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Abstract By constructing normal coordinates on a quaternionic contact manifold
M , we can osculate the quaternionic contact structure at each point by the standard
quaternionic contact structure on the quaternionic Heisenberg group. By using this
property, we can do harmonic analysis on general quaternionic contact manifolds,
and solve the quaternionic contact Yamabe problem on M if its Yamabe invariant
satisfies λ(M) < λ(Hn).

Keywords Quaternionic contact structure · The quaternionic Heisenberg group ·
Quaternionic contact Yamabe problem · Normal coordinates

Mathematics Subject Classification (2000) 53C17, 53D10, 35J70

1 Introduction

Quaternionic contact manifolds are quaternionic analogues of integrable CR man-
ifolds defined by Biquard [3] and naturally appear as the boundaries at infinity
of quaternionic-Kähler asymptotic symmetric manifolds. We will consider the
quaternionic contact Yamabe problem in this paper.

Let θ = (θ1, θ2, θ3) be a contact 1-form on a smooth manifold M valued on
R3, V = ker θ , and dim Vξ = 4n for each ξ ∈ M , where dim M = 4n + 3. A
SpnSp1 Carnot–Carathéodory metric g compatible with dθ is given by a metric
on V if there exist three complex structures I1, I2, I3 on V such that

dθβ(X, Y ) = g(Iβ X, Y ), β = 1, 2, 3, (1.1)

for each X, Y ∈ V , where I1, I2, I3 satisfy the commutating relation of quater-
nions

I 2
1 = I 2

2 = I 2
3 = −idV , I1 I2 I3 = −idV . (1.2)
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The R3-valued 1-form θ is given only up to the action of SO3 on R3 and to a
conformal factor, thus we get a SpnSp1-structure on V .

A quaternionic contact structure on M is the data of a codimension 3 distri-
bution V , equipped with a SpnSp1-structure, such that the SpnSp1-structure and
contact 1-form valued on R3 satisfy the commutating relation of quaternions (1.2).
The quaternionic contact manifold is a smooth manifold equipped with a quater-
nionic contact structure.

Biquard [3] defined a connection on a quaternionic contact manifold, which is
the analogue of Webster’s connection in CR geometry [17].

Theorem 1 ([3], p. 8) Suppose codimension 3 distribution V on M has a quate-
rionic contact structure, dim M = 4n + 3 with n ≥ 2, and gV is a compatible
Carnot–Carathéodory metric. Then there exists a unique complement W to V and
a unique connection ∇ on M such that

(1) ∇ preserves V and the SpnSp1-structure on V .
(2) For X, Y ∈ V , the torsion TX,Y = ∇X Y − ∇Y X − [X, Y ] satisfies TX,Y =

[X, Y ]W .
(3) For R ∈ W , the endomorphism of V defined by X −→ (TR,X )V is in the

subspace (spm ⊕ sp1)
⊥ ⊂ EndV .

(4) ∇ preserves W and ∇|W coincides with the connection induced on a R3 sub-
bundle of EndV , which is formed by complex structures on V .

The first two conditions determine a unique W .
Let R be the curvature of this connection, RX,Y = ∇X∇Y − ∇Y ∇X − ∇[X,Y ].

Define Ricci tensor

RicX,Y =
4n∑

l=1

〈Rel ,X Y, el〉, (1.3)

where {el} is an orthonormal basis of V under matric gV . The scalar curvature of
this connection is sθ = TrV Ric.

Let us consider a conformal transformation θ ′ = e2 f θ , f ∈ C∞(M). Then,
the metric gV is changed to g′

V = e2 f gV , which is the Carnot–Carathéodory met-
ric compatible with dθ ′. Biquard also gave the transformation formula for scalar
curvatures under conformal transformations.

Proposition 2 ([3], p. 74) Under conformal transformation θ ′ = f 2θ for f ∈
C∞(M) with f > 0, the scalar curvature satisfies the following formula

sθ ′ = f −2(sθ − 8(n + 2)TrV ∇ω − 16(n + 1)(n + 2)|ω|2), (1.4)

where ω = f −1d f .

The following corollary is another form of the transformation formula for scalar
curvatures.

Corollary 3 Under conformal transformation θ ′ = v(4/(Q−2))θ for v ∈ C∞(M)
with v > 0, the scalar curvature satisfies the following formula:

bn�θv + sθ v = sθ ′v
Q+2
Q−2 , (1.5)

where bn = 4{(Q + 2)/(Q − 2)}, Q = 4n + 6 is the homogeneous dimension of
M, and the SubLaplacian �θ is defined by (2.28).
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This corollary will be checked at the end of Sect. 2. Given a R3-valued contact
form θ and a positive function u ∈ C∞(M), a necessary and sufficient condition
for θ ′ = u(4/(Q−2))θ to have constant scalar curvature, sθ ′ ≡ λ, is that u satisfies
the differential equation

bn�θu + sθu = λu
Q+2
Q−2 . (1.6)

To find such u is the quaternionic contact Yamabe problem.
As in the Riemannian and CR case, (1.6) is the Euler–Lagrangian equation for

the constrained variational problem

λ(M) = inf
θ

{Aθ (u); Bθ (u) = 1}, (1.7)

where

Aθ (u) =
∫

M
(bn|dbu|2θ + sθu2)ψθ , Bθ (u) =

∫

M
|u|pψθ, (1.8)

and p = 2Q/(Q − 2), ψθ is the volume element defined by (2.27). We prove the
following result for the quaternionic contact Yamabe problem.

Theorem 1.1 Suppose M is a compact quaternionic contact manifold with a con-
tact form θ valued on R3, V = ker θ , and there is a Carnot–Carathéodory metric
gθ compatible with θ in sense of (1.1), where dim M = 4n + 3 with n ≥ 2. Then,

(1) λ(M) ≤ λ(Hn), where H
n is the quaternionic Heisenberg group with standard

contact form θH defined by (2.19) and (2.20).
(2) If λ(M) < λ(Hn), then the infimum of (1.7) is achieved by a positive C∞ solu-

tion u of (1.6), i.e. contact form θ ′ = u4/(Q−2)θ has constant scalar curvature
sθ ′ = λ(M).

