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Abstract Motivated by a renewed interest in generalizations of classical almost periodicity
(originally due to Harald Bohr), we develop a theorem of Bochner within the framework of
almost periodic functions in the sense of Stepanov. As a result we establish some conditions
that guarantee the existence of Stepanov almost periodic solutions to differential equations
with Stepanov almost periodic coefficients. Finally, we extend a now classic theorem of
Favard originally stated for classical almost periodic functions to the Stepanov almost
periodic case.
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1 Introduction

Although the concept of Stepanov almost periodic functions was introduced more than
60 years ago, some of their properties which play an important role in discussing the solu-
tions of differential equations were not established until recently. For instance, we know that
Bochner’s Theorem (see [5]) can be used to derive many results on existence of (Bohr) almost
periodic (a.p.) solutions of almost periodic differential equations. However, there seems to be
no corresponding analogue known so far for Stepanov almost periodic functions. As a matter
of notation, we emphasize that the compound words almost periodic will refer exclusively
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720 Z. Hu, A. B. Mingarelli

to Bohr almost periodic while other types of almost periodicity will usually have a prefix
named after its originator before it (e.g, Stepanov a.p., Weyl a.p., or Besicovitch a.p., [4]).

Recall that a real-valued function f defined on the real line is almost periodic if it belongs
to the completion of the space T of all finite trigonometric polynomials equipped with the
norm of uniform convergence on the whole line, see [4,6] and Bochner [5] for an equivalent
definition. In a sense (made precise in the cited reference [6]) such functions are equipped
with a relatively dense set of almost periods as Bohr called them, extending the usual notion of
the period of a periodic function. Thus, for instance, the well-known Weierstrass continuous
yet nowhere differentiable function is an example of such an almost periodic function. They
need not be differentiable anywhere but they do need to be continuous, in fact, uniformly
continuous on the whole line. Other such basic results can be found in [4].

On the other hand, the main drawback for applications is precisely the requirement of
continuity of such functions, an hypothesis which is enforced throughout the theory. In order
to contend with such awkward matters, the originators of the more general theory of almost
periodic functions (which now even have their development to almost periodic distributions
[19]), considered the completion of the basic space of finite trigonometric polynomials under
less restrictive metrics. In this way, Stepanov [25] produced the first generalization of Bohr’s
almost periodic functions and it is this theory that we will develop further in this paper (see
also [3,20]). Fortunately, such Stepanov almost periodic functions need not be continuous
by their very definition, and thus their applications may be of more interest. Also, as one
would expect this larger class of generalized almost periodic functions includes Bohr’s class.
This generalization was expanded even further by both H. Weyl and A. Besicovitch, see e.g.,
[4] to produce what we now call Weyl a.p. and Besicovitch a.p. functions. We recall that the
crucial difference between these various definitions lies in the nature of the completion of
the space T relative to different metrics.

Recently, there has been somewhat of a renewal in the study and applications of generalized
forms of almost periodicity. In [12], we show that there exists a second order real linear dif-
ferential equation on the line with almost periodic coefficients for which every solution is
bounded but no non-trivial solution is almost periodic. This surprising phenomenon shows
that boundedness, by itself, is not sufficient to guarantee the existence of almost periodic solu-
tions of even the simplest linear equations. Furthermore, in [11] we constructed an example
of an almost periodic differential equation in which all solutions are bounded but there is no
any non-trival solution which is (even) Stepanov almost periodic. This raises the following
points: If these solutions are not almost periodic in the usual sense can they be almost periodic
in a more general sense? Such a question even arose recently within the context of number
theory, [15]: Here, under the assumption of a Generalized Riemann Hypothesis, the authors
obtain the Stepanov almost periodicity of some remainder terms of functions in a Selberg
class, see [15] for more details. Another question then deals with finding conditions under
which there exists at least one Stepanov a.p. solution (maybe all?) to a Stepanov a.p. equation
(or system of such equations). As we have seen this is a difficult problem even in the Bohr
a.p. case. Therefore, our ultimate goal here is to find some conditions that guarantee the
existence of at least one (non-trivial) Stepanov almost periodic solution to a given Stepanov
a.p. differential equation or system.

It is known that some stability properties of the bounded solution such as total stabil-
ity (Miller [18]), �−stability (Seifert [21–23]), stability under a disturbance from the hull
(Sell [24]), can imply the existence of almost periodic solutions for almost periodic differ-
ential equations. Another such condition is the separation property proposed by Amerio [1]
which, in a sense, is a generalization of Favard’s condition, [8]. Later, Fink [9] considered a
semi-separation property of a solution. In the paper [13], we obtain another condition that
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Stepanov almost periodic solutions 721

extends Favard’s theorem for linear almost periodic differential equations in Rn . These results
have been extended to evolution equations in Banach spaces (see [14,17]). However, there
do not appear to be corresponding results for Stepanov almost periodic differential equations
in the literature. Still, one needs to exercise caution here: In [10], Haraux shows that if a
C1-solution u of the linear first order differential inclusion

du

dt
+ Au(t) � f (t),

where A is maximal monotone and f is Stepanov a.p., which is bounded then it is in fact Bohr
a.p. (see also [2]). In order to gain further generality in our applications we must, therefore,
address the question of whether there exists a C1-Stepanov a.p. function which is not Bohr
a.p. and we do this in Sect. 5: Motivated by an article of Ursell [26], we show that there exists
C1-Stepanov a.p. functions (that must be unbounded) which are not Bohr a.p.; hence the
results may not be reduced, in general, to the study of Bohr a.p. solutions in abstract spaces
by means of the Bochner transform [20].

We first provide a formulation of Bochner’s theorem within the framework of Stepanov
almost periodic functions and then establish some conditions which imply the existence of
Stepanov almost periodic solutions for Stepanov almost periodic differential equations. At
the end we produce a version of Favard’s Theorem for systems of Stepanov almost periodic
differential equations.

2 Stepanov almost periodic functions

For completeness, we begin with some basic properties of Stepanov almost periodic functions
and those results that will be used in the sequel.

Let X be a Banach space. We define the Stepanov norm S p
l ( f ) of a function f ∈

L loc
p (R, X). The quantity

S p
l ( f ) = sup

t∈R

⎛
⎝1

l

t+l∫

t

|| f (s)||pds

⎞
⎠

1
p

where l > 0 and p ≥ 1 are some constants, is the Stepanov norm (or Sp
l -norm) of f .

