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Abstract New variational principles based on the concept of anti-selfdual (ASD)
Lagrangians were recently introduced in “AIHP-Analyse non linéaire, 2006”. We
continue here the program of using such Lagrangians to provide variational formula-
tions and resolutions to various basic equations and evolutions which do not normally
fit in the Euler-Lagrange framework. In particular, we consider stationary boundary
value problems of the form −Au ∈ ∂ϕ(u) as well ass dissipative initial value evolutions
of the form −u̇(t) − Au(t) + ωu(t) ∈ ∂ϕ(l, u(l)) where ϕ is a convex potential on an
infinite dimensional space, A is a linear operator and ω is any scalar. The framework
developed in the above mentioned paper reformulates these problems as 0 ∈ ∂̄L(u)
and u̇(t) ∈ ∂̄L(t, u(t)) respectively, where ∂̄L is an “ASD” vector field derived from
a suitable Lagrangian L. In this paper, we extend the domain of application of this
approach by establishing existence and regularity results under much less restrictive
boundedness conditions on the anti-selfdual Lagrangian L so as to cover equations
involving unbounded operators. Our main applications deal with various nonlinear
boundary value problems and parabolic initial value equations governed by transport
operators with or without a diffusion term.
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1 Introduction

This paper is a continuation of [10], where the concept of anti-selfdual (ASD) Lagran-
gians was shown to be inherent in many basic boundary-value and initial-value
problems. Motivated by a conjecture of Brezis-Ekeland [4,5], and eventually by the
subsequent related work of Auchmuty [1,2], a new variational framework was establi-
shed where, solutions of various equations which are not normally of Euler–Lagrange
type, can still be obtained as minima of functionals of the form

I(u)= L(u, Au)+ �(b1(x), b2(x)) or I(u)=
T∫

0

L(t, u(t), u̇(t)+ Au(t))dt+�(u(0), u(T)).

where L is an anti-selfdual Lagrangian, A is essentially a skew-adjoint operator
modulo boundary terms represented by a pair of operators (b1, b2), and where �
is a compatible boundary Lagrangian which insures that I is a selfdual functional in
a sense to be recalled later. For such Lagrangians, the minimal value will always be
zero and—just like the self (and antiself) dual equations of quantum field theory (e.g.
Yang-Mills and others)—the equations associated to such minima are not derived
from the fact they are critical points of the functional I, but because they are also
zeroes of derived Lagrangians obtained by “completing the squares”. In other words,
the infimum will satisfy

L(u, Au)+ 〈u, Au〉 = 0 resp., L(t, u(t), u̇(t)+ Au(t))+ 〈u(t), u̇(t)〉 = 0,

which are functional reformulations of the equations at hand. It is also shown in [10]
that ASD Lagrangians possess remarkable permanence properties making them more
prevalent than expected and quite easy to construct and/or identify. The variational
game changes from the analytical proofs of existence of extremals for general action
functionals, to a more algebraic search of an appropriate ASD Lagrangian for which
the value of the corresponding minimization problem is always equal to zero. This
makes them efficient new tools for proving existence and uniqueness results for a
large array of differential equations.

We tackle here again the question of providing a variational formulation and
resolution of boundary value problems of the form:{−Au + f ∈ ∂ϕ(u)

b1(u) = u1,
(1)

as well as parabolic evolution equations of the form:⎧⎨
⎩

−Au(t)− u̇(t)+ ωu(t) ∈ ∂ϕ(t, u(t)) a.e. t ∈ [0, T]
b1(u(t)) = b1(u0) a.e t ∈ [0, T]

u(0) = u0,
(2)

where ϕ is a convex lower semicontinuous functional, A is a linear operator, b1 is a
boundary operator, u1 is a prescribed boundary value, w ∈ R, and u0 is a given initial
value. We shall use the formalism developed in [10] to rewrite these problems as

0 ∈ ∂̄L(u) and −u̇(t) ∈ ∂̄L(t, u(t)) (3)
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respectively, where ∂̄L is an “ASD” vector field derived—in an appropriate way—
from the “potential” L. In this paper, we extend the domain of application of this
approach by establishing existence and regularity results for the equations in (3)
under much less restrictive boundedness conditions on the anti-selfdual Lagrangian
L. In particular, we will be able to associate—via an integral representation formula—
a semi-group of nonlinear contractions (Tt)t∈R+ to any ASD Lagrangian L in such a
way that x(t) = Ttx0 is a solution of −u̇(t) ∈ ∂̄L(u(t)) starting at x0.

As applications, we provide—under minimal hypothesis—a variational resolution
to equations involving non self-adjoint operators such as the following transport equa-
tion: {−�a(x) · �∇u(x)+ a0u = |u(x)|p−1u + f on � ⊂ R

n

u(x) = 0 on �−,
(4)

where �a = (ai)i : � → Rn is a vector field, f ∈ L2(�), and where �− = {x ∈ ∂�;
�a(x)n̂(x) < 0}, n̂ being the outer normal vector. We also provide a variational reso-
lution to general dissipative initial value problems such as the following convection-
diffusion evolutions.

− ∂u
∂t
(x, t)+ �a(x) · �∇u(x, t) = �pu(x, t)+ a0(x)u(x, t)+ ωu(x, t) on [0, T] ×�

u(x, 0) = u0(x) on � (5)

u(x, t) = 0 on [0, T] × ∂�.

But more importantly, we also deal with the more delicate case where the equation is
purely non-self-adjoint such as:

− ∂u
∂t
(x, t)+ �a(x) · �∇u(x, t) = a0(x)u(x, t)+u(x, t)|u(x, t)|p−2+ωu(x, t) on [0, T]×�

u(x, 0) = u0(x) on � (6)

u(x, t) = u0(x) on [0, T] ×�−

Needless to say, these equations have been the subject of many studies starting from
the fundamental paper of Bardos [3]. They are however not normally solved by the
methods of the calculus of variations since they do not correspond to Euler–Lagrange
equations of action functionals of the form

∫
�

F(x, u(x), ∇u(x)dx or
∫ T

0 L(t, x(t), ẋ(t)dt.
They turned out to be ideal “elementary” examples of nonself-adjoint equations on
which to illustrate the applicability of our method including many of its subtleties.

The paper, though sufficiently self-contained, is better read in conjunction with
[10]. It is organized as follows: In Sect. 2, we isolate the conditions under which the
composition of an anti-selfdual Lagrangian with an unbounded linear operator yields
a global Lagrangian that is also anti-selfdual. Section 3 gives the first applications to
non-homogeneous transport equations. In Sect. 4, we prove our main result which
associates a semi-group of nonlinear operators to a general ASD Lagrangian, inclu-
ding those involving semi-convex terms. This result is applied in Sect. 5 to provide
variational resolutions to several parabolic initial-value problems. Some of the results
were announced in [7,8]. The case involving nonlinear operators is dealt with in [11].

Added in proof: Recently, the first named author proved in [13] that every maximal
monotone operator is actually an anti-selfdual vector field, which means that ASD-
Lagrangians can be seen as the potentials of maximal monotone operators leading to
a variational formulation and resolution of most equations involving such nonlinear
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operators. This “selfdual variational theory” and its applications is developed in detail
in the upcoming monograph [12].

2 Anti-selfdual Lagrangians and unbounded operators

Given a reflexive Banach space X, we consider the class L(X) of Lagrangians L :
X ×X∗ → R∪{+∞} which are convex and lower semi-continuous (in both variables)
and which are not identically +∞. The Legendre-Fenchel dual (in both variables) of
L is defined at any pair (q, y) ∈ X∗ × X by:

L∗(q, y) = sup{〈q, x〉 + 〈y, p〉 − L(x, p); x ∈ X, p ∈ X∗}.
We refer to Ekeland–Temam [6] for the basics of convex analysis, and we recall from
[10] the following notions.

Definition 2.1 (1) Say that L is an anti-selfdual Lagrangian on X × X∗, if

L∗(p, x) = L(−x, −p) for all (p, x) ∈ X∗ × X. (7)

(2) L is partially anti-selfdual, if

L∗(0, x) = L(−x, 0) for all x ∈ X. (8)

Denote by LAD(X) the class of anti-selfdual (ASD) Lagrangians on a given Banach
space X. This is a quite interesting and natural class of Lagrangians as they appear
in several basic PDEs and evolution equations. The basic example of an anti-selfdual
Lagrangian is given by a function L on X × X∗, of the form

L(x, p) = ϕ(x)+ ϕ∗(−p) (9)

where ϕ is a convex and lower semi-continuous function on X and ϕ∗ is its Legendre
conjugate on X∗. But the class LAD(X) was shown in [10] to be much richer as
it goes well beyond convex functions and their conjugates, especially because it is
stable under composition with skew-symmetric operators. Indeed if � : X → X∗ is a
bounded linear skew-symmetric (i.e., �∗ = −�), and if L is an ASD Lagrangian, it is
then easy to see that the Lagrangian

M(x, p) = L(x,�x + p) (10)

is also anti-selfdual. However, in various applications, we are often faced with an
unbounded operator � which may still satisfy various aspects of anti-symmetry. In
the sequel we study to what extent the composition formula (10) above remains valid
for such operators.

Let A be a linear—not necessarily bounded—map from its domain D(A) ⊂ X into
X∗. Assuming D(A) dense in X, we consider the domain of its adjoint A∗ which is
defined as:

D(A∗) = {x ∈ X; sup{〈x, Ay〉; y ∈ D(A), ‖y‖X ≤ 1} < +∞}.

Definition 2.2 Let X be a reflexive Banach space and let A be a linear map from its
domain D(A) ⊂ X into X∗. Say that
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1. A is antisymmetric if D(A) ⊂ D(A∗) and if A∗ = −A on D(A).
2. A is skew-adjoint if it is antisymmetric and if D(A) = D(A∗).

The following easy lemma shows that the composition formula still holds for anti-
symmetric operators, provided they have a large enough domain.

Lemma 2.3 Let ϕ be a convex proper lower semi-continuous functional on X with a
symmetric domain D(ϕ), and let A : D(A) ⊂ X → X∗ be an anti-symmetric operator
such that D(ϕ) ⊆ D(A). Then the Lagrangian

M(x, p) =
{
ϕ(x)+ ϕ∗(Ax − p) x ∈ D(ϕ)
+∞ elsewhere

is anti-selfdual on X.

Proof Let (x̃, p̃) ∈ X × X∗ and suppose first that x̃ ∈ D(ϕ). Then

M∗(p̃, x̃) = sup
x∈D(ϕ)

sup
p∈X∗

{〈x, p̃〉 + 〈x̃, p〉 − (
ϕ(x)+ ϕ∗(Ax − p)

)}

= sup
x∈D(ϕ)

sup
q∈X∗

{〈x, p̃〉 + 〈x̃, Ax − q〉 − ϕ(x)− ϕ∗(q)
}

= sup
x∈D(ϕ)

sup
q∈X∗

{〈x, p̃〉 − 〈Ax̃, x〉 − 〈x̃, q〉 − ϕ(x)− ϕ∗(q)
}

= ϕ(−x̃)+ ϕ∗(p̃ − Ax̃)

= M(−x̃, −p̃).

