Generalized inflection points of very general line bundles on smooth curves

Marc Coppens

Received: 31 October 2006 / Revised: 20 May 2007 / Published online: 27 October 2007
© Springer-Verlag 2007

Abstract

Let L be an invertible sheaf on a smooth curve C. A generalized inflection point of L is an inflection point of $L^{\otimes n}$ for some integer $n>0$. A generalized inflection point P of L is called strongly normal if there is a unique integer $n>0$ such that P is an inflection point of $L^{\otimes n}$ and moreover its inflection weight is equal to 1 . In case L is a very general invertible sheaf of degree x on C then all generalized inflection points of L are strongly normal.

Keywords Inflection point • Linear system • Divisor • Curve • Invertible sheaf
Mathematics Subject Classification (2000) 14H55

1 Introduction

Let C be a smooth irreducible projective curve of genus g defined over the field \mathbb{C} of the complex numbers. A divisor D on C is a formal linear combination $\sum_{i} n_{i} P_{i}$ with n_{i} integers and P_{i} points on C (assume $P_{i} \neq P_{j}$ for $i \neq j$). We call n_{i} the multiplicity of D at P_{i} denoted by mult $P_{P_{i}}(D)$. Let g_{d}^{r} be a linear system on C and let P be a point on C. The ramification sequence of g_{d}^{r} at P is the sequence of integers $0 \leq \alpha_{0}(P) \leq \cdots \leq \alpha_{r}(P) \leq d-r$ such that (see [1, p. 37])

$$
\left\{\alpha_{i}(P)+i: 0 \leq i \leq r\right\}=\left\{\operatorname{mult}_{P}(D): D \in g_{d}^{r}\right\} .
$$

We call $\mathrm{w}(P)=\sum_{i=0}^{r} \alpha_{i}(P)$ the inflection weight of g_{d}^{r} at P. The point P is called an inflection point for g_{d}^{r} if and only if $\mathrm{w}(P)>0$. The linear system g_{d}^{r} has finitely many inflection points. An inflection point P of g_{d}^{r} is called a normal inflection point if and only if $\mathrm{w}(P)=1$.

[^0]Let L be an invertible sheaf on C. We write $|L|$ to denote the complete linear system associated to L [in case $h^{0}(C, L)=0$ then $|L|=\emptyset$]. We say P is a (normal) inflection point of L if P is a (normal) inflection point of $|L|$.

Definition Let L be an invertible sheaf on C and let P be a point on C. We say that P is a generalized inflection point of L if and only if there exists an integer $n>0$ such that P is an inflection point of $L^{\otimes n}$.

Let P be a generalized inflection point of L. We say that P is a normal generalized inflection point of L if and only if $\mathrm{w}(P) \leq 1$ for $L^{\otimes n}$ for all integers $n>0$.

Let P be a normal generalized inflection point of L. We say that P is a strongly normal generalized inflection point of L if and only if there is a unique integer $n>1$ such that P is an inflection point of $L^{\otimes n}$.

In this paper we prove the following theorem.
Theorem Let $x>0$ be an integer. If L is a very general invertible sheaf of degree x on C then all generalized inflection points of L are strongly normal.

The meaning of very general is as follows. Let $\operatorname{Pic}^{x}(C)$ be the irreducible g-dimensional projective variety parameterizing the isomorphism classes of invertible sheaves of degree x on C. Then there exists a countable union Y of properly [i.e., different from $\operatorname{Pic}^{x}(C)$] closed subsets of $\operatorname{Pic}^{x}(C)$ such that the statement in the theorem holds for all invertible sheaves of degree x not corresponding to a point of Y. In particular the statement of the theorem holds for the generic invertible sheaf of degree x on C.

2 Some related results and questions

In [6] one investigates so-called multiple Weierstrass points. Those are generalized inflection points P of some invertible sheaf L such that P is an inflection point of $L^{\otimes n}$ for infinitely many integers $n>0$. This corresponds to very special situations, it is the opposite of the definition of strongly normal generalized inflection points.

In case $L=K$, the canonical line bundle on C, then a (generalized) inflection point of K is called a (generalized) Weierstrass point on C. In [5, Theorem 3] it is proved that for the generic smooth curve C of genus $g \geq 3$ all generalized Weierstrass points are normal. (In this statement the condition $g \geq 3$ is necessary.)

