Generalized inflection points of very general line bundles on smooth curves

Marc Coppens

Received: 31 October 2006 / Revised: 20 May 2007 / Published online: 27 October 2007 © Springer-Verlag 2007

Abstract Let *L* be an invertible sheaf on a smooth curve *C*. A generalized inflection point of *L* is an inflection point of $L^{\otimes n}$ for some integer n > 0. A generalized inflection point *P* of *L* is called strongly normal if there is a unique integer n > 0 such that *P* is an inflection point of $L^{\otimes n}$ and moreover its inflection weight is equal to 1. In case *L* is a very general invertible sheaf of degree *x* on *C* then all generalized inflection points of *L* are strongly normal.

Keywords Inflection point · Linear system · Divisor · Curve · Invertible sheaf

Mathematics Subject Classification (2000) 14H55

1 Introduction

Let *C* be a smooth irreducible projective curve of genus *g* defined over the field \mathbb{C} of the complex numbers. A divisor *D* on *C* is a formal linear combination $\sum_i n_i P_i$ with n_i integers and P_i points on *C* (assume $P_i \neq P_j$ for $i \neq j$). We call n_i the *multiplicity* of *D* at P_i denoted by mult_{P_i}(*D*). Let g_d^r be a linear system on *C* and let *P* be a point on *C*. The *ramification* sequence of g_d^r at *P* is the sequence of integers $0 \leq \alpha_0(P) \leq \cdots \leq \alpha_r(P) \leq d - r$ such that (see [1, p. 37])

$$\{\alpha_i(P) + i : 0 \le i \le r\} = \{ \text{mult}_P(D) : D \in g_d^r \}.$$

We call $w(P) = \sum_{i=0}^{r} \alpha_i(P)$ the *inflection weight* of g_d^r at *P*. The point *P* is called an *inflection point* for g_d^r if and only if w(P) > 0. The linear system g_d^r has finitely many inflection points. An inflection point *P* of g_d^r is called a *normal inflection point* if and only if w(P) = 1.

M. Coppens (🖂)

Katholieke Hogeschool Kempen, Kleinhoefstraat 4, 2440 Geel, Belgium

The author is affiliated with the University of Leuven as a research fellow Partially supported by the Fund of Scientific Research, Flanders (*G*.0318.06).

Departement Industrieel Ingenieur en Biotechniek,

e-mail: marc.coppens@khk.be

Let *L* be an invertible sheaf on *C*. We write |L| to denote the complete linear system associated to *L* [in case $h^0(C, L) = 0$ then $|L| = \emptyset$]. We say *P* is a (normal) inflection point of *L* if *P* is a (normal) inflection point of |L|.

Definition Let *L* be an invertible sheaf on *C* and let *P* be a point on *C*. We say that *P* is a *generalized inflection point* of *L* if and only if there exists an integer n > 0 such that *P* is an inflection point of $L^{\otimes n}$.

Let *P* be a generalized inflection point of *L*. We say that *P* is a *normal generalized inflection point* of *L* if and only if $w(P) \le 1$ for $L^{\otimes n}$ for all integers n > 0.

Let *P* be a normal generalized inflection point of *L*. We say that *P* is a *strongly normal* generalized inflection point of *L* if and only if there is a unique integer n > 1 such that *P* is an inflection point of $L^{\otimes n}$.

In this paper we prove the following theorem.

Theorem Let x > 0 be an integer. If L is a very general invertible sheaf of degree x on C then all generalized inflection points of L are strongly normal.

The meaning of very general is as follows. Let $\operatorname{Pic}^{x}(C)$ be the irreducible *g*-dimensional projective variety parameterizing the isomorphism classes of invertible sheaves of degree *x* on *C*. Then there exists a countable union *Y* of properly [i.e., different from $\operatorname{Pic}^{x}(C)$] closed subsets of $\operatorname{Pic}^{x}(C)$ such that the statement in the theorem holds for all invertible sheaves of degree *x* not corresponding to a point of *Y*. In particular the statement of the theorem holds for the generic invertible sheaf of degree *x* on *C*.

