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Abstract We study a C∞-Liouville-integrable and analytic non-integrable Hamiltonian
system. We will show that an irregular singular character plays a crucial role in the analytic
non-integrability of the system.
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1 Introduction

A Hamiltonian system in n degrees of freedom is called C∞-Liouville-integrable if there
are n smooth first integrals in involution which are independent on an open dense set. If
a first integral is analytic, then we say that it is analytic-integrable. There are many works
which study the integrability and the normal form theory. (cf. [3], [4] and [5]). Recently,
Gorni-Zampieri, [2] gave a simple and interesting example of a C∞-Liouville-integrable
Hamiltonian system which is not analytic-integrable in any neighborhood of an equilibrium
point. This example shows that when one studies the non-integrability of a Hamiltonian sys-
tem, it is necessary to show the non-integrability not only in an analytic class but also in a
C∞ class.

The object of this paper is to study the analytic non-integrability of a C∞-Liouville-inte-
grable Hamiltonian system from the viewpoint of the irregular singular character of a system.
We will give a general class of C∞-Liouville-integrable and analytic non-integrable Hamil-
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tonian systems containing Gorni-Zampieri’s example and a simple elementary proof of the
non-integrability, which shows the role of an irregular singular behavior of a system.

2 Analytic non-integrability

Let σ ≥ 1 be an integer. Let r(q1, q2) be an analytic function of (q1, q2) ∈ R
2 in some

neighborhood of the origin 0 ∈ R
2 such that

r ≡ r(q1, q2) = cq2σ
1 + a(q2σ

1 )q2
2 + r̃(q1, q2)q

3
2 , c > 0, (1)

where r̃(q1, q2) is analytic at the origin and a(t)(t = q2σ
1 ) is a polynomial of t such that

a(0) > 0. We are interested in the following analytic Hamiltonian in R
4 with two degrees of

freedom
H = −q2 p2∂q1r(q1, q2) + (

r(q1, q2)
2 + q2∂q2r(q1, q2)

)
p1, (2)

where ∂q1 = ∂
∂q1

and ∂q2 = ∂
∂q2

. The associated Hamiltonian system is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇1 = ∂H/(∂p1) = r2 + q2∂q2r,

q̇2 = ∂H/(∂p2) = −q2∂q1r,

ṗ1 = −∂H/(∂q1) = q2 p2∂
2
q1

r − (
2r∂q1r + q2∂q1∂q2r

)
p1,

ṗ2 = −∂H/(∂q2) = p2∂q1r + q2 p2∂q1∂q2r −
(

2r∂q2r + ∂q2r + q2∂
2
q2

r
)

p1.

(3)

We need a definition in order to state our theorem.

Definition 1 We say that a polynomial a(t) satisfies the monodromy condition (M) if the
following equation has a polynomial solution U (t)

ct2U ′ − 2U + c((2σ)−1 − 3)tU = c(ct + 1)a(t). (4)

Then we have

Theorem 1 Suppose that (1) is satisfied. Assume that a(t) does not satisfy (M). Then the
Hamiltonian system (3) is C∞-Liouville-integrable, while it is not analytic-integrable in any
neighborhood of the origin. More precisely, for any analytic first integral u = u(q1, q2,

p1, p2) of (3) in R
4, there exists a function φ of one-variable, being analytic at 0 ∈ R such

that u = φ ◦ H.

By Lemma 2 we have

Corollary 1 Suppose that (1) is satisfied. Assume that a(t) ≡ a0 > 0. Then the Hamiltonian
system (3) is C∞-Liouville-integrable, while it is not analytic-integrable in any neighborhood
of the origin.