If now x̃ /∈ D(ϕ), then

M∗(p̃, x̃) ≥ −ϕ(0)+ sup
p∈X∗

{〈x̃, p〉 − ϕ∗(−p)
}

= −ϕ(0)+ ϕ(−x̃) = +∞ = M(−x̃, −p̃).

We shall also deal with situations where operators are skew-adjoint provided one
takes into account certain boundary terms. We introduce the following notion ��
Definition 2.4 Let A be a linear map from its domain D(A) in a reflexive Banach
space X into X∗ and consider (b1, b2) to be a pair of linear maps from its domain
D(b1, b2) in X into the product of two Hilbert spaces H1 × H2. We say that A is
skew-adjoint modulo the boundary operators (b1, b2) if the following properties are
satisfied:

1. The space X0 := Ker(b1, b2) ∩ D(A) is dense in X
2. The image of S := D(A) ∩ D(b1, b2) by (b1, b2) is dense in H1 × H2.
3. An element y in X belongs to S if and only if

sup

{
〈y, Ax〉 − 1

2
(‖b1(x)‖2

H1
+ ‖b2(x)‖2

H2
); x ∈ S, ‖x‖X < 1

}
< ∞.

4. For every x, y ∈ S, we have

〈y, Ax〉 = −〈Ay, x〉 + 〈b1(x), b1(y)〉H1 − 〈b2(x), b2(y)〉H2 .

It is clear that if b1, b2 are the zero operators on X, then our definition coincides
with the notion of skew-adjoint operator in Definition 2.2.2). Here is our main result
concerning the composition of ASD Lagrangians with non-necessarily bounded skew-
adjoint operators.
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Proposition 2.1 Let L : X × X∗ → R be an ASD Lagrangian on a reflexive Banach
space X such that for ever p ∈ X∗, the function x → L(x, p) is bounded on the bounded
sets of X. Let A : D(A) → X∗ be skew-adjoint modulo the boundary operators
(b1, b2) : X → H1 × H2. Then the Lagrangian defined by

M(x, p) =
{

L(x, Ax + p)+ ‖b1(x)‖2
H1

2 + ‖b2(x)‖2
H2

2 if x ∈ D(A) ∩ D(b1, b2)

+∞ if x /∈ D(A) ∩ D(b1, b2)

is anti-selfdual on X.

Proof The idea is to use the density of Ker(b1, b2) and the continuity of L in the first
variable to split the space X in such a way that the supremum over the main term
and the supremum over the boundary term are independent of each other. Indeed, if
x̃ ∈ S := D(A) ∩ D(b1, b2), then

M∗(p̃, x̃) = sup
x∈S

p∈X∗

{
〈x̃, p〉 + 〈x, p̃〉 − L(x, Ax + p)− ‖b1(x)‖2

H1

2
− ‖b2(x)‖2

H2

2

}

Substituting q = Ax + p, we get

M∗(p̃, x̃) = sup
x∈S

q∈X∗

{
〈x̃, q − Ax〉 + 〈x, p̃〉 − L(x, q)− ‖b1(x)‖2

H1

2
− ‖b2(x)‖2

H2

2

}

Since x̃ ∈ D(A), we have that:

〈x̃, Ax〉 = −〈x, Ax̃〉 + 〈b1(x), b1(x̃)〉 − 〈b2(x), b2(x̃)〉.
which yields

M∗(p̃, x̃) = sup
x∈S

q∈X∗

{
〈x, Ax̃〉 − 〈b1(x), b1(x̃)〉 + 〈b2(x), b2(x̃)〉 + 〈x̃, q〉

+〈x, p̃〉 − L(x, q)− ‖b1(x)‖2
H1

2
− ‖b2(x)‖2

H2

2

}

Now for all x0 ∈ Ker(b1, b2), we obviously have b1(x) = b1(x + x0) and b2(x) =
b2(x + x0), so that for all x0 ∈ Ker(b1, b2) ∩ D(A) ⊆ S,

M∗(p̃, x̃) = sup
x∈S

q∈X∗

{
〈x, Ax̃〉 − 〈b1(x + x0), b1(x̃)〉 + 〈b2(x + x0), b2(x̃)〉 + 〈x̃, q〉

+ 〈x, p̃〉 − L(x, q)− ‖b1(x + x0)‖2
H1

2
− ‖b2(x + x0)‖2

H2

2

}

It follows that

M∗(p̃, x̃) = sup

{
〈x, Ax̃ + p̃〉 − 〈b1(x + x0), b1(x̃)〉 + 〈b2(x + x0), b2(x̃)〉

+ 〈x̃, q〉 + L(x, q)− ‖b1(x + x0)‖2
H1

2
− ‖b2(x + x0)‖2

H2

2
;

x ∈ S, q ∈ X∗, x0 ∈ Ker(b1, b2) ∩ D(A)
}
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Since S is a linear space, we may set w = x + x0 and write

M∗(p̃, x̃) = sup

{
〈w − x0, Ax̃ + p̃〉 − 〈b1(w), b1(x̃)〉 + 〈b2(w), b2(x̃)〉 + 〈x̃, q〉

−L(w − x0, q)− ‖b1(w)‖2
H1

2
− ‖b2(w)‖2

H2

2
; w ∈ S, q ∈ X∗,

x0 ∈ Ker (b1, b2) ∩ D(A)
}

Now, for each fixed w ∈ S and q ∈ X∗, the supremum over x0 ∈ Ker(b1, b2) ∩ D(A)
can be taken as a supremum over x0 ∈ X since Ker(b1, b2) ∩ D(A) is dense in X and
all terms involving x0 are continuous in that variable. Furthermore, for each fixed
w ∈ S and q ∈ X∗, the supremum over x0 ∈ X of the terms w − x0 can be written as
supremum over v ∈ X where v = w − x0. So setting v = w − x0 we get

M∗(p̃, x̃) = sup

{
〈v, Ax̃ + p̃〉 − 〈b1(w), b1(x̃)〉 + 〈b2(w), b2(x̃)〉 + 〈x̃, q〉 − L(v, q)

− ‖b1(w)‖2
H1

2
− ‖b2(w)‖2

H2

2
; v ∈ X, q ∈ X∗, w ∈ S

}

= sup
v∈X

sup
q∈X∗

{〈v, Ax̃ + p̃〉 + 〈x̃, q〉 − L(v, q)
}

+ sup
w∈S

{
〈b1(w), −b1(x̃)〉 + 〈b2(w), b2(x̃)〉 − ‖b1(w)‖2

H1

2
− ‖b2(w)‖2

H2

2

}

Since the range of (b1, b2) : S → H1 × H2 is dense in the H1 × H2 topology, the
boundary term can be written as

sup
a∈H1

sup
b∈H2

{
〈a, −b1(x̃)〉 + 〈b, b2(x̃)〉 − ‖a‖2

H1

2
− ‖b‖2

H2

2

}
= ‖b1(x̃)‖2

H1

2
+ ‖b2(x̃)‖2

H2

2

while the main term is clearly equal to L∗(Ax̃ + p̃, x̃) = L(−x̃, −Ax̃ − p̃) in such a way
that M∗(p, x̃) = M(−x̃, −p̃) if x̃ ∈ D(A) ∩ D(b1, b2).

Now if x̃ /∈ S = D(A) ∩ D(b1, b2) then

M∗(p̃, x̃) = sup
x∈S

q∈X∗

{
〈x̃, q − Ax〉 + 〈x, p̃〉 − L(x, q)− ‖b1(x)‖2

H1

2
− ‖b2(x)‖2

H2

2

}

≥ sup
x∈S

‖x‖X<1

{
〈−x̃, Ax〉 + 〈x, p̃〉 − L(x, 0)− ‖b1(x)‖2

H2

2
− ‖b2(x)‖2

H2

2
.

}

Since by assumption L(x, 0) < C whenever ‖x‖X < 1, we finally obtain that

M∗(p̃, x̃) ≥ sup
x∈S

‖x‖X<1

{
〈−x̃, Ax〉 + 〈x, p̃〉 − C − ‖b(x)‖2

H2

2
− ‖b2(x)‖2

H2

2

}

= +∞
= M(−x̃, −p̃)
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since x̃ /∈ S whenever −x̃ /∈ S. Therefore M∗(p̃, x̃) = M(−x̃, −p̃) for all (x̃, p̃) ∈ X ×X∗
and M is an anti-selfdual Lagrangian. ��

2.1 The example of the transport operator A = �a · �∇u + ( �∇·�a)
2 u

Consider the transport operator u �→ �a · �∇u + ( �∇·�a)
2 u on the space X = Lp(�), in

conjunction with two trace operators (restrictions) onto two appropriate subsets of
∂�. We show that this operator is skew-adjoint modulo the corresponding boundary
operators, in the sense of Definition 2.2. These properties will be crucial for the
next sections where we establish existence results for both stationary and evolution
equations involving first order transport operators.

We shall adopt the framework of [3], and in particular all conditions imposed there
on the smooth vector field �a defined on a neighborhood of a C∞ bounded open set �
in R

n. Set X = Lp(�) for 1 < p < +∞ and define

�± = {x ∈ ∂�; ±�a(x) · n̂(x) ≥ 0} be the entrance and exit sets

of the transport operator �a · �∇,

the corresponding Hilbert spaces:

H1 = L2(�+; |�a · n̂|dσ), H2 = L2(�−; |�a · n̂|dσ),
as well as the boundary (trace) operators (b1u, b2u) = (u|�+ , u|�−) whose domain is

D(b1, b2) = {u ∈ Lp(�); (u|�+ , u|�−) ∈ H1 × H2}.
We shall consider the operator Au = �a · �∇u + ( �∇·�a)

2 u with domain

D(A) = {u ∈ Lp(�); �a · �∇u + ( �∇ · �a)
2

u ∈ Lq(�)} into Lq(�),

where 1
p + 1

q = 1. Observe that D(A) is a Banach space under the norm

‖u‖D(A) = ‖u‖p + ‖�a · �∇u‖q

and that S := D(A)
⋂

D(b1)
⋂

D(b2) is also a Banach space under the norm

‖u‖S = ‖u‖p + ‖�a · �∇u‖q + ‖u|�+‖L2(�+;|�a·n̂|dσ)

Under the assumptions listed above, C∞(�̄) is dense in both spaces (c.f. Bardos [3]).

Lemma 2.5 The unbounded operator A is skew-adjoint modulo the boundary (b1, b2)

on the space Lp(�).