Replacing the supremum norm by the Sp
l -norm in the definition of continuity (respec-

tively, uniform continuity, boundedness) of f , we can introduce the concept of Sp
l -conti-

nuity (respectively, Sp
l -uniform continuity, Sp

l -boundedness) of f . For example, we call
f ∈ Lloc

1 (R, X) Sl -bounded if there exists a constant M > 0 such that S p
l ( f ) ≤ M . It

is easy to show that S p
l -boundedness (S p

l -continuity, Sp
l -uniform continuity) is not depen-

dent on the constant l. So, we simply call such functions S p-bounded, S p -continuous, and
S p-uniformly continuous whenever these notions are applied.

We define the quantity S p
l (t, f ) as follows: for f ∈ L loc

p (R, X),

S p
l (t, f ) =

⎛
⎝1

l

t+l∫

t

|| f (s)||pds

⎞
⎠

1
p

for all t ∈ R. (2.1)

From (2.1) we have that for any t, s ∈ R,

S p
l (t, fs) = S p

l (t + s, f ).
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722 Z. Hu, A. B. Mingarelli

where fs is the translate of f . We use S p
l C(R, X) to denote the set of all Sp

l -continuous
functions. Obviously, C(R, X) ⊂ S p

l C(R, X). As in the case of almost periodic functions,
we can introduce another definition of a Stepanov almost periodic function.

Definition 1 Let f ∈ S p
l C(R, X). If for any sequence {αn} ⊂ R, there exist a subsequence{

α′
n

}
of {αn} and a function g ∈ S p

l C(R, X) such that

lim
n→∞ S p

l (t, fα′
n
− g) = 0, uniformly on R,

then f is called Sp
l -almost periodic on R.

This definition is equivalent to that of Stepanov’s (see [4]). Yet another equivalent defini-
tion is found in [16]. We now state the basic properties of Stepanov almost periodic functions.
The proofs can be found in [4].

It is easy to show that if there is a constant l0 > 0 such that f (t) is S p
l0

-almost periodic,

then f is S p
l -almost periodic for any l > 0. So, we simply say that f is S p-almost periodic

and use S pAP(R, X) to denote the set of all Sp-almost periodic functions.

Proposition 1 For any f ∈ S pAP(R, X), f is Sp-bounded on R.

Proposition 2 For any f ∈ S pAP(R, X), f is Sp-uniformly continuous on R.

Proposition 3 S pAP(R, X) is closed in the sense of the Sp-norm.

Proposition 4 Let f ∈ S pAP(R, X). If for a given l, S p
l (t, f ) → 0 as t → ∞, then

S p
l (t, f ) ≡ 0 for all t ∈ R.

We use the notations in [9]: that is, whenever α = {αn} is a sequence of real numbers,
α′ ⊂ α means that α′ = {α′

n} ⊂ {αn} is a subsequence of α. Let f, g ∈ S pC(R, X). If there
exists a sequence α and a real number l > 0 such that

lim
n→∞

⎛
⎝1

l

t+l∫

t

| f (s + αn) − g(s)|pds

⎞
⎠

1
p

= 0, (2.2)

pointwise for t ∈ R, we write S pTα f = g. If (2.2) holds uniformly on t ∈ R, we say
U S pTα f = g .

Now we give the definition of the uniform Stepanov hull of a S p -almost periodic function,
and then establish some properties of the hull.

Definition 2 Let f ∈ S pC(R, X). We call the set

{g|g ∈ SC(R, X), there exists a sequence {αn} ⊂ R such that U S pTα f = g}
the uniform Stepanov hull, or simply uniform Sp -hull, denoted by S p H( f ).

Obviously, for any f ∈ SC(R, X), S p H( f ) is not empty since f ∈ S p H( f ).

Now we discuss the properties of the uniform S p-hull of a function .

Proposition 5 If f is Bohr almost periodic on R, then

H( f ) ⊆ S p H( f )

where H( f ) is the uniform Bohr hull of f .
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Stepanov almost periodic solutions 723

Proposition 6 S p H( f ) is compact in the sense of the Sp-norm if and only if f is Sp-almost
periodic on R.

Proof Necessity. Suppose that S p H( f ) is compact. For any sequence {αn} ⊂ R, let fn(t) =
fαn (t). Then fn ∈ S p H( f ) for each n = 1, 2, . . . . So there exists a subsequence {nk} ⊆ {n}
and a function g ∈ S p H( f ) such that S p

l (t, fnk − g) → 0 uniformly on R as k → ∞. So,
S p

l (t, fαn − g) → 0 as n → ∞ uniformly on R. This implies that f is S-almost periodic on
R.

Sufficiency. Let f ∈ S pAP(R, X), gn ∈ S p H(R, X), n = 1, 2, . . . . For any n, choose{
α

(n)
k

}
⊂ R such that

S p
l ( f

α
(n)
k

− gn) = sup
t∈R

S p
l (t, f

α
(n)
k

− gn) → 0, as n → ∞.

So, we can choose a sequence {αn} ⊂ R such that

S p
l ( fαn − gn) <

1

n
, for each n = 1, 2, . . . .

Since f ∈ S pAP(R, X), there exists
{
αnk

} ⊆ {αn} and a function g ∈ S pC(R, X) such that

lim
n→∞ S p

l (t, fαnk
− g) = 0, uniformly on R.

So, g ∈ S p H(R, X) and

S p
l (t, gnk − g) ≤ S p

l (t, gnk − fαnk
) + S p

l (t, fαnk
− g)

≤ S p
l (t, gnk − fαnk

) + sup
t∈R

S p
l (t, fαnk

− g)

≤ 1

nk
+ S p

l ( fαnk
− g).

Therefore,

lim
k→∞ S p

l (t, gnk − g) = 0.

This means that gnk converges to g in the Sp-norm sense and so, S p H( f ) is compact. ��
Proposition 7 If f ∈ S pAP(R, X), g ∈ S p H( f ), then g ∈ S pAP(R, X) and f ∈ S p H(g).

Proof Since g ∈ S p H( f ), there exists a sequence {αn} ⊂ R such that

lim
n→∞ S p

l (t, fαn − g) = 0 uniformly on R.

