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Abstract We classify the profile curves of all surfaces with constant mean curvature in the
product space H

2 × R, which are invariant under the action of a 1-parameter subgroup of
isometries.

Keywords Minimal surfaces · Constant mean curvature surfaces · Invariant surfaces

Mathematics Subject Classification (2000) 53C42 · 53A10

1 Introduction

The theory of constant mean curvature (CMC) surfaces in R
3 or, more generally, into a space

form, has been an extensive field of research in the twentieth century, partially motivated
by the possible applications and by the intrinsic beauty of the subject. In the last decade,
the study of surfaces in three-dimensional manifolds with non constant sectional curvature
has grown very rapidly and particular attention has been given to the study of surfaces in
homogeneous three-manifolds with compact quotients (Thurston’s geometries). Geometri-
cally, the most interesting surfaces in these spaces are those with constant mean or Gauss
curvature, and among these there are those which present many symmetries, i.e. invariant
under the action of a subgroup of the isometry group of the ambient manifold. For surfaces
in a three-dimensional manifold the unique interesting (not trivial) subgroups of isometries
are the one-parameter subgroups and, in this case, any invariant surface can be rendered as
the orbit of a curve (the profile curve) by the action of the subgroup.

I dedicate this work to my supervisor Francesco Mercuri, on the occasion of his 60th anniversary.

The author was supported by INdAM (Italy) and Fapesp (Brazil).

I. I. Onnis (B)
Departamento de Matemática, C.P. 668 ICMC, USP, São Carlos, SP 13560-970, Brazil
e-mail: onnis@icmc.usp.br

123



668 I. I. Onnis

The study of invariant surfaces in the three-dimensional Thurston’s geometries has been
initiated by Caddeo, Piu and Ratto in [2], where they characterized the SO(2)-invariant CMC
surfaces in a three-dimensional homogenous space, and by Tomter, in [13], for the Heisen-
berg group H3. Also, in [3], the authors described the profile curves of the SO(2)-invariant
surfaces with constant Gauss curvature in the Heisenberg group H3. Later, Montaldo and
Onnis, in [7], classified all the invariant surfaces with constant Gauss curvature in H3 and
in the space H

2 × R, which is the product of the hyperbolic plane H
2 (of constant curvature

−1) and the real line. In [4], Figueroa, Mercuri and Pedrosa presented the final classification
of all the invariant CMC surfaces in H3.

This paper is devoted to the study of CMC surfaces in the product space H
2 ×R which are

invariant under the action of a one-parameter subgroup of isometries of the ambient space.
The aim is to complete the classification of such surfaces, that has been initiated by Montaldo
and Onnis in [5,6] and by Toubiana and Sá Earp in [11].

We shall use standard techniques of equivariant geometry, in particular the Reduction
Theorem of Back, do Carmo and Hsiang ([1], see also [4] for a detailed proof). The Reduc-
tion Theorem allows us to give a local description of the invariant surfaces by the study of
a system of three ordinary differential equations that characterizes the profile curve of an
invariant surface. Solutions of the above system can be studied qualitatively in virtue of the
existence of a first integral, namely J (s) = k, with k ∈ R. Thus the classification of the
profile curves will be given in terms of the mean curvature H and of the parameter k (see
Theorems 2 and 3).

One major problem in the classification of all invariant surfaces is to determine the min-
imum number of one-parameter subgroups of isometries that generate (up to isometries of
the ambient space) all possible invariant surfaces. In this paper we solve this problem for the
invariant surfaces in the space H

2 × R (see Proposition 2). We prove that there are four types
of “independent” one-parameter subgroups: the group of rotations, the group of helicoidal
(screw) motions and two other groups which are now called parabolic and hyperbolic screw
motions.

The paper is organized as follows: in Sects. 2 and 3 we recall some basic results of equi-
variant geometry, in particular the Reduction Theorem, and some facts about the space H

2×R

and its 1-parameter subgroups of isometries. Then, in the subsequent sections, we classify
the profile curves of the invariant CMC surfaces in the cases not considered in [5,6]. We end
the paper with the tables showing the plots of the profile curves for all invariant surfaces in
H

2 × R.
The results are part of the author’s doctoral dissertation at the University of Campinas,

Brazil, (see [9]) and were announced in [10]. Shortly after, in the pre-print [12], the author
obtained essentially the same results by using a different approach.

