
Annali di Matematica (2008) 187:369–384
DOI 10.1007/s10231-007-0047-0

From Brunn–Minkowski to sharp Sobolev inequalities

S. G. Bobkov · M. Ledoux

Received: 12 October 2006 / Revised: 14 December 2006 / Published online: 21 March 2007
© Springer-Verlag 2007

Abstract We present a simple direct proof of the classical Sobolev inequality in R
n

with best constant from the geometric Brunn–Minkowski–Lusternik inequality.

Mathematics Subject Classification 46-XX

1 Introduction

The classical Sobolev inequality in R
n, n ≥ 3, indicates that there is a constant Cn > 0

such that for all smooth enough (locally Lipschitz) functions f : R
n → R vanishing at

infinity,

‖f‖q ≤ Cn‖∇f‖2 (1)

where 1
q = 1

2 − 1
n . Here ‖f‖q denotes the usual Lq-norm of f with respect to Lebesgue

measure on R
n, and, for p ≥ 1,

‖∇f‖p =
( ∫

R
n

|∇f |pdx
)1/p

where |∇f | is the Euclidean norm of the gradient ∇f of f .
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Inequality (1) goes back to Sobolev [41], as a consequence of a Riesz type rear-
rangement inequality and the Hardy–Littlewood–Sobolev fractional-integral convo-
lution inequality. Other approaches, including the elementary Gagliardo–Nirenberg
argument [20,35], are discussed in classical textbooks (cf. e.g. [1,33,43] . . .). The best
possible constant in the Sobolev inequality (1) was established independently by
Aubin [4] and Talenti [42] in 1976 using symmetrization methods of isoperimetric
flavor, together with the study of the one-dimensional extremal problem. Rearrange-
ments arguments have been developed extensively in this context (cf. [11,29] . . .). The
optimal constant Cn is achieved on the extremal functions f (x) = (σ + |x|2)(2−n)/2,
x ∈ R

n, σ > 0. Building on early ideas by Rosen [38], Lieb [28] determined the best
constant and the extremal functions in dimension 3. According to [39], the result
seems to have been known before, at least back to the early sixties, in unpublished
notes by Rodemich.

The geometric Brunn–Minkowski inequality, and its isoperimetric consequence, is
a well-known argument to reach Sobolev type inequalities. It states that for every
non-empty Borel measurable bounded sets A, B in R

n,

voln(A + B)1/n ≥ voln(A)1/n + voln(B)1/n (2)

where voln(·) denotes Euclidean volume. The Brunn–Minkowski inequality classically
implies the isoperimetric inequality in R

n. Choose namely for B a ball with radius
ε > 0 and let then ε → 0 to get that for any bounded measurable set A in R

n,

voln−1(∂A) ≥ nω
1/n
n voln(A)(n−1)/n

where voln−1(∂A) is understood as the outer-Minkowski content of the boundary of A
and ωn is the volume of the Euclidean unit ball in R

n. By means of the co-area formula
[19,33], the isoperimetric inequality may then be stated equivalently on functions as
the L1-Sobolev inequality

‖f‖q ≤ 1

nω
1/n
n

‖∇f‖1 (3)

where 1
q = 1 − 1

n . Changing f ≥ 0 into f r for some suitable r and applying Hölder’s

inequality yields the L2- Sobolev inequality (1), however not with its best constant.
In the same way, the argument describes the full scale of Sobolev inequalities

‖f‖q ≤ Cn(p)‖∇f‖p, (4)

1 ≤ p < n, 1
q = 1

p − 1
n , f : R

n → R smooth and vanishing at infinity. According to

Gromov [34], the L1-case of the Sobolev inequality appears in Brunn’s work from
1887.

The purpose of this note is to show that the Brunn–Minkowski inequality may
actually be used to also reach the optimal constants in the Sobolev inequalities (1)
and (4). This new approach thus completely bridges the geometric Brunn–Minkowski
inequalities and the functional Sobolev inequalities.

Inequality (2) was first proved by Brunn in 1887 for convex sets in dimension 3,
then extended by Minkowski (cf. [40]). Lusternik [30] generalized the result in 1935 to
arbitrary measurable sets. Lusternik’s proof was further analyzed and extended in the
works of Hadwiger and Ohmann [24] and Henstock and Macbeath [25] in the fifties.
Note in particular that the one-dimensional case is immediate: assume that A and B
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are non-empty compact sets in R, and after a suitable shift, that sup A = 0 = inf B.
Then A ∩ B = {0} and A + B ⊃ A ∪ B.

Starting with the contribution [25], integral inequalities have been developed
throughout the last century in the investigation of the geometric Brunn–Minkowski–
Lusternik theorem. The idea of the following elementary, but fundamental, lemma
goes back to Bonnesen’s proof of the Brunn–Minkowski inequality (cf. [10]) and may
be found already in the paper by Henstock and Macbeath [25]. The result appears
in this form independently in the works of Dancs and Uhrin [14] and Das Gupta
[15]. We enclose a proof for completeness. As a result, the proof below only relies on
the one-dimensional Brunn–Minkowski–Lusternik inequality, which is the only basic
ingredient in the argument. All the further developments and applications to Sobolev
inequalities are consequences of this elementary lemma.