Proof We check the four criteria of Definition 2.4 (See also [16]). For 1) it suffices
to note that C∞

0 (�) ⊂ Ker(b1, b2)
⋂

D(A), in such a way that Ker(b1, b2)
⋂

D(A) is
dense in X. Criteria (2) follows by a simple argument with coordinate charts, as it is
easy to show that for all (v+, v−) ∈ C∞

0 (�+)× C∞
0 (�−) there exists u ∈ C∞(�̄) such

that (u|�+ , u|�−) = (v+, v−). The embedding of C∞
0 (�±) ⊂ L2(�±; |�a · n̂|dσ) is dense,

and therefore the image of C∞(�̄) ⊂ S under (b1, b2) is dense in H1 × H2.
For criteria 3), we need to check that, if u ∈ X, then it belongs to S if and only if

sup

{
〈u, Av〉 − 1

2
(‖b1(v)‖2

H1
+ ‖b1(v)‖2

H2
); v ∈ S, ‖v‖X < 1

}
< ∞. (11)
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The “if” direction follows directly from Green’s theorem and the fact that C∞(�̄)
is dense in the Banach space S under the norm ‖u‖S. For the reverse implication,
suppose that (11) holds, then obviously

sup
{〈u, Av〉; v ∈ C∞

0 (�), ‖v‖X < 1
}

which means that �a · �∇u + �∇·�a
2 u ∈ Lq(�) in the sense of distribution, therefore

u ∈ D(A). Now to show that u ∈ D(b1)
⋂

D(b2), we observe that if u ∈ X and
u ∈ D(A), then u|�+ ∈ L2

loc(�+; |�a · n̂|dσ). To check that u|�+ ∈ L2(�+; |�a · n̂|dσ) a
simple argument using Green’s Theorem shows that (11) implies that

sup

⎧⎪⎨
⎪⎩

∫

�+

uv|�a · n̂|dσ ; v ∈ C∞
o (�+),

∫

�+

|v|2|�a · n̂|dσ ≤ 1

⎫⎪⎬
⎪⎭ < +∞

which means that u|�+ ∈ L2(�+; |�a · n̂|dσ) and u ∈ D(b1). The same argument works
for u|�− and criterion 3) is therefore satisfied.
For 4), note that by Green’s theorem we have∫

�

((a·∇u)v + 1
2

div a)uvdx = −
∫

�

((a·∇v)u + 1
2

div a)uvdx +
∫

∂�

uvn · adσ

for all u, v ∈ C∞(�̄) and the identity on S follows since C∞(�̄) is dense in S for the
norm ‖u‖S. ��

3 Anti-selfdual vector fields and PDEs involving the transport operators

We now recall the following framework from [10].

Definition 3.1 Let X be a reflexive Banach space and let L : X × X∗ → R ∪ {+∞}
be a convex lower semi-continuous function, that is not identically equal to +∞. The
derived vector fields of L at x ∈ X (resp., p ∈ X∗) are the –possibly empty– sets

∂L(x) := {p ∈ X∗; L(x, −p)− 〈x, p〉 = 0} resp.,

∂̃L(p) := {x ∈ X; L(x, −p)− 〈x, p〉 = 0}.
The domains of the vector field ∂L are the sets

Dom(∂L) = {x ∈ X; ∂L(x) �= ∅} resp., Dom(∂̃L) = {p ∈ X∗; ∂̃L(p) �= ∅}.
The above defined potentials should not be confused with the subdifferential ∂L of L
as a convex function on X × X∗. Actually, it is easy to see that if L is an anti-selfdual
Lagrangian, then p ∈ ∂L(x) if and only if x ∈ ∂̃L(p) if and only if (p, −x) ∈ ∂L(x, −p).
This is also equivalent to say that 0 ∈ ∂Lp(x) where Lp is the translated Lagrangian
Lp(x, q) = L(x, p + q)+ 〈x, p〉.

For a basic ASD Lagrangian L(x, p) = ϕ(x)+ ϕ∗(−p), it is clear that

∂L(x) = ∂ϕ(x) while ∂̃L(p) = ∂ϕ∗(p).

Recalling that an ASD Lagrangian L satisfies L(x, p) + 〈x, p〉 ≥ 0 for every (x, p) ∈
X × X∗, the problem of proving that ∂̃L(p) is non-empty for a given p ∈ X∗ amounts
to showing that the infimum of the functional Ip(x) = L(x, −p) − 〈x, p〉 over x ∈ X
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is equal to zero and is attained. The following proposition from [10] gives sufficient
conditions for this to happen.

Proposition 3.1 Let L be an anti-selfdual Lagrangian L on a reflexive Banach space
X × X∗. If for some x0 ∈ X, the map q �→ L(x0, q) is bounded on a ball of X∗, then
for each p ∈ X∗ the infimum of Ip(x) = L(x, −p)− 〈x, p〉 over X is equal to zero and is
attained at some point x̄ ∈ ∂̃L(p).

We have also the following easy observations, some of which are proven in Sect. 4.

Proposition 3.2 The following assertions hold whenever L is an anti-selfdual Lagran-
gian L on a reflexive Banach space X × X∗.

1. The vector field x → ∂̄L(p) is monotone in the sense that 〈x − y, p − q〉 ≥ 0 for
x ∈ ∂̄L(p) and y ∈ ∂̄L(q).

2. If L is strictly convex in the second variable, then the vector field x → ∂̄L(x) is
single-valued.

3. If L is uniformly convex in the second variable (i.e., if L(x, p)− ε ‖x‖2

2 is convex in x
for some ε > 0) then the vector field x → ∂̄L(x) is a Lipschitz maximal monotone
map.

As noted above, non-trivial examples of anti-selfdual Lagrangians are of the form

L(x, p) = ϕ(x)+ ϕ∗(−Ax − p) (12)

where ϕ is a convex and lower semi-continuous function on X, ϕ∗ is its Legendre
conjugate on X∗ and where A : X → X∗ is bounded and skew-symmetric. In this
case, it is easy to see that

∂L(x) = �x + ∂ϕ(x) while ∂̃L(p) = (�+ ∂ϕ)−1(p).

This suggests that ASD vector fields are natural extensions of operators of the form
A + ∂ϕ, where A is positive and ϕ is convex. This is an important subclass of maximal
monotone operators which can now be resolved variationally.1 More importantly,
the stability of this subclass under various operations including composition with
unbounded skew-adjoint operators and the adjoining of boundary operators makes it
very functional in applications. The following Lax-Milgram type result for unbounded
operators is one of them.

Proposition 3.3 Let ϕ : X → R ∪ {+∞} be proper convex and lower semi-continuous
and assume that A : D(A) ⊂ X → X∗ is a skew-adjoint operator modulo the boundary
(b1, b2) : D(b1, b2) → H1 × H2 where H1, H2 are two Hilbert spaces. Suppose there
exists a constant C > 0 such that for every x ∈ X,

1
C

(‖x‖p1
X − 1

) ≤ ϕ(x) ≤ C
(‖x‖p2

X + 1
)

, (13)

where p1, p2 > 0. Then there exists x ∈ D(A) ∩ D(b1, b2) such that the functional

I(x) = ϕ(x)+ ϕ∗(Ax)+ ‖b1(x)‖2
H1

2
+ ‖b2(x)‖2

H2

2

1 See what was added in proof at the end of the introduction.
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attains its infimum at x̄ in such a way that

I(x̄) = inf
x∈X

I(x) = 0, (14)

Ax ∈ ∂ϕ(x) (15)

b2(x) = 0. (16)

Proof The Lagrangian M(x, p) : X × X∗ → R ∪ {+∞} defined by

M(x, p) =
{
ϕ(x)+ ϕ∗(Ax − p)+ ‖b1(x)‖2

H1
2 + ‖b2(x)‖2

H2
2 if x ∈ D(A) ∩ D(b1, b2)

+∞ otherwise

is anti-selfdual on X. Indeed, L(x, p) := ϕ(x)+ ϕ∗(−p) is clearly ASD, and since x �→
L(x, p) is bounded on the bounded sets of X for all p ∈ X∗, we apply Proposition 2.1
to conclude that M is ASD. Moreover, since p → M(0, p) is bounded on the bounded
sets of X∗, Proposition 3.1 applies to I(x) = M(x, 0) and we obtain x such that
0 = infx∈X M(x, 0) = M(x, 0). Since M(x, 0) < ∞, we get that x ∈ D(A) ∩ D(b1, b2)

and ϕ(x)+ ϕ∗(Ax)+ ‖b1(x)‖2
H1

2 + ‖b2(x)‖2
H2

2 = 0. Now observe that

0 = ϕ(x)+ ϕ∗(Ax)+ ‖b1(x)‖2
H1

2
+ ‖b2(x)‖2

H2

2

= ϕ(x)+ ϕ∗(Ax)− 〈x, Ax〉 + 〈x, Ax〉 + ‖b1(x)‖2
H1

2
+ ‖b2(x)‖2

H2

2
= ϕ(x)+ ϕ∗(Ax)− 〈x, Ax〉 + ‖b2(x)‖2

H2
≥ 0,

and therefore Ax ∈ ∂ϕ(x) and b2(x) = 0 simultaneously. ��
3.1 Applications to PDEs involving the transport operator

We will deal with two types of equations some of which where dealt with in [9] via a
slightly different variational formulation.

1. Transport equation:

�a(x) · �∇u(x)+ a0(x)u(x)+ u(x)|u(x)|p−2 = f (x) for x ∈ �
u(x) = 0 for x ∈ �+.

2. Transport equation with viscosity:

−�pu(x)+ �a(x) · �∇u(x)+ a0(x)u(x)+ u|u(x)|m−2 = f (x) x ∈ �
u(x) = 0 x ∈ ∂�.

1. Transport equations without diffusion terms

In this case we will assume that the domain � and the vector field �a(·) satisfy all the
assumption in Sect. 2. We distinguish two cases:

Case 1 p ≥ 2.

The Banach space is then X = Lp(�) since by Lemma 2.4 the operator A : D(A) →
X∗ defined by A : u �→ �a · �∇u + 1

2 (
�∇ · �a)u with domain D(A) = {u ∈ Lp(�) | �a · �∇u +
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�∇�a
2 u ∈ Lq(�)}. is then skew-adjoint modulo the boundary operators (b1u, b2u) =
(u|�+ , u|�−) whose domain is

D(b1, b2) = {u ∈ Lp(�); (u|�+ , u|�−) ∈ L2(�+; |�a · n̂|dσ)× L2(�−; |�a · n̂|dσ)}

In this case we get the following

Theorem 3.2 Assume p ≥ 2, and let f ∈ Lq
(

1
p + 1

q = 1
)

and a0 ∈ L∞(�). Suppose

there exists τ ∈ C1(�̄) such that

�a · �∇τ + 1
2 (

�∇ · �a + a0) ≥ 0 on �. (17)

Define on X = Lp(�) the following convex function

ϕ(u) := 1
p

∫

�

e2τ |e−τu|pdx + 1
2

∫

�

�a · �∇τ |u|2dx + 1
4

∫

�

( �∇ · �a + a0)|u|2dx +
∫

�

uf dx,

as well as the functional

I(u) := ϕ(u)+ ϕ∗(�a · �∇u + 1
2
( �∇ · �a)u)+ 1

2

∫

�+

|u|2|�a · n̂|dσ + 1
2

∫

�−

|u|2|�a · n̂|dσ

on the S := D(A) ∩ D(b1, b2) and +∞ elsewhere on Lp(�).

