),

‖σ∗‖∞ ≤ C, ‖∂xσ∗‖∞ ≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xxσ∗‖∞ ≤ Cε
2δ

2+α

(1 + t)1−δ

‖σ∗‖Ċ
α
2 ,α((t,2t)×R)

≤ Cε
δ

2+α

(1 + t)1/2−δ/2 , ‖∂xσ∗‖Ċ
α
2 ,α((t,2t)×R)

≤ Cε
2δ

2+α

(1 + t)1−δ

5.3 Estimates on v∗

The aim of the subsection is to prove the second part of Lemma 3.2. We recall that v0 and v∗
are defined in Theorem 3.1 by

v0 ∈ C2+α(R2) , ‖v0‖C2+α(R2) ≤ ε , Pv0(x, .) = 0

∂tv∗ + (−∂xx + L0)v∗ = 4

c2
0

(
∂xσ∗
σ∗

)2

Q(φ0")

v∗(0, x, y) = v0(x, y) , (x, y) ∈ R
2

Let us prove the estimates of Lemma 3.2. Written in its integral form, equation (3.7) satisfied
by v∗ reads

v∗(t) = et (−∂xx +L0)v0 +
t∫

0

e(t−τ)(−∂xx +L0)
4

c2
0

(
∂xσ∗
σ∗

)2

Q(φ′′
0 )dτ .
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Keeping in mind that L0 generates an analytic semigroup which is exponentially decreasing
in time in the supplementary R(L0) of its kernel and using the above section on σ∗, we can
bound v∗ and its derivative in the L∞ norm. Let us just notice that the desired power of ε is
obtained for ∂xv∗ by inverting the derivative and the semi-group. Finally, Ċα estimates are
obtained by the inequality ‖ f ‖Ċα ≤ ‖ f ′‖∞.

5.4 Estimates on F1 and F2

We recall the expressions of the non-linear terms F1 and F2 that appear in the equations for
v1 and σ1 in the local study of planar fronts (see Sect. 3.1):

F1(σ1, v1) = Q(Kφ0 [v]v2)+ 4

c0

σx

σ
Q(vxy)+ 4

c2
0

(σx

σ

)2
Q(vyy)

+ 4

c2
0

((
(σx

σ

)2 −
(
∂xσ∗
σ∗

)2
)

Q(φ′′
0 )− 2

c0

(
σt

σ
− σxx

σ
−

(σx

σ

)2
)

Q(vy)

)

F2(σ1, v1) = c0

2
σ

∫

R

ψ0(y)Kφ0 [v]v2 dy + 2σx

∫

R

ψ0(y)vxy dy

+ 2

c0

σ 2
x

σ

∫

R

ψ0(y)vyy dy −
(

σt − σxx + σ 2
x

σ

) ∫

R

ψ0(y)vy dy

where we have noted, for commodity: (σ, v) = (σ∗ + σ1, v∗ + v1) and

Kφ0 [v]v2 = f (φ0 + v)− f (φ0)− f ′(φ0)v = 1

2

1∫

0

(1 − ζ ) f ′′(φ0 + ζv) dζv2 .

For any t > 0, we need some bounds on the norms ‖F1(t)‖L∞(R2), ‖F2(t)‖L∞(R),
‖F1‖Ċ

α
2 ,α((t,2t)×(R2))

and ‖F2‖Ċ
α
2 ,α((t,2t)×(R)). To get the bounds of the L∞ norms, all you

have to know are the following ideas:

• Since σ0 > 0 on the real line and ∂xxσ0 is small, due to the maximum principle, there
exists a > 0 such that σ(t, x) > a for any time and any real x .

• The operator Q is a projector.
• ∣

∣
∫

R
ψ0(y)v(t, x, y)dy

∣
∣ ≤ ‖v(t)‖L∞(R2)‖ψ0‖L1(R)

Then,

‖F1(t)‖L∞ ≤C
(‖v(t)‖2∞ + ‖σx (t)‖∞‖vxy(t)‖∞ + ‖σx (t)‖2∞‖vyy(t)‖∞

)

+ C(‖∂xσ1(t)‖∞‖σ∗(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2∞)‖vy(t)‖∞

and

‖F2(t)‖L∞ ≤C
(‖v(t)‖2∞ + ‖σx (t)‖∞‖vxy(t)‖∞ + ‖σx (t)‖2∞‖vyy(t)‖∞

)

+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖∂xσ∗(t)‖2∞)‖vy(t)‖∞
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Going through the Ċ
α
2 ,α norms, the only new idea is that for any ( f, g) ∈ Cα(R),

‖ f g‖Ċα ≤ ‖ f ‖∞‖g‖Ċα + ‖g‖∞‖ f ‖Ċα .