Lemma Let θ ∈ [0, 1] and u, v, w be non-negative measurable functions on R such that
for all x, y ∈ R,

w
(
θx + (1 − θ)y

) ≥ min
(
u(x), v(y)

)
.

Then, if supx∈R
u(x) = supx∈R

v(x) = 1,∫
wdx ≥ θ

∫
udx + (1 − θ)

∫
vdx.

Proof Define, for t > 0, Eu(t) = {x ∈ R; u(x) > t} and similarly Ev(t), Ew(t). Since
supx∈R

u(x) = supx∈R
v(x) = 1, for 0 < t < 1, both Eu(t) and Ev(t) are non-empty, and

Ew(t) ⊃ θEu(t) + (1 − θ)Ev(t). By the one-dimensional Brunn–Minkowski–Lusternik
inequality (2), for every 0 < t < 1,

λ
(
Ew(t)

) ≥ θλ
(
Eu(t)

) + (1 − θ)λ
(
Ev(t)

)
where λ denotes Lebesgue measure on R. Hence,

∫
wdx ≥

1∫
0

λ
(
Ew(t)

)
dt

≥ θ

1∫
0

λ
(
Eu(t)

)
dt + (1 − θ)

1∫
0

λ
(
Ev(t)

)
dt

= θ

∫
udx + (1 − θ)

∫
vdx

which is the conclusion. 
�
As discussed in [14], the preceding lemma may be extended to more general means

by elementary changes of variables. For α ∈ [−∞, +∞], denote by M(θ)
α (a, b) the

α-mean of the non-negative numbers a, b with weights θ , 1 − θ ∈ [0, 1] defined as

M(θ)
α (a, b) = (

θaα + (1 − θ)bα
)1/α

(with the convention that M(θ)
α (a, b) = max(a, b) if α = +∞, M(θ)

α (a, b) = min(a, b) if
α = −∞ and M(θ)

α (a, b) = aθ b1−θ if α = 0) if ab > 0, and M(θ)
α (a, b) = 0 if ab = 0.
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Note the extension of the usual arithmetic-geometric mean inequality as

M(θ)
α1

(a1, b1)M
(θ)
α2

(a2, b2) ≥ M(θ)
α (a1a2, b1b2) (5)

if 1
α

= 1
α1

+ 1
α2

, α1 + α2 > 0.

Corollary 1 Let −∞ ≤ α ≤ +∞, θ ∈ [0, 1] and u, v, w be non-negative measurable
functions on R such that for all x, y ∈ R,

w
(
θx + (1 − θ)y

) ≥ M(θ)
α

(
u(x), v(y)

)
.

Then, if a = supx∈R
u(x) < ∞, b = supx∈R

v(x) < ∞,
∫

wdx ≥ M(θ)
α (a, b)M(θ)

1

(
1
a

∫
udx,

1
b

∫
vdx

)
.

The statement still holds if a or b = +∞ with the convention that 0 × ∞ = 0.

Proof Assume first that −∞ < α < +∞. For ρ = M(θ)
α (a, b) > 0, set

U(x) = 1
a

u
(aαx

ρα

)
and V(y) = 1

b
v
(bαy

ρα

)
.

Then, if η = θaα/ρα(∈ [0, 1]),
w

(
ηx + (1 − η)y

) ≥ M(θ)
α (a, b) min

(
U(x), V(y)

)
for all x, y ∈ R. Since supx∈R

U(x) = supx∈R
V(x) = 1, by the lemma,

∫
wdx ≥ M(θ)

α (a, b)

(
η

∫
Udx + (1 − η)

∫
Vdx

)

= M(θ)
α (a, b)

(
θ

a

∫
udx + 1 − θ

b

∫
vdx

)

by definition of η. The cases α = −∞ and α = +∞ may be proved by standard limit
considerations. The corollary is thus established. 
�

By the Hölder inequality (5), the preceding corollary implies the more classical
Prékopa–Leindler theorem [27,36,37], as well as its generalized form put forward
by Borell [8] and Brascamp and Lieb [9], in which the supremum norms of u and
v do not appear. Namely, under the assumption of Corollary 1 and provided that
−1 ≤ α ≤ +∞, ∫

wdx ≥ M(θ)
α (a, b)M(θ)

1

(
1
a

∫
udx,

1
b

∫
vdx

)

≥ M(θ)
β

( ∫
udx,

∫
vdx

)

where β = α/(1 + α).
The preceding generalized Prékopa–Leindler theorem is easily tensorisable in R

n

by induction on the dimension to yield that whenever − 1
n ≤ α ≤ +∞, θ ∈ [0, 1] and

u, v, w : R
n → R+ are measurable such that

w
(
θx + (1 − θ)y

) ≥ M(θ)
α

(
u(x), v(y)

)
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for all x, y ∈ R
n, then ∫

wdx ≥ M(θ)
β

( ∫
udx,

∫
vdx

)

where β = α/(1+αn). Namely, assuming the result in dimension n−1, for x1, y1, z1 =
θx1 + (1 − θ)y1 ∈ R fixed,∫

R
n−1

w(z1, t)dt ≥ M(θ)

α/(1+α(n−1))

( ∫

R
n−1

u(x1, t)dt,
∫

R
n−1

v(y1, t)dt
)

.

