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Abstract We study the regularity of Orlicz–Sobolev functions on metric measure spaces
equipped with a doubling measure. We show that each Orlicz–Sobolev function is quasicon-
tinuous and has Lebesgue points outside a set of capacity zero and that the discrete maximal
operator is bounded in the Orlicz–Sobolev space. We also show that if the Hardy–Littlewood
maximal operator is bounded in the Orlicz space LΨ (X), then each Orlicz–Sobolev function
can be approximated by a Hölder continuous function both in the Lusin sense and in norm.
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1 Introduction

In this paper, we consider pointwise properties of Orlicz–Sobolev functions on metric measure
spaces equipped with a doubling measure. Recall that, for a domain Ω ⊂ R

n and a Young
function Ψ , the Orlicz–Sobolev space W 1,Ψ (Ω) consists of the functions u ∈ LΨ (Ω) all
of whose first order weak derivatives belong to the Orlicz space LΨ (Ω), see Sect. 2 for the
definition of Young function and Orlicz space LΨ (Ω). The space W 1,Ψ (Ω) is a Banach
space with respect to the norm

‖u‖W 1,Ψ (Ω) = ‖u‖LΨ (Ω) + ‖|∇u|‖LΨ (Ω),

where ‖ · ‖LΨ (Ω) is the Luxemburg norm and ∇u is the weak gradient of u.
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36 H. Tuominen

Analysis on metric measure spaces, for example the theory of Sobolev type spaces, has
been under active study during the past decade. In a general metric space we cannot speak
about weak derivatives; hence there has been a need for characterizations of the classical
Sobolev and Orlicz–Sobolev spaces that do not involve derivatives. We use spaces N 1,Ψ (X)
consisting of LΨ (X)-functions with upper gradients in LΨ (X). The basic properties of these
spaces are studied in [43], see also Sect. 2.

By the Lebesgue differentiation theorem, almost every point x ∈ R
n is a Lebesgue point

of a locally integrable function u, that is,

lim
r→0

∫

B(x,r)

|u(y)− u(x)| dx = 0. (1)

The proof generalizes to metric spaces with a doubling measure, see [23, Theorem 14.15].
Classical Sobolev and Orlicz–Sobolev functions have Lebesgue points outside a set of
capacity zero. The capacities used are often defined in terms of potentials, see for exam-
ple [2] for the Sobolev case and [3,11] for Orlicz potential spaces. In the interesting paper
[36] by Malý, Swanson and Ziemer, Orlicz–Sobolev capacity is defined as an infimum of
integrals

∫
Ψ (|u|) dx +∫

Ψ (|∇u|) dx and used for example to show that for Orlicz–Sobolev
functions, Lebesgue points exist quasi everywhere. Variational capacity where one takes infi-
mum of the integrals ofΨ (|∇u|) is studied by Rudd in [38]. In addition to [36,38], pointwise
properties of Orlicz–Sobolev functions in R

n are recently studied in [6].
In the metric setting, Sobolev functions defined via pointwise inequalities have Lebesgue

points quasi everywhere measured by the corresponding Sobolev capacity, see [29,31]. We
use Orlicz–Sobolev capacity defined in [43] and show that N 1,Ψ (X) functions have Lebesgue
points everywhere except on a set of capacity zero. The main step in the proof is to show
that the discrete maximal operator, which is smoother than the Hardy–Littlewood maximal
operator, is bounded in the Orlicz–Sobolev space N 1,Ψ (X).

If p > n, then by the Sobolev embedding theorem, (a representative of) each function
of W 1,p(Rn) is locally (1 − n/p)-Hölder continuous. A corresponding embedding into a
space of continuous functions, where the moduli of continuity depends on Ψ , holds also
for Orlicz–Sobolev functions; the condition p > n is replaced by an integrability condition∫∞

Ψ̃ (t)t−(1+n′) dt < ∞, where Ψ̃ is the conjugate function of Ψ and n′ = n/(n − 1).
Embedding theorems for W 1,Ψ (Rn) were first proved by Donaldson and Trudinger [13] and
Adams [1], and improved by Cianchi [9].

We are interested in Lusin type continuity; by the classical Lusin theorem, every measura-
ble function is continuous in a complement of a set of arbitrary small measure. If the function
is more regular, then stronger versions of Lusin theorem hold. Namely, Malý showed in [35]
that each function u ∈ W 1,p(Rn) coincides with a Hölder continuous function, that is close
to u in Sobolev norm, outside a set with small capacity. The proof uses representation of
Sobolev functions by Bessel potentials. In the metric space setting, approximation of Sobo-
lev functions by Hölder continuous functions both in the Lusin sense and in norm, is studied
by Hajłasz and Kinnunen [22], and Kinnunen and Tuominen [31]. As in the last two papers,
we use maximal function arguments to show that if the Hardy–Littlewood maximal operator
is bounded in the Orlicz space, then for a given 0 < β ≤ 1, each Orlicz–Sobolev function u
coincides with a β-Hölder continuous function outside a set of small (s − (1 −β)-Hausdorff
content, where s is the doubling dimension of µ. The approximating function is close to
u in norm, see Theorem 5. This result is new even in the classical Orlicz–Sobolev space
W 1,Ψ (Rn).
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Pointwise behaviour of Orlicz–Sobolev functions 37

In the last Section, we also show that the two definitions of Orlicz–Sobolev space, via upper
gradients or pointwise inequality, give the same space if X supports a Poincaré inequality
and the Hardy–Littlewood maximal operator is bounded in the Orlicz space, see Theorem 4.

Example 1 In the main results, we assume that the Hardy–Littlewood maximal operator
is bounded in the Orlicz space. This is true if Ψ, Ψ̃ is a pair of doubling complementary
N -functions. One such example is Ψ, Ψ̃ , where

Ψ (t) = t p logα(e + t)

with p > 1 and α > 0, or p > 1 − α and −1 ≤ α < 0. The fact that Ψ is doubling and has
a doubling complementary function can be checked by standard tests for N -functions, (cf.
[33, Chap. 4], [37, Chap. 2.2.3]). Weakly differentiable functions with gradient in the Orlicz
space, Ψ as above, are used in the theory of mappings of finite distortion, see for example
[26,27] and the references therein. Orlicz and Orlicz–Sobolev spaces with suchΨ are studied
also in [14,18], the list not being exhaustive.

The paper is organized as follows. In Sect. 2, we introduce the notation and the standard
assumptions and recall the definitions of Orlicz and Orlicz–Sobolev spaces. In Sect. 3, we
discuss capacity and show that each function of N 1,Ψ (X) is quasicontinuous. Section 4
contains lemmas. Section 5 deals with Lebesgue points of N 1,Ψ (X)-functions. The Hölder
approximation of Orlicz–Sobolev functions is the content of the last section.

2 Notation and preliminaries

We assume that X = (X, d, µ) is a metric measure space equipped with a metric d and
a Borel regular outer measure µ such that open sets have positive and bounded sets finite
measure. We also assume that µ is doubling, which means that there is a constant Cµ > 0,
called the doubling constant of µ, such that

µ (B(x, 2r)) ≤ Cµµ (B(x, r))

for all balls B(x, r) = {y ∈ X : d(y, x) < r}. Recall that the doubling condition ofµ implies
that there exists a constant C0 > 0 such that whenever B0 = B(x0, r0) and B = B(x, r) are
balls with x ∈ B0 and 0 < r ≤ r0, then

µ(B)

µ(B0)
≥ C0

(
r

r0

)s

, (2)

where s = log2 Cµ, (see for example [23, Lemma 14.6]). In this paper, s denotes the smallest
exponent for which (2) holds and it is called the doubling dimension of µ.

In the main results, we assume that X is proper, that is, closed balls of X are compact.
Notice that as a doubling metric space X is proper if and only if it is complete.

The Hardy–Littlewood maximal function of a function u ∈ L1
loc(X) is

M u(x) = sup
r>0

∫

B(x,r)

|u| dµ,

where u B = ∫
B u dµ = µ(B)−1 ∫

B u dµ is the integral average of u over B. The local space
L1

loc(X) consists of functions that are integrable in each ball.
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38 H. Tuominen

Given 0 ≤ t < ∞, 0 < δ ≤ ∞ and a set E ,

H t
δ (E) = inf

{ ∞∑
i=1

r t
i : E ⊂

∞⋃
i=1

B(xi , ri ), ri ≤ δ

}
,

and limδ→0 H t
δ (E) is the t-Hausdorff measure of E . The number 0 ≤ H t∞(E) ≤ ∞ is the

t-Hausdorff content of E .
By χE , we denote the characteristic function of a set E ⊂ X . If 0 < t < ∞ and

B = B(x, r) is a ball in X , then t B = B(x, tr). In general, C will denote a positive constant
whose value is not necessarily the same at each occurrence. By writing C = C(τ, λ), we
indicate that the constant depends only on τ and λ.