1. Then there exists ū ∈ S such that I(ū) = inf{I(u) | u ∈ Lp(�)} = 0.
2. The function v̄ := e−τ ū satisfies the nonlinear transport equation

�a · �∇v̄ − a0

2
v̄ = v̄|v̄|p−2 + f on �,

(18)
v̄ = 0 on �+.

Proof Consider

M(u, p) =
{
ϕ(u)+ ϕ∗(Au + p)+ �(b1(u), b2(u)) if u ∈ S

+∞ if u /∈ S
(19)

where �(·, ·) : L2(�+; |�a · n̂|dσ)× L2(�−; |�a · n̂|dσ) → R is defined by

�(h, k) := 1
2

∫

�+

|h|2|�a · n̂|dσ + 1
2

∫

�−

|k|2|�a · n̂|dσ .

Since A is skew-adjoint modulo the boundary, we conclude from Proposition 2.1
that M is an ASD Langrangian on the space Lp(�) × Lq(�) and satisfies all the
hypothesis of Proposition 3.1. There exists then ū ∈ Lp(�) such that 0 = M(ū, 0) =
inf{M(u, 0); u ∈ Lp} which means that 0 = I(ū) = inf{I(u) | u ∈ S} and assertion 1) is
verified.
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To get 2) we observe again that

0 = I(ū) = ϕ(ū)+ ϕ∗(Aū)+ 1
2

∫

�+

|ū|2|�a · n̂|dσ + 1
2

∫

�−

|ū|2|�a · n̂|dσ

≥ 〈ū, Aū〉 + 1
2

∫

�+

|ū|2|�a · n̂|dσ + 1
2

∫

�−

|ū|2|�a · n̂|dσ

=
∫

�+

|ū|2|�a · n̂|dσ ≥ 0

In particular, ϕ(ū) + ϕ∗(Aū) = 〈u, Au〉 and
∫
�+ |ū|2|�a · n̂|dσ = 0, in such a way that

Aū ∈ ∂ϕ(ū) and u|�+ = 0. In other words,

�a · �∇ū + 1
2
( �∇ · �a)ū = eτ ū|e−τ ū|p−2 + (�a · �∇τ)ū + 1

2
( �∇ · �a + a0)ū + f

and ū|�+ = 0. Multiply now both equations by e−τ and use the product rule for
differentiation to get �a · �∇v̄ − a0

2 v̄ = v̄|v̄|p−2 + f and v̄|�+ ≡ 0, where v̄ := e−τ ū. ��

Case 2 1 < p ≤ 2

In this case, the right space is X = L2(�) and A : D(A) → X∗ is defined as in the
first case but with domain D(A) = {u ∈ L2(�) | �a · �∇u ∈ L2(�)}. By Lemma 2.4, A is
again skew-adjoint modulo the boundary operators (b1u, b2u) = (u|�+ , u|�−) whose
domain is

D(b1, b2) = {u ∈ L2(�)|(u|�+ , u|�−) ∈ L2(�+; |�a · n̂|dσ)× L2(�−; |�a · n̂|dσ)}.
We then obtain the following result:

Theorem 3.3 Assume 1 < p ≤ 2 and let f ∈ L2(�) and a0 ∈ L∞(�). Suppose there
exists τ ∈ C1(�̄) such that for some ε > 0 we have:

�a · �∇τ + 1
2
( �∇ · �a + a0) ≥ ε > 0 on �. (20)

Define on L2(�) the convex functional

ϕ(u) := 1
p

∫

�

e2τ |e−τu|pdx + 1
2

∫

�

�a · �∇τ |u|2dx + 1
4

∫

�

( �∇ · �a + a0)|u|2dx +
∫

�

uf dx

as well as the functional

I(u) := ϕ(u)+ ϕ∗(�a · �∇u + 1
2
( �∇ · �a)u)+ 1

2

∫

�+

|u|2|�a · n̂|dσ + 1
2

∫

�−

|u|2|�a · n̂|dσ

on S := D(A) ∩ D(b1, b2) and +∞ elsewhere in L2(�).

1. There exists then ū ∈ S such that I(ū) = inf{I(u) | u ∈ L2(�)} = 0.
2. The function v̄ := e−τ ū satisfies the nonlinear transport equation (18).
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Proof Define M as in (19) and again by Lemma 2.4, A is skew-adjoint modulo the
boundary. Since now ϕ is bounded on the bounded sets of L2, we can now invoke
Proposition 2.1 to conclude that M(u, p) is an ASD Langrangian on the space L2(�)×
L2(�). But in this case, ϕ is coercive because of condition (20), and therefore ϕ∗ is
bounded on bounded sets. All the hypothesis of Proposition 3.1 are now satisfied so
there exists ū ∈ L2(�) such that 0 = M(ū, 0) = inf{M(u, 0) | u ∈ L2}. The rest follows
as in the case when p ≥ 2. ��

2. Transport equations with a diffusion term

In this case, the conditions on the smooth vector field �a and� need not be as restrictive
as in the case where the equation is purely governed by the transport operator. This
is because the setting will only require that the operator A : D(A) → X∗ defined by
u �→ �a · �∇u+ 1

2 (
�∇ · �a)u be only anti-symmetric. The setup is as follows: Let X = L2(�)

and consider the above operator A on the domain

D(A) = {u ∈ L2(�) | �a · �∇u + 1
2
( �∇ · �a)u ∈ L2(�)}.

We then have the following

Theorem 3.4 Let �a ∈ C∞(�̄) be a smooth vector field on� ⊂ R
n, and let a0 ∈ L∞(�).

Let p ≥ 2 and 1 ≤ m ≤ np
n−p , and assume the following coercivity condition:

�∇ · �a + a0 ≥ 0 on �. (21)

Consider the following convex and lower semi-continuous functional on L2(�):

ϕ(u) :=

⎧⎪⎨
⎪⎩

1
p

∫
�

|∇u|pdx + 1
4

∫
�
( �∇ · �a + a0)|u|2dx + 1

m

∫
�

|u|mdx + ∫
�

uf dx

if u ∈ W1,p
0 (�)

+∞ if u /∈ W1,p
0 (�)

and define the functional I(u) := ϕ(u) + ϕ∗(�a · �∇u + 1
2 (

�∇ · �a)u) on W1,p
0 (�) and +∞

elsewhere on L2(�).

1. There exists then ū ∈ W1,p
0 (�) such that I(ū) = inf{I(u); u ∈ L2(�)} = 0.

2. The minimizer ū satisfies the equation

−�pū + 1
2

a0ū + ū|ū|m−2 + f = �a · �∇ū on�

ū = 0 on ∂�.

Proof The functional ϕ has a symmetric domain that is contained in the domain of
A. So Lemma 2.5 applies and the Lagrangian

M(u, p) :=
{
ϕ(u)+ ϕ∗(Au − p) if u ∈ W1,p

0 (�)

+∞ if u /∈ W1,p
0 (�)

is ASD. Now ϕ is obviously coercive on L2(�) and therefore ϕ∗ is bounded on
bounded sets of L2(�). Proposition 3.1 applies and we find ū ∈ L2(�) such that
0 = M(ū, 0) = inf{M(u, 0) | u ∈ L2(�)}. Clearly ū ∈ W1,p

0 (�) and the rest follows as
in the preceeding cases. ��



Anti-selfdual Lagrangians II 337

4 Semi-groups associated to anti-selfdual Lagrangians

In this section we develop further the variational theory for dissipative evolution
equations via the theory of ASD Lagrangians. The goal is to extend the variational
theory of gradient flows [14,15] and the one for other parabolic equations developed
in [10] so as to include evolutions of the form

− ẋ(t) ∈ ∂ϕ(x(t))+ Ax(t)+ ωx(t), (22)

where A is an unbounded positive operator and ω is any real number. The framework
proposed in [10] leads to the formulation of (22) as

−ẋ(t) ∈ ∂̄L(t, x(t)) for all t ∈ [0, T], (23)

where the anti-selfdual Lagrangians L(t, ·, ·) on the state space are associated to the
convex functional ϕ, the operator A, and the scalar ω in the following way:

L(t, x, p) = e2wt {ϕ(e−wtx)+ ϕ∗(−e−wt(Ax + p))
}

. (24)

Consider now the path space A2
H = {u : [0, T] → H; u̇ ∈ L2

H} consisting of all
absolutely continuous arcs u : [0, T] → H, equipped with the norm ‖u‖

A
2
H

=
(‖u(0)‖2

H + ∫ T
0 ‖u̇‖2dt)

1
2 .

The next step is based on the fact that under appropriate boundedness conditions,
a (time-dependent) anti-selfdual Lagrangian L : [0, T] × H × H → R on a Hilbert
space H, “lifts” to a (partially) anti-selfdual Lagrangian L on path space A2

H = {u :
[0, T] → H; u̇ ∈ L2

H} via the formula

L(x, p) =
T∫

0

L(t, x(t)+ p(t), ẋ(t))dt + �(x(0)+ a, x(T)) (25)

where � is an appropriate time-boundary Lagrangian and where (p(t), a) ∈ L2
H × H

which happens to be a convenient representation for the dual of A2
H . Equation (23)

can then be formulated as a stationary equation on path space of the form

0 ∈ ∂̄L(x), (26)

hence reducing the dynamic problem to the stationary case already considered above.
However, the boundedness condition on the Lagrangian L used in Theorem 4.2

of [10] is too stringent for most applications, especially when unbounded operators
are involved. The rest of the section consists of showing that these conditions can be
considerably relaxed through aλ-regularization procedure reminiscent of the standard
theory for convex functions, but also the Yosida theory for operators, which seems to
apply as naturally to ASD Lagrangians, a concept that allow for their superposition.
This procedure is however made more complicated by the presence of the linear
term—hence of eωt in the Lagrangian which prevents it from being autonomous. This
factor will however allow—among other things—to relax the convexity assumptions
on ϕ.

Here is the main result of this section.