2 Basic facts

Let (N , g) be a Riemannian manifold and let G be a closed subgroup of the isometry group
Isom(N ). If x ∈ N , we will denote by hx the action of an element h ∈ G on x and
by:

• G(x) := {hx : h ∈ G}, the orbit of x ,
• Gx := {h ∈ G : hx = x}, the isotropy subgroup of x ,
• B = N/G, the orbit space.
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From the theory of Riemannian actions we know that:

• There exists a unique minimal conjugacy class of isotropy subgroups. Orbits with isot-
ropy in this class are called principal and the union of the principal orbits, denoted by
Nr , is called the regular part of N . The set Nr is open and dense in N .

• The isotropy group Gx is compact and G(x) = G/Gx . All orbits with isotropy in the
same conjugacy class are pairwise diffeomorphic. In particular all principal orbits are
pairwise diffeomorphic.

• The regular part of the orbit space Br := Nr/G is a connected differentiable manifold
(if N is connected) and the quotient map π : Nr → Br is a submersion.

Remark 1 The full orbit space may contain singularities due to the presence of non-principal
orbits. However, for the case of principal orbits of codimension ≤ 2, which is the case of our
study, the orbit space is always a manifold, with or without boundary. In this case, the analysis
at the boundary (image of the non-principal orbits) may be carried out, even if conditioned
by the differential equations involved.

In the sequel we assume that N is three-dimensional manifold. Let X be a complete Killing
vector field on N . Then X generates a one-parameter subgroup G X of the isometry group of
(N , g). Let f : M2 → N 3 be an immersion from a surface M into N . We say that f is a
G X -equivariant immersion, and f (M) a G X -invariant surface of N , if there exists an action
of G X on M such that for any x ∈ M and h ∈ G X we have f (hx) = h f (x). We will endow
M with the metric induced by f and we will assume that f (M) ⊂ Nr and that N/G X is
connected. Then f induces an immersion f̃ : M/G X → Nr/G X between the orbit spaces;
moreover, the space Nr/G X can be equipped with a Riemannian metric, the quotient metric,
so that the quotient map π : Nr → Nr/G X is a Riemannian submersion. Note that Nr/G X

is a surface and that f̃ defines a curve in Nr/G X called the profile curve.
It is well known (see, for example, [8]) that Nr/G X can be locally parametrized by the

invariant functions of the Killing vector field X . If { f1, f2} is a complete set of invariant func-
tions on a G X -invariant subset of Nr , then the quotient metric is given by g̃ = ∑2

i, j=1 hi j d fi ⊗
d f j , where (hi j ) is the inverse of the matrix (hi j ) with entries hi j = g(∇ fi ,∇ f j ). Here ∇
is the gradient operator of (N , g).

The mean curvature of an invariant immersion is well related to the geodesic curvature of
the profile curve as shown by the celebrated

Theorem 1 (Reduction Theorem [1]) Let H be the mean curvature of Mr ⊂ Nr and kg the
geodesic curvature of the profile curve Mr/G X ⊂ Br with respect to the orbital metric g̃.
Then

H(x) = kg(π(x)) − Dn ln ω(π(x)), x ∈ Mr,

where n is the unit normal to the profile curve and ω = √
g(X, X) is the volume function of

the principal orbit.

Remark 2 Theorem 1 was well known for compact groups. This version is due to Back, do
Carmo and Hsiang and appeared in the unpublished manuscript [1]. A published proof may
be found in [4].

3 The space H
2 × R

In this section we will recall some basic geometric properties of the space H
2 × R, in

particular we will describe the conjugacy classes of 1-parameter subgroups of isometries.
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670 I. I. Onnis

Let H
2 be represented by the upper half-plane model {(x, y) ∈ R

2 | y > 0} equipped
with the metric gH = (dx2 + dy2)/y2. The space H

2, with the group structure derived by
the composition of proper affine maps, is a Lie group and the metric gH is left invariant.
Therefore, the product H

2 × R is a Lie group with respect to the product

L(x,y,z)(x ′, y′, z′) = (x, y, z) ∗ (x ′, y′, z′) = (x ′y + x, yy′, z + z′) (1)

and the product metric g = gH + dz2 is left invariant. With respect to the metric g an
orthonormal basis of left invariant vector fields is given by:

E1 = y
∂

∂x
, E2 = y

∂

∂y
, E3 = ∂

∂z
.

It is well known that the isometry group of H
2 × R has dimension four, the maximal

possible for a non constant sectional curvature three-dimensional space. In particular, we can
choose the following basis of Killing vector fields:

X1 = (x2 − y2)

2

∂

∂x
+ xy

∂

∂y
; X2 = ∂

∂x
; X3 = x

∂

∂x
+ y

∂

∂y
; X4 = ∂

∂z
.