For any sequence {βn} ⊂ R, let γn = βn + αn, n = 1, 2, . . . . Since f ∈ S pAP(R, X),

there exists a subsequence
{
γ ′

n

} ⊆ {γn} and a function g1 ∈ S p H( f ) such that

lim
n→∞ S p

l (t, fγ ′
n
− g1) = 0 uniformly on R,

so,

S p
l (t, gβ ′

n
− g1) ≤ S p

l (t, gβ ′
n
− fγ ′

n
) + S p

l (t, fγ ′
n
− g1)

= S p
l (t + β ′

n, g − fα′
n
) + S p

l (t, fγ ′
n
− g1)

and thus

lim
n→∞ S p

l (t, gβ ′
n
− g1) = 0 uniformly on R.

This implies that g ∈ S pAP(R, X). Choosing δn = −αn, we get f ∈ S p H(g). ��
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724 Z. Hu, A. B. Mingarelli

Proposition 8 If f ∈ S pAP(R, X), then for any g ∈ S p H( f ), S p H(g) = S p H( f ).

Proof We first show that for any f ∈ S p H( f ), S p H(g) ⊂ S p H( f ).

Let h ∈ S p H(g). Then there are two sequences {αn} and {βn} such that

lim
n→∞ S p

l ( fαn − g) = 0 uniformly on R,

and

lim
n→∞ S p

l (gβn − h) = 0 uniformly on R.

So,

lim
n→∞ S p

l ( fαn+βn − h) ≤ lim
n→∞ S p

l ( fαn+βn − gβn ) + lim
n→∞ S p

l (gβn − h) = 0 uniformly on R.

Therefore, h ∈ S p H( f ). This implies that S p H(g) ⊂ S p H( f ). From Proposition 7, f ∈
S p H(g). Using what we have proved above, we have that S p H( f ) ⊂ S p H(g). Thus,
S p H(g) = S p H( f ) and the proof is complete. ��

3 Formulation of a Bochner-type theorem

In this section, we present a version of Bochner’s theorem for almost periodic functions that
applies to the case of Stepanov almost periodic functions. This theorem plays an important
role in discussing the existence of Stepanov almost periodic solutions for Stepanov almost
periodic differential equations. Now we state a Bochner-type theorem (see [5]) for Stepanov
almost periodic functions.

Theorem 1 Let f ∈ S pC(R, X). Then f is Stepanov almost periodic on R if and only if for
any pair of sequences α, β ⊂ R, one can extract common subsequences α′ ⊂ α, β ′ ⊂ β

such that

S pTα′+β ′ f = S pTα′(S pTβ ′ f ),

i.e., there exist two functions g, h ∈ S pC(R, X) such that

lim
n→∞ S p

l (t, fα′
n+β ′

n
− g) = 0 for all t ∈ R

lim
n→∞ S p

l (t, fβ ′
n
− h) = 0 for allt ∈ R

lim
n→∞ S p

l (t, hα′
n
− g) = 0 for all t ∈ R.

Proof Necessity. Let f ∈ S pAP(R, X). For any sequences α = {αn} ⊂ R, β = {βn} ⊂ R,

we can extract a subsequence β ′′ ⊂ β and a function h ∈ S pC(R, X) such that U S pTβ ′′ f =
h and h ∈ S pAP(R, X) by Proposition 7. So, we can extract a subsequence α′ = {

α′
n

} ⊂ α′′,
which is a subsequence of α with the same subscripts as β ′′, and a function g ∈ S pC(R, X)

such that U S pTα′h = g. Now let β ′ ⊂ β ′′ have the same subscripts as α′ and let γ ′ = α′+β ′.
Then we can choose a subsequence γ ⊂ γ ′ and a function k ∈ S pC(R, X) such that
U S pTγ f = k. Since

S p
l (t, k − g) ≤ S p

l (t, k − fγn ) + S p
l (t + αn, fβn − h) + S p

l (t, hαn − g),

we can let n → ∞. Then we see that

S p
l (t, k − g) = 0 for any t ∈ R.
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Stepanov almost periodic solutions 725

But

S p
l (t, fγ − g) ≤ S p

l (t, fγ − k) + S p
l (t, k − g) → 0 as n → ∞.

This implies that S pTγ f = g. Since γ ⊂ γ ′ = α′ + β ′, we can write γ = α + β where
α ⊂ α′ and β ⊂ β ′ have the same subscripts and S pTαh = g, S pTβ f = h. This completes
the proof of the necessity.

Sufficiency. For any sequence γ = {γn}, we will show that there exist a subsequence
γ ′ ⊂ γ and a function g ∈ S pC(R, X) such that U S pTγ ′ f = g.

For any sequence γ = {γn} , let α = 0, β = γ . From the assumptions, we can choose com-
mon sequences α′ ⊂ α, β ′ ⊂ β and the functions g, h ∈ S pC(R, X) such that S pTα′+β ′ f =
g, S pTβ ′ f = h, S pTα′h = g. So, S pTβ ′ f = g, and S pTβ ′ f = h. Therefore,

S p
l (t, g − h) ≤ S p

l (t, g − fβ ′
n
) + S p

l (t, fβ ′
n
− h) → 0 as n → ∞ for any t ∈ R.

So,

S p
l (t, g − h) ≡ 0 for any t ∈ R.

Now we will show that U S pTβ ′ f = g., i.e.,

lim
n→∞ S p

l (t, fβ ′
n
− g) = 0 uniformly on R.

Assuming to the contrary, we suppose that the convergence of the above is not uniform
on R. Then there exists a real number ε0 > 0, a subsequence ν = {νn} of β and a sequence
t = {tn} ⊂ R such that

S p
l (tn, fνn − g) ≥ ε0 for any n = 1, 2, . . . .

From the given conditions, we can choose a pair of common subsequences ν′ ⊂ ν, t ′ ={
t ′n

} ⊂ t and functions g1, h1 ∈ S pC(R, X) such that S pTν′+t ′ f = g1, S pTν′ f = h1 and
S pTt ′h1 = g1. Since ν′ ⊂ ν ⊂ β, we have that

S p
l (t, h − h1) ≤ S p

l (t, fυ ′
n
− h) + S p

l (t, fν′
n
− h1).