Theorem 4.1 Let L be an anti-selfdual Lagrangian on a Hilbert space H × H that is
uniformly convex in the first variable. Assuming Dom(∂̄L) is non-empty, then for any
ω ∈ R there exists a semi-group of maps (Tt)t∈R+ on Dom(∂̄L) such that:
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1. T0x = x and ‖Ttx − Tty‖ ≤ e−ωt‖x − y‖ for any x, y ∈ Dom(∂̄L).
2. The semi-group is defined for any x0 ∈ Dom(∂̄L) by Ttx0 = x(t) where x(t) is the

unique path that minimizes on A2
H the functional

I(u) =
T∫

0

e2ωtL(u(t),ωu(t)+u̇(t))dt+ 1
2
‖u(0)‖2−2〈x0, u(0)〉+‖x0‖2+ 1

2
‖eωTu(T)‖2

in such a way that I(x) = inf
u∈A2

H

I(u) = 0.

3. For any x0 ∈ Dom(∂̄L) the path x(t) = Ttx0 satisfies the following:

−ẋ(t)− ωx(t) ∈ ∂̄L(x(t))
x(0) = x0.

(27)

First we shall prove the following improvement of Theorem 4.2 of [10] provided
L is autonomous. The boundedness condition is still there, but we first cover the
semi-convex case.

Proposition 4.1 Assume L : H × H → R ∪ {+∞} is an anti-selfdual Lagrangian that
is uniformly convex and suppose

L(x, 0) ≤ C(‖x‖2 + 1) for all x ∈ H. (28)

Then, for any w ∈ R and any x0 ∈ H, there exists x̂ ∈ C1([0, T] : H
)

such that x̂(0) = x0
and

T∫

0

e2ωtL(e−ωt x̂(t), e−ωt ˙̂x(t))dt + 1
2
‖x̂(0)‖2 − 2〈x0, x̂(0)〉 + ‖x0‖2 + 1

2
‖x̂(T)‖2 = 0

(29)

− e−wt( ˙̂x(t), x̂(t)
) ∈ ∂L

(
e−wtx̂(t), e−wt ˙̂x(t)) ∀t ∈ [0, T], (30)

‖˙̂x(t)‖ ≤ C(w, T)‖˙̂x(0)‖ ∀t ∈ [0, T], (31)

where C(w, T) is a positive constant.

The following lemma shows how the uniform convexity of the Lagrangian yield certain
regularity properties of the solutions.

Lemma 4.2 Assume L : H × H → R ∪ {+∞} is an anti-selfdual Lagrangian that is
uniformly convex in both variables. Then, for all x, u ∈ H, there exists a unique v ∈ H
–denoted v = R(u, x)– such that x = ∂2L(u, v), and the map (u, x) → R(u, x) is jointly
Lipschitz on H × H.

In particular, if v, x, u : [0, T] → H are paths such that x, u ∈ C([0, T]; H) and
−x(t) = ∂2L

(
u(t), v(t)

)
for almost all t ∈ [0, T], then v ∈ C([0, T]; H) and −x(t) =

∂2L
(
u(t), v(t)

)
for all t ∈ [0, T].

Proof We shall use the standard fact that if F : H → R ∪ {+∞} is convex and
lower semi-continuous and if its Legendre dual F∗ is uniformly convex, then for every
x ∈ H, the subdifferential ∂F(x) is nonempty, single-valued and the map x → ∂F(x)
is Lipschitz on H.
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Since now the Lagrangian L is uniformly convex, then L(x, p) = M(x, p) +
ε
( ‖x‖2

2 + ‖p‖2

2

)
, where M is convex lower semi-continuous, in such a way that x =

∂2L(u, v) if and only if 0 ∈ ∂2M(u, v) + εv − x if and only if v is the solution to the
following minimization problem

min
p

{
M(u, p)+ ε‖p‖2

2
− 〈x, p〉

}
.

But for each fixed u and x, the map p �→ M(u, p)− 〈x, p〉 majorizes a linear functional
and therefore the minimum is attained uniquely at v by strict convexity and obviously
x = ∂2L(u, v).

To establish the Lipschitz property, write

R(u1, x1)− R(u2, x2) = R(u1, x1)− R(u1, x2)+ R(u1, x2)− R(u2, x2).

We first bound ‖R(u1, x1)− R(u1, x2)‖ as follows:
Since x1 = ∂2L

(
u1, R(u1, x1)

)
, x2 = ∂2L

(
u1, R(u1, x2)

)
and L(u1, v) =

M(u1, v) + ε‖v‖2

2 for some M convex and lower semi-continuous, it follows that
xj = ∂2M

(
u1, R(u1, xj)

) + εR(u1, xj) for j = 1, 2, so by monotonicity we get

0 ≤ 〈
R(u1, x1)− R(u1, x2), ∂M

(
u1, R(u1, x1)

) − ∂M
(
u1, R(u1, x2)

)〉
= 〈R(u1, x1)− R(u1, x2), x1 − εR(u1, x1)− x2 + εR(u1, x2)〉

which yields that

ε‖R(u1, x1)− R(u1, x2)‖2 ≤ ‖R(u1, x1)− R(u1, x2)‖‖x1 − x2‖
and therefore

‖R(u1, x1)− R(u1, x2)‖ ≤ 1
ε
‖x1 − x2‖. (32)

Now we bound ‖R(u1, x2)− R(u2, x2)‖.
Let x2 = ∂2L

(
uj, R(uj, x2)

) = ∂2M
(
uj, R(uj, x2)

) + εR(uj, x2) for j = 1, 2. and write
by monotonicity that

0 ≤ 〈
R(u1, x2)− R(u2, x2), ∂2M

(
u1, R(u1, x2)

) − ∂2M
(
u1, R(u2, x2)

)〉

Setting pj = R(uj, x2), we have with this notation

〈p1 − p2, ∂2M(u1, p2)− ∂2M(u2, p2)〉 ≤ 〈p1 − p2, ∂2M(u1, p1)− ∂2M(u2, p2)〉
= 〈p1 − p2, x2 − εp1 − x2 + εp2〉
= −ε‖p1 − p2‖2.

so that ε‖p1 − p2‖2 ≤ ‖p1 − p2‖‖∂2M(u1, p2)− ∂2M(u2, p2)‖, and since ∂2M(uj, p2) =
∂2L(uj, p2)− εp2, we get that

ε‖p1 − p2‖ ≤ ‖∂2L(u1, p2)− ∂2L(u2, p2)‖ ≤ ‖∂L(u1, p2)− ∂L(u2, p2)‖
Here we use the fact that L is both anti-selfdual and uniformly convex, to deduce that
L∗ is also uniformly convex. Use now the remark at the beginning of this proof to get:

‖∂L(u, p)− ∂L(u′, p′)‖ ≤ C
(‖u − u′‖ + ‖p − p′‖)



340 N. Ghoussoub, L. Tzou

from which follows that ‖p1 − p2‖ ≤ C
ε
‖u1 − u2‖, hence

‖R(u1, x2)− R(u2, x2)‖ ≤ C
ε

‖u1 − u2‖. (33)

Combining estimates (32) and (33), we finally get

‖R(u1, x1)− R(u2, x2)‖ ≤ 1
ε
(1 + C) (‖u1 − u2‖ + ‖x1 − x2‖) .

��
Proof of Proposition 4.1 Apply Theorem 4.2 of [10] to the Lagrangian M(t, x, p) =
e2ωtL(e−ωtx, e−ωtp) which is also anti-selfdual ([10]). There exists then x̂ ∈ A2

H such
that

(
x̂(t), ˙̂x(t)) ∈ Dom(M) for almost all t ∈ [0, T] and I(x̂) = inf

u∈A2
H

I(u) = 0, where

I(u) =
T∫

0

M(t, u(t), u̇(t))dt + 1
2
‖u(0)‖2 − 2〈x0, u(0)〉 + ‖x0‖2 + 1

2
‖u(T)‖2.

The path x̂ then satisfies: x̂(0) = x0 and for almost all t ∈ [0, T], −( ˙̂x(t), x̂(t)
) ∈

∂M
(
t, x̂(t), ˙̂x(t)). The chain rule ∂M(t, x, p) = ewt∂L

(
e−wtx, e−wtp

)
then yields that for

almost all t ∈ [0, T]
−e−wt( ˙̂x, x̂(t)

) ∈ ∂L
(
e−wtx̂(t), e−wt ˙̂x(t).

Apply Lemma 4.2 to x(t) = u(t) = e−wtx̂(t) and v(t) = e−wt ˙̂x(t) to conclude that˙̂x ∈ C
([0, T] : H

)
. Thus x̂ ∈ C1([0, T] : H

)
. Since L is anti-selfdual and uniformly

convex, we get from from the remark at the beginning of the proof of Lemma 4.2 that
(x, p) �→ ∂L(x, p) is Lipschitz. So by continuity, we have now for all t ∈ [0, T]

−e−wt( ˙̂x(t), x̂(t)
) ∈ ∂L

(
e−wtx̂(t), e−wt ˙̂x(t))

and (30) is verified. ��
To establish (31), we first differentiate to obtain:

e−2wt d
dt

‖x̂(t)− e−whx̂(t + h)‖2 = 2e−2wt〈x̂(t)− e−whx̂(t + h), ˙̂x(t)− e−wh ˙̂x(t + h)〉.

Setting now v1(t) = ∂1L
(
e−wtx̂(t), e−wt ˙̂x(t)) and v2(t) = ∂2L

(
e−wtx̂(t), e−wt ˙̂x(t)), we

obtain from (30) and monotonicity that

e−2wt d
dt

‖x̂(t)− e−whx̂(t + h)‖2 = 〈e−wtx̂(t)− e−w(t+h)x̂(t + h), −v1(t)+ v1(t + h)〉
+〈e−wt ˙̂x(t)− e−w(t+h) ˙̂x(t + h), −v2(t)+ v2(t + h)〉

≤ 0.

We conclude from this that ‖x̂(t)−e−hwx̂(t+h)‖
h ≤ ‖x̂(0)−e−hwx̂(h)‖

h and as we let h → 0, we
get ‖wx̂(t)+ ˙̂x(t)‖ ≤ ‖wx0 + ˙̂x(0)‖. Therefore ‖˙̂x(t)‖ ≤ ‖˙̂x(0)‖ + |w|‖x̂(t)‖ and

‖x̂(t)‖ ≤
t∫

0

‖˙̂x(s)‖ ds ≤ ‖˙̂x(0)‖T + |w|
t∫

0

‖x̂(s)‖ ds.
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It follows from Grönwall’s inequality that ‖x̂(t)‖ ≤ ‖˙̂x(0)‖(C+|w|e|w|T)
for all t ∈ [0, T]

and finally that ‖˙̂x(t)‖ ≤ ‖˙̂x(0)‖(C + |w| + |w|2e|w|T)
.

We now proceed with the proof of Theorem 4.1. For that we associate a Yosida-
type λ-regularization of the Lagrangian so that the boundedness condition in Propo-
sition 4.1 is satisfied, then we make sure that all goes well when we take the limit as λ
goes to 0. First, we need the following lemmas relating the properties of a Lagrangian
to those of its λ-regularization.