‖F1‖Ċ
α
2 ,α((t,2t)×R2)

≤ C(‖v(t)‖∞‖v‖
Ċ
α
2 ,α

+ ‖σx (t)‖∞‖vxy‖Ċ
α
2 ,α

+ ‖σx‖Ċ
α
2 ,α

‖vxy(t)‖∞)

+ C(‖σx (t)‖2∞‖vyy‖Ċ
α
2 ,α

+ ‖σx (t)‖∞‖σx‖Ċ
α
2 ,α

‖vyy(t)‖∞)

+ C(‖σ∗(t)‖∞‖∂xσ1(t)‖∞ + ‖σ1(t)‖∞‖∂xσ∗(t)‖∞)(‖∂xσ∗(t)‖∞ + ‖∂xσ∗‖Ċ
α
2 ,α
)

+ C(‖σ∗(t)‖∞‖∂xσ1‖Ċ
α
2 ,α

+ ‖σ∗‖Ċ
α
2 ,α

‖∂xσ1(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖σ1(t)‖∞‖∂xσ∗‖Ċ

α
2 ,α

+ ‖σ1‖Ċ
α
2 ,α

‖∂xσ∗(t)‖∞)‖∂xσ∗(t)‖∞
+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖σx (t)‖2∞)‖vy‖Ċ

α
2 ,α

+ C(‖∂tσ1‖Ċ
α
2 ,α

+ ‖∂xxσ1‖Ċ
α
2 ,α

+ ‖σx‖Ċ
α
2 ,α

‖σx (t)‖∞)‖vy(t)‖∞

and

‖F2‖Ċ
α
2 ,α((t,2t)×R)

≤C(‖σ(t)‖∞‖v(t)‖∞‖v‖
Ċ
α
2 ,α

+ ‖σ‖
Ċ
α
2 ,α

‖v(t)‖2∞)

+ C(‖σx (t)‖∞‖vxy‖Ċ
α
2 ,α

+ ‖σx‖Ċ
α
2 ,α

‖vxy(t)‖∞)

+ C(‖σx (t)‖2∞‖vyy‖Ċ
α
2 ,α

+ ‖σx (t)‖∞‖σx‖Ċ
α
2 ,α

‖vyy(t)‖∞)

+ C(‖∂tσ1(t)‖∞ + ‖∂xxσ1(t)‖∞ + ‖σx (t)‖2∞)‖vy‖Ċ
α
2 ,α

+ C(‖∂tσ1‖Ċ
α
2 ,α

+ ‖∂xxσ1‖Ċ
α
2 ,α

+ ‖σx‖Ċ
α
2 ,α

‖σx (t)‖∞)‖vy(t)‖∞ .

5.5 The inhomogeneous one-dimensional heat equation

Some estimates in Section 3 rely on the following simple equation:
{

ut (t, x)− uxx (t, x) = f (t, x) t > 0 x ∈ R

u(0, x) = 0 x ∈ R .
(5.1)

where f ∈ C
α
2 ,α(R+ × R) is an external force which satisfies for any t0 > 0

‖ f (t0)‖L∞(R) ≤ ε
4δ

2+α

(1 + t0)2−2δ ‖ f ‖
Ċ
α
2 ,α((t0,2t0)×R)

≤ ε
5δ

2+α

(1 + t0)
5
2 (1−δ) (5.2)

The aim of this appendix is to estimate the C1+ α
2 ,2+α((t0, 2t0)× R) norm of the solution u

of Eq. (5.1) and more precisely to prove the following

Proposition 5.4 Let u ∈ C1+ α
2 ,2+α(R+ × R) be the solution of Eq. (5.1) where f satifies

bounds (5.2), then, for any t0 > 0,
⎧
⎨

⎩

‖u(t0)‖L∞(R) ≤ ε
4δ

2+α

‖ut‖Ċ1+ α
2 ,2+α

((t0,2t0)×R)
+ ‖uxx‖Ċ1+ α

2 ,2+α
((t0,2t0)×R)

≤ ε
4δ

2+α
(1+t0)

1+ α
2
.