Since α ≥ − 1
n implies that α̃ = α/(1 + α(n − 1)) ≥ −1, the one-dimensional result

applied to
∫

R
n−1 u(x1, t)dt,

∫
R

n−1 v(y1, t)dt,
∫

R
n−1 w(z1, t)dt yields the conclusion since

α̃/(1 + α̃) = β. The case α = 0 corresponds to the Prékopa–Leindler theorem. When
applied to the characteristic functions u = χA, v = χB of the bounded non-empty sets
A, B in R

n with α = +∞, we immediately recover the Brunn–Minkowski–Lusternik
inequality (2).

Most of the proofs of the preceding integral inequalities rely in one way or
another on integral parametrizations. They may be proved either first in dimension
one together with induction on the dimension as above, or by suitable versions of
the parametrizations by multidimensional measure transportation. We refer to the
surveys [6,15,21,32] for complete accounts on these various approaches and precise
historical developments.

As presented in [14], Corollary 1 may also be turned in dimension n, as a conse-
quence of the generalized Prékopa–Leindler theorem. The resulting statement will
be the essential step in the proof of the sharp Sobolev inequalities. In particular, the
possibility to use α up to − 1

n−1 will turn out to be crucial.
For a non-negative function f : R

n → R, and i = 1, . . . , n, set

mi(f ) = sup
xi∈R

∫

R
n−1

f (x)dx1 · · · dxi−1dxi+1 · · · dxn.

Corollary 2 Let − 1
n−1 ≤ α ≤ +∞, θ ∈ [0, 1] and u, v, w be non-negative measurable

functions on R
n such that for all x, y ∈ R

n,

w
(
θx + (1 − θ)y

) ≥ M(θ)
α

(
u(x), v(y)

)
.

If, for some i = 1, . . . , n, mi(u) = mi(v) < ∞, then∫
wdx ≥ θ

∫
udx + (1 − θ)

∫
vdx.

Proof Apply the generalized Prékopa–Leindler theorem in R
n−1 (thus with − 1

n−1 ≤
α ≤ +∞) to the functions u(x), v(y), w(z) with xi, yi, zi = θxi + (1 − θ)yi fixed, and
conclude with the lemma applied to ũ(xi) = ∫

R
n−1 u(x)dx1 · · · dxi−1dxi+1 · · · dxn, ṽ(yi)

and w̃(zi) being defined similarly. 
�
Under the assumption mi(u) = mi(v), the conclusion of Corollary 2 does not

depend on α and is thus sharpest for α = − 1
n−1 (the statement for − 1

n−1 < α ≤ +∞
being actually a consequence of this case). Following the proof of Corollary 1, the
complete form of Corollary 2 actually states that (cf. [14]), for every i = 1, . . . , n,
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∫
wdx ≥ M(θ)

β

(
mi(u), mi(v)

)
M(θ)

1

(
1

mi(u)

∫
udx,

1
mi(v)

∫
vdx

)

with β = α/(1 + α(n − 1)).
Recently, mass transportation arguments have been developed to simultaneously

reach the Brunn–Minkowski–Lusternik inequality and the sharp Sobolev inequalities
(cf. [21] [6,32,44,45] . . .). In particular, Cordero-Erausquin et al. [13] provide a com-
plete treatment of the classical Sobolev inequalities with their best constants by this
tool (see also [2]). Their approach covers in the same way the family of Gagliardo–
Nirenberg inequalities put forward by Del Pino and Dolbeault [16] in the context of
non-linear diffusion equations (see also [44]). More precisely, by means of Hölder’s
inequality, the Sobolev inequality (1) implies the family of so-called Gagliardo–
Nirenberg inequalities [20,35],

‖f‖r ≤ C‖∇f‖λ
2‖f‖1−λ

s (6)

for some constant C > 0 and all smooth enough functions f : R
n → R where

r, s > 0 and 1
r = λ

q + 1−λ
s , λ ∈ [0, 1]. The optimal constants are not preserved

through Hölder’s inequality. However, it was shown by Del Pino and Dolbeault [16]
that optimal constants and extremal functions may be described for a sub-family of
Gagliardo–Nirenberg inequalities, namely the one for which r = 2(s−1) when r, s > 2
and s = 2(r − 1) when r, s < 2. The extremal functions turn out to be of the form
f (x) = (σ + |x|2)2/(2−r) in the first case, whereas in the second case they are given
by f (x) = ([σ − |x|2]+)1/(2−r) (being thus compactly supported). The limiting case
r, s → 2 gives rise to the logarithmic Sobolev inequality (in its Euclidean formulation)
with the Gaussian kernels as extremals.