2.1 Review of Orlicz spaces

We will give a brief review to Orlicz spaces. For more details and proofs, see for example
[33,37]. A function Ψ : [0,∞) → [0,∞] is a Young function if

Ψ (s) =
s∫

0

ψ(t) dt,

where ψ : [0,∞) → [0,∞] is an increasing, left continuous function which is neither
identically zero nor identically infinite on (0,∞), and satisfies ψ(0) = 0. A Young function
Ψ is convex, increasing, left-continuous,Ψ (0) = 0, andΨ (t) → ∞ as t → ∞. A continuous
Young function with properties Ψ (t) = 0 only if t = 0, Ψ (t)/t → ∞ as t → ∞, and
Ψ (t)/t → 0 as t → 0 is called an N-function. Below, Ψ is always a Young function. For
a given Ψ , the function Ψ̃ : [0,∞) → [0,∞], Ψ̃ (s) = sup {st − Ψ (t) : t ≥ 0}, is the
complementary function of Ψ .

Convexity and the property Ψ (0) = 0 imply that

Ψ (αt) ≤ αΨ (t), if 0 ≤ α ≤ 1,

Ψ (βt) ≥ βΨ (t), if β ≥ 1,
(3)

and that the function t 
→ Ψ (t)/t is increasing. Hence, for a strictly increasing Ψ , the
function t 
→ Ψ−1(t)/t is decreasing.

A Young function Ψ is doubling (satisfies the∆2-condition) if there is a constant CΨ > 0
such that

Ψ (2t) ≤ CΨ Ψ (t)

for each t ≥ 0. The smallest such constant is at least 2 by (3), and is called the doubling
constant of Ψ . The doubling condition implies that

Ψ (at) ≤ CΨ alog2 CΨ Ψ (t) (4)

for all t ≥ 0 and a ≥ 1, [43, Lemma 2.8], and that Ψ is strictly increasing and continuous.
Functions Ψ1(t) = at p , a > 0, p ≥ 1, and Ψ2(t) = (1 + t) log(1 + t)− t are examples of
doubling functions, whereas the complementary function of Ψ2, Ψ̃2(t) = et − t − 1 is not
doubling.

GivenΨ and an open setΩ⊂ X , the Orlicz space LΨ(Ω) consists of measurable functions
u : Ω → [−∞,∞] for which ∫

Ω

Ψ (α|u|) dµ < ∞
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Pointwise behaviour of Orlicz–Sobolev functions 39

for some α > 0. IfΨ is doubling, then LΨ (Ω) coincides with the set of functions u for which∫
Ω
Ψ (|u|) dµ is finite. The space LΨ (Ω) is a Banach space with the Luxemburg norm,

‖u‖LΨ (Ω) = inf

⎧⎨
⎩k > 0 :

∫

Ω

Ψ
(
k−1|u|) dµ ≤ 1

⎫⎬
⎭.

Using (3), it is easy to see that if ‖u‖LΨ (Ω) ≤ 1, then
∫
Ω
Ψ (|u|) dµ ≤ ‖u‖LΨ (Ω), and

if ‖u‖LΨ (Ω) ≥ 1, then
∫
Ω
Ψ (|u|) dµ ≥ ‖u‖LΨ (Ω). Hence ‖u‖LΨ (Ω) ≤ 1 if and only if∫

Ω
Ψ (|u|) dµ ≤ 1, see also Lemma 4.
If Ψ, Ψ̃ is a complementary pair, then

t ≤ Ψ−1(t)Ψ̃−1(t) ≤ 2t (5)

for all 0 ≤ t ≤ ∞, and the generalized Hölder inequality
∫

Ω

|u(x)v(x)| dµ ≤ 2‖u‖LΨ (Ω)‖v‖LΨ̃ (Ω) (6)

holds for all u ∈ LΨ (Ω), v ∈ L Ψ̃ (Ω). If Ψ is real-valued, then each u ∈ LΨ (X) is locally
integrable.

The maximal operator is bounded in LΨ (X) if Ψ is doubling and 2CΨ (t) ≤ Ψ (Ct) for
each t ≥ 0 with a fixed constant C > 1, see [32, Theorem 1.2.2], [10,20]. For an N -function
Ψ , the inequality above is equivalent to the doubling condition of Ψ̃ . If Ψ is doubling, the
weak type estimate

Ψ (λ)µ ({x ∈ X : Mu(x) > λ}) ≤ C
∫

X

Ψ (|u|) dµ (7)

holds for all u ∈ LΨ (X) and λ > 0. The constant C > 0 depends only on the doubling
constants of the measure µ and the function Ψ , see [19, Theorem 6.2.1], [43, Lemma 6.18].

2.2 Orlicz–Sobolev spaces

We recall the definitions and some properties of Orlicz–Sobolev spaces defined using pairs of
integrable functions and upper gradients in metric measure spaces. For proofs, see [43], and
for discussion on upper gradients, also [25,41,42]. The spaces N 1,Ψ (X) with N -function Ψ
are studied also in [5].

A Borel measurable function g ≥ 0 is an upper gradient of a function u in an open set
Ω ⊂ X if

|u(x)− u(y)| ≤
∫

γ

g ds (8)

for each pair of points x, y inΩ , and all rectifiable curves γ joining x and y inΩ . We require
that if the right-hand side of (8) is finite, then also the left-hand side is finite and well defined.

The Sobolev space N 1,Ψ (Ω) consists of functions u ∈ LΨ (Ω) which have a Ψ -weak
upper gradient g ∈ LΨ (Ω) inΩ . Being aΨ -weak upper gradient inΩ means that inequality
(8) holds for u and g except for a family of compact, rectifiable curves in Ω with zero
Ψ -modulus. If there is no risk of confusion, Ψ -weak upper gradients are called weak upper
gradients. For definition and properties of Ψ -modulus, see Sect. 4 and [43].
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40 H. Tuominen

The space N 1,Ψ (Ω) is a Banach space with the norm

‖u‖N 1,Ψ (Ω) = ‖u‖LΨ (Ω) + inf‖g‖LΨ (Ω), (9)

where the infimum is taken over weak upper gradients, or, equivalently over upper gradients.
If Ψ is doubling, then each u ∈ N 1,Ψ (X) has a minimal weak upper gradient gu ∈ LΨ (X)
which means that ‖gu‖LΨ (X) equals the infimum above.

Note that if Ψ (t) = t p , p ≥ 1, we obtain the Sobolev space N 1,p(Ω), defined by
Shanmugalingam [41].

Density of Lipschitz (or continuous) functions in N 1,Ψ (X) is an important property im-
plied by the doubling condition of Ψ and a Poincaré inequality on X . Recall that X supports
a Poincaré inequality if there exist constants CP > 0 and σ ≥ 1 such that∫

B

|u − u B | dµ ≤ CPr
∫

σ B

g dµ

for each u ∈ L1
loc(X) and every upper gradient g of u in each ball B = B(x, r). Note that, if X

is proper, the constant σ can be assumed to be 1. Namely, if X is a length space, which means
that the distance between any two points is the infimum of the lengths of the curves connecting
the points, then the constant σ can be taken to be 1 by enlarging CP . In a proper space that
supports a Poincaré inequality, the metric d can be replaced with a bi-Lipschitz equivalent
length metric, and the space with the new metric also supports a Poincaré inequality, see [23,
Chapter 9].

3 Capacity and quasicontinuity of N1,Ψ (X)-functions

We use a capacity that is based on the norm (9); the Ψ -capacity of a set E ⊂ X is

CapΨ (E) = inf
{ ‖u‖N 1,Ψ (X) : u ∈ N 1,Ψ (X), u ≥ 1 on E

}
. (10)

The functions u in (10) are called test functions for CapΨ (E). If there are no test functions,
then we set CapΨ (E) = ∞. The Ψ -capacity is an outer measure, and the infimum in (10)
is reached by using test functions which satisfy 0 ≤ u ≤ 1, see [43, Chapter 7]. Note the
difference between the Ψ -capacity and the p-capacity which is defined as the pth power of
the N 1,p(X)-norm, see [41].

A function u : X → R isΨ -quasicontinuous if for every ε > 0 there is an open set U ⊂ X
such that CapΨ (U ) < ε and u|X\U is continuous. Usually, we omit the prefix Ψ .

Next we prove some capacity estimates. The first lemma provides a lower bound for the
capacity of an arbitrary set of positive measure. The next one gives an estimate for the capacity
of a ball.

Lemma 1 Assume that Ψ is strictly increasing and E ⊂ X. If CapΨ (E)=0, then µ(E)=0.
If µ(E) > 0, then

µ(E) ≤
(
Ψ
( 1

CapΨ (E)

))−1

. (11)

Proof The first claim is proved in [43, Proposition 7.4]. Assume thatµ(E) > 0, u ∈ N 1,Ψ (X)
and u|E ≥ 1. Using (3), we have∫

X

Ψ

(
|u|Ψ−1

(
1

µ(E)

))
dµ ≥

∫

E

Ψ

(
|u|Ψ−1

(
1

µ(E)

))
dµ ≥

∫

E

1

µ(E)
dµ = 1,

123



Pointwise behaviour of Orlicz–Sobolev functions 41

and hence ‖u‖LΨ (X) ≥ (Ψ−1(µ(E)−1))−1. The claim follows because CapΨ (E) ≥
(Ψ−1(µ(E)−1))−1 by the definition of Ψ -capacity.