Question 1 Are the generalized Weierstrass points on a generic curve C of genus $g \geq 3$ strongly normal?
See also the remark at the end of the paper.
A very interesting special class of smooth projective curves are the smooth plane curves $C \subset \mathbb{P}^{2}$ (say of degree d, hence genus $\left.g=(d-1)(d-2) / 2\right)$. Let L be the invertible sheaf associated to the embedding $C \subset \mathbb{P}^{2}$. In this case $K=L^{\otimes(d-3)}$

Question 2 Are the generalized inflection points of the generic smooth plane curve C of degree d (strongly) normal?

Question 2 contains the question whether the Weierstrass points on a general smooth plane curve C are normal.

Question 1 is a question on the linear system $g_{2 g-2}^{g-1}$ on the generic curve C of genus g. The following question is a generalization from that point of view.

Question 3 Let $\rho_{d}^{r}(g)=g-(r+1)(g-d+r) \geq 0$ and assume L corresponds to a very general g_{d}^{r} on the generic curve C of genus g. Are the generalized inflection points of L (strongly) normal?

Let L be the invertible sheaf corresponding to a very general g_{k}^{1} on a generic k-gonal curve C of genus g. In a forthcoming paper we investigate the generalized inflection points of L. In particular we prove that they are normal in case they are not inflection points of g_{k}^{1} itself.

Notations

Let L be an invertible sheaf of degree d on C and let $a>0$ be an integer. We write $|a L|$ to denote the complete linear system associated to $L^{\otimes a}$. We write $[L]$ to denote the corresponding point of $\mathrm{Pic}^{d}(C)$. If D is a divisor on C of degree d then we also write [D] instead of $\left[\mathcal{O}_{C}(D)\right]$. In case a point of $\operatorname{Pic}^{d}(C)$ is denoted by $[L]$ (resp. [D]) then L (resp. D) is a suited line bundle (resp. divisor). As usual we write W_{d}^{r} to denote the set of points $[L] \in \operatorname{Pic}^{d}(C)$ satisfying $h^{0}(C, L) \geq r+1$. In case $X_{i} \subset \operatorname{Pic}^{d_{i}}(C)$ and $n_{i}>0$ is an integer for $i=1,2$ then we write $n_{1} X_{1}+n_{2} X_{2}$ to denote the image of $X_{1} \times X_{2}$ under the map $\operatorname{Pic}^{d_{1}}(C) \times \operatorname{Pic}^{d_{2}}(C) \rightarrow \operatorname{Pic}^{d}(C)$ (with $\left.d=n_{1} d_{1}+n_{2} d_{2}\right)$ mapping $\left(\left[L_{1}\right],\left[L_{2}\right]\right)$ to $\left[L_{1}^{\otimes n_{1}} \otimes L_{2}^{\otimes n_{2}}\right]$.

3 Proof of the theorem

Since we are going to prove a statement concerning a very general element of $\operatorname{Pic}^{x}(C)$ we can assume that for each integer $a \geq 1$ the invertible sheaf $L^{\otimes a}$ is non-special, hence $|a L|$ is empty if $a x<g$ and $\operatorname{dim}(|a L|)=a x-g$ if $a x \geq g$.

In case a point P is an inflection point of $L^{\otimes a}$ then $a x \geq g$ and $\mid L \otimes \mathcal{O}_{C}(-(a x-$ $g+1) P) \mid \neq \emptyset$. Hence a point P on C is an inflection point for $|a L|$ if and only if $a x \geq g$ and there exists an effective divisor D of degree $g-1$ such that

$$
D+(a x-g+1) P \in|a L| .
$$

In case P is an inflection point of $L^{\otimes a}$ that is not normal then either $\alpha_{a x-g}(P) \geq 2$ or $\alpha_{a x-g-1}(P) \geq 1$ (ramification sequence of $L^{\otimes a}$ at P). In the first case there exists an effective divisor D of degree $g-2$ such that

$$
D+(a x-g+2) P \in|a L| .
$$

In the second case $\operatorname{dim}\left(\left|L \otimes \mathcal{O}_{C}(-(a x-g) P)\right|\right) \geq 1$ hence

$$
\left[L \otimes \mathcal{O}_{C}(-(a x-g) P)\right] \in W_{g}^{1}
$$

So, there exists a special effective divisor D of degree g (hence $\operatorname{dim}(|D|) \geq 1)$ such that

$$
D+(a x-g) P \in|a L| .
$$

Consider the multiplication morphism

$$
m_{a}: \operatorname{Pic}^{x}(C) \rightarrow \operatorname{Pic}^{a x}(C): M \rightarrow M^{\otimes a}
$$