For the existence and uniqueness of extremal achieving the infimum λ(Hn), it
is natural to conjecture that contact forms θφ = φ∗θH for φ ∈ Sp(n + 1, 1)Sp(1)
are only ones on H

n achieving the infimum λ(Hn) and hence having constant
scalar curvature. The CR Yamabe problem is completely solved in [8, 9, 11–13].
The general results about the quaternionic contact Yamabe problem are working in
progress. In Sect. 2, we state some basic facts about quaternions, the quaternionic
Heisenberg group and the SubLaplacian. In Sect. 3, we prove that the quaternionic
contact structure at each point of a quaternionic contact manifold can be osculated
by that of the quaternionic Heisenberg group and construct normal coordinates
locally. Results on the quaternionic Heisenberg group are used to prove the regu-
larity of the SubLaplacians on general quaternionic contact manifolds in Sect. 4.
The main theorem is proved in the last section.

2 Some basic facts

The element of the algebra H of quaternion numbers is x1 + x2i + x3j + x4k with
xl ∈ R, l = 1, . . . , 4, and

i2 = j2 = k2 = −1, ijk = −1. (2.1)
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The conjugate q of q = x1 +x2i+x3j+x4k is x1 −x2i−x3j−x4k. The imaginary
part �(x1 + x2i + x3j + x4k) = x2i + x3j + x4k. The quaternionic unitary group
Spn is the group of endmorphisms preserving the quaternionic quadratic form

〈P, Q〉 =
n∑

l=1

plql , (2.2)

where P = (p1, . . . , pn), Q = (q1, . . . , qn) ∈ Hn . Thus, Sp(1) is the set of all
unit quaternions. By identifying Hn with C2n , Spn is the subgroup of U(2n) of
elements commutative with the complex structure J : C2n −→ C2n , J (ei ) =
en+i , J (en+i ) = ei , i = 1, . . . , n, where e1, . . . , e2n is an orthonormal basis of
C2n .

The standard model of the quaternionic contact manifold is the quaternionic
Heisenberg group H

n = Hn ⊕ �H. Its multiplication is given by

(x, t) · (y, s) = (x + y, t + s + �(x y)) , (2.3)

where x, y ∈ Hn , t, s ∈ �H. The neutral element is (0, 0) and the inverse of (x, t)
is (−x, −t).

There are six groups of automorphisms of H
n [18].

(1) The one parameter group A of dilations:

Dδ : (x, t) −→ (δx, δ2t), δ > 0; (2.4)

(2) The group N of translations:

τP : Q −→ P · Q, for P, Q ∈ H
n; (2.5)

(3) The group M of rotations, M is isomorphic to Spn , the quaternionic unitary
group:

(x, t) −→ (U x, t), for U ∈ Spn; (2.6)

(4) The inversion R, which is defined on H
n \ {0} by

R : (x, t) −→
( −x

|x |2 − t
,

−t

|x |4 + |t |2
)

, (2.7)

where x ∈ Hn−1, t = t1i + t2j + t3k;
(5) The conjugation �:

� : (x, t) −→ (x, t); (2.8)

(6) Sp(1) acts on H
n as follows:

σ(x, t) = (σ x, σ tσ−1), (2.9)

where the action on the first factor is left multiplication by unit quaternions,
and the action on the second factor t is given by orthogonal matrix conjugation
under the identification �H with O(3).
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The group generated by A, M, N , R, � and Sp(1) is isomorphic to the rank
one Lie group Sp(n, 1)Sp(1). The stereographic projection F from S4n+3 to hy-
persurface

�q ′
n+1 −

n∑

l=1

|q ′
l |2 = 0 (2.10)

is given by

q ′
l = ql

1 + qn+1
, q ′

n+1 = 1 − qn+1

1 + qn+1
(2.11)

l = 1, . . . , n. The standard contact form on the hypersurface (2.10) is given by

θ0 = � dq ′
n+1 −

n∑

l=1

q ′
l dq ′

l − q ′
l dq ′

l . (2.12)

The multiplication of the quaternionic Heisenberg group can be written in real
variables as follows.

(x, t) · (y, s) =
⎛

⎝x + y, tβ + sβ +
n−1∑

l=0

4∑

j,k=1

bβ
k j x4l+k y4l+ j

⎞

⎠ , (2.13)

where β = 1, 2, 3, x = (x1, x2, . . . , x4n) ∈ R4n , t = (t1, t2, t3) ∈ R3, y and s are
defined similarly, and antisymmetric matrices

b1 =
⎛

⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎠ , b2 =
⎛

⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞

⎟⎠ ,

b3 =
⎛

⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞

⎟⎠ .

(2.14)

The multiplications of the quaternionic Heisenberg group in (2.3) and (2.13) are
the same by direct calculation

�{(x1 + x2i + x3j + x4k)(y1 − y2i − y3j − y4k)}
= (−x1 y2 + x2 y1 − x3 y4 + x4 y3)i + (−x1 y3 + x3 y1 + x2 y4 − x4 y2)j

+ (−x1 y4 + x4 y1 − x2 y3 + x3 y2)k. (2.15)

b1, b2, b3 are the matrices of the quadratic forms of coefficients of i, j, k in (2.15),
respectively. It is easy to see that matrices b1, b2, b3 satisfy the commutating re-
lation (1.2) of quaternions

(b1)2 = (b2)2 = (b3)2 = −id, b1b2b3 = −id. (2.16)
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The following vector fields are left invariant on the quaternionic Heisenberg
group by the multiplication laws of the quaternionic Heisenberg group in (2.13):

Y4l+ j = ∂

∂x4l+ j
+

3∑

β=1

4∑

k=1

bβ
k j x4l+k

∂

∂tβ
, (2.17)

and

[Y4l ′+k, Y4l+ j ] = 2δll ′
3∑

β=1

bβ
k j

∂

∂tβ
, (2.18)

for l, l ′ = 0, . . . , n − 1, j, k = 1, . . . , 4. Then, the horizontal subspace VH =
spanR{Y1, . . . , Y4n} generate the corresponding Lie algebra of the quaternionic
Heisenberg group. Let

θH = (θH,1, θH,2, θH,3) (2.19)

with

θH,β = dtβ −
n−1∑

l=0

4∑

j,k=1

bβ
k j x4l+kdx4l+ j , (2.20)

β = 1, 2, 3. It is obvious that θH,β(Yµ) = 0 for any µ = 1, . . . , 4n and

dθH,β = −
n−1∑

l=0

4∑

j,k=1

bβ
k j dx4l+k ∧ dx4l+ j . (2.21)

Define a metric gH on VH by

gH(Yµ, Yν) = 2δµν (2.22)

for µ, ν = 1, . . . , 4n, and transformations Iβ on VH by

IβY4l+k =
4∑

j=1

bβ
jkY4l+ j , (2.23)

for l = 0, . . . , n − 1, k = 1, 2, 3, 4, β = 1, 2, 3. It is easy to see that {Iβ} satisfies
the commutating relation (1.2) of quaternions since bβ satisfies the commutating
relation (2.16) of quaternions, and

dθH,β(Y4l+k, Y4l ′+ j ) = −2bβ
k jδll ′ = gH(IβY4l+k, Y4l ′+ j ), (2.24)

by (2.21). Thus, gH is the Carnot–Carathéodory metric compatible with dθH on
VH in sense of (1.1).