Letting n → ∞, we have that S p
l (t, h − h1) ≡ 0 for all t ∈ R. But,

S p
l (t, ft ′n+ν′

n
− gt ′n ) ≤ S p

l (t, ft ′n+ν′
n
− g1) + S p

l (t, g1 − h1t ′n ) + S p
l (t, h1t ′n − gt ′n ).

So, if we let n → ∞, we have that

S p
l (t, ft ′n+ν′

n
− gt ′n ) → 0, for any t ∈ R.

We set t = 0, and use the fact that S p
l (0, ft+S p ) = S p

l (t, fs). We have that

S p
l (t ′n, fν′

n
− g) → 0 as n → ∞.

Since t ′ ⊂ t, we obtain a contradiction because

S p
l (tn, fνn − g) ≥ ε0 for any n = 1, 2, . . .

This completes the proof of this theorem. ��

123



726 Z. Hu, A. B. Mingarelli

4 Stepanov almost periodic differential equations

In this section, we consider Sp-almost periodic differential equations. First, we introduce
some concepts related to Sp-almost periodic functions with parameters, i.e., f (t, x) : R ×
Rn → Rn . We assume that for any x ∈ Rn, f (t, x) ∈ S pC(R, Rn) and for any t ∈
R, f (t, x) is continuous on Rn . We write the set of all such functions as S pCt Cx (R ×
Rn, Rn). Let K be a compact subset of Rn . For any f ∈ S pCt Cx (R × Rn, Rn), we write

S p
l (t, f, K ) = sup

x∈K
S p

l (t, f (·, x))

and

S p
l ( f, K ) = sup

t∈R
S p

l (t, f, K )

Let f, g ∈ S pCt Cx (R × Rn, Rn), α = {αn} ⊂ R be a sequence, and K a compact subset
of Rn . If

S p
	 (t, fαn − g, K ) → 0 as n → +∞ pointwise for t ∈ R (4.1)

we write S p
K Tα f = g. If (4.1) also holds uniformly for t ∈ R, we write it as U S p

K Tα f = g.

Similarly, we denote the uniform Sp-hull of f by S p
K H( f ), i.e.,

S p
K H( f ) = {

g| there is a sequence α ⊂ R such that U S p
K Tα f = g

}
.

Definition 3 Let f ∈ L loc
p Cx (R × Rn, Rn). We say that f Sp-almost periodic in t uniformly

in x if for any compact subset K of Rn , and any sequence α = {αn} ⊂ R, one can extract a
subsequence α′ ⊂ α and a function g ∈ Lloc

p Cx (R × Rn, Rn) such that U S p
K Tα f = g.

Definition 4 Let f be Sp-almost periodic in t uniformly in x and K be a compact subset
of Rn . If there exist a contant q > 0 and a Sp -almost periodic function l(t) ∈ Lq(R) such
that 1

p + 1
q = 1 and for any x, y ∈ K , we have

| f (t, x) − f (t, y)| ≤ l(t) |x − y| , for almost all t ∈ R,

we say that f is S p-Lipschitzian in K .

Proposition 9 Let K be a compact subset of Rn and f ∈ S pCt Cx (R × Rn, Rn). If f is
Sp-Lipschitzian in K , then for any g ∈ S p

K H( f ), g is also Sp-Lipschitzian in K .

Proof Since f is Sp-Lipschitizan in K , there exist a constant q > 0 and a Sp-almost periodic
function l(t) ∈ Lq(R) such that 1

p + 1
q = 1 and for any x, y ∈ K , we have

| f (t, x) − f (t, y)| ≤ l(t) |x − y| , for almost all t ∈ R.

For any g ∈ S p
K H( f ), there is a sequence α ⊂ R such that U S p

K Tα f = g, that is,

lim
n→∞

⎛
⎝1

l

t+l∫

t

| f (s + αn, x) − g(s, x)|pds

⎞
⎠

1
p

= 0

uniformly in R × K . Since l(t) is Sp-almost periodic, for the sequence α, there exist a
subsequence α′ ⊂ α and a function k ∈ S p H(l) such that

lim
n→∞

⎛
⎝1

l

t+l∫

t

|l(s + α′
n) − k(s)|pds

⎞
⎠

1
p

= 0.
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Stepanov almost periodic solutions 727

So, by Minkowski’s inequality,

⎛
⎝1

l

t+l∫

t

|g(s, x) − g(s, y)|pds

⎞
⎠

1
p

≤
⎛
⎝1

l

t+l∫

t

|g(s, x) − fα′
n
(s, x)|pds

⎞
⎠

1
p

+
⎛
⎝1

l

t+l∫

t

| fα′
n
(s, x) − fα′

n
(s, y)|pds

⎞
⎠

1
p

+
⎛
⎝1

l

t+l∫

t

| fα′
n
(s, y) − g(s, y)|pds

⎞
⎠

1
p

≤
⎛
⎝1

l

t+l∫

t

|g(s, x) − fα′
n
(s, x)|pds

⎞
⎠

1
p

+
⎛
⎝1

l

t+l∫

t

|lα′
n
(s) − k(s)|pds

⎞
⎠

1
p

|x − y|

+
⎛
⎝1

l

t+l∫

t

k(s)pds

⎞
⎠

1
p

|x − y| +
⎛
⎝1

l

t+l∫

t

| fα′
n
(s, y) − g(s, y)|pds

⎞
⎠

1
p

Passing to the limit as n → +∞, we have that

⎛
⎝1

l

t+l∫

t

|g(s, x) − g(s, y)|pds

⎞
⎠

1
p

≤
⎛
⎝1

l

t+l∫

t

k(s)pds

⎞
⎠

1
p

|x − y|.

So,

t+l∫

t

|g(s, x) − g(s, y)|pds ≤ |x − y|p

t+l∫

t

k(s)pds

and this completes the proof of the proposition. ��
Now consider the system of Sp-almost periodic differential equations

x ′ = f (t, x) (4.2)

where f ∈ Lloc
p Cx (R × Rn, Rn) is Sp-almost periodic in t uniformly in x ∈ Rn . We always

assume that for any (t0, x0) ∈ R × Rn , the equation (4.2) has a solution through (t0, x0),
defined in [t0,+∞) and we denote such a solution by x(t, t0, x0, f ). Our main goal is to
discuss the existence of Sp-almost periodic solutions of (4.2).