Lemma 4.3 For a Banach space X and a convex functional L : X × X∗ → R ∪ {+∞},
define for each λ > 0, the following Lagrangian

Lλ(x, p) := inf
z∈X

{
L(z, p)+ ‖x − z‖2

2λ

}
+ λ‖p‖2

2
.

1. If L is anti-selfdual, then Lλ is also anti-selfdual.
2. If L is uniformly convex in the first variable, then Lλ is uniformly convex (in both

variables) on X × X∗.

Proof Fix (q, y) ∈ X∗ × X and write:

(Lλ)∗(q, y) = sup{〈q, x〉 + 〈y, p〉 − L(z, p)− ‖x − z‖2

2λ
− λ‖p‖2

2
; (z, x, p) ∈ X×X×X∗}

= sup{〈q, v + z〉 + 〈y, p〉 − L(z, p)− ‖v‖2

2λ
− λ‖p‖2

2
; (z, v, p) ∈ X×X×X∗}

= sup
p∈X∗

{
〈y, p〉 + sup

(z,v)∈X×X
{〈q, v + z〉 − L(z, p)− ‖v‖2

2λ
} − λ‖p‖2

2

}

= sup
p∈X∗

{
〈y, p〉 + sup

z∈X
{〈q, z〉 − L(z, p)} + sup

v∈X
{〈q, v〉 − ‖v‖2

2λ
} − λ‖p‖2

2

}

= sup
p∈X∗

{
〈y, p〉 + sup

z∈X
{〈q, z〉 − L(z, p)} + λ‖q‖2

2
− λ‖p‖2

2
)

}

= sup
p∈X∗

sup
z∈X

{
〈y, p〉 + 〈q, z〉 − L(z, p)− λ‖p‖2

2

}
+ λ‖q‖2

2

= (L + T)∗(q, y)+ λ‖q‖2

2

where T(z, p) := λ‖p‖2

2 for all (z, p) ∈ X × X∗. Note now that

T∗(q, y) = sup
z,p

{
〈q, z〉 + 〈y, p〉 − λ‖p‖2

2

}
=

{
+∞ if q �= 0
‖y‖2

2λ if q = 0

in such a way that by using the duality between sums and convolutions in both
variables, we get

(L + T)∗(q, y) = conv(L∗, T∗)(q, y)

= inf
r∈X∗,z∈X

{
L∗(r, z)+ T∗(−r + q, −z + y)

}

= inf
z∈X

{
L∗(q, z)+ ‖y − z‖2

2λ

}
.



342 N. Ghoussoub, L. Tzou

and finally

L∗
λ(q, y) = (L + T)∗(q, y)+ λ‖q‖2

2

= inf
z∈X

{
L∗(q, z)+ ‖y − z‖2

2λ

}
+ λ‖q‖2

2

= inf
z∈X

{
L(−z, −q)+ λ‖q‖2

2
+ ‖y − z‖2

2λ

}

= Lλ(−y, −q).

(2) For each λ > 0, there exists ε > 0 such that M(x, p) := L(x, p) − ε‖x‖2

λ2 is convex.

Pick δ = 1− 1
1+ε
λ

so that 1 + ε = 1
1−λδ and write

Lλ(x, p)− λ‖p‖2

2
− δ

‖x‖2

2
= inf

z∈X

{
L(z, p)+ ‖x − z‖2

2λ
− δ‖x‖2

2

}

= inf
z∈X

{
L(z, p)+ ‖x‖2

2λ
− 〈x, z〉

λ
+ ‖z‖2

2λ
− δ‖x‖2

2

}

= inf
z∈X

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(x, p)+

∥∥∥∥
√

1
λ

− δx

∥∥∥∥
2

2
− 〈x, z〉

λ
+ ‖z‖2

2λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= inf
z∈X

⎧⎪⎨
⎪⎩L(z, p)+

∥∥∥√
1−λδx

∥∥∥2

2λ
−

〈√1−λδx, z√
1−λδ 〉

λ
+ ‖z‖2

2λ

⎫⎪⎬
⎪⎭

= inf
z∈X

⎧⎪⎨
⎪⎩M(z, p)+ ε‖z‖2

2λ
+

∥∥∥√
1 − λδx

∥∥∥2

2λ

−
〈√1 − λδx, z√

1−λδ 〉
λ

+ ‖z‖2

2λ

⎫⎬
⎭

= inf
z∈X

⎧⎪⎨
⎪⎩M(z, p)+ (1 + ε)‖z‖2

2λ
−

〈√1 − λδx, z√
1−λδ 〉

λ

+
∥∥∥√

1 − λδx
∥∥∥2

2λ

⎫⎪⎬
⎪⎭

= inf
z∈X

⎧⎪⎨
⎪⎩M(z, p)+

∥∥∥ z√
1−λδ − √

1 − λδx
∥∥∥2

2λ

⎫⎪⎬
⎪⎭
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which means that (z, p, x) �→ M(z, p) +
∥∥∥ z√

1−λδ−
√

1−λδx
∥∥∥2

2λ is convex and therefore the

infimum in z is convex, which means that Lλ(x, p)− λ‖p‖2

2 − δ ‖x‖2

2 is itself convex, and
Lλ is uniformly convex. ��
Lemma 4.4 For a given convex functional L : H×H → R∪{+∞} andλ > 0, denote for
each (p, x) ∈ H × H, by Jλ(x, p) the minimizer of the following optimization problem:

inf{L(z, p)+ ‖x−z‖2

2λ ; z ∈ H}.
1. For each (x, p) ∈ H × H, we have

∂1Lλ(x, p) = x − Jλ(x, p)
λ

∈ ∂1L
(
Jλ(x, p), p

)
. (34)

2. If L : H × H → R ∪ {+∞} is an anti-selfdual Lagrangian that is uniformly convex
in the first variable, then the map (x, p) → Jλ(x, p) is Lipschitz on H × H.

Proof (1) is straightforward. For (2), use Lemma 4.3 to deduce that Lλ is anti-selfdual
and uniformly convex in both variables, which means that L∗

λ is also uniformly convex
in both variables. It follows from that (x, p) �→ ∂Lλ(x, p) is Lipschitz. From (34) above,
we see that Jλ(x, p) = x − λ∂1Lλ(x, p) is Lipschitz as well. ��

The following lemma will be useful in obtaining a uniform bound on the first
derivatives of the family of approximate solutions.

Lemma 4.5 Assume L : H × H → R∪{+∞} is an anti-selfdual Lagrangian and let Lλ
be its λ-regularization, then the following hold:

1. If y ∈ ∂̄Lλ(x) for some x ∈ H, then y ∈ ∂̄L(Jλ(x, −y)).
2. If y ∈ ∂̄L(x) for some x ∈ H, then ‖yλ‖H ≤ ‖y‖H for any yλ ∈ ∂̄Lλ(x)

Proof (1) If −(y, x) = ∂Lλ(x, y) then Lλ(x, y) + L∗
λ(−y, −x) = −2〈x, y) and since

Lλ is an ASD Lagrangian, we have Lλ(x, y)+ Lλ(x, y) = −2〈x, y), hence

−2〈x, y〉 = Lλ(x, y)+ Lλ(x, y)

= 2

(
L

(
Jλ(x, y), y

) + ‖x − Jλ(x, y)‖2
H

2λ
+ λ‖y‖2

H

2

)

= L∗( − y, −Jλ(x, y)
) + L

(
Jλ(x, y), y

) + 2

(
‖ − x + Jλ(x, y)‖2

H

2λ
+ λ‖y‖2

H

2

)

≥ −2〈y, Jλ(x, y)〉 + 2〈−x + Jλ(x, y), y〉
= −2〈x, y).

The second last inequality is deduced by applying Fenchel’s inequality to the first two
terms and the last two terms. The above chain of inequality shows that all inequa-
lities are equalities. This implies, again by Fenchel’s inequality that −(

y, Jλ(x, y)
) ∈

∂L
(
Jλ(x, y), y

)
.

(2) If −(yλ, x) = ∂Lλ(x, yλ), we get from the previous lemma that −yλ = x−Jλ(x,yλ)
λ

∈
∂1L

(
Jλ(x, yλ), yλ

)
, and by the first part of this lemma, that −(

yλ, Jλ(x, yλ)
) ∈

∂L
(
Jλ(x, yλ), yλ

)
. Now since (−y, −x) ∈ ∂L(x, y). Setting vλ = Jλ(x, yλ), and since

−(
yλ, vλ)

) ∈ ∂L
(
vλ, yλ

)
, we get from monotonicity and by the fact that yλ = vλ−x

λ
,
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0 ≤ 〈(x, y)− (vλ, yλ),
(
∂1L(x, y), ∂2L(x, y)

) − (−yλ, −vλ)〉
= 〈(x, y)− (vλ, yλ), (−y, −x)− (

x − vλ
λ

, −vλ)〉

= −‖x − vλ‖2
H

λ
+ 〈vλ − x, y〉 + 〈y, vλ − x〉 − 〈yλ, vλ − x〉

= −2
‖x − vλ‖2

H

λ
+ 2〈vλ − x, y〉

which yields that ‖x−vλ‖H
λ

≤ ‖y‖H and finally the desired bound ‖yλ‖ ≤ ‖y‖ for all
λ > 0. ��
End of Proof of Theorem 4.1 Let Mλ(t, x, p) = e2ωtLλ(e−ωtx, e−ωtp) which is also
anti-selfdual and uniformly convex by Lemma 4.3.