It is an unramified finite covering. The two situations implying that $L^{\otimes a}$ has a non-normal generalized inflection point can be written as

$$
\begin{aligned}
& m_{a}(L) \in W_{g-2}^{0}+(a x-g+2) W_{1}^{0} \\
& m_{a}(L) \in W_{g}^{1}+(a x-g) W_{1}^{0}
\end{aligned}
$$

Since $W_{g-2}^{0}+(a x-g+2) W_{1}^{0}$ and $W_{g}^{1}+(a x-g) W_{1}^{0}$ are $(g-1)$-dimensional properly closed subsets of $\operatorname{Pic}^{a x}(C)$, their inverse images under m_{a} are ($g-1$)-dimensional properly closed subsets of $\operatorname{Pic}^{x}(C)$. Let Y be the union of those closed subsets for all integers $a \geq 1$. For a very general $L \in \operatorname{Pic}^{x}(C)$ we can assume $L \notin Y$ hence all generalized inflection points of L are normal.

A normal generalized inflection point P of L is not strongly normal if and only if there exist integers $a, b \geq 1$ and divisors D, D^{\prime} of degree $g-1$ such that the following two conditions do hold

$$
\begin{align*}
D+(a x-g+1) P & \in|a L| \tag{1}\\
D^{\prime}+((a+b) x-g+1) P & =|(a+b) L| . \tag{2}
\end{align*}
$$

This is equivalent to the following two conditions

$$
\begin{gather*}
D+(a x-g+1) P \in|a L| \tag{3}\\
|D+b L|=\left|D^{\prime}+b x P\right| \tag{4}
\end{gather*}
$$

Fix integer $a, b \geq 1$. Let V be the subspace of $W_{g-1}^{0} \times C \times \operatorname{Pic}^{x}(C)$ of triples ([D], P, L) such that (3) holds. The projection $V \rightarrow W_{g-1}^{0} \times C$ is an unramified finite covering, hence all components of V do have dimension g and do dominate $W_{g-1}^{0} \times C$. Consider the morphisms $\mu: V \rightarrow \operatorname{Pic}^{b x+g-1}(C) \times C$ and $v: W_{g-1}^{0} \times C \rightarrow \operatorname{Pic}^{b x+g-1}(C) \times C$ defined by

$$
\begin{aligned}
\mu([D], P, L) & =([D]+b[L], P) \\
v\left(\left[D^{\prime}\right], P^{\prime}\right) & =\left(\left[D^{\prime}+b x P^{\prime}\right], P^{\prime}\right) .
\end{aligned}
$$

The condition that L has a normal generalized inflection point that is not strongly normal is equivalent to the condition that there exist integers $a, b \geq 1$; an effective divisor D of degree $g-1$ and a point P on C such that $([D], P, L) \in V$ [i.e. (3)] and $\mu([D], P, L) \in \operatorname{im}(v)$ [i.e. (4)]. In order to finish the proof of the theorem it is enough to prove that, for all integers $a, b \geq 1$ there exists an effective divisor D of degree $g-1$ and a point P on C such that for each $L \in \operatorname{Pic}^{x}(C)$ satisfying $([D], P, L) \in V$ one has $\mu([D], P, L) \notin \operatorname{im}(v)$. Indeed from the description of V it would follow that $\mu^{-1}(\mathrm{im}(v))$ has dimension at most $g-1$ and its image in $\operatorname{Pic}^{x}(C)$ (under the projection) is a properly closed subset of $\operatorname{Pic}^{x}(C)$. Let Y be the union of all those properly closed subsets for all choices of $a, b \geq 1$. For a very general $L \in \operatorname{Pic}^{x}(C)$ we can also assume $L \notin Y$ hence all generalized inflection points of L are strongly normal.