While mass transport arguments may be offered to directly reach the n-dimensional
Prékopa–Leindler theorem (cf. [6,44] . . .), we do not know if Corollary 2 admits an
n-dimensional optimal transportation proof.

On the other hand, the Prékopa–Leindler theorem was shown in [7], following
the early ideas by Maurey [31] (cf. [26]), to imply the logarithmic Sobolev inequality
for Gaussian measures [23] which, in its Euclidean version [12], corresponds to the
limiting case r, s → 2 in the scale of Gagliardo–Nirenberg inequalities. In this note, we
demonstrate that the extended Prékopa–Leindler theorem in the form of Corollary 2
above may be used to prove in a simple direct way the classical Sobolev inequality (1)
with sharp constant. The argument only relies on a suitable choice of functions u, v, w.
The varying parameter α in Corollary 2 allows us to cover in the same way precisely
the preceding sub-family of Gagliardo–Nirenberg inequalities with optimal constants,
justifying thus this particular subset of functional inequalities. As in [13], we may deal
as simply with the Lp-versions of the Sobolev and Gagliardo–Nirenberg inequalities
(cf. (4)), and even replace the Euclidean norm on R

n by some arbitrary norm. The
extension of the Sobolev inequalities to arbitrary norms on R

n was known previ-
ously [3] by symmetrization methods. With respect to earlier developments (notably
the recent [13], which provides a new and complete treatment in this respect), the
approach presented here does not provide any type of characterization of extremal
functions and their uniqueness, which have to be hinted in the choice of the functions
u, v, w.

The next section presents an outline of the direct proof of the sharp Sobolev
inequality (1) from Corollary 2. We then discuss variations on the basic principle
which lead to the sharp Sobolev and Gagliardo–Nirenberg inequalities (4) and (6).
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The last section describes, with standard technical arguments, the rigorous and detailed
proof of the Sobolev inequality.

2 Outline of the proof of the Sobolev inequality

We follow the strategy put forward in [7] (see also [22]) on the basis of Corollary 2
rather than the more classical Prékopa–Leindler theorem. For g : R

n → R and t > 0,
recall the infimum-convolution of g with the quadratic cost defined by

Qtg(x) = inf
y∈R

{
g(y) + 1

2t |x − y|2}, x ∈ R
n

(with Q0g = g). It is a standard fact (cf. e.g. [5,18] . . .) that, for suitable C1 functions
g,

∂tQtg
∣∣
t=0 = −1

2
|∇g|2. (7)

Actually, if g is Lipschitz continuous, the family ρ = ρ(x, t) = Qtg(x), t > 0, x ∈ R
n,

represents the solution of the Hamilton–Jacobi initial value problem ∂tρ + 1
2 |∇ρ|2 = 0

in R
n × (0, ∞), ρ = g on R

n × {t = 0}.
For σ > 0, set

vσ (x) = σ + |x|2
2 , x ∈ R

n.

Let σ > 0 to be determined and let g : R
n → R+ be smooth and such that

m1(g1−n) < ∞. In order not to obscure the main idea, we refer to the appendix for
a precise description of the class of functions g that should be considered in order to
justify the technical differential arguments freely used below.

By definition of the infimum-convolution operator, we may apply Corollary 2 with
α = − 1

n−1 to the set of (positive) functions

u(x) = g(θx)1−n,

v(y) = vσ

(√
θ y

)1−n,

w(z) = [
(1 − θ)σ + θQ1−θ g(z)

]1−n.

Note that m1(u) = θ1−nm1(g1−n) and m1(v) = (σθ)(1−n)/2m1(v
1−n
1 ) < ∞. Choose thus

σ = κ θ > 0 such that m1(u) = m1(v) where κ =κ(n, g) = (m1(v
1−n
1 )/m1(g1−n))2/(n−1).

Set s = 1 − θ ∈ (0, 1). Hence, by Corollary 2, for every s ∈ (0, 1),∫ (
κs + Qsg

)1−ndx ≥
∫

g1−ndx + s κ(2−n)/2
∫

v1−n
1 dx.

Taking the derivative at s = 0 yields, by (7),

(1 − n)

∫
g−n

(
κ − 1

2
|∇g|2

)
dx ≥ κ(2−n)/2

∫
v1−n

1 dx. (8)

Set g = f 2/(2−n) so that

2
(n − 2)2

∫
|∇f |2dx ≥ κ

∫
f qdx + 1

(n − 1)κ(n−2)/2

∫
v1−n

1 dx
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where we recall that q = 2n/(n − 2). In particular,∫
|∇f |2dx ≥ inf

κ>0

(n − 2)2

2

(
κ

∫
f qdx + 1

(n − 1)κ(n−2)/2

∫
v1−n

1 dx
)

. (9)

This infimum is precisely C−2
n ‖f‖2

q where Cn is the optimal constant in the Sobolev

inequality (1). Actually, if g(x) = v1(x) = 1 + |x|2
2 , the preceding argument develops

with equalities at each step with κ = κ(n, g) = 1. Moreover, the infimum on the
right-hand side of (9) is attained at κ = 1 if and only if∫

f qdx =
∫

v−n
1 dx = n − 2

2(n − 1)

∫
v1−n

1 dx

which is easily checked by elementary calculus. Thus (9) is an equality in this case and
the conclusion follows.