Example 1 If we set σ = 1, a ≡ 2, c = 2 and r = 2(q2
1 +q2

2 ), then we have the Hamiltonian
H = 4(−q1q2 p2 + (q2

1 +q2
2 )2 p1 +q2

2 p1) studied in [2] apart from the constant 4. Our proof
shows that the analytic non-integrability is closely related with the irregular singular charac-
ter of the Hamiltonian system corresponding to H. We also remark that a similar divergence
phenomenon due to the irregular singularity was also noted in [1].
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Analytic non-integrable Hamiltonian systems and irregular singularity 557

Remark 1 We recall that (4) has an irregular singularity at t = 0. Such an equation has no
analytic solution at the origin except for the pathological case where (M) is fulfilled.
(cf. Lemmas 3 and 6).

As Gorni and Zampieri observed in [2], it is important that the system has the set {q2 = 0}
as an invariant manifold on which every analytic first integral is functionally dependent
on H. The essential point of the proof of the analytic non-integrability of (3) lies in the
unique continuation of the relation on the invariant manifold to its neighborhood. In [2], this
was carried out by the power series method. We will show that the unique continuation is
closely related with the monodromy structure of the hidden subsystem (4) of the correspond-
ing system (15). Although the system for which (M) holds is not a generic one, it gives a new
phenomenon.

3 Preliminary lemma

Lemma 1 The polynomial a(t) of degree m (m ≥ 0 or m = −∞) satisfies (M ) if and only
if (4) has a unique polynomial solution U (t) of degree m.

Here we use the convention that a(t) ≡ 0 is the polynomial of degree −∞.

Proof The sufficiency is clear. We will prove the necessity. Suppose that U (t) is a polynomial
solution of degree k of (4). We insert the expansions

a(t)(ct + 1) =
∑

ν

bν tν, U (t) =
∑

ν

Uν tν, (5)

into (4) and compare the coefficients of tν . Then we have −2U0 = cb0 and

c(ν − 1)Uν−1 − 2Uν + c((2σ)−1 − 3)Uν−1 = cbν, ν ≥ 1. (6)

It follows that the Uν’s are uniquely determined. Hence U (t) is unique, if it exists.
Next we will show that the degree of U (t) is equal to m. Let k be the degree of U (t).

Suppose that k > m. If m = −∞, then we have a(t) ≡ 0. By what we have proved in the
above we have U (t) ≡ 0, i.e., k = −∞, a contradiction to the condition, k > m. Hence
we have m ≥ 0. Then, by setting ν = k + 1 in (6) and noting that bk+1 = 0, we have
kUk + ((2σ)−1 −3)Uk = 0. Because k + (2σ)−1 −3 �= 0, we have Uk = 0. This contradicts
to the assumption that U is a polynomial of degree k. Hence we have k ≤ m.

Suppose that k < m. Then the left-hand side of (4) is a polynomial of degree at most m.
Because the right-hand side of (4) is of degree m + 1, we have a contradiction. Hence we
have k = m. 	

Lemma 2 Suppose that a(t) is a constant, a(t) ≡ a0. Then a(t) satisfies (M ) if and only if
a0 = 0.

Proof Assume that a0 = 0. Because U = 0 is a polynomial solution of (4), a satisfies (M).
Conversely, suppose that a satisfies (M), and let U (t) be a polynomial solution of (4). By
the preceeding lemma we may assume that U (t) ≡ α for some constant α. By (4) we have
ca0 = −2α, ca0 = (1/(2σ)−3)α. It follows that (1/(2σ)−1)α = 0. Because 1/(2σ)−1 �= 0
by the assumption σ ∈ N, we obtain α = 0, and hence a0 = 0. 	

Lemma 3 The set of polynomials of degree m(m ≥ 0) satisfying (M ) is contained in a
manifold of codimension 1 in the set of polynomials of degree m.
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Proof If m = 0, then the assertion follows from the preceeding lemma. Hence we assume
m ≥ 1. We use the same notation as in Lemma 1. Let a(t) = ∑m

ν=0 aν tν satisfy (M). By the
definition of bν we have b0 = a0 and bν = aν + caν−1 (ν ≥ 1).