The next few results deal with (Lebesgue) measure theory and are included for com-
pletemness. Let I be a subset of R. We use m(I ) to denote the measure of I . If I ′ is another
subset of R, I\I ′ is the set

{t |t ∈ I, but, t /∈ I ′}
Let I = [a, b] be a closed interval of R and F = { f } a subset of S pC(R, Rn). We say

F is almost everywhere equi-continuous on I if there exists at most a subset I ′ of I with
m(I ′) = 0 such that F is equi-continuous on I\I ′. F is said almost everywhere uniformly
bounded on I if there exists at most a subset I ′ of I with m(I ′) = 0 such that F is uniformly
bounded on I\I ′. Let { fn} ⊂ F be a sequence of functions. { fn} is almost everywhere
uniformly convergent on I if there exists at most a subset I ′ of I with m(I ′) = 0 such that
{ fn} is uniformly convergent on I\I ′.
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728 Z. Hu, A. B. Mingarelli

Lemma 1 Let I = [a, b] be a closed interval of R. For any subset I0 of I with m(I0) = 0,
there exists a subset Q0 of I\I0 , which is countable and dense in I\I0.

Proof Let QI = {r1, r2, . . . , rn, . . .} be the set of all rationals in I . Then QI is dense in I .
For any subset I0 of I with m(I0) = 0, we show that for each rn ∈ QI , there exists a sequence
{tn

k } ⊂ I\I0 such that tn
k → rn as k → ∞. In fact, if there exists an rn , and there exists no such

sequence, then there must exist a real number δ > 0 such that (rn − δ, rn + δ) ∩ (I\I0) = ∅.
We can take δ > 0 sufficiently small so that (rn − δ, rn + δ) ⊂ I . So, (rn − δ, rn + δ) ⊂ I0.
This contradicts the fact that m(I0) = 0. Now, let T = ∪∞

n=1{tn
k }. Obviously, T ⊂ I\I0 and

it is countable and dense in I\I0. This completes the proof of this lemma. ��
Theorem 2 Let F = { f } be a set of functions defined on a bounded interval I . If F is
almost everywhere uniformly bounded and almost everywhere equi-continuous on I , then F
contains a sequence which is almost everywhere uniformly convergent on I .

Proof Let I0 is subset of I with m(I0) = 0 such that F is uniformly bounded and equi-con-
tinuous on I\I0. From Lemma 1, there exists a subset T of I\I0, which is countable and
dense in I\I0.

The rest of the proof is the same as that of the Ascoli Theorem (see [7], by replacing the
set of all rationals in I by the set T . We omit it. ��
Corollary 1 Let { fn} be a sequence of functions defined on R. If { fn} is almost everywhere
bounded and almost everywhere equi-continuous on R, then there exists a subsequence of
{ fn} , which is almost everywhere convergent on every compact subset of R.

Proof Using Theorem 2 and a diagonalization argument, we can find a subsequence { fnk } of
{ fn} which is almost everywhere uniformly convergent on every compact subset of R. For
details, see [9]].

Now, we discuss the differential equation (4.2) and the equation

x ′ = g(t, x) (4.3)

where g(t, x) ∈ S p
K H( f ). We will establish some properties of the bounded solutions of

(4.3). Firstly, we have the following lemma. ��
Lemma 2 Let K be a compact subset of Rn, f be Sp-Lipschitzian in K , and φ a solu-
tion of (4.2) with {φ(t)|t ∈ R} ⊂ K . If there exist a sequence α = {αn} ⊂ R, a function
g ∈ S p HK ( f ) and a function ϕ ∈ S p H(φ) such that {ϕ(t)|t ∈ R} ⊂ K , S p

K Tα f = g and
S pTαφ = ϕ holds uniformly in any compact subset of R, then there exists a solution of (4.3),
say ϕ̃, such that S pTαφ = ϕ̃ holds uniformly in any compact subset of R, and ϕ̃ ∈ K for all
t ∈ R.

Proof By assumption, there is a constant l > 0 such that

lim
n→∞

⎛
⎝1

l

t+l∫

t

| f (s + αn, x) − g(s, x)|pds

⎞
⎠

1
p

= 0,

(4.4)

lim
n→∞

⎛
⎝1

l

t+l∫

t

|φ(s + αn) − ϕ(s)|pds

⎞
⎠

1
p

= 0,
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uniformly for x ∈ K and pointwise for t ∈ R. In particular, for each t ∈ R, it follows that

limn→∞
(∫ l

0 |φ(s + t + αn) − ϕ(t + s)|pds
) 1

p = 0; in other words, the sequence {φ(t +
s + αn)} in L p[0, l] converges to ϕ(t + s), and hence the sequence converges to ϕ(t + s) in
the sense of measure on [0, l]. Since t ∈ R is arbitrary, the sequence of measurable functions
{φ(τ +αn)} converges to ϕ(τ) in the sense of measure on R; hence from a well known result
in the theory of Lebesgue measure we know that there is a subsequence α′ of α such that
limn→∞ φ(τ + α′

n) = ϕ(τ) a.e. on R. Take a point t0 in R such that limn→∞ φ(t0 + α′
n) =

ϕ(t0). Since φ is a solution of (4.2), we get the following relations:

φ(t + α′
n) = φ(t0 + α′

n) +
t∫

t0

f (s + α′
n, φ(s + α′

n))ds, (4.5)

for t ∈ R, n = 1, 2, . . . . Note that

lim
n→∞

⎛
⎝

t∫

t0

| f (s + α′
n, ϕ(s)) − g(s, ϕ(s))|pds

⎞
⎠

1
p

= 0,

(4.6)

lim
n→∞

⎛
⎝

t∫

t0

|φ(s + α′
n) − ϕ(s)|pds

⎞
⎠

1
p

= 0,

locally uniformly for t ∈ R (which means the uniformity of convergence on any finite interval
in R). We now show that

lim
n→∞

t∫

t0

f (s + α′
n, φ(s + α′

n))ds =
t∫

t0

g(s, ϕ(s))ds, (4.7)

locally uniformly for t ∈ R. From the assumption, Holder’s inequality and Cauchy’s inequal-
ity, we have that for t ≥ t0,∣∣∣∣∣∣

t∫

t0

fα′
n
(s, φα′

n
(s))ds −

t∫

t0

g(s, ϕ(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣

t∫

t0

(
fα′

n
(s, φα′

n
(s)) − g(s, ϕ(s))