So now assume fixed integers $a, b \geq 1$. In case $([D], P, L) \in V$ satisfying $\mu([D], P, L) \in$ $\operatorname{im}(v)$ there exists an effective divisor D^{\prime} of degree $g-1$ such that (3) and (4) do hold. From (4) we obtain

$$
|a D+a b L|=\left|a D^{\prime}+a b x P\right| .
$$

Since $D+(a x-g+1) P \in|a L|$ it implies

$$
\begin{equation*}
a D^{\prime} \in|(a+b) D-b(g-1) P| . \tag{5}
\end{equation*}
$$

Consider the morphism $\mu^{\prime}: W_{g-1}^{0} \times C \rightarrow \operatorname{Pic}^{a(g-1)}(C)$ defined by

$$
\mu^{\prime}([D], P)=(a+b)[D]-b(g-1)[P]
$$

then (5) is equivalent to $\mu^{\prime}([D], P) \in a W_{g-1}^{0}$. Hence it is enough to prove that there exists an effective divisor D of degree $g-1$ and a point P such that $\mu^{\prime}([D], P) \notin a W_{g-1}^{0}$.

Take $A \in \operatorname{Pic}^{a(g-1)}(C)$ satisfying $A \notin a W_{g-1}^{0}$ and consider the curve $A+b(g-1) W_{1}^{0}$ inside $\operatorname{Pic}^{(a+b)(g-1)}(C)$. Let $\Gamma \subset \operatorname{Pic}^{g-1}(C)$ be a component of the inverse image of $A+$ $b(g-1) W_{1}^{0}$ under m_{a+b}. Inside $\operatorname{Pic}^{g-1}(C)$ the divisor W_{g-1}^{0} is ample (it defines the principal polarization on the Jacobian of C), hence $\Gamma \cap W_{g-1}^{0}$ is not empty.

Take $[D] \in \Gamma \cap W_{g-1}^{0}$. Because $(a+b)[D] \in A+b(g-1) W_{1}^{0}$ there exists $P \in C$ such that

$$
(a+b)[D]-b(g-1)[P]=\mu^{\prime}([D], P)=A .
$$

Because of the choice of A one has $\mu^{\prime}([D], P) \notin a W_{g-1}^{0}$. This implies there is no $L \in$ $\operatorname{Pic}^{x}(C)$ such that $([D], L, P) \in V$ and $\mu([D], L, P) \in \operatorname{im}(\nu)$. This finishes the proof of the theorem.

Remark Some time after finishing the paper the preprint [3] appeared containing a proof of our result (see Theorem 0.10). The first part of that proof is exactly the same as ours, the second part uses the connectedness theorem from [4].
G. Farkas also communicated to me that a very general curve of genus $g \geq 4$ has only strongly normal generalized Weierstrass points (answering Question 1). In [2, Sect. 6] it is proved that the locus on the universal family of curves of genus g of inflection points of $n K$ is irreducible for all $n \geq 1$. Since that locus is different for different values of n no intersection of two of them dominates the moduli space of curves of genus g.

References

1. Arbarello, E., Cornalba, M., Griffiths, P., Harris., J.: Geometry of algebraic curves, Vol I, series, Grundlehren, vol. 267 (1985)
2. Cukiermann, F., Fong, L.-Y.: On higher Weierstrass points. Duke Math. J. 62, 179-203 (1991)
3. Farkas, G.: Higher order ramification and varieties of secant divisors on the generic curve (2007, preprint)
4. Fulton, W., Lazarsfeld, R.: On the connectedness of degeneration loci and special divisors. Acta Math. 146, 271-283 (1981)
5. Lax, R.F.: Normal higher Weierstrass points. Tsubuka J. Math. 13, 1-5 (1989)
6. Silverman, J.H., Voloch, J.F.: Multiple Weierstrass points. Comp. Math. 79, 123-134 (1991)

[^0]: The author is affiliated with the University of Leuven as a research fellow Partially supported by the Fund of Scientific Research, Flanders (G.0318.06).