The standard R3-valued contact form on S4n+3 is defined by

θS =
n+1∑

l=1

(qldql − qldql), (2.25)

where ql = x4l−3 + x4l−2i + x4l−1j + x4lk, l = 1, . . . , n + 1.
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Now consider a general quaternionic contact manifold M with a contact 1-
form θ valued on R3. We choose a local basis {Xµ}4n

µ=1 of V = ker θ with norm√
2 under the Carnot–Carathéodory metric gθ compatible with dθ . This is be-

cause each element of the standard basis (2.17) of the horizontal subspace VH of
the quaternionic Heisenberg group has norm

√
2 under the standard metric gH in

(2.22). The metric gθ on V induces a dual metric on V ∗. We denote it by 〈·, ·〉θ .
Define a norm |ω|2θ = 〈ω, ω〉θ for ω ∈ V ∗. It defines an L2 inner product on V ∗
by

〈ω, ω′〉 =
∫

M
〈ω, ω′〉θψθ , (2.26)

where the volume element ψθ associated with θ is locally

ψθ = 22nθ1 ∧ θ2 ∧ θ3 ∧ θ1 ∧ · · · θ4n, (2.27)

where {θ1, . . . , θ4n} is a local dual basis of {Xµ}4n
µ=1 satisfying θµ|W = 0 for each

µ.
Denote db = π ◦ d, where π is the projection from T ∗M to V ∗. We define the

SubLaplacian �θ associated with the contact form θ by
∫

M
�θu · v · ψθ =

∫

M
〈dbu, dbv〉θψθ . (2.28)

Define covariant differentiation as follows. Since ∇ preserves V , there exist
1-forms ω ν

µ such that
∇Y Xµ = ω ν

µ (Y )Xν, (2.29)

for Y ∈ V . Let ω ν′
µ (Xν) = � ν′

µν . Then, ∇Xν Xµ = � ν′
µν Xν′ . For 1-form ω ∈

�1(M),
(∇Xω)(Y ) = ∇X (ω(Y )) − ω (∇X Y ) . (2.30)

The SubLaplacian �θ has the following expression.

Proposition 2.1 Let {Xµ}4n
µ=1 be a local basis of V such that gθ (Xµ, Xν) = 2δµν .

Then, for u ∈ C∞(M),

�θu = −TrV ∇(du) = 1

2

4n∑

µ=1

(
−Xµ Xµu +

4n∑

ν=1

� µ
νν Xµu

)
. (2.31)

where the covariant derivatives of 1-forms are defined by (2.30).

Proof It is sufficient to check (2.31) for smooth u with sufficiently small support.
Let {θµ}4n

µ=1 be a dual basis of {Xµ}4n
µ=1 for V ∗, and θµ|W = 0 for each µ. Let

X∗
µ be the adjoint operator of densely defined operator Xµ on the Hilbert space

L2(M), µ = 1, . . . , 4n. We claim that

X∗
µ = −Xµ +

4n∑

ν=1

�µ
νν. (2.32)
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Note that dbu = ∑
µ Xµu · θµ and 〈θµ, θµ〉θ = 1/2. By the definition of the

SubLaplacian in (2.28), we have that

�θ = 1

2

4n∑

µ=1

X∗
µ Xµ = 1

2

4n∑

µ=1

(
−Xµ Xµu +

4n∑

ν=1

� µ
νν Xµu

)
. (2.33)

By (2.30), we have that
∇Xν θ

µ = −�
µ

ν′νθ
ν′
. (2.34)

Now by the definition of trace,

TrV ∇(du) = TrV ∇(dbu)

= 1

2

4n∑

α=1

4n∑

µ=1

(∇Xα (Xµu · θµ))(Xα)= 1

2

4n∑

µ=1

(
Xµ Xµu −

4n∑

α=1

� µ
αα Xµu

)
,

(2.35)

since Xα has norm
√

2. (2.31) is proved.
It remains to prove the claim (2.32). Note that Xu = iXµdu by the formula of

Lie derivative, where iX is the interior operator. By Stokes’ formula,
∫

M
Xµu · vψθ =

∫

M
v du ∧ iXµψθ = −

∫

M
u dv ∧ iXµψθ −

∫

M
uv d(iXµψθ )

= −
∫

M
u Xµvψθ −

∫

M
uv d(iXµψθ ). (2.36)

Here we have used identities
∫

M iXµ(v du ∧ ψθ) = ∫
M iXµ(u dv ∧ ψθ) = 0. By

the standard exterior differentiation formula,

dφ(X, Y ) = (∇Xφ)(Y ) − (∇Y φ)(X) + φ(TX,Y ) (2.37)

for 1-form φ ∈ �1(M), where TX,Y is the torsion, and TX,Y = [X, Y ]W by
Theorem 1, we find that dθµ(Xν, Xν′) = −�

µ

ν′ν + �
µ

νν′ , and hence,

dθµ = 1

2

( − �
µ

ν′ν + �
µ

νν′
)
θν ∧ θν′

, mod θ1, θ2, θ3. (2.38)

Note that

d(iXµψθ ) =(−1)µ22n(dθ1 ∧ θ2 ∧ θ3 − θ1 ∧ dθ2 ∧ θ3 + θ1 ∧ θ2 ∧ dθ3)∧
∧ θ1 ∧ · · · ˆθµ · · · ∧ θ4n +

∑

β �=µ

dθβ ∧ iXβ iXµψθ .
(2.39)

The first term on the right-hand side of (2.39) is zero since it annihilates the Reeb
vector Tj by iTj dθ j = 0 (Proposition II.1.7 in [3]), where Tj ∈ W satisfies
θk(Tj ) = δ jk . Inserting

dθβ = 1

2

( − �
β

βµ + �
β

µβ

)
θµ ∧ θβ + 1

2

( − �
β

µβ + �
β

βµ

)
θβ ∧ θµ + · · · (2.40)
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by (2.38) in the second sum in (2.39) and using antisymmetry � α
βγ = −�

β
αγ ,

which follows from the fact that the connection ∇ preserves the metric gθ on V ,
we find that

d(iXµψθ ) =
∑

β �=µ

(−�
β

βµ + �
β

µβ)ψθ = −
∑

β �=µ

�
µ

ββψθ = −
4n∑

β=1

�
µ

ββψθ , (2.41)

since �
β

βµ ≡ 0 by antisymmetry. The claim (2.32) follows from (2.36) and (2.41).
The proposition is proved. �
Proof of Corollary By substituting f = v2/(Q−2) in (1.4) and using the above
(2.31) for u = 2/(Q − 2) log v, we can easily prove (1.5). �

3 Normal coordinates

The purpose of this section is to define normal coordinates to approximate the
quaternionic contact structure at each point of a quaternionic contact manifold
M by the standard quaternionic contact structure on the quaternionic Heisenberg
group.

Let ξ be an arbitrary point of M and U be a sufficiently small neighborhood
of ξ . For any two local sections e, e′ ∈ C∞(U, V ), we have

gθ (Iαe, Iαe′) = dθα(e, Iαe′) = −dθα(Iαe′, e)

= −gθ (Iα(Iαe′), e) = gθ (e
′, e) = gθ (e, e′), (3.1)

by (1.1). Namely Iα (α = 1, 2, 3) are isometries on V under the metric gθ . Now
choose a section e1 ∈ C∞(U, V ) such that g(e1, e1) = 1. From now on, we take
I0 = idV . Note that

gθ

(
Iαe1, Iβe1

) = gθ (Iβ Iαe1, I 2
βe1) = −gθ (Iγ e1, e1) = −dθγ (e1, e1) = 0 (3.2)

for some γ ∈ {1, 2, 3} if α �= β. Hence, e1, I1e1, I2e1, I3e1 are mutually orthog-
onal. Now choose a section e2 ∈ V orthogonal to spanR{Ike1; k = 0, . . . , 3}.
As above, e2, I1e2, I2e2, I3e2 are mutually orthogonal and spanR{Ike1; k =
0, . . . , 3} ⊥ spanR{Ike2; k = 0, . . . , 3}. Repeating this procedure, we find at
last vectors e1, . . . , en such that {Ike j ; j = 1, . . . , n, k = 0, . . . , 3} forms a
local orthonormal basis of V under the metric gθ . Let

X4l+α = √
2Iα−1el+1, (3.3)

for l = 0, . . . , n − 1, α = 1, . . . , 4. Then,

dθβ(X4l+k, X4l ′+ j ) = 2gθ (Iβ Ik−1el+1, I j−1el ′+1), (3.4)

which is zero except for Iβ Ik−1 = ±I j−1 and l = l ′. For example, the right side of
(3.4) for β = 1 vanishes except for {k, j} = {1, 2} or {3, 4}. It equals to −2δll ′b1

k j

by direct calculation, where b1 is defined by (2.14). Similarly, we can check that

dθβ(X4l+k, X4l ′+ j ) = −2δll ′b
β
k j (3.5)
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for β = 1, 2, 3. Let {θ1, . . . , θ4n} be a dual basis of {X1, . . . , X4n}. (3.5) is equiv-
alent to

dθβ = −
n−1∑

l=0

4∑

j,k=1

bβ
k jθ

4l+k ∧ θ4l+ j , mod θ1, θ2, θ3. (3.6)

The dual of (3.5) is

[X4l+k, X4l ′+ j ] = 2δll ′
3∑

β=1

bβ
k j Tβ, mod V, (3.7)

where Tβ is the Reeb vectors satisfying θα(Tβ) = δαβ , α, β = 1, 2, 3, by using
the formula of exterior derivative: for 1-form ω,

dω(X, Y ) = X (ω(Y )) − Y (X (ω)) − ω([X, Y ]). (3.8)

Define X4n+β = Tβ for β = 1, 2, 3. For each ξ ∈ M , as in the CR case in [7],
we define the exponential map Eξ at ξ based on the local basis {X1, . . . , X4n+3}.
For u = (u1, . . . , u4n+3) ∈ R4n+3, we define Eξ (u) ∈ M to be the endpoint of
integral curve η(s), 0 ≤ s ≤ 1, of the vector field

∑4n+3
j=1 u j X j with η(0) = ξ .

Then Eξ is a smooth mapping of a star shaped neighborhood Uξ of 0 ∈ R4n+3

into M . It is clear that Eξ∗( ∂
∂u j

)|0 = X j |ξ . So Eξ is a diffeomorphism of a smaller
neighborhood of Uξ of 0 (denoted also by Uξ ) onto a neighborhood Vξ of M .

Let � = {(ξ, η) ∈ M × M; η ∈ Vξ }. � is a neighborhood of the diagonal in
M × M . Denote �ξ the coordinate mapping E−1

ξ : Vξ −→ R4n+3, and �(ξ, η) =
�ξ(η). We also write (x(·; ξ), t (·; ξ)) or u(η; ξ) for the coordinates of �ξ(η).
Define a norm on R4n+3 by

‖u‖ =
⎛

⎜⎝

⎛

⎝
4n∑

j=1

u2
j

⎞

⎠
2

+
3∑

β=1

u2
4n+β

⎞

⎟⎠

1
4

. (3.9)

Set ρ(ξ, η) = ‖�(ξ, η)‖. A function f on Vξ is said to be Ok if f (η) =
O(ρ(ξ, η)k) as η −→ ξ .

Proposition 3.1 In the coordinates x(·; ξ), t (·; ξ),

X4l+ j = ∂

∂x4l+ j
+

3∑

β=1

4∑

k=1

bβ
k j x4l+k

∂

∂tβ
+

4n∑

µ=1

O1 ∂

∂xµ

+
3∑

β=1

O2 ∂

∂tβ
, (3.10)

for l = 0, . . . , n − 1 and j = 1, . . . , 4.

Proof In the proposition, we identify �ξ∗Xµ with Xµ. Write

Xµ =
4n+3∑

ν=1

Fµν(u)
∂

∂uν

, µ = 1, . . . , 4n + 3. (3.11)
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The following sublemma is Lemma 14.2 and Lemma 14.5 in [7], pp. 472–474 (see
also Chevalley’s book [6], pp. 155–156), which hold for general vector fields {Zµ}
satisfying the condition that vector fields {Zµ} span the tangential space at each
point.