Lets denote by Gi the one-parameter subgroup of isometries generated by Xi , by Gi j that
generated by linear combinations of Xi and X j and so on. Explicitly, indicating by L the left
translation defined by (1), we have that:

G1 = {L(t,0,0,0)| t ∈ R} with

L(t,0,0,0)(x, y, z) =
(−2[t (x2 + y2) − 2x]

(t x − 2)2 + t2 y2 ,
4y

(t x − 2)2 + t2 y2 , z

)

;
G2 = {L(0,t,0,0)| t ∈ R} with L(0,t,0,0) ≡ L(t,1,0);
G3 = {L(0,0,t,0)| t ∈ R} with L(0,0,t,0) ≡ L(0,et ,0);
G4 = {L(0,0,0,t)| t ∈ R} with L(0,0,0,t) ≡ L(0,1,t).

Remark 3 In the sequel we shall use the Killing vector field X∗
12 = X1 + X2/2. The orbits of

X∗
12 are rotations in H

2×R about the vertical straight line (0, 1, z). In fact, the integral curve of
this vector field through the point (x0, y0, z0) ∈ H

2 ×R is given by L(t,t/2,0,0)(x0, y0, z0) =
(x(t), y(t), z0), where

x(t)2 + y(t)2 − β y(t) + 1 = 0, β = (1 + x2
0 + y2

0 )/y0.

An easy computation shows that the hyperbolic distance from a point of the integral curve

to the point (0, 1, z0) is constant and equal to ln

(
β+

√
β2−4

2

)

. Therefore, the integral curves

of X∗
12 are geodesic circles centred at (0, 1, z0) (see Fig. 1).

3.1 Congruent invariant surfaces

In the study of the surfaces which are invariant under the action of a one-parameter subgroup
of isometries appears naturally the problem of reducing the number of cases. In fact, there
are 15 essential possibilities to combine the basis of the Killing vector fields to produce a
one-parameter subgroup of isometries. The key ingredient in order to reduce the number of
cases is the following general criterium:
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Fig. 1 Integral curves of X∗
12

i

x
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Table 1 Conjugated groups with the respective isometry ϕ

GX GY ϕ(w, z)

G1 G2 (−2/w, z)

G3 = {L(0,0,bt,0) : t ∈ R} G13 = {L(at,0,bt,0) : t ∈ R}
( a

b w

1
2 w+ b

a
, z

)

G3 G23 = {L(0,at,−bt,0) : t ∈ R}
(

aw−b
bw

, z
)

G3 G−
12 = {L(t,at,0,0) : t ∈ R}, a < 0

( 1
2b w− 1

2
w+b , z

)

G123 = {L(t,at,bt,0) : t ∈ R} G12 = {L(t,ct,0,0) : t ∈ R}, c = (2a − b2)/2 (w + b, z)

G+
12 = {L(t,at,0,0) : t ∈ R} G∗

12 = {L(bt,bt/2,0,0) : t ∈ R}, b2 = 2a
(

w√
2a

, z
)

Proposition 1 If two groups G X and GY are conjugated by an isometry ϕ of N (i.e. GY =
ϕG Xϕ−1), then the respective invariant surfaces are congruent by ϕ.

Proof Suppose that there exists ϕ ∈ Isom(N ) such that ϕ G X ϕ−1 = GY . Let M1 be a
G X -invariant surface in N and set M2 = ϕ(M1). The surface M2 is GY -invariant:

GY M2 = GY (ϕ(M1)) = (ϕ G X ϕ−1)(ϕ(M1)) = ϕ(G X M1) = ϕ(M1) = M2.

Conversely, if M2 is a GY -invariant surface, then it is congruent to the G X -invariant surface
given by ϕ−1(M2). ��

Therefore, using Proposition 1, we can reduce the study of the invariant surfaces by ana-
lyzing the conjugacy classes of one-parameter subgroups of isometries. In Table 1 we list
the conjugated subgroups together with the respective isometry ϕ (the proof may be found
in [9]). We will use complex coordinates to represent a point w ∈ H

2, that is w = x + iy.
In Table 1 G+

12 (respectively G−
12) is the one-parameter subgroup of isometries generated

by the vector field X+
12 = X1 +aX2, with a > 0 (respectively X−

12 = X1 +aX2, with a < 0),
and G∗

12 is generated by X∗
12. Moreover, it is easy to check that given two Killing vector fields

X = ∑3
i=1 ai Xi and Y = ∑3

i=1 bi Xi , which are conjugated by ϕ, then X̃ = X + a4 X4

and Ỹ = Y + a4 X4, with a4 ∈ R, are also conjugated by ϕ. Therefore, denoting by “∼”
conjugation of groups, we have:

G14∼G24, G34∼G134, G34∼G234,

G34∼G−
124, G1234∼G124, G+

124∼G∗
124,

where G±
124 is the one-parameter subgroup generated by X±

12 and X4, while the group G∗
124

is generated by X∗
12 and X4. The above discussion leads to the following:
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672 I. I. Onnis

Proposition 2 Let X be a Killing vector field in H
2 × R. Then any G X -invariant surface in

H
2 × R is congruent to a surface which is invariant under the action of one of the following

groups: G24, G34 or G∗
124.