For the next lemma, recall that if E ⊂ X is of finite and positive measure and Ψ is
continuous and Ψ (t) = 0 only if t = 0, then

‖χE‖LΨ (X) =
(
Ψ−1

(
1

µ(E)

))−1

. (12)

Moreover, ‖u‖LΨ (A) = ‖uχ A‖LΨ (X) for all measurable sets A ⊂ X .

Lemma 2 If Ψ is doubling, then for each ball B(x, r),

CapΨ (B(x, r)) ≤ 2Cµ

(
Ψ−1

(
1

µ(B(x, r))

))−1

max

{
1

r
, 1

}
. (13)

Proof For a ball B = B(x, r), the function

u(y) =

⎧⎪⎨
⎪⎩
(2r − d(y, x))/r, if y ∈ 2B\B,

1, if y ∈ B,

0, if y ∈ X \2B

is r−1-Lipschitz and has an upper gradient gu = r−1χ
2B\B . Since u is a test function for the

capacity CapΨ (B), using (12) and the doubling condition of µ, we have that

CapΨ (B) ≤ ‖u‖N 1,Ψ (X) ≤ ‖u‖LΨ (X) + ‖gu‖LΨ (X)

≤
(

1 + 1

r

)
‖χ2B‖LΨ (X) =

(
1 + 1

r

)(
Ψ−1

(
1

µ(2B)

))−1

≤
(

1 + 1

r

)(
Ψ−1

(
1

Cµµ(B)

))−1

≤
(

1 + 1

r

)
Cµ

(
Ψ−1( 1

µ(B)

))−1

. (14)

The last inequality holds because Ψ−1(t)/t is decreasing and Cµ ≥ 1. The claim follows
since the upper bound for (1 + 1/r) is 2/r if 0 < r ≤ 1 and 2 if r > 1.

Proposition 1 Assume that Ψ is doubling and that there are constants C ≥ 1 and Q >

log2 CΨ such that µ(B(x, r)) ≤ Cr Q for each ball B(x, r), 0 < r ≤ 1. Then

CapΨ (E) ≤ CH (Q/ log2 CΨ−1)(E)

for all sets E ⊂ X.

Proof Denote α = log2 CΨ , where CΨ is the doubling constant of Ψ . Let E ⊂ X and
Bi = B(xi , ri ) be balls such that E ⊂ ∪i Bi and ri ≤ 1 for all i . By the subadditivity of the
Ψ -capacity, Lemma 2 and the upper bound for the measure of balls Bi , we have that

CapΨ (E) ≤
∞∑

i=1

CapΨ (Bi ) ≤ 2Cµ

∞∑
i=1

r−1
i

(
Ψ−1( 1

µ(Bi )

))−1

≤ 2Cµ

∞∑
i=1

r−1
i

(
Ψ−1( 1

Cr Q
i

))−1

≤ C
∞∑

i=1

r (Q/α−1)
i .
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42 H. Tuominen

The last inequality follows from (4) and the fact that Ψ−1(t)/t is decreasing. Namely, since
Ψ (t1/α) ≤ CΨ tΨ (1) for all t ≥ 1 and Ψ−1(at) ≥ aΨ−1(t) for 0 < a ≤ 1, we have that

Ψ−1(t) ≥ min

{
1,

1

CΨ Ψ (1)

}
t1/α.

The claim follows from the definition of H Q/α−1(E).

Note that Proposition 1 implies, that a set of zero (Q/ log2 CΨ − 1)-Hausdorff measure
has zero Ψ -capacity.

Variational Orlicz capacity, where the infimum is taken over norms of upper gradients of
compactly supported test functions and a connection with a Hausdorff measure on metric
spaces are studied in [8]. For a connection between Orlicz capacity and Hausdorff measure
in the classical case, see [15,36].

3.1 Quasicontinuity

Recently, in [7], Björn, Björn and Shanmugalingam showed that if X is proper, Ω ⊂
X is open and continuous functions are dense in N 1,p(X), then each u ∈ N 1,p(Ω) is
p-quasicontinuous. The main tool in the proof of p-quasicontinuity is the outer regularity
property of sets of zero p-capacity [7, Proposition 1.4]. We will generalize the quasiconti-
nuity property to spaces N 1,Ψ (X). The proofs are modifications of the corresponding results
in [7].

Theorem 1 If X is proper, Ψ is doubling, Ω ⊂ X is open and continuous functions are
dense in N 1,Ψ (X), then each function u ∈ N 1,Ψ (Ω) is quasicontinuous.

Lemma 3 Let X be proper and let Ψ be doubling. If E ⊂ X with CapΨ (E) = 0, then for
each ε > 0 there is an open set U such that E ⊂ U and CapΨ (U ) < ε.

Proof Let E ⊂ X with CapΨ (E) = 0 and let ε > 0, 0 < δ < 1. Assume first that E
is bounded. Since CapΨ (E) = 0, µ(E) = 0 and the Ψ -modulus of the family of non-
constant, compact, rectifiable curves that intersect E is zero, see [43, Proposition 7.4]. Hence
χE ∈ N 1,Ψ (X), (has the zero function as a weak upper gradient), and there is an upper
gradient g ∈ LΨ (X) of χE . Since Ψ is doubling, the function Ψ (g) is in L1(X), and by the
Vitali-Carathéodory theorem (see, e.g. [39, Theorem 2.25]), there is a lower semicontinuous
function h ∈ L1(X) for which 0 ≤ Ψ (g) ≤ h.

Now the function

ρ = Ψ−1(h + 1) ≥ Ψ−1(h)

belongs to LΨloc(X) and is lower semicontinuous. For the lower semicontinuity, note that
Ψ−1 is continuous as the inverse function of the strictly increasing and continuous function.
Moreover, the doubling condition of Ψ implies that ρ ≥ Ψ−1(1) > 0; this is needed in
[7, Lemma 3.4].

By the Borel regularity of µ and the absolute continuity of the integral, there is a bounded
open set V such that E ⊂ V and

µ(V )+
∫

V

Ψ (ρ) dµ < δ. (15)
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Pointwise behaviour of Orlicz–Sobolev functions 43

Define

u(x) = 2 min

⎧⎨
⎩1, inf

∫

γ

ρ ds

⎫⎬
⎭ ,

where the infimum is taken over all rectifiable curves, including constant ones, that connect
x to X \V .

Since the function inf
∫
γ
ρ ds is lower semicontinuous by [7, Lemma 3.4], u is lower

semicontinuous as a minimum of two lower semicontinuous functions, and hence measurable.
The function 2ρ is an upper gradient of u by [7, Lemma 3.2]. Moreover, as u = 0 on a closed
set X \V , we may use 2ρχV as an upper gradient of u.

As g is an upper gradient of χE and Ψ (g) ≤ h,

1 = χE (x)− χE (y) ≤
∫

γ

g ds ≤
∫

γ

Ψ−1(h) ds ≤
∫

γ

ρ ds

whenever γ is a curve that connects x ∈ E and y ∈ X \V . Hence u = 2 on E .
The set U = {x ∈ X : u(x) > 1} is open by the lower semicontinuity of u. Since

u ∈ N 1,Ψ (X), it is a test function for the Ψ -capacity of U . Using (12), (15) and Lemma 4,
we have that

CapΨ (U ) ≤ ‖u‖N 1,Ψ (X) ≤ ‖u‖LΨ (X) + ‖2ρχV ‖LΨ (X)

≤ 2‖χV ‖LΨ (X) + 2‖ρχV ‖LΨ (X)

≤ 2

(
Ψ−1

(
1

µ(V )

))−1

+ 2‖ρ‖LΨ (V )

≤ 2

(
Ψ−1

(
1

δ

))−1

+ 2 (CΨ δ)
1/ log2 CΨ . (16)

Since we also have that E ⊂ U , the claim follows by selecting δ so small that the last row of
(16) is less than ε.

The case of unbounded E is proved as in [7] by writing E as a countable union of bounded
sets and using the first part of the proof for these bounded sets.

By [7, Proposition 1.2], each function of N 1,p(Ω) has a p-quasicontinuous representative
even without the assumption that X is proper. For Ω = X , this result follows from [41]. An
essential part of the proof is [41, Proof of Theorem 3.7], which shows that if a sequence of
continuous functions converge to v ∈ N 1,p(X) in N 1,p(X), then a subsequence converge to
a function of N 1,p(X), uniformly outside open sets with arbitrarily small p-capacity and the
limit function equals v p-quasi everywhere.

Note that, in [43], the result that N 1,Ψ (X) is a Banach space is proved without capacity.
However, the proof of [41, Theorem 3.7] works for N 1,Ψ (X) with obvious modifications,
(see also [5, Theorem 3.19]). Since also the remaining part of the proof of [7, Proposition
1.2] holds for N 1,Ψ (Ω), we see that each function u ∈ N 1,Ψ (Ω) has a quasicontinuous
representative whenever Ψ is doubling and continuous functions are dense in N 1,Ψ (X).