)
ds

∣∣∣∣∣∣

≤
t∫

t0

∣∣( fα′
n
(s, φα′

n
(s)) − fα′

n
(s, ϕ(s))

)∣∣ ds +
t∫

t0

∣∣( fα′
n
(s, ϕ(s)) − g(s, ϕ(s))

)∣∣ ds

≤
t∫

t0

lα′
n
(s)

∣∣φα′
n
(s) − ϕ(s)

∣∣ ds +
t∫

t0

∣∣( fα′
n
(s, ϕ(s)) − g(s, ϕ(s))

)∣∣ ds

≤
⎛
⎝

t∫

t0

l(s + α′
n)qds

⎞
⎠

1
q

⎛
⎝

t∫

t0

∣∣φ(s + α′
n) − ϕ(s)

∣∣p ds

⎞
⎠

1
p

+
⎛
⎝

t∫

t0

| fα′
n
(s, ϕ(s)) − g(s, ϕ(s))|pds

⎞
⎠

1
p

Using (4.6), we see that (4.7) holds.
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730 Z. Hu, A. B. Mingarelli

Define a (continuous) function ϕ̃(t) by

ϕ̃(t) = ϕ(t0) +
t∫

t0

g(s, ϕ(s))ds, t ∈ R.

From (4.5) and (4.7), we see that limn→∞ φ(t + α′
n) = ϕ̃(t), locally uniformly for t ∈ R.

Consequently, it follows that ϕ(t) ≡ ϕ̃(t) a.e. on R. Hence

lim
n→∞

⎛
⎝1

l

t+l∫

t

|φ(s + α′
n) − ϕ̃(s)|pds

⎞
⎠

1
p

= lim
n→∞

⎛
⎝1

l

t+l∫

t

|φ(s + α′
n) − ϕ(s)|pds

⎞
⎠

1
p

= 0,

locally uniformly for t ∈ R, which shows S pTα′φ = ϕ̃. Furthermore, we get

ϕ̃(t) = ϕ(t0) +
t∫

t0

g(s, ϕ(s))ds

= ϕ̃(t0) +
t∫

t0

g(s, ϕ̃(s))ds, t ∈ R,

which shows that ϕ̃ is a solution of (4.3). The last conclusion is obvious. This completes the
proof of Lemma. ��

Remark According to this lemma, if φ is a solution of (4.2), and there exists a sequence
α ⊂ R such that (4.4) hold, we can simply write S pTαφ = ϕ̃ as a solution of (4.3).

Theorem 3 Suppose that f (t, x) is Sp-almost periodic in t uniformly in x ∈ Rnand bounded
almost everywhere in t on R × Rn. Let K be a compact subset of Rn, φ(t) a solution of (4.2)
with φ(t) ∈ K for all t ∈ R. If f is Sp -Lipschitzian in K , then for any given sequence α ⊂ R,
one can extract a subsequence α′ of α and functions g ∈ S p

K H( f ), ϕ, φ1 ∈ S pC(R, Rn)

such that S pTα′φ = ϕ, S pT−α′ϕ = φ1 holds uniformly on any compact subset of R, ϕ and
φ1 are solutions of (4.3) and (4.3), respectively, and ϕ(t) ∈ K , φ1(t) ∈ K for all t ∈ R.

Proof From the assumptions, for any given sequence α ⊂ R, we can choose a subsequence
β ⊂ α and a function g ∈ S p

K H( f ) such that g = U S p
K Tβ f and f = U S p

K T−β g. Let
IN = [−N , N ]. From the assumptions on f , we have that f (t, x), f (t +βn, x) are uniformly
bounded almost everywhere on IN for all x ∈ K . So, φ(t + βn) is uniformly bounded and
almost everywhere equi-continuous on IN . Using Corollary 1, we can extract a subsequence
γ ⊂ β and a function ϕ̃ such that {φ(t + γn)} is almost everywhere uniformly conver-
gent to ϕ̃ on IN . So, we have that S p

K Tγ f = g and S pTγ φ = ϕ̃ holds uniformly on each
IN , N = 1, 2, . . . . From Lemma 2 , there exists a solution ϕ of (4.3) such that S pTγ φ = ϕ

holds in each IN and ϕ(t) ∈ K for all t ∈ R.
Using the same argument, we can find a subsequence α′ ⊂ γ and φ̃ such that U S p

K T−αg =
f and U S p

K T−αϕ = φ̃ hold on each IN . Again using Lemma 2, there exists a solution φ1
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Stepanov almost periodic solutions 731

of (4.2) such that U S pT−αϕ = φ1 holds on each IN and φ1(t) ∈ K for all t ∈ R. This
completes the proof of the theorem. ��

Theorem 4 Suppose that f (t, x) satisfies all conditions in Theorem 3. Let K be compact
subset of Rn, φ(t) a solution of (4.2) defined on [t0,+∞) for some t0 ∈ R, valued in K . If
f is Sp-Lipschitzian in K ,then for any g ∈ S p

K H( f ) , the equation (4.3) has a solution ϕ

defined on R with values in K .

Proof Let αn = n. Then φ(t + n) is a solution of

x ′ = f (t + n, x)

defined on [t0 − n,+∞). Using arguments similar to Theorem 3, there exist a function
g ∈ S p

K H( f ), ϕ and α′ ⊂ α such that S p
K Tα f = g , S pTαφ = ϕ and ϕ is a solution of (4.3).

Obviously, ϕ is defined on R. At the same time, there exists φ1 with φ1 = S pT−αϕ and φ1

is a solution of (4.2) defined on R. Now, using Theorem 3, for any g ∈ S p
K H( f ), we get a

solution of (4.3) which is defined on R with values in K . The proof is complete. ��

We can prove the following lemma easily using the definitions of Stepanov hull and of
Sp-norm.

Lemma 3 Let φ ∈ S pC(R, Rn), l > 0 a real number. Then for any ϕ ∈ S p H(φ), we have
S p

l (ϕ) ≤ S p
l (φ).

We also have

Lemma 4 Let {xn(t)} be a sequence of solutions of (4.2), defined on R. If {xn(t)} is almost
everywhere uniformly convergent on any compact subset of R, then there exists a solution
φ(t) of (4.2) such that {xn(t)} almost everywhere uniformly converges to φ(t) on any compact
subset of R.