We now have Lλ(t, x, 0) ≤ L(0, 0)+ ‖x‖2

2λ , hence Proposition 4.1 applies and we get
for all λ > 0 a solution xλ ∈ C1([0, T] : H

)
such that xλ(0) = x0,

T∫

0

Mλ

(
t, xλ(t), ẋλ(t)

)
dt + �

(
xλ(0), xλ(T)

) = 0 (35)

−e−wt
(
ẋλ(t), xλ(t)

) ∈ ∂Lλ
(
e−wtxλ(t), e−wtẋλ(t)

)
for all t ∈ [0, T] (36)

‖ẋλ(t)‖ ≤ C(w, T)‖ẋλ(0)‖. (37)

Here �
(
xλ(0), xλ(T)

) = 1
2‖xλ(0)‖2 −2〈x0, xλ(0)〉+‖x0‖2 + 1

2‖uλ(T)‖2. By the defintion
of Mλ(t, x, p), identity (35) can be written as

T∫

0

e2wtLλ
(
e−wtxλ(t), e−wtẋλ(t)

)
dt + �

(
xλ(0), xλ(T)

) = 0, (38)

and since

Lλ(x, p) = L
(
Jλ(x, p), p

) + ‖x − Jλ(x, p)‖2

2λ
+ λ‖p‖2

2
,

(38) can be written as

T∫

0

e2wt
(

L(vλ(t), e−wtẋλ(t)
) + ‖e−wtxλ(t)− vλ(t)‖2

2λ
+ λ‖e−wtẋλ(t)‖2

2

)
dt

+�(xλ(0), xλ(T)) = 0

where vλ(t) = Jλ
(
e−wtxλ(t), e−wtẋλ(t)

)
. Using Lemma 4.6.(1), we get from (36) that

for all t,

− e−wtẋλ(t) = ∂1Lλ
(
e−wtxλ(t), e−wtẋλ(t)

) = e−wtxλ(t)− vλ(t)
λ

. (39)

Setting t = 0 in (36) and noting that xλ(0) = x0, we get that −(
ẋλ(0), x0

) ∈ ∂Lλ
(
x0, ẋλ

(0)
)
, and since x0 ∈ Dom(∂̄L), we can apply Lemma 4.7.2 to get that ‖ẋλ(0)‖ ≤ C

for all λ > 0. Now plug this inequality in (37) to obtain:

‖ẋλ(t)‖ ≤ D(w, T) ∀λ > 0 ∀t ∈ [0, T].
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This yields by (39) that

‖e−wtxλ(t)− vλ(t)‖ ≤ e|w|TD(w, T)λ ∀t ∈ [0, T],
hence

‖e−wtxλ(t)−vλ(t)‖2

λ
→ 0 uniformly in t. (40)

Moreover, since ‖ẋλ(·)‖L2
H

≤ D(w, T) for all λ > 0, there exists x̂ ∈ A2
H such that –up

to a subsequence–

xλ ⇀ x̂ in A2
H (41)

and again by (39) we have

T∫

0

‖vλ(t)− e−wtx̂(t)‖2
Hdt → 0, (42)

while clearly

λ
‖e−wtẋλ(t)‖2

2
→ 0 uniformly. (43)

Now use (38)–(41) and the lower semi-continuity of L, to deduce from (38), that as
λ → 0 we have

I
(
x̂
) =

T∫

0

e2wtL
(
e−wtx̂(t), e−wtx̂(t)

)
dt + �

(
x̂(0), x̂(T)

) ≤ 0.

Since we already know that I
(
x
) ≥ 0 for all x ∈ A2

H , we finally get our claim that
0 = I

(
x̂
) = infx∈A2

H
I
(
x
)
. The rest is straightforward.

Now define Ttx0 := e−ωt x̂(t). It is easy to see that x(t) := Ttx0 satisfies equation (27)
and that T0x0 = x0. We need to check that {Tt}t∈R+ is a semi-group. By uniqueness of
minimizers, this is equivalent to show that for all s < T, the function v(t) := x(t + s)
satisfies

0 =
T−s∫

0

e2ωtL
(

v(t), e−ωt
(

d
dt

eωtv(t)
))

dt + 1
2
‖v(0)‖2 − 2〈Tsx0, v(0)〉 + ‖Tsx0‖2

+1
2
‖eω(T−s)v(T)‖2.

By the definition of x(t) and the fact that I
(
x̂
) = 0 we have,

0 =
T∫

0

e2ωtL
(

x(t), e−ωt
(

d
dt

eωtx(t)
))

dt + 1
2
‖x(0)‖2 − 2〈x0, x(0)〉 + ‖x0‖2

+1
2
‖eωTx(T)‖2.
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Since x(t) satisfies equation (27) we have

0 =
s∫

0

e2ωtL
(

x(t), e−ωt
(

d
dt

eωtx(t)
))

dt + 1
2
‖x(0)‖2 − 2〈x0, x(0)〉 + ‖x0‖2

+1
2
‖eωsx(s)‖2.

By subtracting the two equations we get

0 =
T∫

s

e2ωtL
(

x(t), e−ωt
(

d
dt

eωtx(t)
))

dt + 1
2
‖eωTx(T)‖2 − 1

2
‖eωsx(s)‖2.

Make a substitution r = t − s and we obtain

0 = e2ωs

⎧⎨
⎩

T−s∫

0

e2ωrL
(

v(r), e−ωr
(

d
dr

eωrv(r)
))

dr + 1
2
‖eω(T−s)x(T)‖2 − 1

2
‖x(s)‖2

⎫⎬
⎭

and finally

0 =
T−s∫

0

e2ωrL
(

v(r), e−ωr
(

d
dr

eωrv(r)
))

dr + 1
2
‖v(0)‖2 − 2〈Tsx0, v(0)〉

+‖Tsx0‖2 + 1
2
‖eω(T−s)v(T)‖2.

It follows that Ts(Ttx0) = Ts+tx0.
To check the Lipschitz constant of the semi-group, we differentiate ‖Ttx0 − Ttx1‖2

and use equation (23) in conjunction with monotonicity to see that

d
dt

‖Ttx0 − Ttx1‖2 ≤ −ω‖Ttx0 − Ttx1‖2

whenever x0, x1 ∈ Dom(∂̄L). A simple application of Grönwall’s inequality gives the
desired conclusions.

5 Variational resolution of parabolic initial-value problems

We now apply the results of the last section to the class of ASD Lagrangian of the
form L(x, p) = ϕ(x) + ϕ∗(Ax − p) to obtain variational formulations and proofs of
existence for parabolic equations of the form

−ẋ(t)+ Ax(t) ∈ ∂ϕ(x(t))+ ωx(t)

x(0) = x0

b1(x(t)) = b1(x0).

Here again, we have two cases. The first is dealt with in Sect. 5.1 and requires the
operator to be only anti-symmetric while the framework is still purely Hilbertian. The
second case requires that the operator be skew-adjoint—and if necessary—modulo
a pair of boundary operators. The framework there will be on an evolution triple
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X ⊂ H ⊂ X∗ with X being a Banach space that is anchored on a Hilbert space H. It
is dealt with in Sect. 5.2.

5.1 Parabolic equations involving a diffusion term

In the first proposition, we start by assuming the same hypothesis as in Theorem 4.1,
that is uniform convexity (in the first variable) of the Lagrangian and a homogeneous
initial condition. We will then show how to do away with these conditions in the
corollary that follows.

Proposition 5.1 Let ϕ : H → R ∪ {+∞} be a convex, lower semi-continuous and
proper function on a Hilbert space H, and let A be an anti-symmetric linear operator
into H, whose domain D(A) contains D(ϕ). Assume that ϕ is uniformly convex, with
a symmetric domain such that ∂ϕ(0) is non-empty. For any given ω ∈ R and T > 0,
define the following functional on A2

H([0, T])

I(u) =
T∫

0

e2ωtϕ(e−ωtx(t))+ e2ωtϕ∗(e−ωt(Ax(t)− ẋ(t)))dt + 1
2
(‖x(0)‖2 + ‖x(T)‖2).

Then, there exists a path x̄ ∈ A2
H([0, T]) such that:

1. I(x̄) = inf
x∈A2

H([0,T])
I(x) = 0.

2. If v̄(t) is defined by v̄(t) := e−ωtx̄(t) then it satisfies

− ˙̄v(t)+ Av̄(t)− ωv̄(t) ∈ ∂ϕ(v̄(t)) for a.e. t ∈ [0, T] (44)

v̄(0) = 0.

Proof Setting ϕt(x) := e2ωtϕ(e−ωtx), the assumptions ensure that

L(t, x, p) :=
{
ϕt(x)+ ϕ∗

t (Ax − p) if x ∈ D(ϕ)

+∞ elsewhere

is an ASD Lagrangian by Lemma 2.3. Since ∂ϕ(0) is non-empty, it is easy to verify
that 0 ∈ Dom∂̄L and all the hypothesis of Theorem 4.1 are satisfied. There exists then
x̄(·) ∈ A2

H([0, T]) such that

0 =
T∫

0

L(t, x̄(t), ˙̄x(t))dt + �
(
x̄(0), x̄(T)

)

where �(a, b) := 1
2 (‖a‖2 + ‖b‖2). Therefore

0 =
T∫

0

ϕt(x̄(t))+ ϕ∗
t (Ax̄(t)− ˙̄x(t))dt + 1

2
(‖x̄(0)‖2 + ‖x̄(T)‖2)

≥
T∫

0

〈x̄(t), Ax̄(t)− ˙̄x(t)〉dt + 1
2
(‖x̄(0)‖2 + ‖x̄(T)‖2)

= ‖x̄(0)‖2 ≥ 0.
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It follows that

−˙̄x(t)+ Ax̄(t) ∈ eωt∂ϕ(e−ωtx̄(t))

x̄(0) = 0

and by a simple application of the product-rule we see that v̄(t) defined by v̄(t) :=
e−ωtx̄(t) satisfies (44). ��
Corollary 5.1 Let ϕ : H → R ∪ {+∞} be a convex, lower semi-continuous and proper
function on a Hilbert space H, and let A be an anti-symmetric linear operator on H,
whose domain D(A) contains D(ϕ). Then for any x0 ∈ D(A) ∩ D(∂ϕ), any ω ∈ R and
any T > 0, there exists ū ∈ A2

H([0, T]) such that

− ˙̄u(t)+ Aū(t)− ωū(t) ∈ ∂ϕ(ū(t)) for a.e. t ∈ [0, T] (45)

ū(0) = x0.

Proof Define the convex function ψ : H → R̄ by

ψ(x) := ϕ(x + x0)+ ‖x‖2

2
− 〈x, Ax0〉 + 〈x,ωx0〉.

By the fact that ∂ϕ(x0) is non-empty, it is easy to check thatψ satisfies all the conditions
of Proposition 5.1. Therefore, there exists v̄(·) ∈ A2

H([0, T]) satisfying the evolution
equation

−˙̄v(t)+ Av̄(t) ∈ ∂ψ(v̄(t))+ (ω − 1)v̄(t) for a.e. t ∈ [0, T]
v̄(0) = 0

Since ∂ψ(x) = ∂ϕ(x + x0) + x − Ax0 + ωx0, we get that ū(t) := v̄(t) + x0 satisfies
equation (45). ��
5.2 Evolution driven by the transport operator and the p-Laplacian

Consider the following evolution equation on a smooth bounded domain of R
n.

−ut(x, t)+�a(x) · ∇u(x, t) = −�pu(x, t)+ 1
2

a0(x)u(x, t)+ωu(x, t) on [0, T]×�
u(x, 0) = u0(x) on �
u(x, t) = 0 on [0, T] × ∂�.