Proof of Theorem 1 Let u ∈ N 1,Ψ (Ω) and ε > 0. By the above discussion, u has a quasi-
continuous representative u∗ and the Ψ -capacity of the set E = {x ∈ Ω : u(x) = u∗(x)} is
zero. By Lemma 3, there is an open set U such that E ⊂ U and CapΨ (U ) < ε. Since u∗ is
quasicontinuous, there is an open set V with CapΨ (V ) < ε such that u∗|X\V is continuous.
Since u = u∗ on X \(U ∪ V ) and CapΨ (U ∪ V ) < 2ε, u is quasicontinuous.
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Using Theorem 1, we obtain important properties of Ψ -capacity.

Corollary 1 Assume that X is proper, Ψ is doubling and continuous functions are dense in
N 1,Ψ (X). Then

1. the Ψ -capacity is an outer capacity;

CapΨ (E) = inf
{
CapΨ (U ) : U is open, E ⊂ U

}

for all sets E ⊂ X.
2. if (Ki ) is a decreasing sequence of compact sets and K = ∩∞

i=1 Ki , then

CapΨ (K ) = lim
i→∞ CapΨ (Ki ).

Proof The proof of the outer regularity is similar to the proof of [7, Corollary 1.3], replace
N 1,p(X) with N 1,Ψ (X) and the p-capacity with the Ψ -capacity.

Let then Ki , i ∈ N, be compact sets such that Ki+1 ⊂ Ki for all i , K = ∩∞
i=1 Ki ,

and let ε > 0. By the outer regularity, there is an open set U containing K such that
CapΨ (U ) < CapΨ (K )+ ε. Since K is compact, Ki ⊂ U for large i , and hence

lim
i→∞ CapΨ (Ki ) ≤ CapΨ (U ) < CapΨ (K )+ ε.

By letting ε → 0, we have limi→∞ CapΨ (Ki ) ≤ CapΨ (K ).
The claim follows because CapΨ (K ) ≤ limi→∞ CapΨ (Ki ) by the monotonicity of the

Ψ -capacity.

4 Lemmas

The first lemma provides an inequality between integrals and Luxemburg norms. By this
lemma, the Ψ -capacity and the Orlicz–Sobolev capacity of [36] have same null sets.

Lemma 4 Let Ψ be doubling, U ⊂ X, u ∈ LΨ (U ), and ‖u‖LΨ (U ) > 0.
If
∫

U Ψ (|u|) dµ ≤ 1, then

∫

U

Ψ (|u|) dµ ≤ ‖u‖LΨ (U ) ≤
⎛
⎝CΨ

∫

U

Ψ (|u|) dµ

⎞
⎠

1/ log2 CΨ

. (17)

If
∫

U Ψ (|u|) dµ ≥ 1, then

⎛
⎝ 1

CΨ

∫

U

Ψ (|u|) dµ

⎞
⎠

1/ log2 CΨ

≤ ‖u‖LΨ (U ) ≤
∫

U

Ψ (|u|) dµ. (18)

Proof The first inequality of (17) and the second of (18) are easy, see Sect. 2.1. Denote
‖u‖ = ‖u‖LΨ (U ) and assume that ‖u‖ ≤ 1. Since Ψ is doubling, using (4) we have that

∫

U

Ψ

( |u|
‖u‖

)
= 1,
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see [37, Proposition III.3.4.6]. Using the doubling condition of Ψ , we obtain

1 =
∫

U

Ψ

( |u|
‖u‖

)
≤ CΨ

(
1

‖u‖
)log2 CΨ ∫

U

Ψ (|u|) dµ,

from which the second inequality of (17) follows.
Assume then that ‖u‖ ≥ 1 and denote

a =
⎛
⎝C−1

Ψ

∫

U

Ψ (|u|) dµ

⎞
⎠

1/ log2 CΨ

.

If
∫

U Ψ (|u|) dµ ≥ CΨ , then (4) gives
∫

U

Ψ

( |u|
a

)
≥ 1

C Ψ

CΨ∫
U Ψ (|u|) dµ

∫

U

Ψ (|u|) dµ = 1.

If 1 ≤ ∫
U Ψ (|u|) dµ ≤ CΨ , then by (3)

∫

U

Ψ

( |u|
a

)
≥ 1

a

∫

U

Ψ (|u|) dµ ≥
∫

U

Ψ (|u|) dµ ≥ 1.

The first inequality of (18) follows from the definition of the Luxemburg norm.

The following lemmas, counterparts to results for generalized gradients in [22,29], hold
for weak upper gradients defined either using the p- or Ψ -modulus, and hence for functions
of both N 1,p(X) and N 1,Ψ (X). Recall that the Ψ -modulus of a curve family Γ is

ModΨ (Γ ) = inf‖ρ‖LΨ (X),

where the infimum is taken over all non-negative Borel-functions ρ that satisfy
∫
γ
ρ ds ≥ 1

for all locally rectifiable curves γ ∈ Γ , see [43]. The first lemma, which is essentially proved
in [43, Lemma 6.15] and in [42, Lemma 2.14] for N 1,p(X), is a version of the Leibniz
differentiation rule.

Lemma 5 If u ∈ N 1,Ψ (X) and ϕ : X → R is a bounded L-Lipschitz function, then uϕ ∈
N 1,Ψ (X). Moreover, if gu ∈ LΨ (X) is a weak upper gradient of u, then the function

g0 = (gu‖ϕ‖∞ + 4L|u|) χX\F ,

where F = {x ∈ X : ϕ(x) = 0}, is a weak upper gradient of uϕ.

We will need the next lemma only in the case where the weak upper gradient sequence is
a constant sequence.

Lemma 6 Let Ω ⊂ X be an open set, and let (ui ) be a sequence of measurable functions
with a corresponding sequence of weak upper gradients (gi ). If u = supi ui is finite almost
everywhere, then g = supi gi is a weak upper gradient of u in Ω .

Proof For each i ∈ N, let Γi be the curve family in Ω with zero Ψ -modulus such that
(8) holds for the pair ui , gi for all curves γ /∈ Γi . By the subadditivity of Ψ -modulus, the
Ψ -modulus of Γ = ∪iΓi is zero, too.
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Let ε > 0 and let γ /∈ Γ be a curve with endpoints x and y. Assume first that |u(x)| and
|u(y)| are finite. We may assume that u(y) ≤ u(x) < ∞. Let i ∈ N such that ui (x) + ε >

u(x). Since u(y) ≥ ui (y), gi is a weak upper gradient of ui , and g ≥ gi , we have that

|u(x)− u(y)| = u(x)− u(y) < ui (x)+ ε − ui (y)

≤
∫

γ

gi ds + ε ≤
∫

γ

g ds + ε.

The claim in the case where u is finite in the endpoints of γ follows by letting ε → 0.
For the general case, let Γ∞ be a family of curves γ ⊂ Ω for which |u| = ∞ on some

subcurve of γ , and let

A = {z ∈ Ω : |u(z)| = ∞}, h = ∞χ A.

Since u is finite almost everywhere in Ω , µ(A) = 0 and h ∈ LΨ (Ω). As
∫
γ

h ds = ∞ for
all curves γ ∈ Γ∞, Fuglede’s characterization [17, Theorem 2], [43, Lemma 3.3], implies
that ModΨ (Γ∞) = 0. By the subadditivity of modulus, ModΨ (Γ ∪ Γ∞) = 0, too.

Let now γ /∈ Γ ∪ Γ∞ with endpoints x and y. We may assume that u(x) = ∞ and
|u(y)| < ∞, since otherwise, by the selection of Γ∞, there is a point z ∈ γ such that
|u(z)| < ∞, and we would estimate subcurves connecting x to z and z to y separately.
Let ui (x) be a subsequence such that ui (x) → u(x) as i → ∞. By the selection of the
subsequence, there is i0 ∈ N such that ui (x) > u(y) as i ≥ i0. Then, for i ≥ i0, we have that

|ui (x)− u(y)| = ui (x)− u(y) ≤ ui (x)− ui (y) ≤
∫

γ

gi ds ≤
∫

γ

g ds.

The claim follows by letting i → ∞.

Lemma 7 Let u be a measurable function with a weak upper gradient g. If h : X → [0,∞]
is a Borel-function such that g ≤ h almost everywhere, then h is a weak upper gradient of u.

Proof Let Γ0 be the curve family with zero Ψ -modulus such that (8) holds for u and g
for every curve γ /∈ Γ0. Moreover, let Γ1 be a family of non-constant curves γ for which∫
γ

g ds >
∫
γ

h ds. Then, for each γ /∈ Γ0 ∪ Γ1 with endpoints x and y, we have that

|u(x)− u(y)| ≤
∫

γ

g ds ≤
∫

γ

h ds.

Hence, by the subadditivity of modulus, it suffices to show that ModΨ (Γ1) = 0. This follows
from [43, Lemma 3.4] because the set E = {x : g(x) > h(x)} has zero measure, and
H 1(γ ∩ E) > 0 for each γ ∈ Γ1.

5 Lebesgue points

In this section, we will show that the discrete maximal operator, defined by Kinnunen and
Latvala [29], is bounded in N 1,Ψ (X). This result is then used to show that almost all points,
in the Ψ -capacity sense, are Lebesgue points of Orlicz–Sobolev functions.