3 Extensions and comments

As emphasized in the introduction, the same proof, with the varying parameter α

in Corollary 2, yields the sub-family of Gagliardo–Nirenberg inequalities recently
put forward in [16]. Let us briefly emphasize the modifications in the argument. (It
is somewhat surprising that these optimal Gagliardo–Nirenberg inequalities follow
from Corollary 2 with − 1

n−1 < α ≤ +∞ which is a consequence of the α = − 1
n−1

case, whereas they are not direct consequences of the sharp Sobolev inequality.)
For − 1

n−1 ≤ α < 0, apply Corollary 2 to

u(x) = g(θx)1/α ,
v(y) = vσ

(√
θ y

)1/α ,

w(z) = [
(1 − θ)σ + θQ1−θ g(z)

]1/α

to get that for all s ∈ (0, 1),∫ [
κs(1 − s)a + (1 − s)Qsg

]1/αdx

≥ (1 − s)1−n
∫

g1/αdx + κcs(1 − s)b
∫

v1/α

1 dx.

Here a > 0, b, c < 0, κ > 0 depending on n and α (and g), are such that m1(u) = m1(v)

for some suitable choice of σ . Taking the derivative at s = 0,

1
α

∫
g(1/α)−1

(
κ − g − 1

2
|∇g|2

)
dx ≥ (n − 1)

∫
g1/αdx + κc

∫
v1/α

1 dx.

Set f = gp, 2p − 2 = 1
α

− 1, so that

− 1
2αp2

∫
|∇f |2dx −

[
(n − 1) + 1

α

] ∫
f rdx ≥ −κ

α

∫
f sdx + κc

∫
v1/α

1 dx

where r = 2(1 − α)/(1 + α) and s = 2/(1 + α). Note that r, s > 2, r = 2(s − 1). Take
the infimum over κ > 0 on the right-hand side, and rewrite then the inequality by
homogeneity to get the Gagliardo–Nirenberg inequality

‖f‖r ≤ C‖∇f‖λ
2‖f‖1−λ

s ,

1
r = λ

q + 1−λ
s , with optimal constant C.
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To reach the sub-family r, s < 2, s = 2(r − 1), work now with 0 < α < +∞ and

replace vσ by the compactly supported function [σ − |x|2
2 ]+, |x| <

√
2σ . Actually, only

the values 0 < α < 1 are concerned in the argument. We do not know what type of
functional information is contained in the interval α ≥ 1. The case α = 0 leading to
the logarithmic Sobolev inequality has been studied in [7,22] and follows here as a
limiting case.

We can work more generally with the Lp-Sobolev inequalities (4), 1 < p < n, and
similarly with the corresponding sub-family of Gagliardo–Nirenberg inequalities. It
is also possible to equip R

n with an arbitrary norm ‖ · ‖ instead of the Euclidean one
| · |, and to consider

‖∇f‖p
p =

∫
R

n

∥∥∇f (x)
∥∥p

∗ dx

where ‖ · ‖∗ is the dual norm to ‖ · ‖. To these tasks, consider as in [22],

Qtg(x) = inf
y∈R

n

{
g(y) + t V∗( x−y

t

)}
, t > 0, x ∈ R

n,

where V∗(x) = 1
p∗ ‖x‖p∗

with p∗ is the Hölder conjugate of p, i.e. (1/p) + (1/p∗) = 1.
Then ρ = ρ(x, t) = Qtg(x) is the solution of the Hamilton–Jacobi equation
∂tρ + V(∇ρ) = 0 with initial condition g, where V(x) = 1

p‖x‖p∗ is the Legendre
transform of V∗ (cf. [18]). The proof then follows along the same lines as before. See
the Appendix for details. The general statement obtained in this way is the following
(cf. [13,17]). For 1 < p < n, 1

q = 1
p − 1

n , s < r ≤ q, λ ∈ [0, 1],

‖f‖r ≤ Cn(p, r)‖∇f‖λ
p‖f‖1−λ

s

with 1
r = λ

q + 1−λ
s , p(s − 1) = r(p − 1) if r, s > p, p(r − 1) = s(p − 1) if r, s < p, and

the optimal constant Cn(r, p) is achieved on the extremal functions (σ +‖x‖p∗
)p/(p−r),

x ∈ R
n, σ > 0, in the first case and ([σ − ‖x‖p∗ ]+)(p−1)/(p−r), x ∈ R

n, σ > 0, in
the second case. The optimal Sobolev inequality (4) corresponds to the limiting case
λ → 1, r → q, s → r.

4 Proof of the Sobolev inequality

In this last section, we collect the technical details necessary to fully justify the proof
of the Sobolev inequality outlined in Sect. 2. Although the case p = 2 is a bit more sim-
ple, we can actually easily handle in the same way the more general case of 1 < p < n
and of an arbitrary norm ‖ · ‖ on R

n. The arguments are easily modified so to deal
similarly with the Gagliardo–Nirenberg inequalities discussed in Sect. 3.