(46)

We can establish variationally the following

Corollary 5.2 Let �a : R
n → R

n be a smooth vector field and a0 ∈ L∞(�). For p ≥ 2,
ω ∈ R, and any u0 in W1,p

0 (�) ∩ {u;�pu ∈ L2(�)}, there exists ū ∈ A2
L2(�)

([0, T]) that

solves (46). Furthermore, �pū(x, t) ∈ L2(�) for almost all t ∈ [0, T].
Proof The operator Au = �a · ∇u + 1

2 (∇ · �a)u with domain D(A) = H1
0(�) is anti-

symmetric. In order to apply corollary 5.1 with H = L2(�) and A, we need to insure
convexity of the potential and for that we pick K > 0 such that ∇ ·�a(x)+a0(x)+K ≥ 1
for all x ∈ �.
Now define ϕ : H → R̄ by

ϕ(u) :=
{

1
p

∫
�

|∇u(x)|pdx + 1
4

∫
�
(∇ · �a(x)+ a0(x)+ K)|u(x)|2dx if u ∈ W1,p

0 (�)

+∞ elsewhere
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By observing that ϕ is a convex l.s.c. function with symmetric domain and D(ϕ) ⊂
D(A), we can apply Corollary 5.1 with the linear factor (ω− K

2 ), to obtain the existence
of a ū(·) ∈ A2

H([0, T]) such that

−˙̄u(t)+ Aū(t) ∈ ∂ϕ(ū(t))+ (ω − K
2
)ū(t) for a.e. t ∈ [0, T]

ū(0) = x0

and this is precisely the equation (46). Since now ∂ϕ(ū(t)) is a non-empty set in H for
almost all t ∈ [0, T], we have �pū(x, t) ∈ L2(�) for almost all t ∈ [0, T]. ��
5.3 Parabolic equations driven by first-order operators

In this subsection we deal with parabolic equations of the form:

− ẋ(t)+ Ax(t)− wx(t) ∈ ∂ϕ(x(t)) for a.e. t ∈ [0, T]
x(0) = x0 (47)

b1(x(t)) = b1(x0) for a.e. t ∈ [0, T],
where the operator A is skew-adjoint modulo boundary operators (b1, b2). Here we
need the framework of an evolution triple, where X is a reflexive Banach space and
H is a Hilbert space satisfying X ⊂ H ⊂ X∗ in such a way that each space is dense in
the following one. Again we start with a theorem that assumes all the hypothesis of
Theorem 4.1. We will then relax these conditions in the corollary that follows it.

Proposition 5.2 Let X ⊂ H ⊂ X∗ be an evolution triple and let A : D(A) ⊂ X → X∗
be a skew-adjoint operator modulo boundary operators (b1, b2) : D(b1, b2) → H. Let
ϕ : H → R ∪ {+∞} be a uniformly convex lower semi-continuous function on H, that
is bounded on the bounded sets of X and which is also coercive on X. Assume that
∂ϕ(0)∩ H is non-empty, then for any w ∈ R and any T > 0, then there exists a solution
v ∈ A2

H for the initial value problem

− v̇(t)+ Av(t)− wv(t) ∈ ∂ϕ
(
v(t)

)
a.e. t ∈ [0, T]

b1(v(t)) = 0 for a.e. t ∈ [0, T] (48)

v(0) = 0.

It is obtained by minimizing over A2
H the functional

I(u) =
T∫

0

e2ωt {ϕ(e−ωtu(t))+ ϕ∗(e−ωt(−Au(t)− u̇(t))
}

dt

+1
2

T∫

0

(‖b1(x(t))‖2
H1

+ ‖b2(x(t))‖2
H2
)dt + 1

2
‖u(0)‖2 + 1

2
‖u(T)‖2.

The minimum of I is then zero and is attained at a path y(t) such that x(t) = e−ωty(t) is
a solution of (48).

Typical convex functions satisfying the conditions above are ones such that for
some C > 0, m, n > 1 we have the following growth condition:

C
(‖x‖m

X − 1
) ≤ ϕ(x) ≤ C

(‖x‖n
X + 1

)
. (49)
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The corresponding Lagrangian L is ASD on X × X∗ where X ⊆ H ⊆ X∗. Since our
theory for evolution equations applies to Hilbert spaces, the following lemma will
bridge the gap:

Lemma 5.3 Let X ⊂ H ⊂ X∗ be an evolution triple, and suppose L : X × X∗ →
R ∪ {+∞} is ASD on the Banach space X. Assume the following two conditions:

1. For all x ∈ X, the map L(x, ·) : X∗ → R ∪ {+∞} is continuous on X∗.
2. There exists x0 ∈ X such that p → L(x0, p) is bounded on the bounded sets of X∗.

Then the Lagrangian defined on H by

M(x, p) :=
{

L(x, p) x ∈ X
+∞ x ∈ H\X

is anti-selfdual on H × H.

Proof For (x̃, p̃) ∈ X × H, write

M∗(p̃, x̃) = sup
x∈X

p∈H

{〈x̃, p〉H + 〈p̃, x〉H − L(x, p)
}

= sup
x∈X

sup
p∈X∗

{〈x̃, p〉X,X∗ + 〈x, p̃〉X,X∗ − L(x, p)
}

= L(−x̃, −p̃).

If x̃ ∈ H\X, then M∗(p̃, x̃) = sup x∈X
p∈H

{〈x̃, p〉H + 〈p̃, x〉H − L(x, p)
} ≥ 〈p̃, x0〉 + supp∈H{〈x̃, p〉H − L(x0, p)

}
. Since x̃ /∈ X, we have that sup

{〈x̃, p〉; p ∈ H, ‖p‖X∗ ≤ 1
} = +∞.

Since p → L(x0, p) is bounded on the bounded sets of X∗, it follows that M∗(p̃, x̃) ≥
〈p̃, x0〉 + supp∈H

{〈x̃, p〉H − L(x0, p)
} = +∞. ��

Proof of Proposition 5.2 Again the Lagrangian

L(x, p) :=
{
ϕ(x)+ ϕ∗(Ax − p)+ 1

2 (‖b1(x)‖2
H1

+ ‖b2(x)‖2
H2
) if x ∈ D(A) ∩ D(b1, b2)

+∞ elsewhere

is anti-selfdual on X ×X∗ by Proposition 2.1. The coercivity condition on ϕ ensures—
via Lemma 5.3—that L(x, p) lifts to a ASD Lagrangian on H × H that is uniformly
convex in the first variable. It is easy to check that all the conditions of Theorem 4.1
are satisfied by L(x, p). Therefore, there exists x̄(·) ∈ A2

H([0, T]) such that I(ū) = 0,
which yields

0 =
T∫

0

ϕt(x̄(t))+ ϕ∗
t (Ax̄(t)− ˙̄x(t))+ 1

2
(‖b1(x(t))‖2

H1
+ ‖b2(x(t))‖2

H2
)dt

+1
2
(‖x̄(0)‖2 + ‖x̄(T)‖2)

≥
T∫

0

〈x̄(t), Ax̄(t)− ˙̄x(t)+ 1
2
(‖b1(x(t))‖2

H1
+ ‖b2(x(t))‖2

H2
)dt + 1

2
(‖x̄(0)‖2 + ‖x̄(T)‖2)

=
T∫

0

‖b1(x̄(t))‖2
H1

dt + ‖x̄(0)‖2 ≥ 0.
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So all inequalities are equalities, and we obtain −˙̄x(t) + Ax̄(t) ∈ eωt∂ϕ(e−ωtx̄(t)),
b1(x̄(t)) = 0, and x̄(0) = 0. We now set v̄(t) := e−ωt x̄(t) and the rest is straightforward.

��
Corollary 5.4 Let X ⊂ H ⊂ X∗ be an evolution triple and let A : D(A) ⊂ H → X∗
be a skew-adjoint operator modulo boundary operators (b1, b2) : D(b1, b2) → H. Let
ϕ : X → R be a convex lower semi-continuous function on X, that is bounded on the
bounded sets of X and also coercive on X. Assume

x0 ∈ D(A) ∩ D(b1, b2) and ∂ϕ(x0) ∩ H is non-empty. (50)

Then, for all ω ∈ R and for all T > 0, there exists ū ∈ A2
H([0, T]) which solves (47).

Proof Define the convex function ψ : X → R by

ψ(x) := ϕ(x + x0)+ ‖x‖2

2
− 〈x, Ax0〉 + 〈x,ωx0〉

It is easy to check that ψ satisfies all the conditions of Proposition 5.2. Therefore,
there exists v̄ ∈ A2

H([0, T]) satisfying the evolution equation

−˙̄v(t)+ Av̄(t) ∈ ∂ψ(v̄(t))+ (ω − 1)v̄(t) for a.e. t ∈ [0, T]
b1(v̄(t)) = 0 for a.e. t ∈ [0, T]

v̄(0) = 0.

Since ∂ψ(x) = ∂ϕ(x + x0)+ x − Ax0 + ωx0, we have that ū(t) := v̄(t)+ x0 solves (47).
��

Evolutions driven by transport operators

Consider the evolution equation

− ut(x, t)+�a(x) · ∇u(x, t) = 1
2

a0(x)u(x, t)+u(x, t)|u(x, t)|p−2+ωu(x, t) on [0, T]×�
u(x, 0) = u0(x) on � (51)

u(x, t) = u0(x) on [0, T] ×�+.

We assume that the domain � and the vector field �a(·) satisfies all the assumption in
Sect. 2.

Corollary 5.5 Let p > 1, f ∈ L2(�) and a0 ∈ L∞(�). For any ω ∈ R and u0 ∈
L∞(�) ∩ H1(�) there exists ū(·) ∈ A2

L2(�)
([0, T]) satisfying (51).

Proof We distinguish two cases: ��
Case 1 p ≥ 2. We then take X = Lp(�), H = L2(�). since again the operator
A : D(A) → X∗ defined as Au = �a · ∇u + 1

2

(∇ · �a)
u with domain

D(A) =
{

u ∈ Lp(�) | �a · ∇u + ∇�a
2

u ∈ Lq(�)

}

is skew-adjoint modulo the boundary operators (b1u, b2u) = (u|�+ , u|�−) whose
domain is

D(b1, b2) = {u ∈ Lp(�)|(u|�+ , u|�−) ∈ L2(�+; |�a · n̂|dσ)× L2(�−; |�a · n̂|dσ)}
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Case 2 1 < p < 2. The space is then X = H = L2(�).

In both case, we pick K > 0 such that ∇ · �a(x) + a0(x) + K ≥ 1 for all x ∈ �, and
define the function ϕ : X → R by

ϕ(u) := 1
p

∫

�

|u(x)|pdx + 1
4

∫

�

(∇ · �a(x)+ a0(x)+ K)|u(x)|2dx

Then ϕ is a convex, l.s.c. function that is bounded on bounded sets of X and coercive
on X. Since u0(x) ∈ L∞(�)∩ H1(�), ∂ϕ(u0) is non-empty and u0 ∈ D(A)∩ D(b1, b2).

So by corollary 5.4, there exists ū(·) ∈ A2
H([0, T]) such that

−˙̄u(t)+ Aū(t) ∈ ∂ϕ(ū(t))+ (ω − K
2
)ū(t) for t ∈ [0, T]

b1(ū(t)) = b1(u0) for t ∈ [0, T]
ū(0) = u0

and this is precisely the equation (51) and we are done.
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