Proof From the conditions, we can take a function x∗(t), defined almost everywhere on R
and {xn(t)} almost everywhere uniformly converges to x∗(t) on any compact subset of R.
Let I0 ⊂ R, with m(I0) = 0 and let x∗(t) be defined on R\I0. Now choose t0 ∈ R\I0 and
define

φ(t) =
{

x∗(t0) + ∫ t
t0

f (s, x∗(s))ds t ∈ I0

x∗(t) t ∈ R\I0.

It is easy to show that φ(t) is a solution of (4.2) and {xn(t)} almost everywhere uniformly
converges to φ(t) on any compact subset of R. This ends the proof. ��

Theorem 5 Suppose that f (t, x) is almost everywhere bounded in t uniformly in x ∈ R. Let
K be a compact subset of Rn, φ a solution of (4.2) with φ(t) ∈ K for all t ∈ R. Then there
is a solution φ0 of (4.2) such that φ0(t) ∈ K for all t ∈ R and φ0(t) minimizes the Sp-norm
in K , i.e., for any solution ϕ of (4.2) with ϕ(t) ∈ K for all t ∈ R, S p

l (φ0) ≤ S p
l (ϕ).

Proof Let

F = {x(t)|x(t) is a solution of (4.2), x(t) ∈ K for all t ∈ R}
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732 Z. Hu, A. B. Mingarelli

and define

λ = inf
x∈F

{S p
l (x)}.

Then λ exists and λ ≤ S p
l (φ). Now we define

λn = inf
x∈F

⎧⎪⎪⎨
⎪⎪⎩

sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|x(s)|pds

⎞
⎠

1
p

⎫⎪⎪⎬
⎪⎪⎭

.

Obviously, λn ≤ λn+1 and limn→∞ λn = λ. So, we can find a sequence {xn(t)} such that
xn(t) ∈ F and for each n ∈ Z+

sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|x(s)|pds

⎞
⎠

1
p

≤ λn + 1

n
. (4.8)

According to the assumptions, {xn(t)} are uniformly bounded and almost everywhere equi-
continuous. So, from Theorem 2, there exists a subsequence {xnk (t)} of {xn(t)} which is
almost everywhere uniformly convergent on any compact subset of R. From Lemma 4, there
exists a function φ0 ∈ F such that {xnk (t)} converges to φ0 almost everywhere uniformly.
Now, using Minkovskii’s inequality and (4.8), we have that

sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|φ0(s)|pds

⎞
⎠

1
p

≤ sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|φ0(s) − xnk (s)|pds

⎞
⎠

1
p

+ sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|xnk (s)|pds

⎞
⎠

1
p

≤ sup
|t |≤n

⎛
⎝1

l

t+l∫

t

|φ0(s) − xnk (s)|pds

⎞
⎠

1
p

+ λn + 1

n

for each n ∈ Z+. Letting n → ∞, we have that S p
l (φ0) ≤ λ. Since φ0 ∈ F , from the

definition of λ, we obtain S p
l (φ0) = λ. This ends the proof of the theorem. ��

Lemma 5 Suppose that f (t, x) is Sp-almost periodic in t uniformly in x ∈ Rn and almost
everywhere bounded in t uniformly in x ∈ R. Let K be a compact subset of Rn, φ a solution
of (4.2) defined on R with minimizing Sp-norm in K . If f (t, x) is Sp-Lipschitzian in K and
there are g ∈ S p

K H( f ) and a sequence α ⊂ R such that U S pTα f = g and S pTαφ exists
uniformly on any compact subset of R, then, S pTαφ is a solution of the equation

x ′ = g(t, x) (4.9)

with minimizing Sp-norm in K .

Proof From the Remark of Lemma 2, we know that S pTαφ is a solution of (4.9) valued in
K . Firstly, we show that S p

l (S pTαφ) = S p
l (φ). In fact, by Lemma 3, we have S p

l (S pTαφ) ≤
S p

l (φ). On the other hand, from Theorem 3 we can take a subsequence α′ ⊂ α such that
S pT−α′(S pTαφ) is a solution of (4.2) valued in K . Using Lemma 3 again, we have that

123



Stepanov almost periodic solutions 733

S p
l (S pT−α′(S pTα′φ)) ≤ S p

l (S pTα′φ) ≤ S p
l (φ). But, according to the assumption, φ mini-

mizes the Sp-norm in K , and so S p
l (φ) ≤ S p

l (S pT−α′(S pTα′φ)). Therefore, we have proved
that S p

l (S pTαφ) = S p
l (φ).

Now, we shall show that S pTαφ minimizes Sp-norm in K . Assuming the contrary, the
equation (4.9) has another solution ϕ such that S p

l (ϕ) < S p
l (S pTαφ). Then, there exists a

subsequence α′ ⊂ α such that U S p
K T−α′ g = f and from Theorem 3, there exists a solution

φ1 of (4.2) such that S pT−α′ϕ = φ1 and φ1(t) ∈ K for all t ∈ R. From Lemma 3, we have
that S p

l (φ1) = S p
l (S pT−α′ϕ) ≤ S p

l (ϕ) < S p
l (S pTαφ) = S p

l (φ). This contradicts the fact
that φ minimizes the Sp-norm in K . This ends the proof of this lemma. ��

Now we state and prove the main result of this section, i.e., an existence theorem for an
Sp-almost periodic solution of (4.2).

Theorem 6 Suppose that f (t, x) is Sp-almost periodic in t uniformly in x ∈ R and almost
everywhere bounded in t uniformly in x ∈ Rn. Let K be a compact subset of Rn. If f (t, x) is
Sp-Lipschitzian in K and (4.2) has a solution φ(t) defined on [t0,∞) for some t0 ∈ R with
φ(t) ∈ K for all t ∈ [t0,∞) and for any g ∈ S p

K H( f ), the equation (4.9) has at most one
solution minimizing the Sp-norm in K , then, for every g ∈ S p

K H( f ), the equation (4.9) has
an Sp-almost periodic solution on R.

Proof By Theorem 4 and Theorem 5, there exists a solution φ1 of (4.2) defined on R with
minimizing Sp-norm in K . We show that φ1 is an Sp-almost periodic solution of (4.2).