We put ν = m + 1 and ν = m in (6). Because bm+1 = cam and Um+1 = 0, we have

2Um = −c(am + cam−1) + c
(
(2σ)−1 + m − 4

)
Um−1, (7)

(
(2σ)−1 + m − 3

)
Um = cam . (8)

We can easily see that Um−1 is a linear function of a0, . . . , am−1 by (6). If we eliminate Um

from (7) and (8), then we can easily see that the coefficient of am in the resultant relation does
not vanish because σ ∈ N. Hence we obtain a nontrivial linear relation among a0, . . . , am .

	


Lemma 4 Let a(t) be a polynomial and assume that c > 0. Then (4) has an analytic solution
U (t) in some neighborhood of the origin if and only if a(t) satisfies (M ).

Proof The sufficiency is trivial. In order to show the necessity, let U (t) be an analytic solu-
tion of (4). If a(t) ≡ 0, then a(t) satisfies (M) by Lemma 2. Hence we may assume a(t) �≡ 0.
By expanding U (t) = ∑

Uν tν , we consider (6). If a(t) is of degree m, then we have bν = 0
for ν > m + 1. By (6) we obtain

2Uν = c
(
(2σ)−1 + ν − 4

)
Uν−1, ν > m + 1. (9)

If Um+1 = 0, then we have Uν = 0 (ν > m + 1). Hence U is a polynomial, which implies
that a satisfies (M). If Um+1 �= 0, then we have

2Um+2 = c
(
(2σ)−1 + m − 2

)
Um+1. (10)

Similarly, we have

Um+k = (c/2)k−1 (
(2σ)−1 + m + k − 4

) · · · ((2σ)−1 + m − 2
)

Um+1. (11)

Because the right-hand side grows like k! as k → ∞, U (t) does not converge in any neigh-
borhood of the origin, which contradicts to the analyticity of U . 	


Lemma 5 Let α be a constant. Then every solution v = v(q1, p1) of the next equation

q2σ+1
1

∂v

∂q1
− 4σq2σ

1 p1
∂v

∂p1
+ αv = 0, (12)

which is analytic in some neighborhood of q1 = p1 = 0 vanishes if and only if α �= 0. If
α = 0, then v has the expression v = φ(p1q4σ

1 ) for some analytic function φ of one variable
in some neighborhood of the origin.

Proof We assume α �= 0. Let v = ∑∞
k=0 vk(q1)pk

1 be the Taylor expansion of the solution
v of (12). Then vk satisfies the equation q2σ+1

1 v′
k − 4σq2σ

1 kvk + αvk = 0. If we substitute

the expansion of vk , vk = ∑∞
j=0 vk, j q

j
1 into the equation, then we have vk, j = 0 for

j = 0, 1, 2, . . .. Hence we have vk = 0 (k = 0, 1, 2, . . .), and v = 0.
Next, assume that α = 0. Then (12) can be written in q1(∂v/∂q1) − 4σ p1(∂v/∂p1) = 0.

The analytic solution of the equation is given by v = φ(p1q4σ
1 ) for some analytic function

φ of one variable. This especially implies that (12) has a nontrivial analytic solution v. 	
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Although we do not use the next lemma in the proof of the main theorem, we state it in
order to make it clear that the condition (M) on a(t) is related to the vanishing of a certain
monodromy. First we prepare some notation. We set α = −2/c, β = 1/(2σ) − 3 and
b(t) = a(t)(ct + 1) in (4). Then the general solution of (4) is given by U (t) = Bt−βeα/t +
U0(t), where B is a constant and U0(t) is given by

U0(t) := t−βeα/t
∫

γt

sβ−2e−α/sb(s)ds. (13)

Here the path γt is the line segment from the origin to t when t lies in the domain � t < 0
on a fixed Riemann sheet. If t is outside the domain, then one first goes to some point t0,
� t0 < 0 from the origin, then one goes from t0 to t along some simple closed curve in some
neighborhood of the origin which passes t0 and t , that contains 0 inside. The integral (13)
converges because α < 0. Let U0(te2π i ) be an analytic continuation of U0(t) along a simple
closed curve which encircles the origin. Because U0(te2π i ) is also a solution of (4), we have
the expression

U0(te
2π i ) = U0(t) + At−βeα/t , (14)

for some constant A, where A is a monodromy constant. Then we have

Lemma 6 The function a(t) satisfies (M ) if and only if A = 0.