Consider thus on R
n the Sobolev inequality

‖f‖q ≤ Cn(p)‖∇f‖p (10)

in the class of all locally Lipschitz functions f vanishing at infinity, with parameters
p, q satisfying 1 < p < n, 1

q = 1
p − 1

n . The right-hand side in (10) is understood with
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respect to the given norm ‖ · ‖ on R
n. More precisely,

‖∇f‖p
p =

∫
R

n

∥∥∇f (x)
∥∥p

∗ dx

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Our aim is to show that the best constant Cn(p)

in (10) corresponds to the family of extremal functions

f (x) = (
σ + ‖x‖p∗)(p−n)/p, x ∈ R

n, σ > 0,

where p∗ is the conjugate of p. Without loss of generality, we may assume that the norm
x �→ ‖x‖ is continuously differentiable in the region x �= 0. In this case, ‖∇‖x‖‖∗ = 1
for all x �= 0, and all the extremal functions belong to the class C1(Rn).

The associated infimum-convolution operator is constructed for the cost function
V∗(x) = 1

p∗ ‖x‖p∗
, that is,

Qtg(x) = inf
y∈R

n

{
g(y) + t V∗( x−y

t

)}
, t > 0, x ∈ R

n.

The dual (Legendre transform) of V∗ is V(x) = supy∈R
n [〈x, y〉 − V∗(y)] = 1

p ‖x‖p∗ (and
conversely).

We refer to standard references (such as [5,18] . . .) for general facts about infi-
mum-convolution operators and solutions to Hamilton–Jacobi equations, and only
concentrate below on the aspects relevant to the proof of the Sobolev inequality.
What follows is certainly classical, but we could not find appropriate references.

Lemma A If a function g on R
n is bounded from below and is differentiable at the

point x ∈ R
n, then

lim
t→0

1
t

[
Qtg(x) − g(x)

] = −V
(∇g(x)

) = − 1
p

∥∥∇g(x)
∥∥p

∗ .

Proof Fix x ∈ R
n. By Taylor’s expansion, g(x − h) = g(x) − 〈∇g(x), h〉 + |h|ε(h) with

ε(h) = εx(h) → 0 as |h| → 0. Hence, for vectors ht = th with fixed h ∈ R
n,

lim
t→0

1
t

[
g(x − ht) − g(x)

] = −〈∇g(x), h〉.
Since we always have Qtg(x) ≤ g(x − ht) + tV∗(h),

lim sup
t→0

1
t

[
Qtg(x) − g(x)

] ≤ lim
t→0

1
t

[
g(x − ht) − g(x)

] + V∗(h)

= −〈∇g(x), h〉 + V∗(h).

The left-hand side of the preceding does not depend on h. Hence, taking the infimum
on the right-hand side over all h ∈ R

n, we get

lim sup
t→0

1
t

[
Qtg(x) − g(x)

] ≤ −V
(∇g(x)

)
.

Now, we need an opposite inequality for the liminf. Assume without loss of gener-
ality that g ≥ 0. Since Qtg(x) ≤ g(x), it is easy to see that for any t > 0,

Qtg(x) = inf
tV∗(h)≤g(x)

{
g(x − ht) + tV∗(h)

}
.
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Hence, recalling Taylor’s expansion,

1
t

[
Qtg(x) − g(x)

] = inf
tV∗(h)≤g(x)

{ − 〈∇g(x), h〉 + |h|ε(th) + V∗(h)
}
. (11)

Note first that the argument in ε(·) = εx(·) is small uniformly over all admissible h
since, as is immediate,

sup
{
t|h|; tV∗(h) ≤ g(x)

} → 0 as t → 0.

Thus removing the condition tV∗(h) ≤ g(x) in (11), we get that, given η > 0, for all t
small enough,

1
t

[
Qtg(x) − g(x)

] ≥ inf
h

{ − 〈∇g(x), h〉 − |h|η + V∗(h)
}
. (12)

Now, to get rid of η on the right-hand side for t approaching zero, note that the infimum
in (12) may be restricted to the ball |h| ≤ r for some large r. Indeed, the left-hand
side in (12) is non-positive. But if |h| is large enough and 0 < η < 1, the quantity
for which we take the infimum will be positive for V∗(h) ≥ C|h| > 〈∇g(x), h〉 + |h|η
with C taken in advance to be as large as we want. Finally, restricting the infimum to
|h| ≤ r, we get that

1
t

[
Qtg(x) − g(x)

] ≥ inf
|h|≤r

{ − 〈∇g(x), h〉 + V∗(h)
} − rη = −V

(∇g(x)
) − rη.

It remains to take the liminf on the left for t → 0, and then to send η to 0. The proof
of Lemma A is complete. 
�

Our next step is to complement the above convergence with a bound on
|Qtg(x) − g(x)|/t in terms of ‖∇g(y)‖∗ with vectors y that are not far from x. So,
given a C1 function g on R

n, for every point x ∈ R
n and r > 0, define Dg(x, r) =

sup‖x−y‖≤r ‖∇g(y)‖∗. Note that Dg(x, r) → ‖∇g(x)‖∗ as r → 0. Assume g ≥ 0 and
write once more

Qtg(x) = inf
h∈R

n

{
g(x − h) + ‖h‖p∗

p∗tp∗−1

}
, t > 0.