2 Some related results and questions

In [6] one investigates so-called *multiple Weierstrass points*. Those are generalized inflection points P of some invertible sheaf L such that P is an inflection point of $L^{\otimes n}$ for infinitely many integers n > 0. This corresponds to very special situations, it is the opposite of the definition of strongly normal generalized inflection points.

In case L = K, the canonical line bundle on C, then a (generalized) inflection point of K is called a (*generalized*) Weierstrass point on C. In [5, Theorem 3] it is proved that for the generic smooth curve C of genus $g \ge 3$ all generalized Weierstrass points are normal. (In this statement the condition $g \ge 3$ is necessary.)

Question 1 Are the generalized Weierstrass points on a generic curve C of genus $g \ge 3$ strongly normal?

See also the remark at the end of the paper.

A very interesting special class of smooth projective curves are the smooth plane curves $C \subset \mathbb{P}^2$ (say of degree *d*, hence genus g = (d-1)(d-2)/2). Let *L* be the invertible sheaf associated to the embedding $C \subset \mathbb{P}^2$. In this case $K = L^{\otimes (d-3)}$

Question 2 Are the generalized inflection points of the generic smooth plane curve C of degree d (strongly) normal?

Question 2 contains the question whether the Weierstrass points on a general smooth plane curve C are normal.

Question 1 is a question on the linear system g_{2g-2}^{g-1} on the generic curve *C* of genus *g*. The following question is a generalization from that point of view.

Question 3 Let $\rho_d^r(g) = g - (r+1)(g - d + r) \ge 0$ and assume L corresponds to a very general g_d^r on the generic curve C of genus g. Are the generalized inflection points of L (strongly) normal?

Let *L* be the invertible sheaf corresponding to a very general g_k^1 on a generic *k*-gonal curve *C* of genus *g*. In a forthcoming paper we investigate the generalized inflection points of *L*. In particular we prove that they are normal in case they are not inflection points of g_k^1 itself.

Notations

Let *L* be an invertible sheaf of degree *d* on *C* and let a > 0 be an integer. We write |aL| to denote the complete linear system associated to $L^{\otimes a}$. We write [L] to denote the corresponding point of $\operatorname{Pic}^d(C)$. If *D* is a divisor on *C* of degree *d* then we also write [D] instead of $[\mathcal{O}_C(D)]$. In case a point of $\operatorname{Pic}^d(C)$ is denoted by [L] (resp. [D]) then *L* (resp. *D*) is a suited line bundle (resp. divisor). As usual we write W_d^r to denote the set of points $[L] \in \operatorname{Pic}^d(C)$ satisfying $h^0(C, L) \geq r + 1$. In case $X_i \subset \operatorname{Pic}^{d_i}(C)$ and $n_i > 0$ is an integer for i = 1, 2 then we write $n_1X_1 + n_2X_2$ to denote the image of $X_1 \times X_2$ under the map $\operatorname{Pic}^{d_1}(C) \times \operatorname{Pic}^{d_2}(C) \to \operatorname{Pic}^d(C)$ (with $d = n_1d_1 + n_2d_2$) mapping ($[L_1], [L_2]$) to $[L_1^{\otimes n_1} \otimes L_2^{\otimes n_2}]$.

3 Proof of the theorem

Since we are going to prove a statement concerning a very general element of $\text{Pic}^{x}(C)$ we can assume that for each integer $a \ge 1$ the invertible sheaf $L^{\otimes a}$ is non-special, hence |aL| is empty if ax < g and dim(|aL|) = ax - g if $ax \ge g$.