Proof First we assume that U0(t) is bounded when t → 0 on the first sheet. Assume that
a(t) satisfy (M). By Lemma 4 (4) has a holomorphic solution U (t). By the formula in the
above we have U (t) = U0(t) + Bt−βeα/t . If we let t → 0, � t < 0, then eα/t tends to
infinity because α < 0. It follows that B = 0 and U0(t) is holomorphic and single-valued.
Hence we have A = 0.

Conversely, if A = 0, then U0(t) is a solution of (4) which is single-valued, holomor-
phic and bounded outside the origin. By Riemann’s theorem, U0(t) is holomorphic in some
neighborhood of the origin. By Lemma 4, a(t) satisfies (M).

Therefore it remains to prove the boundedness of U0(t). Let t be on the first sheet such
that � t ≤ 0. Then the points 0, s, t lie on the same line γt in this order. It follows that
�(1/t − 1/s) ≥ 0. Hence we have |eα(1/t−1/s)| ≤ 1 because α < 0. Because β < 0 we
have |t−β | is bounded when t → 0, � t ≤ 0. It follows that U0(t) is bounded when t → 0,
� t ≤ 0. We note that the term sβ in the integrand can be absorbed in eα/s by partial integra-
tion. Next, let � t > 0 on the same sheet. By deforming γt , we may assume that the points
0, t , s lie on the straight line in this order near the origin. It follows that �(1/t − 1/s) > 0,
from which we have the same assertion. 	


4 Proof of Theorem 2.1

Proof We note that u is the first integral of the Hamiltonian system (3) if and only if u is a
solution of the following first order equation

{H, u} ≡
(

q2 p2∂
2
q1

r − (
2r∂q1r + q2∂q1∂q2r

)
p1

) ∂u

∂p1

+
(

p2∂q1r + q2 p2∂q1∂q2r −
(

2r∂q2r + ∂q2r + q2∂
2
q2

r
)

p1

) ∂u

∂p2

+ (
r2 + q2∂q2r

) ∂u

∂q1
− q2(∂q1r)

∂u

∂q2
= 0. (15)
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We set

u =
{

q2 exp
(− 1

r

)
if (q1, q2) �= (0, 0),

0 if (q1, q2) = (0, 0).
(16)

By the assumptions (1) we can easily see that u is C∞ in some neighborhood of the origin.
Moreover, we can easily verify, by simple computations, that u is a solution of (15). Hence u
is a C∞ first integral of (3). We can easily see that u and H are functionally independent on
the open dense set in some neighborhood of the origin. Hence (3) is C∞-Liouville-integrable
in some neighborhood of the origin.

Next we will show that (3) is not analytic-integrable. Let u = u(q1, q2, p1, p2) be any
analytic first integral of (3). We define

v ≡ v(q1, p1, p2) := u(q1, 0, p1, p2). (17)

By setting q2 = 0 in (15) and noting that ∂q2r(q1, 0) ≡ 0 and r(q1, 0) = cq2σ
1 by (1), we

obtain

2σ p2
∂v

∂p2
− 4cσq2σ

1 p1
∂v

∂p1
+ cq2σ+1

1
∂v

∂q1
= 0. (18)

We expand v into the power series of p2, v = ∑∞
j=0 v j (q1, p1)p j

2 . Then we see that
v j (q1, p1)( j = 0, 1, . . .) satisfy (12) with α = 2σ j/c. It follows from Lemma 5 that
v j = 0 if j �= 0 and v0 = φ̃(p1q4σ

1 ) = φ(c2 p1q4σ
1 ) for some analytic function φ̃(t)

and φ(t) := φ̃(t/c2). It follows from (2) that v = v0 = φ(c2 p1q4σ
1 ) = φ(H|q2=0). We

define
g(q1, q2, p1, p2) := u(q1, q2, p1, p2) − φ(H). (19)

By (17) and by recalling that H is a first integral we see that g is an analytic solution of (15)
such that g(q1, 0, p1, p2) ≡ 0. In order to prove Theorem 1 we shall show g(q1, q2, p1, p2) ≡
0 in some neighborhood of the origin.