As the group G∗
124 mixes rotation with vertical translation will be called helicoidal group

and a G∗
124-invariant surface will be called helicoidal surface. In [5] it is given the complete

classification of the helicoidal CMC surfaces by using the disk model for the hyperbolic
plane, and in [6] by means of the upper half-plane model. In the above papers it is also
studied the case of the G4-invariant CMC surfaces. Therefore, from Proposition 2, one needs
to study the remaining cases: G24 and G34. These subgroups are now called parabolic and
hyperbolic.

4 G24-invariant (parabolic) surfaces with constant mean curvature

At first we observe that, since the group G24 acts freely (without fixed points) on H
2 × R,

the regular part is (H2 × R)r = H
2 × R. A set of two functionally independent invariant

functions is given by u(x, y, z) = bx − az and v(x, y, z) = y and, with respect to these
functions, the orbit space and the orbital metric are given by:

B = {(u, v) ∈ R
2 | v > 0}, g̃ = du2

a2 + b2v2 + dv2

v2 .

Let now γ (s) = (u(s), v(s)) be a curve in B, parametrized by arc-length, that generates,
under the action of G24, the surface � ⊂ H

2 × R.
As

ω(ξ) =
√

a2 + b2v2

v2 and Dn log(ω(ξ)) = − a2 cos σ

a2 + b2v2 ,

from Theorem 1, the mean curvature of � can be written as H = cos σ + σ̇ , where σ is the
angle that γ makes with the ∂

∂u direction. Thus γ generates a G24-invariant CMC surface if
and only if u and v satisfy the following system of ODE’s:

⎧
⎪⎨

⎪⎩

u̇ =
√

a2 + b2v2 cos σ

v̇ = v sin σ

σ̇ = H − cos σ.

(2)

From now on we will assume that the mean curvature H is constant. Before starting the
study of (2) we make some elementary remarks (see [9]).

Proposition 3 Solutions of (2) are invariant under:

1. Translations in the u direction;
2. Reflections across the line u = u0.

As a consequence of the second item of Proposition 3 we have the following:

Corollary 1 Let γ (s) = (u(s), v(s)) be a solution of (2) defined for s ∈ (s0 − ε, s0] with
σ(s0) ∈ {0, π}. Then γ (s) can be extended to the interval (s0 − ε, s0 + ε) by a reflection
across the line u = u(s0).
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Proposition 4 (The first integral) The function J (s) = σ/v is constant along any curve
which is a solution of (2). Thus the solutions of (2) are characterized by the equation

σ̇ = k v, k ∈ R. (3)

Theorem 2 Let � ⊂ H
2 ×R be a G24-invariant CMC surface and let γ be the profile curve

in the orbit space. Then we have the following characterization of γ according to the value
of H and k:

(A) H ≡ 0 (minimal surfaces). The profile curve is
(A1) for k = 0, a vertical straight line;
(A2) for k �= 0, of semi-circle type.

(B) H > 1. In this case k > 0 and the profile curve is of nodal type (see Table 6).
(C) H = 1. The profile curve is

(C1) for k = 0, a horizontal straight line;
(C2) for k > 0, of folium type (see Table 6).

(D) 0 < H < 1. The profile curve is
(D1) for k = 0, of the type showed in Table 6;
(D2) for k > 0, of the type showed in Table 6;
(D3) for k < 0, of semi-circle type (see Table 6).

Proof Observe that
du

dv
= (H − kv)

√
a2 + b2v2

v
√

1 − (H − kv)2
. (4)

We can assume, without loss of generality, that H ≥ 0 and we shall study the two cases,
H = 0 and H > 0, separately.

1. Minimal surfaces (H = 0)

(A1) If k = 0 we have that u = c, with c ∈ R, and � is the plane bx − az = c.
(A2) If k �= 0 the integration of (4) leads to an elliptic integral of the second kind1 and

u(v) = −|a|E
(

arcsin(kv),− b2

a2k2

)

.

We can reflect the curve only once obtaining a global curve of semi-circle type.