Sublemma Let (Aµν) be the inverse transport matrix of (Fµν). Then,

(1) If u ∈ Uξ , |s| < 1, we have

4n+3∑

ν=1

Aµν(su)uν = uµ. (3.12)

(2) Define real functions cµνν′ on Uξ by

[Xµ, Xν] =
4n+3∑

ν′=1

cµνν′ Xν′, (3.13)

and matrices D(s, u) = (s Aµν(su)) and �(s, u) with entries

�νν′(s, u) =
4n+3∑

µ=1

cµν′ν(su)uµ (3.14)

on u ∈ Uξ , |s| < 1. We have

∂ D

∂s
= I − �D. (3.15)

Now by Taylor’s theorem, we have the expansion

F(su) = F(0) + s F (1)(u) + s2 F (2)(u) + . . . , (3.16)

where F(0) = I by Eξ∗( ∂
∂uµ

)|0 = Xµ|ξ and F (1), F (2), . . . are certain matrices.
Let

A(su) = I + s A(1)(u) + s2 A(2)(u) + · · · ,

D(s, u) = s I + s2 A(1)(u) + · · · . (3.17)

Since F At = I , we have F (1) = −A(1)t . Let �(s, u) = �(0)(u) + s�(1)(u) + · · · .
Eq. (3.15) implies that (1/2)�(0)t = F (1). Since �

(0)

νν′ = ∑
µ cµν′ν(0)uµ are real

and u4n+β = tβ = O2 for β = 1, 2, 3, we find that

F (1)
µ(4n+ j) = 1

2
�

(0)t
µ(4n+ j) = 1

2

4n+3∑

ν=1

cνµ(4n+ j)(0)uν

= 1

2

4n∑

ν=1

cνµ(4n+ j)(0)uν + O2. (3.18)
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It remains to determine cνµ(4n+ j)(0) for µ, ν = 1, . . . , 4n and j = 1, 2, 3. Note
that

[X4l+ j , X4l ′+ j ′ ] =
4n+3∑

m=1

c(4l+ j)(4l ′+ j ′)m Xm

= 2δll ′
3∑

β=1

bβ

j j ′ Tβ mod V, (3.19)

by the definition of coefficients c in (3.13) and (3.7). It follows from (3.19) at the
origin that

c(4l+ j)(4l ′+ j ′)(4n+β)(0) = 2δll ′b
β

j j ′, (3.20)

for l, l ′ = 0, . . . , n − 1, j, j ′ = 1, . . . , 4 and β = 1, 2, 3. Now in coordinates
chart Uξ ,

X4l+ j =
4n+3∑

ν=1

F(4l+ j)ν(u)
∂

∂uν

= ∂

∂u4l+ j
+

3∑

β=1

F(4l+ j)(4n+β)(u)
∂

∂u4n+β

+
4n∑

µ=1

O1 ∂

∂uµ

= ∂

∂u4l+ j
+ 1

2

3∑

β=1

4n+3∑

m=1

cm(4l+ j)(4n+β)(0)um
∂

∂u4n+β

+ R

= ∂

∂u4l+ j
+

3∑

β=1

4∑

j ′=1

bβ

j ′ j u4l+ j ′
∂

∂u4n+β

+ R (3.21)

by using (3.18) and (3.20), where the remainders R = ∑4n
µ=1 O1 ∂

∂uµ
+ ∑3

β=1

O2 ∂
∂u4n+β

. The Lemma is proved. �

Theorem 1.2 (1) �ξ(η) = −�η(ξ) ∈ R4n+3;
(2) � : � −→ R4n+3 is C∞;
(3) �∗

ξ (du1 · · · du4n+3)|ξ is the volume element on V at ξ ;
(4) Suppose (ξ, η), (ξ, ζ ), (ζ, η) ∈ � and ρ(ξ, η) ≤ ε0, ρ(ζ, η) ≤ ε0 for some

sufficiently small constant ε0 > 0. Then, there exists a constant C > 0 such
that

‖�(ξ, η) − �(ζ, η)‖ ≤ C(ρ(ξ, ζ ) + ρ(ξ, ζ )
1
2 ρ(ξ, η)

1
2 ),

ρ(ζ, η) ≤ C(ρ(ξ, ζ ) + ρ(ξ, η)). (3.22)

Namely, ρ(·, ·) is a local pseudodistance on M.
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Proof (1) follows from the definition of exponential map Eξ ; (2) follows from the
well-known theorem in O.D.E. on smooth dependence of solutions on parameters;
(3) follows from �ξ∗ mapping Xµ|ξ to ∂

∂uµ
, µ = 1, . . . , 4n + 3. For (4), we

regard ζ as a function of ξ ∈ M and u ∈ Uξ by equation ζ = Eξ (u). We write
�(ζ, η) = f (η, ξ, u) ∈ R4n+3 with f (η, ξ, 0) = �(ξ, η). We expand f in Taylor
series about 0,

�µ(ζ, η) = �µ(ξ, η) +
4n+3∑

ν=1

aµν(η, ξ)uν + O(|u|2), (3.23)

where uµ = �µ(ξ, ζ ), aµν(η, ξ) = ∂ fµ(η,ξ,0)

∂uν
. Using (3.23) for η = ξ , we

have uµ = �µ(ξ, ζ ) = −�µ(ζ, ξ) = −∑4n+3
ν=1 aµν(ξ, ξ) uν +O(|u|2). Hence,

aµν(ξ, ξ) = −δµν and |aµν(η, ξ)| = O(ρ(η, ξ)) for µ �= ν. It follows that

|�4n+β(ξ, η) − �4n+β(ζ, η)| ≤ C(ρ(ξ, ζ )2 + ρ(η, ξ)ρ(ξ, ζ )), β = 1, 2, 3

|�µ(ξ, η) − �µ(ζ, η)| ≤ Cρ(ξ, ζ ), µ = 1, . . . , 4n. (3.24)

Now the first inequality of (3.22) follows from (3.24). The second inequality of
(4) follows from the first one easily as in p. 476 of [7]. We omit details.