First we will show that

g(q1, q2, p1, p2) = φ1(p1q4σ
1 )p2q2 + h2(q1, p1, p2)q

2
2 + h̃3(q1, q2, p1, p2)q

3
2 , (20)

for some analytic function φ1 of one variable and analytic functions h2 and h̃3. Because g is
analytic we have the expansion

g(q1, q2, p1, p2) = g1(q1, p1, p2)q2 + h2(q1, p1, p2)q
2
2 + h̃3(q1, q2, p1, p2)q

3
2 . (21)

We substitute (21) with u = g into (15) and compare the coefficients of q2. By (1) we have

−4cσq2σ
1 p1

∂g1

∂p1
+ 2σ

(
p2

∂g1

∂p2
− g1

)
+ cq2σ+1

1
∂g1

∂q1
= 0. (22)

By substituting the expansion g1(q1, p1, p2) = ∑∞
m=0 g1,m(q1, p1)pm

2 into (22) and com-
paring the coefficients of pm

2 we obtain

−4cσq2σ
1 p1

∂g1,m

∂p1
+ 2σ(m − 1)g1,m + cq2σ+1

1
∂g1,m

∂q1
= 0. (23)

By Lemma 5 we have g1,m = 0 if m �= 1, and g1,1(q1, p1) = φ1(p1q4σ
1 ) for some

analytic function φ1 of one variable. Hence we have g1(q1, p1, p2) = g1,1(q1, p1)p2 =
φ1(p1q4σ

1 )p2, which proves (20).
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Next we suppose that

g(q1, q2, p1, p2) = φn−1(p1q4σ
1 )pn−1

2 qn−1
2

+hn(q1, p1, p2)q
n
2 + h̃n+1(q1, q2, p1, p2)q

n+1
2 , (24)

for some n ≥ 2, some analytic function φn−1 of one variable and analytic functions hn(q1,

p1, p2) and h̃n+1(q1, q2, p1, p2). We substitute (24) into (15) with u = g and we compare
the coefficients of qn

2 . By (1) we have

2cpn
2σ(2σ − 1)q6σ−2

1 φ′
n−1

− 4σc2q4σ−1
1 p1

∂hn

∂p1
− 4a(q2σ

1 )(cq2σ
1 + 1)(n − 1)p1 pn−2

2 φn−1

+ 2σcq2σ−1
1

(
p2

∂hn

∂p2
− nhn

)
+ c2q4σ

1
∂hn

∂q1
= 0. (25)

By substituting the expansion hn(q1, p1, p2) = ∑∞
m=0 hn,m(q1, p1)pm

2 into (25) and com-
paring the coefficients of pn−2

2 we obtain

− 4c2σq4σ−1
1 p1

∂hn,n−2

∂p1
− 4a(q2σ

1 )(cq2σ
1 + 1)(n − 1)p1φn−1

− 4cσq2σ−1
1 hn,n−2 + c2q4σ

1
∂hn,n−2

∂q1
= 0. (26)

We will show that
hn,n−2 = 0, φn−1 = 0. (27)

If we can prove φn−1 = 0, then it follows from (26) that v := hn,n−2 satisfies (12) with
α = −4σ/c. Hence, by Lemma 5 we have hn,n−2 = 0. In order to show φn−1 = 0 we insert
the expansions