Proof Thanks to [18], we know that for any t > 0

‖u‖
C1+ α

2 ,2+α
((0,t)×R)

≤ C
(‖u0‖∞ + ‖ f ‖Cα/2,α(R+×R)

)
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This theorem is enough to bound the C1+ α
2 ,2+α((t0, 2t0) × R) norm of the solution u for

t0 ∈ (0, 2) but we have to find another way to estimate this norm for t0 > 2. Let us remind that

u(t, x) =
t∫

0

∫

R

G(t − s, x − y) f (s, y)dyds

where G is the heat kernel G(t, x) = 1√
4π t

e− x2
4t . We immediately get ‖u(t)‖∞ ≤ ε

4δ
2+α . As

far as the partial derivatives of u are concerned, we will only deal with ∂t u since they both
play the same role and it is important to keep in mind that by interpolation, the three norms
described in 5.4 are sufficient to bound the C1+ α

2 ,2+α norm of u.
Let us bound ‖ut‖Ċ1+ α

2 ,2+α
((t0,2t0)×R)

. We devide the integral definition of u into two

pieces: for any 0 < t0 < t < 2t0

u(t, x) =
t0
2∫

0

∫

R

G(t − s, x − y) f (s, y)dyds +
t∫

t0
2

∫

R

G(t − s, x − y) f (s, y)dyds

= I (t, x) + J (t, x)

Since ∂τG(τ, η) = 1√
4πτ 3/2

(

−1

2
+ η2

4τ

)

e− η2

4τ and by the classical change of variables

z = x − y

2
√

t − s
,

It (t, x) =
t0
2∫

0

∫

R

C

t − s

(

−1

2
+ z2

)

e−z2
f (s, x − 2

√
t − sz)dzds .

Denoting X = x − 2
√

t − sz for simplicity, for any t �= t ′ and x �= x ′,

|It (t, x)− It (t
′, x ′)| ≤ C

t0
2∫

0

∫

R

z2 + 1

t2
0

e−z2
(
|t − t ′|‖ f (s)‖∞ + |t−s||X − X ′|α‖ f ‖

Ċ1+ α
2 ,2+α

)

Thus,

|It (t, x)− It (t
′, x ′)| ≤ C

t0
2∫

0

∫

R

z2 + 1

t2
0

e−z2
t
1− α

2
0

(
‖ f (s)‖∞ + ‖ f ‖

Ċ1+ α
2 ,2+α

)
dzds

≤ C

(1 + t0)1+ α
2

t0
2∫

0

(
‖ f (s)‖∞ + ‖ f ‖

Ċ1+ α
2 ,2+α

)
ds

∫

R

(z2 + 1)e−z2
dz .

The conclusion of this calculation is important: the Ċ
α
2 ,α norm of It does not depend on the

decay rate in time of the external force f provided it is integrable in time. The assumptions
(5.2) on f could have been

‖ f (t0)‖L∞(R) ≤ ε

(1 + t0)1+λ ‖ f ‖
Ċ
α
2 ,α((t0,2t0)×R)

≤ ε

(1 + t0)1+λ′

with λ and λ′ two strictly positive numbers.
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Let us now turn to J . It satisfies
{

Jt − Jxx = f , t > t0
2 , x ∈ R

J ( t0
2 , x) = 0 , x ∈ R

We make the usual change of variables τ = t
t0

, η = x√
t0

and denote v(τ, η) = J (t, x),

F(τ, η) = f (t, x). Then,
{
vτ − vηη = F , τ > 1

2 , η ∈ R

v( 1
2 , x) = 0 , η ∈ R

By [18], ‖v‖
C1+ α

2 ,2+α
((1,2)×R)

≤ C‖F‖
C
α
2 ,α((1,2)×R)

and

‖Jt‖Ċ
α
2 ,α((t0,2t0)×R)

≤ C

(1 + t0)1+ α
2
‖vt‖Ċ

α
2 ,α((1,2)×R)

≤ C

(1 + t0)1+ α
2
‖F‖

C
α
2 ,α((1,2)×R)

≤ C

(1 + t0)1+ α
2

(
‖ f (t0)‖∞ + (1 + t0)

1
2 ‖ f ‖

Ċ
α
2 ,α

)
≤ Cε

4δ
2+α

(1 + t0)3−2δ+ α
2

The proof is terminated by putting together the estimates on It and Jt . ��
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