For the standard contact forms θH, the associated metric is defined by (2.22).
Its curvature is identically zero. For u ∈ C1(Hn), du = ∑4n

µ=1 Yµu · θµ +
∑3

β=1
∂u
∂tβ

· θH,β and dbu = ∑4n
µ=1 Yµu · θµ, where θµ = dxµ. Note that

〈Yµ, Yν〉 = 2δµν and 〈θµ, θν〉θH
= 1

2δµν , µ, ν = 1, . . . , 4n. Hence,

〈dbu, dbv〉θH
= 1

2

4n∑

µ=1

Yµu · Yµv (3.25)

if u and v are real valued. The SubLaplacian is

�H = −1

2

4n∑

µ=1

YµYµ. (3.26)
�

Corollary 3.3 Let {X1, . . . , X4n} be a local basis of V such that gθ (Xµ, Xν) =
2δµν . Then, in the normal coordinates defined by Theorem 1.2, we have

(1) (�−1
ξ )∗θβ = θH,β + O1dt + O2dx, β = 1, 2, 3;

(2) (�−1
ξ )∗ψθ = (1 + O1)ψH;

(3) (�ξ )∗�θ = �H + E(∂x ) + O1E(∂t ; ∂2
x ) + O2E(∂x · ∂t ) + O3E(∂2

t ).

where ψH = ψθH
and OkE indicates an operator involving combinations of

the indicated derivatives with coefficients in Ok.

Proof (1) follows from the expansion of Xµ in Proposition 3.1; (2) follows from
(1). Since � ν′

µν bounded, �m
µν Xm = E(∂x ) + O1E(∂t ) by expansion (3.10). Part

(3) follows from the expansion of Xµ in Proposition 3.1 and the expression of the
SubLaplacian in (2.31). �
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Remark 3.4 Folland and Stein [7] used normal coordinates to osculate strictly
pseudoconvex CR structure by the Heisenberg group (see also [14]). For CR man-
ifolds of high codimension, we constructed normal coordinates and osculated the
CR structure at each point by a nilpotent Lie group of step two in [15].

4 The regularity of �θ

The Green functions of the SubLaplacians on general step-two nilpotent Lie
groups are constructed in [2]. We summarize the results in Theorems 1–3 and
their proofs in [2] in the following theorem.

Theorem 4.1 Let aα = (aα
jk) be an antisymmetric N × N matrix, and the eigen-

values of �(τ) = −i
∑q

α=1 aατα be λ1(τ ), . . ., λN (τ ), and

� = 1

2

N∑

j=1

L2
j , (4.1)

where

L j = ∂

∂x j
+

r∑

α=1

N∑

k=1

aα
jk xk

∂

∂tα
, (4.2)

j = 1, . . . , N, on RN+r . Suppose vector fields satisfy the condition C, i.e. [L j , Lk]
and L j , j, k = 1, . . . , N, span the tangential space of RN+r . Let

f (x, t, θ) = 1

2
〈�(τ) coth �(τ)x, x〉 − i

r∑

α=1

tατα, t ∈ Rr , x ∈ RN ,

V (θ) =
(

det �(τ)

det sinh �(τ)

) 1
2 =

N∏

k=1

(
λk(τ )

sinh λk(τ )

) 1
2

. (4.3)

Then the following integral converges provided |z| + |t | �= 0 and is the Green
function of �,

G(x, t) = − �(s)

(2π)s+1

∫

Rr

V (τ + iεt̂)

f (x, t, τ + iεt̂)s
dτ, (4.4)

where s = N
2 + r − 1, t̂ is the unit vector of t , ε is a small positive number. If

|z| �= 0,

G(x, t) = − �(s)

(2π)s+1

∫

Rr

V (τ )

f (x, t, τ )s
dτ, (4.5)

(4.4) is the integral changing the contour of (4.5). Equation (4.4) is independent
on ε for |z| �= 0.

Furthermore, G is C∞ on RN+r \ {0} and is homogeneous of degree
−N − 2r + 2, i.e. G(δx, δ2t) = δ−N−2r+2G(x, t), and

|G(x, t)| ≤ C‖(x, t)‖−N−2r+2 (4.6)

for some constant C > 0, where the norm ‖(x, t)‖ = (|x |4 + |t |2)1/4.



The Yamabe problem on quaternionic contact manifolds 373

In the case of the quaternionic Heisenberg group, r = 3, N = 4n and � =
−�H. It is easy to see that the condition C is satisfied for left invariant vector fields
(2.17) by relations (2.18).

Proposition 4.2 (Sobolev-type inequality for the critical exponent on H
n) There

exists a constant Cn > 0 such that

(∫

Hn
|u|pψH

) 2
p ≤ Cn

∫

Hn

4n∑

µ=1

|Yµu|2ψH (4.7)

for each u ∈ C∞
0 (Hn), where p = 2Q/(Q − 2).

This proposition is a special case of Sobolev inequalities on equiregu-
lar Carnot–Carathéodory spaces (including quaternionic contact manifolds and
quaternionic Heisenberg group) proved by Gromov in Sect. 2.4 in [10].

Corollary 4.3 0 < λ(Hn) < ∞.

Now let U be a relatively compact open set of a normal coordinates neigh-
borhood �ξ ⊂ M . {X1, . . . , X4n} be an orthonormal basis of V under gθ . Define

‖u‖Sm
k (U ) =

∑

k′≤k

‖Xµ1 · · · Xµk′ u‖Lm(U ) (4.8)

for u ∈ C∞(M), where the summation takes over all multiindices (µ1, . . . , µk′)
with k′ ≤ k. The Folland–Stein space Sm

k (U ) is the completion of C∞(M) with
respect to this norm. Define

‖u‖�β(U ) = supx∈U |u(x)| + supx,y∈U
|u(x) − u(y)|

ρ(x, y)β
, for 0 < β < 1, (4.9)

and �β(U ) is the completion of C∞(M) with respect to this norm. For k < β <
k + 1,

�β(U ) = {u ∈ C0(U ); X Lu ∈ �β−k for any multiindices L with |L| ≤ k}
(4.10)

with norm
‖u‖�β(U ) = sup

|L|≤k
‖X Lu‖�β−k (U ), (4.11)

where X L = Xµ1 · · · Xµk′ for L = (µ1, . . . , µk′), |L| = k′.
Now choose an open covering {U1, . . . , Us} of M such that each U j is a rela-

tively compact open set of a normal coordinates neighborhood �ξ ⊂ M for some
ξ ∈ M . Let {φ j }s

j=1 be a unit partition of M such that supp φ j ⊂ U j . Define

Sm
k (M) = {

u; φ j u ∈ Sm
k (U j ) for all j

}
. (4.12)

Proposition 4.4 For each positive non-integer β, 0 < r < ∞ and integer k ≥ 1,
there exists a constant C > 0 such that for u ∈ C∞

0 (U ),
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(1) ‖u‖�β(U ) ≤ C‖u‖Sm
k (U ) with β = k − Q

m ;
(2) ‖u‖� β

2
(U ) ≤ C‖u‖�β(U );

(3) ‖u‖Sm
2 (U ) ≤ C(‖�θu‖Lm(U ) + ‖u‖Lm(U ));

(4) ‖u‖�β+2(U ) ≤ C(‖�θu‖�β(U ) + ‖u‖�β(U )).