φn−1(p1q4σ
1 ) =

∞∑

k=0

φn−1,k pk
1q4σk

1 , hn,n−2(q1, p1) =
∞∑

k=0

hn,n−2,k(q1)pk
1 (28)

into (26) and compare the coefficients of pk
1. Then we obtain, for k ≥ 0

−4c2σq4σ−1
1 khn,n−2,k − 4cσq2σ−1

1 hn,n−2,k + c2q4σ
1

∂hn,n−2,k

∂q1

= 4a(q2σ
1 )(cq2σ

1 + 1)(n − 1)φn−1,k−1q4σ(k−1)
1 , (29)

where we set φn−1,−1 = 0. If we set q1 = 0 and k = 1 in (29), then we obtain 0 =
4a(0)(n − 1)φn−1,0. Because a(0) �= 0 by the assumption, we have φn−1,0 = 0.

Suppose that φn−1,k−1 �= 0 for some k ≥ 2. We divide both sides of (29) by q2σ−1
1 . Then

the right-hand side of (29) is divisible by q N
1 , N = 4σ(k −1)+1−2σ ≥ 2σ +1. Because the

operator −4c2σkq2σ
1 + c2q2σ+1

1 (d/dq1) in the left-hand side of the equation increases the
power of q1, it follows that hn,n−2,k is divisible by q N

1 . We set hn,n−2,k(q1) = q N
1 W (q1).

Then we have q1(d/dq1)hn,n−2,k = q N
1 (N + q1(d/dq1))W . It follows from (29) that W

satisfies

(N − 4σk)c2q2σ
1 W − 4cσ W + c2q2σ+1

1
dW

dq1

= 4(n − 1)φn−1,k−1a(q2σ
1 )(cq2σ

1 + 1). (30)
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We set W = ∑2σ−1
j=0 q j

1 W j (q2σ
1 ). Because the right-hand side of (30) is a function of

q2σ
1 , W j (1 ≤ j < 2σ) satisfy

c2q2σ
1 (N − 4σk + j)W j − 4cσ W j + c2q2σ+1

1
dW j

dq1
= 0. (31)

By a similar argument as in the proof of Lemma 5 we have W j = 0 for 1 ≤ j < 2σ . Hence
we have W (q1) = W0(q2σ

1 ) =: V (t) (t = q2σ
1 ). Because q1(d/dq1)V = 2σ t (d/dt)V , it

follows from (30) that

(1 − 6σ)c2tV − 4cσ V + 2c2σ t2 dV

dt
= 4(n − 1)φn−1,k−1a(t)(ct + 1). (32)

Then the function U := c2σ V (t)/(2(n − 1)φn−1,k−1) is an analytic solution of (4). On the
other hand, by the assumption on a(t) and Lemma 4, U is not analytic. This is a contradiction.
Hence we have φn−1,k−1 = 0. Because k is arbitrary we have φn−1 = 0.

Next we set φn−1 = 0 in (25) and consider the coefficients of pm
2 (m �= n). Then we see

that v := hn,m satisfies (12) with α = 2σ(m − n)/c. By Lemma 5 we have hn,m = 0 if
n �= m, and hn,n = φn(p1q4σ

1 ) for some analytic function φn of one variable. It follows that
hn(q1, p1, p2) = hn,n(q1, p1)pn

2 = φn(p1q4σ
1 )pn

2 . Hence we have (24) with n replaced by
n + 1. By induction we obtain (24) for an arbitrary integer n ≥ 2.

It follows from (24) with n replaced by n + 2 that, for every n ≥ 0 we have
∂n

q2
g(q1, 0, p1, p2) ≡ 0, where (q1, p1, p2) is in some neighborhood of the origin which

may depend on n. On the other hand ∂n
q2

g(q1, 0, p1, p2) is analytic in some neighbor-
hood of the origin independent of n. By analytic continuation, ∂n

q2
g(q1, 0, p1, p2) ≡ 0

in some neighborhood of the origin independent of n. By the partial Taylor expansion
g = ∑

n ∂n
q2

g(q1, 0, p1, p2)qn
2 /n!, we have g = 0. 	
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