2. Surfaces with H > 0

• If k = 0, then cos σ = H and σ is constant. In particular:

(C1) If H = 1, as dv/du = 0, we have v = c, c > 0, and � is the plane y = c.
(D1) If H < 1, integrating (4), we have:

u(v) = H√
1 − H2

[
√

a2 + b2v2 − a ln

(
2(a + √

a2 + b2v2)

a2v

)]

+ c, v > 0,

1 The elliptic integral of the second kind is defined by

E(φ, m) =
φ∫

0

√
1 − m sin2 θ dθ.
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674 I. I. Onnis

where c ∈ R. Substituting the expressions of the invariant functions we find that

az = bx − H√
1 − H2

[√

a2 + b2 y2 − a ln

(
2(a + √

a2 + b2 y2)

a2 y

)]

+ c, y > 0.

This surface is an example of a CMC complete graph of type z = f (x) + g(y).

• If k > 0, as limv→0+ cos σ = H , then, depending on the value of H , we have:

– if H > 1, the curve γ does not approach the line v = 0;
– if H = 1, the curve γ tends asymptotically to the line v = 0;
– if H < 1, the curve γ tends to the line v = 0 with an angle σ = arccos(H).

We will study these three cases separately.
(B) Surfaces with H > 1. In this case vm ≤ v ≤ vM , where vm = (H − 1)/k and
vM = (H + 1)/k. Choosing initial conditions v(0) = vm and u(0) = 0, it results that
σ(0) = 0 and σ̇ (0) = H − 1 > 0. Also cos σ(s2) = −1, where v(s2) = vM for some
s2 > 0. This means that there exists a certain s1 ∈ (0, s2) with σ(s1) = π/2. Therefore, in
v(s1) = H/k there is a local minimum for u(v). According to Corollary 1, we can reflect
the curve infinitely many times. The resulting curve is of nodal type.
(C2) Surfaces with H = 1. Here u(v) is defined for 0 < v ≤ vM , where vM = 2/k. If
v(s1) = vM we have cos σ(s1) = −1. Also, du/dv > 0 if and only if v < 1/k and γ tends
asymptotically to the line v = 0. The profile curve is of folium type.
(D2) Surfaces with H <1. The curve u(v) is defined for 0<v≤vM , where vM =(H + 1)/k.
When v(s1) = vM it results that cos σ(s1) = −1 and, also, in H/k there is a local maximum
for u(v). The curve tends to the line v = 0 with an angle σ = arccos(H) and can be reflected
only one time across the line u = u(s1).

• (D3) If k < 0, we have that H < 1 and u(v) is defined for 0 < v ≤ vM , where
vM = (H − 1)/k. When v assumes the value vM = v(s1), since cos σ(s1) = 1, the
curve is parallel to the u direction. Also σ̇ (s) = kv < 0. Reflecting the curve only one
time across the line u = u(s1), we obtain a curve of semi-circle type. ��

Remark 4 Among the G24-invariant surfaces, the G2-invariant ones are very interesting
because we can give the explicit parametrizations of their profile curves. In this way, we find
new explicit examples of CMC surfaces in H

2 × R. For the action of G2, the metric on the
orbital space B = {(u, v) ∈ R

2 | v > 0} is given by g̃ = du2 + dv2/v2. In Table 2 we
gather the parametrizations of the profile curves in terms of k and H . For k �= 0 we only
give the case when k > 0. In fact, for k < 0 (when the surface exists) we obtain the same
parametrization to the case k > 0.

5 G34-invariant (hyperbolic) surfaces with constant mean curvature

Let G34 be the isometry subgroup generated by the Killing vector field X34 = aX3 + bX4,
with a, b ∈ R. Observe that, since the action of this group on H

2 ×R is free, then (H2 ×R)r =
H

2 × R. Introducing cylindrical coordinates (r, θ, z), with r > 0 and θ ∈ (0, π), we have:

g = dr2

r2 sin2 θ
+ dθ2

sin2 θ
+ dz2 and X34 = ar

∂

∂r
+ b

∂

∂z
.
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Table 2 Profile curves of G2-invariant surfaces

k = 0 k > 0

H = 0 u(v) = c ∈ R u(v) = − arcsin(kv), 0 < v ≤ 1/|k|

H = 1 v(u) = c > 0 u(v) = arcsin(1 − kv) −
√

2−kv
kv

, 0 < v ≤ 2
k

H > 1 u(v) = arcsin(H − kv)−
H

√
H2 − 1

tan−1

[
H2 − 1 − Hkv

√
(H2 − 1)(1 − (kv − H)2)

]

,
H − 1

k
≤ v ≤ H + 1

k

H < 1 u(v) = H ln v√
1−H2

u(v) = arcsin(H − kv)−
H

√
1 − H2

ln

[
2(1−H2+Hkv+

√
(1−H2)(1−(kv−H)2))

H
√

1−H2v

]

, 0<v≤ H +1

k

Taking as invariant functions u(r, θ, z) = θ and v(r, θ, z) = az − b ln r , the orbit space
is B = {(u, v) ∈ R

2 | u ∈ (0, π)} and the orbital metric becomes

g̃ = du2

sin2 u
+ dv2

a2 + b2 sin2 u
.