Let r > 0, and let {Bi }∞i=1 be a covering of X by balls of radius r such that
∑∞

i=1
χ6Bi (x) ≤

N for all x ∈ X . Let (ϕi ) be a partition of unity for the covering {Bi } such that
∑

i ϕi (x) = 1
for all x ∈ X , 0 ≤ ϕi ≤ 1 in X , ϕi ≥ C in 3Bi , suppϕi ⊂ 6Bi , and that each ϕi is
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L/r -Lipschitz, see for example [12,40]. All constants of {Bi } and (ϕi ) depend only on the
doubling constant of µ. The discrete convolution of u is

ur (x) =
∞∑

i=1

ϕi (x)u3Bi , x ∈ X.

Below, we will show that if u ∈ N 1,Ψ (X), then both |u|r and M ∗ u (see 19) are in N 1,Ψ (X),
in particular, the operator M ∗ is bounded in the Orlicz–Sobolev space.

Since we are going to use Lemma 6 for functions |u|r , we numerate the positive ratio-
nals and choose for each radius r j a covering {B j

i } consisting of balls of radius r j , and a
corresponding partition of unity as above.

The discrete maximal function of u ∈ L1
loc(X) related to coverings {B j

i } is

M ∗ u(x) = sup
j

|u|r j (x), x ∈ X. (19)

The maximal operator M ∗ depends on the covering but the estimates below are independent
on the covering.

By [29, Lemma 3.1], there is a constant C = C(Cµ) such that

C−1 M u(x) ≤ M ∗ u(x) ≤ C M u(x) (20)

for each u ∈ L1
loc(X) and all x ∈ X . Hence, if the maximal operator is bounded in LΨ (X),

then
‖M ∗ u‖LΨ (X) ≤ C‖M u‖LΨ (X) ≤ C‖u‖LΨ (X) (21)

with C = C(Cµ, Ψ ) for all u ∈ LΨ (X).
The following two proofs are easy modifications of the proofs of [29, Lemma 3.3, Theorem

3.6]. For the readers convenience, we recall the main details of the proof.

Lemma 8 Assume that X supports a Poincaré inequality, Ψ is doubling and the maximal
operator M is bounded in LΨ (X). If u ∈ N 1,Ψ (X), then |u|r ∈ N 1,Ψ (X) and C M g is a
weak upper gradient of |u|r whenever g ∈ LΨ (X) is a weak upper gradient of u. Moreover,
‖|u|r‖N 1,Ψ (X) ≤ C‖u‖N 1,Ψ (X).

Proof Let u ∈ N 1,Ψ (X) and let g ∈ LΨ (X) be a weak upper gradient of u. Then |u| ∈
N 1,Ψ (X) and g is a weak upper gradient of |u|.

A weak upper gradient of |u|r : Since
∑

i ϕi (x) = 1, we have for each x ∈ X that

|u|r (x) =
∞∑

i=1

ϕi (x)|u|3Bi = |u(x)| +
∞∑

i=1

ϕi (x)(|u|3Bi − |u(x)|),

where the sum is over finitely many terms only by the bounded overlap of balls 6Bi .
Now the function g+∑∞

i=1 gi , where gi is a weak upper gradient of the functionϕi (|u|3Bi −
|u|), is a weak upper gradient of |u|r . By Lemma 5 and the properties of the functions ϕi ,

(g + Cr−1||u| − |u|3Bi |)χ6Bi

is a weak upper gradient of ϕi (|u|3Bi − |u|). Hence, by Lemma 7, it suffices to estimate
||u|−|u|3Bi |. As in [29, Lemma 3.3], a standard telescoping argument, the doubling property
of µ and the Poincaré inequality show that

||u(x)| − |u|3Bi | ≤ Cr M g(x)
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for almost all x ∈ X , and hence we can select gi = (g + C M g)χ6Bi . Using the bounded
overlap of the balls 6Bi , and the fact that g(x) ≤ M g(x) for almost every x by the Lebesgue
differentiation theorem, we conclude that the function gur = C M g is a weak upper gradient
of |u|r .

Norm estimate: Since |u|r (x) ≤ M ∗ u(x) for all x ∈ X , the boundedness of the maximal ope-
rator and (21) imply that ‖|u|r‖LΨ (X) ≤ C‖u‖LΨ (X). Similarly, ‖gur ‖LΨ (X) ≤ C‖g‖LΨ (X)
by the boundedness of the maximal operator. The claim follows by choosing g to be the
minimal weak upper gradient of u.

Theorem 2 Assume that X supports a Poincaré inequality, Ψ is doubling and the maximal
operator M is bounded in LΨ (X). If u ∈ N 1,Ψ (X), then M ∗ u belongs to N 1,Ψ (X) and
‖M ∗ u‖N 1,Ψ (X) ≤ C‖u‖N 1,Ψ (X).

Proof The claim M ∗ u ∈ LΨ (X) follows from (21), and hence M ∗ u is finite almost
everywhere. Since C M g ∈ LΨ (X) is a weak upper gradient of |u|r j for all j ∈ N,
M ∗ u ∈ N 1,Ψ (X) with a weak upper gradient C M g by Lemmas 6 and 8.

As in the proof of Lemma 8, we obtain the desired norm estimate by choosing the minimal
weak upper gradient g of u and combining LΨ -norm estimates for M ∗ u and C M g.

Note that similar arguments as the proof of Lemma 8 show that ur (x) → u(x) as r → 0
for almost every x ∈ X , and that ur → u in LΨ (X). Namely,

|ur (x)− u(x)| ≤
∞∑

i=1

ϕi (x)|u(x)− u3Bi | ≤
∑

i ′
|u(x)− u3Bi | ≤ Cr M g(x), (22)

where the last sum is taken over such indices i ′ for which x ∈ 6Bi . The right-hand side of
(22) tends to zero as r → 0 for almost every x ∈ X because M g ∈ LΨ (X).

Theorem 3 Assume that X is proper and supports a Poincaré inequality, Ψ is doubling and
the maximal operator is bounded in LΨ (X). Then for each u ∈ N 1,Ψ (X) there is a set E ⊂ X
with CapΨ (E) = 0 such that

lim
r→0

∫

B(x,r)

|u − u(x)| dµ = 0 (23)

for all x ∈ X \E.

We will use the following modification of a part of [24, Theorem 2.11] to prove Theorem 3.

Lemma 9 Assume that X is proper, Ψ is doubling, continuous functions are dense in
N 1,Ψ (X), and that there exists a constant C > 0 such that

CapΨ

⎛
⎜⎝
⎧⎪⎨
⎪⎩x ∈ X : lim sup

r→0

∫

B(x,r)

|u| dµ > λ

⎫⎪⎬
⎪⎭

⎞
⎟⎠ ≤ Cλ−1‖u‖N 1,Ψ (X) (24)

for every λ > 0 and all u ∈ N 1,Ψ (X). Then for each u ∈ N 1,Ψ (X) there is a set E with
CapΨ (E) = 0 such that (23) holds for all x ∈ X \E.

123



Pointwise behaviour of Orlicz–Sobolev functions 49

Proof Let u ∈ N 1,Ψ (X), λ > 0 and ε > 0. It suffices to show that

lim sup
r→0

∫

B(x,r)

|u(y)− u(x)| dµ(y) = 0

outside a set of capacity zero. Define

Eλ =

⎧⎪⎨
⎪⎩x : lim sup

r→0

∫

B(x,r)

|u − u(x)| dµ > λ

⎫⎪⎬
⎪⎭.

Let v ∈ N 1,Ψ (X) be a continuous function such that ‖u − v‖N 1,Ψ (X) < ε. Since u is quasi-
continuous by Theorem 1, the functionw = u−v belongs to N 1,Ψ (X) and is quasicontinuous.
Since u = v + w, the estimate

|u(y)− u(x)| ≤ |v(x)− v(y)| + |w(x)− w(y)|
and the continuity of v imply that

lim sup
r→0

∫

B(x,r)

|u − u(x)| dµ ≤ lim sup
r→0

∫

B(x,r)

|w − w(x)| dµ

≤ lim sup
r→0

∫

B(x,r)

|w| dµ+ |w(x)| (25)

for all x ∈ X . Hence

CapΨ (Eλ) ≤ CapΨ

⎛
⎜⎝
⎧⎪⎨
⎪⎩x : lim sup

r→0

∫

B(x,r)

|w| dµ > λ/2

⎫⎪⎬
⎪⎭

⎞
⎟⎠

+ CapΨ ({x : |w(x)| > λ/2}), (26)

where assumption (24) and the fact that ‖|w|‖N 1,Ψ (X) ≤ ‖w‖N 1,Ψ (X) imply that

CapΨ

⎛
⎜⎝
⎧⎪⎨
⎪⎩x : lim sup

r→0

∫

B(x,r)

|w| dµ > λ/2

⎫⎪⎬
⎪⎭

⎞
⎟⎠ ≤ Cλ−1‖w‖N 1,Ψ (X).

Moreover, since 2λ−1|w| is a test function for the last capacity of (26), we have

CapΨ ({x : |w(x)| > λ/2}) ≤ 2λ−1‖w‖N 1,Ψ (X),

and hence

CapΨ (Eλ) ≤ Cλ−1‖w‖N 1,Ψ (X) ≤ Cλ−1ε.