To this end, we use the formulation of Bochner’s theorem above and show that for any
pair of sequences α, β ⊂ R, there are two common sequences α′ ⊂ α, β ′ ⊂ β such that
S pTα′(S pTβ ′φ1) = S pTα′+β ′φ1.

Now, let α, β ⊂ R be any pair of sequences. Since f (t, x) is Sp-almost periodic in
t uniformly in x ∈ Rn , we can find two common sequences α′ ⊂ α, β ′ ⊂ β and func-
tions g, g1 ∈ S p

K H( f ) such that g1 = U S pTβ ′ f, g = U S pTα′ g1 = U S pTα′+β ′ f . From
Theorem 3 and the Remark of Lemma 2, we can take the sequences α′, β ′ such that S pTβ ′φ1,
S pTα′(S pTβ ′φ1), S pTα′+β ′φ1 exist uniformly on any compact subset of R and S pTβ ′φ1 is
a solution of the equation x ′ = g1(t, x), while S pTα′(S pTβ ′φ1), S pTα′+β ′φ1 are all solu-
tions of (4.9). Furthermore, from Lemma 3, S pTα′(S pTβ ′φ1), S pTα′+β ′φ1 are all solutions
of (4.9) with minimizing Sp-norm in K . By the assumption of the theorem, we have that
S pTα′(S pTβ ′φ1) = S pTα′+β ′φ1 for all t ∈ R. This is what we desire.

Obviously, for any g ∈ S p
K H( f ), there exists a sequence α ⊂ R such that g = U S p

K Tα f
and therefore S pTαφ is a Sp-almost periodic solution of (4.9 ). This completes the proof of
the theorem. ��

5 A Favard-type theorem for Stepanov almost periodic systems

We show here that there exists a C1-Stepanov a.p. function that is not Bohr a.p. Indeed, the
idea, originally due to Ursell [26], can be improved upon to show the existence of C∞-Stepa-
nov a.p. functions that are not Bohr a.p.

Let εn (n = 1, 2, . . .) satisfy

0 < εn < 1,

n=∞∑
n=1

εn < ∞
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For each n, define a function fn (x) as follows:

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(x−yn,k+εn)2

ε2
n

,
(
yn,k − εn, yn,k − εn

2

]

1 − 2(x−yn,k )
2

ε2
n

,
(
yn,k − εn

2 , yn,k + εn
2

]

2(x−yn.k−εn)2

ε2
n

,
(

yn,k + εn
2 , yn.k + εn

]

0, elsewhere

where

yn,k = (2k + 1)n, k = 0,±1,±2, . . . .

Then, for each n, fn(x) is a periodic function with period 2n.

Let

f (x) =
∞∑

n=1

fn(x).

Then, f (x) is continous on (−∞, ∞) . For any positive number A and any x ∈ [−A, A]

f ′(x) =
∞∑

n=1

f ′
n(x)

where

f ′(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4(x−yn,k+εn)

ε2
n

,
(
yn,k − εn, yn,k − εn

2

] ∩ [−A, A]

− 4(x−yn,k )

ε2
n

,
(
yn,k − εn

2 , yn,k + εn
2

] ∩ [−A, A]

4(x−yn.k−εn)

ε2
n

,
(

yn,k + εn
2 , yn.k + εn

] ∩ [−A, A]

0, elsewhere on [−A, A] .

So, f ′(x) is continuous on [−A, A] for any A > 0. Since
∑∞

n=1 εn < ∞, f (x) is Stepanov
a.p. but since f ′(x) is unbounded, f (x) is not uniformly continuous on the real line and so
it is not Bohr a.p. By smoothing out (mollifying) the peaks in the example we can find an
appropriate infinitely differentiable Stepanov a.p. function that is not a.p.

Now consider a linear Sp-almost periodic system

x ′ = A(t)x + f (t) (5.1)

where A(t) is an n × n matrix function and f (t) is vector function. We always assume that
A(t) and f (t) are S2-almost periodic on R, but do not indicate this again in this section.

Lemma 6 Let A(t) and f (t) be almost everywhere bounded on any compact subset of R.
Let B ∈ S2 H(A) and g ∈ S2 H( f ) be such that there exists a sequence α ⊂ R such that
U S2Tα A = B, U S2Tα f = g. If every non-trivial bounded solution y(t) of the equation

x ′ = B(t)x (5.2)

satisfies
inf
t∈R

S2
l (t, y) > 0, (5.3)

then the equation
x ′ = B(t)x + f (t) (5.4)

has at most one solution in K with minimizing S2
l -norm.
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Proof Assuming the contrary. Suppose that there are two distinct solutions x1(t), x2(t)
of (5.4) with minimizing S2-norm in K , i.e., S2

l (x1) = S2
l (x2). Let y1(t) = 1

2 (x1(t) +
x2(t)), y2(t) = 1

2 (x1(t) − x2(t)). Then, y1(t) is a solution of (5.4), but y2(t) is a solution of
( 5.2). From the condition (5.3), we have

δ = inf
t∈R

S2
l (t, y2) > 0.

Now we have

[
S2

l (t, y1)
]2 + [

S2
l (t, y2)

]2 = 1

2

[
S2

l (t, x1)
]2 + 1

2

[
S2

l (t, x2)
]2

≤ [
S2

l (x1)
]2

.

Thus,
[
S2

l (y1)
]2 ≤ [

S2
l (x1)

]2 − [
S2

l (t, y2)
]2

≤ [
S2

l (x1)
]2 − δ2

<
[
S2

l (x1)
]2

.

So, we get S2
l (y1) < S2

l (x1). This contradicts the fact that x1 minimizes the S2
l -norm. This

ends the proof. ��
Now, we can state a generalization of Favard’s Theorem for Sp-almost periodic differential

equations.

Theorem 7 Suppose that A(t) and f (t) are almost everywhere bounded on any compact
subset of R and that for any B ∈ S2 H(A), any nontrivial solution of (5.2) satisfies (5.3). Let
K be a compact subset of Rn, φ(t) a solution of (5.1) defined on [τ,+∞), for τ ∈ R, with
values in K . Then for any B ∈ S2 H(A), g ∈ S2 H( f ), the equation (5.1) has an S2-almost
periodic solution on R.

This theorem can easily follow from Theorem 6 and Lemma 6. We leave out the details.

Acknowledgments We thank the referee for a thorough reading of the paper and for the suggested revisions
which have led to a more complete work.
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