Again, since Qtg(x) ≤ g(x), the infimum may be restricted to the ball (‖h‖p∗
/p∗tp

∗−1) ≤
g(x). Hence, replacing h with th and applying the Taylor formula in integral form, we
get that with r = (p∗g(x))1/p∗

, for any t > 0,

1
t

[
g(x) − Qtg(x)

] ≤ sup
t‖h‖≤r

{1
t

[
g(x) − g(x − th)

] − (‖h‖p∗
/p∗)}

≤ sup
t‖h‖≤r

{
Dg

(
x, t‖h‖)‖h‖ − (‖h‖p∗

/p∗)}

≤ sup
h

{
Dg(x, r)‖h‖ − (‖h‖p∗

/p∗)}

= 1
p

Dg(x, r)p. (13)

In applications, we need to work with functions g(x) = O(|x|p∗
) as |x| → ∞. So, let

us define the class Fp∗ , p∗ > 1, of all C1 functions g on R
n such that

lim sup
|x|→∞

|∇g(x)|
|x|p∗−1

< ∞.
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If f ∈ Fp∗ , then, for some C, |∇g(x)| ≤ C|x|p∗−1 as long as |x| is large enough,
and hence |g(x)|1/p∗ ≤ C′|x| for |x| large. It easily follows that Dg(x, (p∗ g(x))1/p∗

) ≤
C′′(1+|x|p∗−1) for all x. As a consequence of (13), we may conclude that for any g ≥ 0
in Fp∗ , p∗ > 1, there is a constant C > 0 such that

sup
t>0

1
t

[
g(x) − Qtg(x)

] ≤ C
(
1 + |x|p∗)

, x ∈ R
n. (14)

We may now start the proof of the Sobolev inequality according to the scheme
outlined in Sect. 2. Given a parameter σ > 0, define

vσ (x) = σ + ‖x‖p∗
p∗ , x ∈ R

n.

For a positive C1 function g on R
n, and θ ∈ (0, 1), define the three (positive, continu-

ous) functions

u(x) = g(θx)1−n,
v(y) = vσ (θ1/p∗

y)1−n,
w(z) = [

(1 − θ)σ + θQ1−θ g(z)
]1−n.

The function w is chosen as the optimal one satisfying

w
(
θx + (1 − θ)y

)α ≤ θu(x)α + (1 − θ)v(y)α

for α = − 1
n−1 and all x, y ∈ R

n. Assume that

m1(g
1−n) = sup

x1∈R

∫

R
n−1

g(x1, x2, · · · , xn)1−n dx2 . . . dxn < ∞.

By homogeneity, m1(u) = θ1−n m1(g1−n) and m1(v) = θ(1−n)/p∗
σ (1−n)/p m1(v

1−n
1 ).

Note that m1(v
1−n
1 ) < ∞. Hence, we may choose σ such that m1(u) = m1(v), that is,

σ = κ θ , where κ = κ(n, g) =
(

m1(v
1−n
1 )

m1(g1−n)

)p/(n−1)

.

By Corollary 2 (with α = − 1
n−1 ), we have

∫
wdx ≥ θ

∫
udx + (1 − θ)

∫
vdx, that is,

∫ [
(1 − θ)σ + θQ1−θ g(x)

]1−ndx ≥ θ

∫
g(θx)1−n dx + (1 − θ)

∫
vσ

(
θ1/p∗

x
)1−ndx.

After a change of variable in the last two integrals, and since σ = κ θ , we get, setting
s = 1 − θ , ∫

(κs + Qsg)1−ndx ≥
∫

g1−ndx + s κ(p−n)/p
∫

v1−n
1 dx. (15)

Inequality (15) holds true for all 0 < s < 1, and formally there is equality at s = 0.
The next step is to compare the derivatives of both sides at this point. To do this,
assume g ∈ Fp∗ and

g(x) ≥ c
(
1 + ‖x‖p∗)

(16)

for some constant c > 0. (Recall that the functions in Fp∗ satisfy an opposite bound
g(x) ≤ C(1 + ‖x‖p∗

) which will not be used.) Due to (16), Qsg(x) ≥ c′(1 + ‖x‖p∗
)
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(where c′ > 0 is independent of s). In particular, m1(g1−n) < ∞, and the first and
second integrals in (15) are finite and uniformly bounded over all s ∈ (0, 1). Rewrite
(15) as

κ(p−n)/p
∫

v1−n
1 dx ≤

∫
1
s

[
(κs + Qsg)1−n − g1−n]

dx. (17)

Now we can use a general inequality

|a1−n − b1−n| ≤ (n − 1)|a − b|(a−n + b−n), a, b > 0,

to see that, uniformly in s,

1
s

[
(κs + Qsg)1−n − g1−n] ≤ 2(n − 1)