Letting ε → 0, we conclude that CapΨ (Eλ) = 0 for all λ > 0. By selecting λ = 1/ i for all
i ∈ N, we have

E =

⎧⎪⎨
⎪⎩x : lim sup

r→0

∫

B(x,r)

|u − u(x)| dµ > 0

⎫⎪⎬
⎪⎭ =

∞⋃
i=1

E1/ i ,
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where CapΨ (E1/ i ) = 0 for all i . Hence CapΨ (E) = 0 by the subadditivity of capacity, and
the claim follows.

Proof of Theorem 3 By Theorem 9, it suffices to show that there is a constant C > 0 such
that

CapΨ

⎛
⎜⎝
⎧⎪⎨
⎪⎩x ∈ X : lim sup

r→0

∫

B(x,r)

|u| dµ > λ

⎫⎪⎬
⎪⎭

⎞
⎟⎠ ≤ Cλ−1‖u‖N 1,Ψ (X)

for all λ > 0 and every u ∈ N 1,Ψ (X). Since lim supr→0

∫
B(x,r) |u| dµ ≤ M u(x) for all

x ∈ X , it is enough to show that

CapΨ ({x ∈ X : M u(x) > λ}) ≤ Cλ−1‖u‖N 1,Ψ (X) (27)

for all such u and λ.
For weak type estimate (27), let u ∈ N 1,Ψ (X), λ > 0, and let M ∗ u be the discrete

maximal function of u. By (20),

F = {x ∈ X : M u(x) > λ} ⊂ {
x ∈ X : C M ∗ u(x) > λ

} = E .

By Theorem 2, Cλ−1 M ∗ u ∈ N 1,Ψ (X) is a test function for CapΨ (E). Hence

CapΨ (F) ≤ CapΨ (E) ≤ Cλ−1‖M ∗ u‖N 1,Ψ (X) ≤ Cλ−1‖u‖N 1,Ψ (X),

from which the theorem follows.

Remark 1 1. With the assumptions of Theorem 3, limr→0
∫

B(x,r) u dµ = u(x) outside of
a set of capacity zero.

2. If W 1,Ψ (Rn) is reflexive, then the proofs of the main results of [28,30] generalize to
W 1,Ψ (Rn); both the Hardy–Littlewood maximal operator and its local version are boun-
ded in the Orlicz–Sobolev space. This is studied in [16]. Is the Hardy–Littlewood maximal
operator bounded also in N 1,Ψ (X)?

3. The results above imply that functions of N 1,p(X) have Lebesgue points outside of a set
of zero p-capacity if p > 1 and the doubling space X supports a Poincaré inequality.
However, this result follows also from [29] since N 1,p(X) and the Hajłasz–Sobolev space
M1,p(X) (cf. [21]) studied in [29] are isomorphic as Banach spaces by [42].

6 Hölder quasicontinuity

In this section, we show that Hölder continuous functions are dense in N 1,Ψ (X) both in norm
and the Lusin sense.

We need two maximal functions. Let 0 ≤ α < ∞, 0 < β < ∞, R > 0, and u ∈ L1
loc(X).

The (restricted) fractional maximal function of u is

M α,R u(x) = sup
0<r≤R

rα
∫

B(x,r)

|u| dµ.

If R = ∞, we let M α u = M α,∞ u. If α = 0, the we obtain the usual (restricted) Hardy–
Littlewood maximal function. The (restricted) fractional sharp maximal function of u is

u#
β,R(x) = sup

0<r≤R
r−β

∫

B(x,r)

|u − u B(x,r)| dµ,

and u#
β = u#

β,∞.
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We cannot prove Theorem 5 directly for the space N 1,Ψ (X). Hence we need an other
definition of Orlicz–Sobolev spaces on metric spaces. This definition is a generalization of
M1,p(X) and is based on a pointwise inequality.

A measurable function g ≥ 0 is a generalized gradient of a measurable function u,
g ∈ D(u), if there is a set E ⊂ X with µ(E) = 0 such that

|u(x)− u(y)| ≤ d(x, y) (g(x)+ g(y)) (28)

for all x, y ∈ X\E . Given a Young function Ψ , the Orlicz–Sobolev space M1,Ψ (X) consists
of functions u ∈ LΨ (X) for which there exists a function g ∈ LΨ (X) ∩ D(u). The space
M1,Ψ (X), equipped with the norm

‖u‖M1,Ψ (X) = ‖u‖LΨ (X) + inf‖g‖LΨ (X), (29)

where the infimum is taken over all functions g ∈ LΨ (X) ∩ D(u), is a Banach space,
see [4, Theorem 3.6].

Next we show that if Ψ and the space X are nice enough, then the definitions of N 1,Ψ (X)
and M1,Ψ (X) give the same space.

Theorem 4 Assume that Ψ is a doubling N-function, the maximal operator is bounded in
LΨ (X) and that X supports a Poincaré inequality. Then N 1,Ψ (X) = M1,Ψ (X) and the
norms are comparable.

Proof By [43, Theorem 6.22] (see also [41, Chap. 4]), for each u ∈ M1,Ψ (X) there is a
representative (u itself if continuous) which belongs to N 1,Ψ (X). Moreover, if g ∈ D(u) ∩
LΨ (X), then 2g is a weak upper gradient of u. Hence M1,Ψ (X) ⊂ N 1,Ψ (X) and‖u‖N 1,Ψ (X) ≤
2‖u‖M1,Ψ (X).

For the other direction, let u ∈ N 1,Ψ (X) with a weak upper gradient g ∈ LΨ (X). By
[22, Lemma 3.6], the inequality

|u(x)− u(y)| ≤ Cd(x, y)
(
u#

1(x)+ u#
1(y)

)
holds for almost every x, y ∈ X . Since the Poincaré inequality implies that

u#
1(x) ≤ C M g(x)

for all x ∈ X , we have that C M g ∈ D(u). The claim follows from the boundedness of M .

In this section, we use the representative ũ,

ũ(x) = lim sup
r→0

∫

B(x,r)

u dµ (30)

for u ∈ N 1,Ψ (X) and denote it by u. By Theorem 3, the limit of the right-hand side of (30)
exists and equals u(x), except on a set of Ψ -capacity zero. Moreover, since the inequality

|u(x)− u(y)| ≤ Cd(x, y)β
(

u#
β,4d(x,y)(x)+ u#

β,4d(x,y)(y)
)

(31)

holds for every x, y ∈ X and for all 0 < β ≤ 1 by [22, Lemma 3.6], we see that u is Hölder
continuous with exponent β if ‖u#

β‖∞ < ∞.

Theorem 5 Assume that X is proper, Ψ is a doubling N-function, the maximal operator M
is bounded in LΨ (X) and that X supports a Poincaré inequality. If u ∈ N 1,Ψ (X), then for
any 0 < β ≤ 1 and each ε > 0, there is an open set Ω and a function v ∈ N 1,Ψ (X) such
that
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1. u = v in X \Ω ,
2. v is Hölder continuous with exponent β on every bounded set of X,
3. ‖u − v‖N 1,Ψ (X) < ε,

4. H
s−(1−β)∞ (Ω) < ε, where s is the doubling dimension of µ.

In the proof, we first assume that u vanishes outside a ball. The general case follows
by using a localization argument. We will correct the function in “the bad set”, where the
fractional sharp maximal function is big, using a discrete convolution. That kind of smoothing
technique is used to prove corresponding approximation results for Sobolev functions on
metric measure spaces in [22, Theorem 5.3] and [31, Theorem 5].

For the bad set, we will use a Whitney type covering from [12, Theorem III.1.3],
[34, Lemma 2.9]. For an open set U ⊂ X , then there are balls Bi = B(xi , ri ), i ∈ N,
where ri = dist(xi , X \U )/10, such that

1. the balls B(xi , ri/5) are pairwise disjoint,
2. U = ∪i B(xi , ri ),
3. B(xi , 5ri ) ⊂ U ,
4. if x ∈ B(xi , 5ri ), then 5ri ≤ dist(x, X \U ) ≤ 15ri ,
5. there is x∗

i ∈ X \U such that d(xi , x∗
i ) < 15ri , and

6.
∑∞

i=1
χB(xi ,5ri )(x) ≤ M for all x ∈ U .

We need the following technical lemma for the Whitney covering. We omit the proof
which consists of simple calculations using the properties of the Whitney covering and the
doubling property of µ. All constants depend only on the constants of the Whitney covering,
or on the doubling constant of µ.

Lemma 10 Let B = {Bi } be a Whitney covering of an open set U. Let x ∈ Bi0 , y ∈ Bi1 ,
where Bi0 , Bi1 ∈ B, and δ = 1/4 max{dist(x, X \U ), dist(y, X \U )}.
1. If x ∈ 2Bi , then 2/3ri ≤ ri0 ≤ 3/2ri .
2. Let y ∈ 2Bi and d(x, y) ≤ δ. If dist(y, X \U ) ≤ dist(x, X \U ), then y ∈ 5Bi0 and

1/2ri ≤ ri0 ≤ 3ri . Otherwise x ∈ 5Bi1 and 2/3ri ≤ ri1 ≤ 3/2ri . In both cases,
ri ≈ ri0 ≈ dist(x, X \U ).