In case a point P is an inflection point of $L^{\otimes a}$ then $ax \geq g$ and $|L \otimes \mathcal{O}_C(-(ax - g + 1)P)| \neq \emptyset$. Hence a point P on C is an inflection point for |aL| if and only if $ax \geq g$ and there exists an effective divisor D of degree g - 1 such that

$$D + (ax - g + 1)P \in |aL|.$$

In case *P* is an inflection point of $L^{\otimes a}$ that is not normal then either $\alpha_{ax-g}(P) \ge 2$ or $\alpha_{ax-g-1}(P) \ge 1$ (ramification sequence of $L^{\otimes a}$ at *P*). In the first case there exists an effective divisor *D* of degree g - 2 such that

$$D + (ax - g + 2)P \in |aL|.$$

In the second case dim $(|L \otimes \mathcal{O}_C(-(ax - g)P)|) \ge 1$ hence

$$[L \otimes \mathcal{O}_C(-(ax-g)P)] \in W_{\rho}^1.$$

So, there exists a special effective divisor D of degree g (hence $\dim(|D|) \ge 1$) such that

$$D + (ax - g)P \in |aL|.$$

Consider the multiplication morphism

$$m_a: \operatorname{Pic}^x(C) \to \operatorname{Pic}^{ax}(C): M \to M^{\otimes a}.$$

It is an unramified finite covering. The two situations implying that $L^{\otimes a}$ has a non-normal generalized inflection point can be written as

$$\begin{split} m_a(L) &\in W^0_{g-2} + (ax - g + 2)W^0_1 \\ m_a(L) &\in W^1_g + (ax - g)W^0_1. \end{split}$$

Springer

Since $W_{g-2}^0 + (ax - g + 2)W_1^0$ and $W_g^1 + (ax - g)W_1^0$ are (g - 1)-dimensional properly closed subsets of $\operatorname{Pic}^{ax}(C)$, their inverse images under m_a are (g - 1)-dimensional properly closed subsets of $\operatorname{Pic}^x(C)$. Let Y be the union of those closed subsets for all integers $a \ge 1$. For a very general $L \in \operatorname{Pic}^x(C)$ we can assume $L \notin Y$ hence all generalized inflection points of L are normal.

A normal generalized inflection point P of L is not strongly normal if and only if there exist integers $a, b \ge 1$ and divisors D, D' of degree g - 1 such that the following two conditions do hold

$$D + (ax - g + 1)P \in |aL| \tag{1}$$

$$D' + ((a+b)x - g + 1)P = |(a+b)L|.$$
(2)

This is equivalent to the following two conditions

$$D + (ax - g + 1)P \in |aL| \tag{3}$$

$$|D+bL| = |D'+bxP| \tag{4}$$

Fix integer $a, b \ge 1$. Let V be the subspace of $W_{g-1}^0 \times C \times \operatorname{Pic}^x(C)$ of triples ([D], P, L) such that (3) holds. The projection $V \to W_{g-1}^0 \times C$ is an unramified finite covering, hence all components of V do have dimension g and do dominate $W_{g-1}^0 \times C$. Consider the morphisms $\mu : V \to \operatorname{Pic}^{bx+g-1}(C) \times C$ and $\nu : W_{g-1}^0 \times C \to \operatorname{Pic}^{bx+g-1}(C) \times C$ defined by

$$\mu([D], P, L) = ([D] + b[L], P)$$

$$\nu([D'], P') = ([D' + bxP'], P').$$

The condition that *L* has a normal generalized inflection point that is not strongly normal is equivalent to the condition that there exist integers $a, b \ge 1$; an effective divisor *D* of degree g - 1 and a point *P* on *C* such that $([D], P, L) \in V$ [i.e. (3)] and $\mu([D], P, L) \in im(v)$ [i.e. (4)]. In order to finish the proof of the theorem it is enough to prove that, for all integers $a, b \ge 1$ there exists an effective divisor *D* of degree g - 1 and a point *P* on *C* such that for each $L \in \text{Pic}^{x}(C)$ satisfying $([D], P, L) \in V$ one has $\mu([D], P, L) \notin im(v)$. Indeed from the description of *V* it would follow that $\mu^{-1}(im(v))$ has dimension at most g - 1 and its image in $\text{Pic}^{x}(C)$ (under the projection) is a properly closed subset of $\text{Pic}^{x}(C)$. Let *Y* be the union of all those properly closed subsets for all choices of $a, b \ge 1$. For a very general $L \in \text{Pic}^{x}(C)$ we can also assume $L \notin Y$ hence all generalized inflection points of *L* are strongly normal.