(
κ + 1

s
[g − Qsg]

)
(Qsg)−n

≤ C′(1 + ‖x‖p∗)1−n

for some constant C′ > 0. On the last step, we used that Qsg(x) ≥ c′(1+‖x‖p∗
) together

with the bound (14) for functions from the class Fp∗ . Since the function (1+‖x‖p∗
)1−n

is integrable (for p < n), we can apply the Lebesgue dominated convergence theorem
in order to insert the limit lims→0 inside the integral in (17), and to thus get together
with Lemma A,

κ(p−n)/p
∫

v1−n
1 dx ≤ (1 − n)

∫
g−n

(
κ − ‖∇g‖p∗

p

)
dx,

or equivalently,

1
p

∫
g−n‖∇g‖p∗dx ≥ κ

∫
g−ndx + 1

(n − 1)κ(n−p)/p

∫
v1−n

1 dx. (18)

Now, let us take a non-negative, compactly supported C1 function f on R
n, and for

ε > 0, define C1 functions

gε(x) = (
f (x) + εϕ(x)

)p/(p−n) + ε
(
1 + ‖x‖p∗

)

where ϕ(x) = (1+‖x‖p∗
)(p−n)/p. Clearly, all gε satisfy (16). The first partial derivatives

of f are continuous and vanishing for large values of |x|. More precisely, gε(x) =
cε(1 + ‖x‖p∗

) for |x| large enough, so all gε belong to the class Fp∗ . Thus, we can apply
(18) to get

1
p

∫
g−n
ε ‖∇gε‖p∗dx ≥ κ

∫
g−n
ε dx + 1

(n − 1)κ(n−p)/p

∫
v1−n

1 dx. (19)

Note that g−n
ε ≤ (f + εϕ)q and

∫
ϕqdx < ∞ (where we recall that q = pn/(n − p)).

Hence, by the Lebesgue dominated convergence theorem again,
∫

g−n
ε dx is conver-

gent, as ε → 0, to
∫

f qdx. By a similar argument, recalling that ‖∇‖x‖p∗‖∗ = p∗‖x‖p∗−1,
x ∈ R

n, we see that there is a finite limit for the left integral in (19). As a result, we
arrive at

pp−1

(n − p)p

∫
‖∇f‖p∗ dx ≥ κ

∫
f qdx + 1

(n − 1)κ(n−p)/p

∫
v1−n

1 dx, (20)

which implies

pp−1

(n − p)p

∫
‖∇f‖p∗ dx ≥ inf

κ>0

(
κ

∫
f qdx + 1

(n − 1)κ(n−p)/p

∫
v1−n

1 dx
)

. (21)
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As we will see with the case of equality below, this is precisely the desired Sobolev
inequality (10) with optimal constant. It is now easy to remove the assumption on
the compact support of f and thus to extend (21) to all C1 and furthermore locally
Lipschitz functions f (≥ 0) on R

n vanishing at infinity.
To conclude the argument, we investigate the case of equality. To this task, let us

return to the beginning of the argument and check the steps where equality holds
true. Take g = v1 so that κ = κ(n, g) = 1 and σ = θ . In addition, the right-hand side
of (15) automatically turns into (1 + s)

∫
v1−n

1 dx. By direct computation,

Qsv1(x) = 1 + ‖x‖p∗

p∗(1 + s)p∗−1
,

so the left-hand side of (15) is
∫

(κs + Qsg)1−ndx =
∫ (

(1 + s) + ‖x‖p∗

p∗ (1 + s)p∗−1

)1−n

dx

= (1 + s)
∫ (

1 + ‖y‖p∗

p∗

)1−n

dy

= (1 + s)
∫

v1−n
1 dy

where we used the change of the variable x = (1 + s)y. Thus, for g = v1 there is
equality in (15), and hence in (18) and (20) as well.

As for (21), first note that, given parameters A, B > 0, the function Aκ +Bκ(p−n)/p,
κ > 0, attains its minimum on the positive half-axis at κ = 1 if and only if A =
B(n − p)/p. In the situation of the particular functions g = v1, f q = g−n = v−n

1 , we
have

A =
∫

v−n
1 dx, B = 1

n − 1

∫
v1−n

1 dx.

Hence, the infimum in (20) is attained at κ = 1 if and only if∫
v−n

1 dx = n − p
p(n − 1)

∫
v1−n

1 dx.

But this equality is easily checked by elementary calculus.
We may thus summarize our conclusions. In the class of all locally Lipschitz func-

tions f on R
n, vanishing at infinity and such that 0 < ‖f‖q < ∞, the quantity

‖∇f‖p

‖f‖q
,

1 < p < n, 1
q = 1

p − 1
n , is minimized for the functions

f (x) = (
σ + ‖x‖p∗)(p−n)/p, x ∈ R

n, σ > 0.

Here 1
p + 1

p∗ = 1 and ‖ · ‖ is a given norm on R
n, and

‖∇f‖p
p =

∫
R

n

∥∥∇f (x)
∥∥p

∗ dx

where ‖ · ‖∗ is the dual norm to ‖ · ‖.
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