3. If x or y is in 2Bi and d(x, y) ≤ δ, then

2Bi ⊂ B(x,C1ri ) ⊂ B(x,C2ri0) ⊂ B(x,C3 dist(x, X \U ))

and d(x, y) ≤ C4ri . Moreover, 2Bi ⊂ B(x∗
i0
,C5ri ).

Proof of Theorem 5 Let u ∈ N 1,Ψ (X) with a weak upper gradient g ∈ LΨ (x).
Step 1 Suppose that the support of u is in B(x0, 1) for some x0 ∈ X . Let λ > 0, and denote

Eλ =
{

x ∈ X : u#
β(x) > λ

}
.

It is easy to show that Eλ is open. By (31), u is Hölder continuous with exponent β in X\Eλ.
We will correct the values of u in the bad set Eλ. For that, let B = {Bi } be a Whitney covering
of Eλ, and let (ϕi ) be a partition of unity for which suppϕi ⊂ 2Bi ,0 ≤ ϕi ≤ 1, each ϕi is
K/ri -Lipschitz, and

∑∞
i=1 ϕi (x) = χEλ (x), see for example [34, Lemma 2.16]. For each xi ,

let x∗
i be the “closest” point in X \Eλ given by 5.

We begin with the properties of the set Eλ.

Claim 1 There is λ0 > 0 such that Eλ ⊂ B(x0, 2) for each λ > λ0.
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Proof of Claim 1 Since supp u ⊂ B(x0, 1), it is enough to show that there is λ0 > 0 such
that

r−β
∫

B(x,r)

|u − u B(x,r)| dµ < λ0 (32)

for all x ∈ X and r > 1. If B = B(x, r), r > 1 and r−β ∫
B |u − u B | dµ = a > 0, then

B ∩ B(x0, 1) = ∅ because supp u ⊂ B(x0, 1). Using the doubling property of µ, the Hölder
inequality (6) and inequality (12), we obtain

r−β
∫

B

|u − u B | dµ ≤ 2C2
µµ(B(x0, 1))−1

∫

B∩B(x0,1)

|u| dµ

≤ Cµ(B(x0, 1))−1‖u‖LΨ (X)

(
Ψ̃−1(µ(B(x0, 1))−1)

)−1
,

from which Claim 1 follows. Note that Ψ̃−1(t) > 0 for t > 0 by (5) and the doubling
property of Ψ .

Claim 2 µ(Eλ) → 0 as λ → ∞.

Proof It easily follows from the Poincaré inequality that

u#
β,R(x) ≤ C M 1−β,R g(x)

for all x ∈ X and R > 0. Moreover, if α ≤ 1 and R ≥ 1, then M α,R g(x) ≤ R M g(x).
Hence, if x ∈ Eλ and λ > λ0, then by (32),

u#
β(x) = u#

β,1(x) ≤ C M (1−β),1 g(x) ≤ C M g(x). (33)

Now the weak type estimate (7) for the maximal operator implies that

µ(Eλ) ≤ µ ({x ∈ B(x0, 2) : M g(x) > Cλ}) ≤ C(Ψ (λ))−1
∫

X

Ψ (g) dµ.

Claim 2 follows because g ∈ LΨ (X) and Ψ is doubling.

We define the function v as a Whitney type extension of u to the set Eλ by setting

v(x) =
⎧⎨
⎩

u(x), if x ∈ X \Eλ,
∑∞

i=1 ϕi (x)u2Bi , if x ∈ Eλ.

We will select the open set Ω to be Eλ for sufficiently large λ > λ0. Hence claim 1 of
Theorem 5 follows from the definition of v. Since supp u ⊂ B(x0, 1) and Eλ ⊂ B(x0, 2) for
λ > λ0, the support of v is in B(x0, 2).

Proof (Proof of 2—the Hölder continuity of v) We begin with an estimate for |v(x)− v(x̄)|,
where x ∈ Eλ and x̄ ∈ X \Eλ is such that d(x, x̄) ≤ 2 dist(x, X \Eλ). Denote

Bx = {Bi ∈ B : x ∈ 2Bi },
and note that, by the bounded overlap of the balls 2Bi , there is a bounded number of balls
in Bx . Using the properties of the functions ϕi and the Whitney covering, we have that

|v(x)− v(x̄)| =
∣∣∣∣∣

∞∑
i=1

ϕi (x)(u(x̄)− u2Bi )

∣∣∣∣∣ ≤
∑
Bx

|u(x̄)− u2Bi |, (34)
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and that 2Bi ⊂ B(x̄,Cri ). Now

|u(x̄)− u2Bi | ≤ |u(x̄)− u B(x̄,Cri )| + |u B(x̄,Cri ) − u2Bi |, (35)

where, for the first term on the right-hand side a telescoping argument shows that

|u(x̄)− u B(x̄,Cri )| ≤ Crβi u#
β,Cri

(x̄). (36)

For the second term, the fact that B(x̄,Cri ) ⊂ C Bi and the doubling property of µ imply
that

|u B(x̄,Cri ) − u2Bi | ≤ C
∫

B(x̄,Cri )

|u − u B(x̄,Cri )| dµ ≤ Crβi u#
β,Cri

(x̄). (37)

Since ri ≈ dist(x, X \ Eλ) by the properties of the Whitney covering, estimates (34)–(37)
show that

|v(x)− v(x̄)| ≤ C dist(x, X \Eλ)
βu#

β(x̄) ≤ C dist(x, X \Eλ)
βλ, (38)

where the last inequality follows because x̄ ∈ X \Eλ.
We will show that v is β-Hölder continuous, that is,

|v(x)− v(y)| ≤ Cλd(x, y)β for all x, y ∈ X. (39)

(i) If x, y ∈ X \Eλ, then (39) follows from (31) and the definition of Eλ.
(ii) Let x, y ∈ Eλ and d(x, y) ≥ δ, where

δ = 1

4
max {dist(x, X \Eλ), dist(y, X \Eλ)} ,

and let x̄, ȳ ∈ X \Eλ be as above. Then, by (38),

|v(x)− v(y)| ≤ |v(x)− v(x̄)| + |v(x̄)− v(ȳ)| + |v(y)− v(ȳ)|
≤ Cλ dist(x, X \Eλ)

β + |v(x̄)− v(ȳ)| + Cλ dist(y, X \Eλ)
β,

where |v(x̄)−v(ȳ)| ≤ Cλd(x̄, ȳ)β by (31) and the fact that x̄, ȳ ∈ X\Eλ. Since d(x, y) ≥ δ

and

d(x̄, ȳ) ≤ d(x̄, x)+ d(x, y)+ d(ȳ, y) ≤ 17d(x, y),

we have that |v(x)− v(y)| ≤ Cλd(x, y)β .
(iii) Assume then that x, y ∈ Eλ and d(x, y) ≤ δ. Similarly as Bx above, we let

By = {Bi ∈ B : y ∈ 2Bi }.
Let Bi0 be a Whitney ball for which x ∈ Bi0 , and let x∗

i0
be the closest point of xi0 in X\Eλ.

By the properties of the functions ϕi , we have that

|v(x)− v(y)| =
∣∣∣∣∣

∞∑
i=1

(ϕi (x)− ϕi (y))
(
u(x∗

i0
)− u2Bi

)∣∣∣∣∣
≤ Cd(x, y)

∑
Bx ∪By

r−1
i |u(x∗

i0
)− u2Bi |. (40)

We continue as in (35)–(37); by Lemma 10, we have that ri ≈ ri0 and that 2Bi ⊂ B(x∗
i0
,C5ri ),

and obtain
|u(x∗

i0
)− u2Bi | ≤ Crβi u#

β(x
∗
i0
) ≤ Crβi λ. (41)
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Now (40) and (41) show that

|v(x)− v(y)| ≤ Cλd(x, y)β
∑

Bx ∪By

d(x, y)1−β

r1−β
i

.

The desired estimate follows because d(x, y) ≤ C4ri by Lemma 10.
(iv) Finally, let x ∈ Eλ with x̄ as above, and let y ∈ X \ Eλ. Then v(y) = u(y), and using
(38) and (31) we have that

|v(x)− v(y)| = |v(x)− u(y)| ≤ |v(x)− v(x̄)| + |u(x̄)− u(y)|
≤ Cλ dist(x, X \Eλ)

β + Cλd(y, x̄)β ≤ Cλd(x, y)β .

The Hölder continuity of v with estimate (39) follows from the four cases above.
Next we should show that v ∈ N 1,Ψ (X). We have to show that v ∈ LΨ (X), that it has

a weak upper gradient gv , and that the norms of v and gv are controlled by the norms of u
and g.