So now assume fixed integers $a, b \ge 1$. In case $([D], P, L) \in V$ satisfying $\mu([D], P, L) \in im(v)$ there exists an effective divisor D' of degree g - 1 such that (3) and (4) do hold. From (4) we obtain

$$|aD + abL| = |aD' + abxP|.$$

Since $D + (ax - g + 1)P \in |aL|$ it implies

$$aD' \in |(a+b)D - b(g-1)P|.$$
 (5)

Consider the morphism $\mu': W^0_{g-1} \times C \to \operatorname{Pic}^{a(g-1)}(C)$ defined by

$$\mu'([D], P) = (a+b)[D] - b(g-1)[P]$$

then (5) is equivalent to $\mu'([D], P) \in aW_{g-1}^0$. Hence it is enough to prove that there exists an effective divisor *D* of degree g - 1 and a point *P* such that $\mu'([D], P) \notin aW_{g-1}^0$.

Take $A \in \text{Pic}^{a(g-1)}(C)$ satisfying $A \notin aW_{g-1}^0$ and consider the curve $A + b(g-1)W_1^0$ inside $\text{Pic}^{(a+b)(g-1)}(C)$. Let $\Gamma \subset \text{Pic}^{g-1}(C)$ be a component of the inverse image of $A + b(g-1)W_1^0$ under m_{a+b} . Inside $\text{Pic}^{g-1}(C)$ the divisor W_{g-1}^0 is ample (it defines the principal polarization on the Jacobian of C), hence $\Gamma \cap W_{g-1}^0$ is not empty.

Take $[D] \in \Gamma \cap W_{g-1}^0$. Because $(a+b)[D] \in A + b(g-1)W_1^0$ there exists $P \in C$ such that

$$(a+b)[D] - b(g-1)[P] = \mu'([D], P) = A.$$

Because of the choice of A one has $\mu'([D], P) \notin aW_{g-1}^0$. This implies there is no $L \in \operatorname{Pic}^x(C)$ such that $([D], L, P) \in V$ and $\mu([D], L, P) \in \operatorname{im}(v)$. This finishes the proof of the theorem.

Remark Some time after finishing the paper the preprint [3] appeared containing a proof of our result (see Theorem 0.10). The first part of that proof is exactly the same as ours, the second part uses the connectedness theorem from [4].

G. Farkas also communicated to me that a very general curve of genus $g \ge 4$ has only strongly normal generalized Weierstrass points (answering Question 1). In [2, Sect. 6] it is proved that the locus on the universal family of curves of genus g of inflection points of nK is irreducible for all $n \ge 1$. Since that locus is different for different values of n no intersection of two of them dominates the moduli space of curves of genus g.

References

- Arbarello, E., Cornalba, M., Griffiths, P., Harris., J.: Geometry of algebraic curves, Vol I, series, Grundlehren, vol. 267 (1985)
- 2. Cukiermann, F., Fong, L.-Y.: On higher Weierstrass points. Duke Math. J. 62, 179–203 (1991)
- 3. Farkas, G.: Higher order ramification and varieties of secant divisors on the generic curve (2007, preprint) 4. Fulton, W., Lazarsfeld, R.: On the connectedness of degeneration loci and special divisors. Acta Math.
- **146**, 271–283 (1981) 5. Lax, R.F.: Normal higher Weierstrass points. Tsubuka J. Math. **13**, 1–5 (1989)
- Bax, R.F. Roman, J.H., Voloch, J.F.: Multiple Weierstrass points. Comp. Math. 79, 123–134 (1991)