Let γ (s) = (u(s), v(s)) be a profile curve, parametrized by arc-length, of a G34-invariant
surface �. According to Theorem 1, the mean curvature of � along a principal orbit is given
by H = σ̇ −cos u sin σ , where σ is the angle that the curve makes with the u-axis. Therefore,
γ is a solution of the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇ = sin u cos σ

v̇ =
√

(a2 + b2 sin2 u) sin σ

σ̇ = H + cos u sin σ.

(5)

As in the previous case, solutions of (5) possess some features as shown in

Proposition 5 Solutions of (5) are invariant under:

1. translations in the v direction;
2. reflections across the line v = v0.

Corollary 2 Let γ (s) = (u(s), v(s)) be a solution of (5) defined on (s0 −ε, s0] with σ(s0) =
±π/2. Then γ (s) may be extended to the interval (s0 − ε, s0 + ε) by a reflection across the
line v = v(s0).

Proposition 6 (The first integral) If H is constant on �, then the function

J (s) = H cos u + sin σ

sin u

is constant along a solution of (5). Therefore, the solutions of (5) are characterized by the
equation

H cos u + sin σ

sin u
= k, k ∈ R. (6)
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676 I. I. Onnis

We observe that, using (6), the third equation of (5) can be rewritten as

σ̇ = tan u (k − sin u sin σ). (7)

Remark 5 For a fixed k ∈ R, we indicate by γk(s) = (u(s), v(s), σ (s)), s ∈ (s1, s2), the
profile curve corresponding to k and H > 0. Then the profile curve γ−k is the reflected of γk

across the line u = π/2, runned in the opposite direction. In fact

γ−k(s) = (ũ(s), ṽ(s), σ̃ (s)) = (π − u(s1 + s2 − s), v(s1 + s2 − s), 2π − σ(s1 + s2 − s)),

with s ∈ (s1, s2). Therefore,
⎧
⎪⎪⎨

⎪⎪⎩

˙̃u = sin ũ cos σ̃

˙̃v =
√

(a2 + b2 sin2 ũ) sin σ̃

˙̃σ = − tan ũ (k + sin ũ sin σ̃ ),

(8)

which implies that γ−k is a solution of (5) for −k (see (7)). Consequently, the profile curves
of the G34-invariant surfaces with mean curvature H > 0, for k = 0, are symmetric with
respect to the line u = π/2.

The qualitative study of (5) yields the following:

Theorem 3 Let � ⊂ H
2 × R be a G34-invariant CMC surface and let γ = �/G34 be its

profile curve in the orbit space. Then we have the following characterization of γ according
to the value of the mean curvature H and of k.

(A) (H = 0) - The profile curve is

(A1) for k = 0, a horizontal straight line and generates the funnel surface;
(A2) for |k| > 1, plotted in Table 7;
(A3) for |k| = 1, of hyperbole type (Table 7);
(A4) for 0 < |k| < 1, plotted in Table 7.

(B) (H > 1) - The profile curve is

(B1) for k = 0, of ellipse type;
(B2) for k �= 0, of nodal type.

(C) (H = 1) - The profile curve is

(C1) for k = 0, of parabola type (see Table 8);
(C2) for k �= 0, of folium type (see Table 8).

(D) (0 < H < 1) - The profile curve is

(D1) for k = 0, plotted in Table 7;
(D2) for |k| >

√
1 − H2, represented in Table 7;

(D3) for |k| = √
1 − H2, represented in Table 7;

(D4) for 0 < |k| <
√

1 − H2, represented in Table 7.

Proof From (5), we have that:

dv

du
= (k sin u − H cos u)

√
a2 + b2 sin2 u

sin u
√

1 − (k sin u − H cos u)2
. (9)

As in the previous case, we can assume, without loss of generality, that H ≥ 0 and we
shall study the two cases, H = 0 and H > 0, separately.
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Fig. 2 Funnel surface xy

z

(1) Minimal surfaces (H = 0)

(A1) If k = 0, then v = c ∈ R and � is given by az = b ln r + c (see Fig. 2). This surface,
called the funnel surface, is a complete graph ruled by its level curves.