For strictly pseudoconvex CR manifolds, such estimates for �b were proved
by Folland and Stein in Theorem 21.1, 20.1, 16.6 and 15.20 in [7]. Their arguments
also apply to �b (Proposition 5.7 in [11]). If we use the Green function of �H

provided by Theorem 4.1 and normal coordinates provided by Theorem 1.2, their
arguments apply verbatim to �θ .

Harnack inequality and Poincaré-type inequality for general Hörmander sys-
tem of vector fields are well known now. (See [4, 5], for example).

Proposition 4.5 (Harnack inequality) Suppose f ∈ L∞(U ), u ∈ L p(U ), u ≥ 0
and (�θ + f )u = 0 in sense of distribution on U. Then, for any K ⊂⊂ U,

max
x∈K

u(x) ≤ C min
x∈K

u(x), (4.13)

the constant C depends only on K , ‖u‖L p(U ), ‖ f ‖L∞(U ) and the frame constants.

Proposition 4.6 (Poincaré-type inequality) Let Ba ⊂ U be a ball of radius a with
respect to quasidistance ρ. Then, for each f with

∑4n
µ=1 |Xµ f |q ∈ L1(U ), we

have ∫

Ba

| f − fBa |qψθ ≤ Caq
∫

M

4n∑

µ=1

|Xµ f |qψθ, (4.14)

where fBa = (
∫

Ba
f ψθ)/(

∫
Ba

ψθ), the average of f .

By estimates in Proposition 4.4 and Harnack inequality, the following reg-
ularity results involving critical exponent can be proved in the same way as
Proposition 5.10 and 5.15 in [11].

Proposition 4.7 Suppose f ∈ L Q/2(U ), u ∈ L p(U ), u ≥ 0 and (�θ + f )u = 0
in sense of distribution on U. Then, for any η ∈ C∞

0 (U ), ηu ∈ Ls(U ) for each
0 < s < ∞. If f ∈ Ls(U ) with s > Q/2, then u ∈ �β(K ) for some β > 0 and
any K ⊂⊂ U.

Theorem 4.8 Suppose f, g ∈ C∞(U ), u ≥ 0 on U, u ∈ Lr (U ), r > p and
�θu + gu = f uq−1 in sense of distribution on U for some 2 ≤ q ≤ p =
2Q/(Q − 2). Then, u ∈ C∞(U ) and u > 0. If K ⊂⊂ U, then ‖u‖Ck (K ) depends
only on K , ‖u‖Lr (K ), ‖ f ‖Ck (K ), ‖g‖Ck (K ), the frame constants, but not on q.

The following interpolation inequality for the space Sm
1 is just the consequence

of the above Poincaré-type inequality.

Proposition 4.9 (Interpolation inequality for the space Sm
1 ) If u ∈ L1(U ) and∑4n

µ=1 |Xµu|m ∈ L1(U ) with 1 < m < ∞, then u ∈ Sm
1 (U ) and

‖u‖Sm
1 (U ) ≤ C

⎛

⎝

∥∥∥∥∥∥

4n∑

µ=1

|Xµu|m
∥∥∥∥∥∥

L1(U )

+ ‖u‖L1(U )

⎞

⎠ . (4.15)
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Proposition 4.10 If 1 < s < p = 2Q/(Q − 2), then imbedding S2
1(M) ⊂⊂

Ls(M) is compact.

Proof By arguments in [7], we have continuous inclusion S2
1(M) ⊂ W 2

1/2(M),

where W 2
1/2(M) is the usual Sobolev space. Now the usual Sobolev imbedding

theorem guarantees the inclusion W 2
1/2(M) ⊂ L1(M) to be compact. Suppose

{ul} is a bounded sequence of S2
1(M). Then, there exists a subsequence, which is

still denoted by ul , converging to u in L1(M). Note that

‖ul −ul ′‖Ls (M) ≤ ‖ul −ul ′‖a
L1(M)

‖ul −ul ′‖1−a
L p(M), a = (1/s) − (1/p)

1 − (1/p)
(4.16)

by Hölder’s inequality (cf. [1], p. 89), where ‖ul − ul ′‖L p(M) is bounded by the
Sobolev-type inequality (4.7) for critical exponent p, which also holds on man-
ifold M . We see that {ul} is also a Cauchy sequence in Ls . The compactness
follows. �

5 The existence of extremal

The extremal problem (1.7) in H
n is

λ(Hn) = inf

⎧
⎨

⎩
1

2

∫

Hn
bn

4n∑

µ=1

|Yµu|2ψH;
∫

Hn
|u|pψH = 1

⎫
⎬

⎭ , (5.1)

where ψH = ψθ defined by (2.27) with θ = θH.

Lemma 5.1 λ(M) ≤ λ(Hn) for any compact quaternionic contact manifold M.

Proof The class of test functions defining λ(Hn) can be restricted to C∞ function
with compact support. The proof is similar to that in [11, 16]. For each ε > 0,
choose u ∈ C∞

0 (Hn) such that BθH
(u) = 1 and AθH

(u) < λ(Hn)+ε. Let uδ(ζ ) =
δ−(Q−2)/2u(Dδ−1ζ ) for ζ ∈ H

n . For fixed ξ ∈ M , set vδ(η) = uδ(�ξ (η)). For δ
sufficiently small, supp uδ is contained in �ξ(�ξ ). Hence, vδ has compact sup-
port in �ξ . It can be extended to a C∞ function on M . It is easy to check that
BθH

(uδ) = BθH
(u) = 1 and AθH

(uδ) = AθH
(u) < λ(Hn) + ε by rescaling. Also,∫

Hn |uδ|2ψH = δ2
∫
Hn |u|2ψH −→ 0 as δ −→ 0. By Corollary 3.3, we have

((Dδ−1�ξ)
−1)∗θβ = δ2θH,β + δ3(O1dt + O2dx)