We begin with the integrability of v. By the properties of the Whitney covering, we have
for each x ∈ Eλ that

|v(x)| ≤
∞∑

i=1

ϕi (x)|u|2Bi ≤
∞∑

i=1

ϕi (x)M (uχEλ )(x) ≤ C M (uχEλ )(x),

and by the boundedness of the maximal operator, that

‖v‖LΨ (X) ≤ ‖uχX\Eλ‖LΨ (X) + C‖M (uχEλ )‖LΨ (X)

≤ ‖u‖LΨ (X) + C‖u‖LΨ (Eλ) ≤ C‖u‖LΨ (X). (42)

To find a weak upper gradient for v, we use the equivalence of the spaces N 1,Ψ (X) and
M1,Ψ (X). By Theorem 4 and the boundedness of the maximal operator, the function C M g
belongs to D(u) ∩ LΨ (X). We will show that C M g ∈ D(v) ∩ LΨ (X). As in the proof of
the Hölder continuity, we will consider four cases.
(i) By Theorem 4 and the choice of the representative of u, C M g ∈ D(u) and

|v(x)− v(y)| = |u(x)− u(y)| ≤ d(x, y)(C M g(x)+ C M g(y))

for all x, y ∈ X \Eλ.
(ii) If x, y ∈ Eλ and d(x, y) ≤ δ, then similar calculation as in (40) shows that

|v(x)− v(y)| ≤ Cd(x, y)
∑

Bx ∪By

r−1
i |u(x)− u2Bi |, (43)

where
|u(x)− u2Bi | ≤ |u(x)− u B(x,C1ri )| + |u B(x,C1ri ) − u2Bi |, (44)

and 2Bi ⊂ B(x,C1ri ) by Lemma 10. Using the Poincaré inequality and the doubling property
of µ, we have

|u B(x,C1ri ) − u2Bi | ≤ C
∫

B(x,C1ri )

|u − u B(x,C1ri )| dµ ≤ Cri

∫

B(x,C1ri )

g dµ.

This together with a telescoping argument for |u(x)− u B(x,C1ri )| shows that

|u(x)− u2Bi | ≤ Cri M g(x) (45)
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for almost all x . Since the number of balls in Bx ∪ By is bounded, the estimates (43)–(45)
show that

|v(x)− v(y)| ≤ Cd(x, y)M g(x)

for almost all x, y ∈ Eλ with d(x, y) ≤ δ.
(iii) Let x, y ∈ Eλ with d(x, y) ≥ δ. Using the properties of the functions ϕi , the fact that
C M g ∈ D(u), similar estimates for |u(x)− u2Bi | and |u(y)− u2Bi | as in the previous case,
and Lemma 10 to conclude that ri ≈ dist(x, X\Eλ) for all Bi ∈ Bx (and similarly for By),
we have that

|v(x)− v(y)| ≤
∑
Bx

|u(x)− u2Bi | +
∑
By

|u(y)− u2Bi | + |u(x)− u(y)|,

≤ C dist(x, X \Eλ)M g(x)+ C dist(y, X \Eλ)M g(y)

+ d(x, y) (C M g(x)+ C M g(y))

≤ Cd(x, y) (M g(x)+ M g(y)) .

(iv) If y ∈ Eλ and x ∈ X \Eλ, then

|v(x)− v(y)| = |u(x)− v(y)| =
∣∣∣∣∣

∞∑
i=1

ϕi (y)(u(x)− u2Bi )

∣∣∣∣∣ ≤
∑
By

|u(x)− u2Bi |,

where, by the fact that C M g ∈ D(u), and by a similar calculation as for (44),

|u(x)− u2Bi | ≤ |u(x)− u(y)| + |u(y)− u2Bi |
≤ d(x, y) (C M g(x)+ C M g(y))+ Cri M g(y).

Since for Bi ∈ By , ri ≈ dist(y, X \Eλ) and dist(y, X \Eλ) ≤ d(x, y), we obtain

|v(x)− v(y)| ≤ Cd(x, y) (M g(x)+ M g(y)) .

By the above calculation and the boundedness of the maximal operator, we conclude that
C M g ∈ LΨ (X) and ‖M g‖LΨ (X) ≤ C‖g‖LΨ (X). Lemma 4 together with the continuity of
v shows that v ∈ N 1,Ψ (X) and that C M g is a weak upper gradient of v.

Proof (Proof of 3—Approximation in norm) Using the fact that v = u in X \ Eλ and (42),
we have that

‖u − v‖LΨ (X) = ‖u − v‖LΨ (Eλ) ≤ C‖u‖LΨ (Eλ),

which tends to 0 as λ → ∞ because µ(Eλ) → 0 as λ → ∞, (see Lemma 4).
We have to find a weak upper gradient gλ of u −v for which ‖gλ‖LΨ (X) → 0 as λ → ∞.

Since g and C M g are weak upper gradients of u and v, C M g is a weak upper gradient of
u − v. As u − v vanishes outside an open set Eλ, the function gλ = C(M g)χEλ is a weak
upper gradient of u − v. As above, the boundedness of the maximal operator implies that

‖gλ‖LΨ (X) ≤ C‖gχEλ‖LΨ (X) = C‖g‖LΨ (Eλ),

and hence ‖u − v‖N 1,Ψ (X) → 0 as λ → ∞.

Proof (Proof of 4—Hausdorff content of Eλ) By (33) and Claim 1,

Eλ ⊂ {
x ∈ B(x0, 2) : M (1−β),1 g(x) > Cλ

}
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for each λ > λ0. Moreover, (3), the Jensen inequality and the continuity of Ψ imply that

Ψ (M (1−β),1 g)(x) ≤ M (1−β),1 Ψ (g)(x).

Hence for λ > λ0,

Eλ ⊂ {
x ∈ B(x0, 2) : M (1−β),1 Ψ (g)(x) > CΨ (λ)

}
.

Since Ψ (g) ∈ L1(X), a weak type estimate for the Hausdorff content of the fractional
maximal function (see, for example [22, Lemma 2.6]), implies that

H
s−(1−β)∞ (Eλ) ≤ CΨ (λ)−1

∫

X

Ψ (g) dµ, (46)

where C ≤ 5s−(1−β)(2 diam(B(x0, 2)))sµ(B(x0, 2))−1, the claim 4 follows because the
right-hand side of (46) tends to 0 as λ → ∞.

Step 2 General case.
Let ε > 0. We cover X by balls of radius 1/10, and use the 5r -covering theorem to obtain
pairwise disjoint balls B(a j , 1/10) such that X ⊂ ∪∞

j=1 B(a j , 1/2) and that the balls 2B j ,
where B j = B(a j , 1) have bounded overlap. Let (ψ j ) be a partition of unity for this covering
such that

∑∞
j=1 ψ j (x) = 1 for all x ∈ X , each ψ j is L-Lipschitz, 0 ≤ ψ j ≤ 1, and

suppψ j ⊂ B j for all j ∈ N.

Let u ∈ N 1,Ψ (X) with a weak upper gradient g ∈ LΨ (X), and let u j = uψ j . Then

u(x) =
∞∑
j=1

u j (x), (47)

and the sum is finite for all x ∈ X . By Lemma 5, each u j is in N 1,Ψ (X) and

g j = (g + C |u|)χB j

is a weak upper gradient of u j . Since supp u j ⊂ B j , the first step of the proof shows there
are functions v j ∈ N 1,Ψ (X) and open sets Ω j ⊂ 2B j such that

(i) v j = u j in X \Ω j , supp v j ⊂ 2B j ,
(ii) v j ∈ N 1,Ψ (X) is Hölder continuous with exponent β,

(iii) ‖u j − v j‖N 1,Ψ (X) < 2− jε,

(iv) H
s−(1−β)∞ (Ω j ) < 2− jε,

(v) h j = C M g j is a weak upper gradient of v j .

We define Ω = ∪∞
j=1Ω j , and claim that the function v = ∑∞

j=1 v j has properties 1–4. The
first claim follows from (i) and (47). The Hausdorff content estimate forΩ follows from (iv)
using the subadditivity of H

s−(1−β)∞ . By (39), we have

|v j (x)− v j (y)| ≤ Cλ j d(x, y)β

for all x, y ∈ X . Since, by the proof above, the constant λ j depends on ε and on j , the Hölder
continuity of the functions v j and the fact that supp v j ⊂ 2B j give Hölder continuity of v
only in bounded subsets of X .

To complete the proof of Theorem 5, we have to show that v ∈ N 1,Ψ (X) and that the
norm estimate holds. By (iii), we have

∞∑
j=1

‖u j − v j‖N 1,Ψ (X) <

∞∑
j=1

2− jε = ε, (48)
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that is, the series
∑∞

j=1(u j −v j ) convergences absolutely, and hence converges in the Banach

space N 1,Ψ (X). Since u = ∑∞
j=1 u j is in N 1,Ψ (X), also

∑∞
j=1 v j converges in N 1,Ψ (X).

Moreover, by (48) we obtain

‖u − v‖N 1,Ψ (X) ≤
∞∑
j=1

‖u j − v j‖N 1,Ψ (X) < ε.

Remark 2 For the classical Orlicz–Sobolev space W 1,Ψ (Rn) the proof of Theorem 5 is
shorter because the property that v ∈ W 1,Ψ (Rn) follows easily using absolute continuity on
lines. Moreover, using the uniqueness of weak gradients, we obtain a better norm estimate
‖u − v‖W 1,Ψ (Rn) ≤ ‖u‖W 1,Ψ (Ω) < ε.
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