If k �= 0, (9) yields an elliptic integral of the first kind.2 When a = 1 and b = 0 we have
that v(u) = k F(u, k2). Note that it is enough to study the case k > 0. In fact, the profile
curves for k < 0 can be obtained reflecting across the u-axis the solutions relative to the case
k > 0. Moreover, we have:

σ̇ (s) = sin σ cos u = k sin u cos u, (10)

and limu→0+ sin σ = 0 = limu→π− sin σ.

(A2) If k > 1, then u ∈ (0, u0] ∪ [π − u0, π), where u0 = arcsin(1/k). If u = u0 or
u = π − u0, it results that sin σ = 1. From (10) we have that the function σ(s) is
always increasing in (0, u0] and it is always decreasing in [π − u0, π).

(A3) If k = 1, then u �= π/2 and

v(u) = cos u

| cos u|

[
√

a2 + b2 tanh−1

[ √
a2 + b2 sin u

√
a2 + b2 sin2 u

]

− ba

|a| sinh−1
(

b sin u

a

)]

.

(A4) If 0 < k < 1, then u ∈ (0, π). Also, from sin σ = k < 1, it follows that in u = π/2
there is an inflection point of γ with oblique tangent.

(2) Surfaces with H > 0

From Remark 5 it is sufficient to study the profile curves for k ≥ 0.

• For k = 0, as limu→0+ sin σ = −H and limu→π− sin σ = H , we have that:

2 The elliptic integral of the first kind is defined by:

F(φ, m) =
φ∫

0

dθ
√

1 − m2 sin2 θ
.
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– if H > 1, the curve γ does not reach the lines u = 0 and u = π ;
– if H = 1, the curve γ tends asymptotically to the lines u = 0 and u = π ;
– if H < 1, the curve γ tends to the lines u = 0 and u = π with an angle σ = arcsin(−H)

and σ = arcsin(H), respectively.

Also σ̇ (s) = H sin2 u > 0, so that σ(s) is always increasing.
(B1) Surfaces with H > 1. In this case um ≤ u ≤ uM , where um = arccos(1/H) and uM =
π − um . Choosing the initial conditions u(0) = um and v(0) = 0, we have σ(0) = 3π/2
and σ̇ (0) > 0. Also, if uM = u(s2) for some s2 > 0, it results σ(s2) = π/2 and there exists
s1 ∈ (0, s2) so that σ(s1) = 2π . The curve is symmetric with respect to the line u = π/2
(see Remark 5) and can be reflected only once across the u-axis, obtaining a curve of ellipse
type. Note that if a = 1 and b = 0, by integrating we find

v(u) = − H√
H2 − 1

arctan

⎡

⎣

√
1 − H2 cos2 u

H2 − 1

⎤

⎦ + c, u ∈ [um, uM ],

and thus

z(r, θ) = − H√
H2 − 1

arctan

⎡

⎣

√
1 − H2 cos2 θ

H2 − 1

⎤

⎦ + c,

with θ ∈ [arccos(1/H), arccos(−1/H)] and c ∈ R.
(C1) Surfaces with H = 1. In this case, integrating (9), we have that

v(u) =
√

a2 + b2 sin2 u

sin u
− b tanh−1

[
b sin u

√
a2 + b2 sin2 u

]

+ c, u ∈ (0, π),

where c ∈ R. Therefore, the corresponding surface is given by:

a z(r, θ) = b ln r +
√

a2 + b2 sin2 θ

sin θ
− b tanh−1

[
b sin θ

√
a2 + b2 sin2 θ

]

+ c, a �= 0,

with θ ∈ (0, π). For a = 1 we have the family also obtained by R. Sá Earp ([12]).
(D1) Surfaces with H < 1. In this case 0 < u < π and in u = π/2 there is a minimum of
v(u). For a = 1 and b = 0 we get:

v(u) = H√
1 − H2

ln

(

2

√
1 − H2 + √

1 − H2 cos2 u

sin u

)

+ c, c ∈ R.

The corresponding G3-invariant complete surface is given by:

z(r, θ) = H√
1 − H2

ln

(

2

√
1 − H2 + √

1 − H2 cos2 θ

sin θ

)

+ c, θ ∈ (0, π).

• For k > 0, we have limu→0+ sin σ = −H and limu→π− sin σ = H , hence:

– if H > 1, the curve γ does not reach the lines u = 0 and u = π ;
– if H = 1, the curve γ tends asymptotically to the line u = 0 or u = π ;
– if H < 1, the curve γ tends to the lines u = 0 and u = π with an angle σ =

arcsin(−H) and σ = arcsin(H), respectively.
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Table 3 Limiting values for u in
case (B2)

k ≥ 1 0 < k < 1

um arcsin

(
−k+H

√
H2+k2−1

H2+k2

)

arcsin

(
−k+H

√
H2+k2−1

H2+k2

)

uM arcsin

(
k+H

√
H2+k2−1

H2+k2

)

π − arcsin

(
k+H

√
H2+k2−1

H2+k2

)

Table 4 Limiting values for u in
case (D2) k ≥ 1

√
1 − H2 < k < 1

um arcsin

(
k+H

√
H2+k2−1

H2+k2

)

π − arcsin

(
k+H

√
H2+k2−1

H2+k2

)

uM π − arcsin

(
k−H

√
H2+k2−1

H2+k2

)

π − arcsin

(
k−H

√
H2+k2−1

H2+k2

)

Moreover, if cos u �= 0, then σ̇ (s) = sin u (H sin u + k cos u). Also, if cos u = 0, then
σ̇ = H > 0. Therefore, σ̇ = 0 implies that cos u �= 0. Consequently

σ̇ (s) = 0 ⇔ u = ũ = arctan

(−k

H

)

= π − arcsin

(
k√

H2 + k2

)

, (11)

and σ̇ (s) > 0 if and only if u ∈ (0, ũ)

(B2) Surfaces with H > 1. In this case um ≤ u ≤ uM (see Table 3). As ũ > uM the function
σ(s) is always increasing and in arcsin(H/

√
H2 + k2) there is a local minimum for v(u).

We can reflect the curve infinitely many times obtaining a curve of nodal type.
(C2) Surfaces with H = 1. Now 0 < u ≤ uM , where if k ≥ 1, it results that uM =
arcsin(2k/(1 + k2)), while if k < 1, then uM = π − arcsin(2k/(1 + k2)). The v-axis is a
vertical asymptotic line for the curve v(u) and when u = uM the curve is parallel to the v

direction. Also, as ũ > uM then σ(s) is always increasing. For u = arctan(1/k) the curve
v(u) has a local minimum. We can reflect the profile curve only one time obtaining the curve
of folium type.

Surfaces with H < 1

For this case there exist three different subcases depending on k.
(D2) If k >

√
1 − H2, it results that u ∈ (0, um] ∪ [uM , π) (see Table 4). When u = um

or u = uM , we have σ = π/2. Since um < ũ < uM , in (0, um] the function σ(s) is always
increasing and in [uM , π) is always decreasing. Moreover in arcsin(H/

√
H2 + k2) there is

a local minimum for v(u).
(D3) If k = √

1 − H2, we obtain that

dv

du
= (k − H cot u)

√
a2 + b2 sin2 u

|k cos u + H sin u| , u �= ũ = arcsin(k).

It’s easy to check that σ(s) is increasing in (0, ũ) and decreasing in (ũ, π). Also, u = ũ is a
vertical asymptotic line of the curve v(u) and in arcsin(H) ∈ (0, ũ) there is a local minimum
for v(u).
(D4) If 0 < k <

√
1 − H2, we have u ∈ (0, π). From (11) it results that σ(s) is increasing

if and only if u ∈ (0, ũ). Moreover in ũ the curve v(u) has an inflection point with oblique
tangent and in the point arctan(H/k) ∈ (0, ũ) it has a local minimum. ��
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6 Tables of the plots of the profile curves

In this section we gather the plots of the profile curves for all the invariant surfaces in H
2 ×R.

We have divided the pictures in tables according to the one-parameter subgroups and, for
completeness, we have added the profile curves of the translational and helicoidal surfaces
studied in [5,6,11]. The profile curves of the helicoidal surfaces with H < 1 are similar to
those with H = 1. When in a table a figure is missing means that the invariant surface does
not exist in the corresponding case (Tables 5, 6, 7, 8, 9).

Table 5 Profile curves of G4-invariant (translational) surfaces

Table 6 Profile curves of G24-invariant (parabolic) surfaces

Table 7 Profile curves of G34-invariant (hyperbolic) surfaces (H < 1)
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Table 8 Profile curves of G34-invariant (hyperbolic) surfaces (H ≥ 1)

Table 9 Profile curves of G∗
124-invariant (helicoidal) surfaces

Acknowledgments The author wishes to thank Francesco Mercuri and Stefano Montaldo for valuable con-
versations during the preparation of this paper.
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