((Dδ−1�ξ)
−1)∗ψθ = δQ(1 + δO1)ψH

((Dδ−1�ξ)∗ Xµ = δ−1(Yµ + δO1E(∂x ) + δ1 O2E(∂t )), µ = 1, . . . , 4n,

(Dδ−1�ξ)∗�θ = δ−2(�H + δE(∂x ) + δO1E
(
∂t ; ∂2

x

) + δO2E(∂x∂t )

+δO3E
(
∂2

t

))
,

(5.2)



376 W. Wang

where (Y1, . . . , Y4n) are left invariant vector fields of the quaternionic Heisenberg
group in (2.17). Therefore,

Bθ (vδ) =
∫

M
|uδ(�ξ (η))|pψθ =

∫

Hn
δ−Q |u|p((Dδ−1 · �ξ)

−1)∗ψθ

=
∫

Hn
|u|p(1 + δO1)ψH −→ BθH

(u) = 1. (5.3)

For any fixed a > 0, Dδ−1�ξ(�ξ ) ⊃ Ba for sufficiently small δ. Similarly,
Aθ (vδ) −→ AθH

(u) < λ(Hn) + ε. Since ε is arbitrary, the lemma follows.

For each 2 ≤ q < p = 2Q/(Q − 2), consider the following variational
problem,

λq(M) = inf{Aθ (u); u ∈ S2
1(M), Bθ,q(u) = 1}, (5.4)

where

Bθ,q(u) =
∫

M
|u|qψθ . (5.5)

�

Theorem 5.2 For each 2 ≤ q < p = 2Q/(Q − 2), there exists a positive C∞
solution uq to the equation

bn�θuq + sθuq = λq(M)uq−1
q , (5.6)

satisfying Aθ (uq) = λq(M) and Bθ,q(uq) = 1.

The proof of this theorem is exactly the same as that of Theorem 6.2 in [11] by
using the compactness of Sobolev embedding in Proposition 4.10 and regularity
results in Proposition 4.7 and Theorem 4.8. To prove Theorem 1.1, it is enough to
prove the following theorem.

Theorem 5.3 If λ(M) < λ(Hn), then there exists a sequence ql tending to p from
below such that uql converges in Cm(M) for any m to a function u ∈ C∞(M)
such that u > 0, and

bn�θu + sθu = λ(M)u p−1. (5.7)

with Aθ (u) = λ(M) and Bθ,p(u) = 1.

The following behavior of λq can be proved as Lemma 6.4 in [11].

Proposition 5.2 (1) If λq(M) < 0 for some q, then λq(M) < 0 for all q ≥ 2.
λq is a nondecreasing function of q.

(2) If λq(M) ≥ 0 for some q ≥ 2, then λq is nonincreasing of q and is
continuous from left.

Proof of Theorem 5.3. Case 1. λ(M) < 0. �
Let uq be a C∞ solution of Eq. (5.6) given by Theorem 5.2. For each 2 ≤ q <

p = 2Q/(Q − 2), φ ∈ S2
1(M), we have

∫

M
(〈dbuq , dbφ〉θ + sθuqφ)ψθ =

∫

M
λquq−1

q φψθ . (5.8)



The Yamabe problem on quaternionic contact manifolds 377

Let φ = uq−1
q . Since λq(M) < 0,

∫

M
(q − 1)uq−2

q |dbuq |2θψθ ≤
∫

M
|sθuq

q |ψθ . (5.9)

It follows that
∫

M
|dbwq |2ψθ ≤ C

∫

M
w2

qψθ = C
∫

M
uq

qψθ = C (5.10)

for wq = uq/2
q and some constant C > 0. By Sobolev-type inequality (4.7), we

have
∫

M w
p
q ≤ C ′ for some positive constant C ′. Now let q0 > 2 and r = q0/2p >

p. Then, for q ≥ q0, ‖uq‖Lr (M) is uniformly bounded as q −→ p. It follows from
regularity result in Theorem 4.8 that ‖uq‖Ck (M) is uniformly bounded, and there
exists a subsequence uq j converging in Ck(M) to u for any k. The limit u satisfies
bn�θu + sθu = λu p−1 with λ = Aθ (u) = lim λq j and Bθ,p(u) = 1. We also have
λ ≤ λ(M). Consequently, λ = λ(M) by the definition of λ(M).

Case 2. λ(M) ≥ 0.

Case 2i. For some sequence q j −→ p, supM |dbuq j |θ is uniformly bounded. By
interpolation inequality (4.15), uq j are uniformly bounded in Sm

1 (M) for any m.
Consequently, uq j are in Lm(M) for any m. The result follows as in the case 1.

Case 2ii. supM |dbuq |θ −→ ∞ as q −→ p.
Choose ξq ∈ M such that |dbu(ξq)|θ = supM |dbuq |θ . Let �ξq be the normal

coordinates defined in Theorem 1.2. Without loss of generality, we can assume that
there is a fixed neighborhood U of the origin of H

n contained in the image of �ξq

for all q . We will identify U with a neighborhood of ξq by (x, t) = �ξq (ξ), ξ ∈ U .
Define (x̃, t̃) = D

δ−1
q

(x, t),

θ̃H,β = dt̃β −
n−1∑

l=0

4∑

j,k=1

bβ
k j x̃4l+kdx̃4l+ j = δ−2

q (D∗
δq

θHn ,β), (5.11)

and on the set D
δ−1

q
U with coordinates (x̃, t̃), define

hq(x̃, t̃) = δ
2

q−2
q uq

(
δq x̃, δ2

q t̃
)

(5.12)

where δq > 0 is so chosen that |dbhq(0)|θ̃Hn = 1. Since

|dbhq(0)|θ̃Hn = δ
1+ 2

q−2
q |dbuq(ξq)|θ , (5.13)

we see that δq −→ 0 as q −→ p and Dδq
−1U −→ H

n .
Denote

θ(q) = δ−2
q (D∗

δq
θ), �̃q = �θ(q)

(5.14)

in coordinates (x̃, t̃) on the region Dδq
−1U . Note that

(
�

δ−2
q (D∗

δq
θ)

uq
)
(η) = δ2

q

(
�D∗

δq
θuq

)
(η) = δ2

q

(
�θuq

)
(Dδq η), (5.15)
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by definition of the SubLaplacians. The equation for hq is

bn�̃q hq + sqδ2
q hq = λq(M)hq−1

q , (5.16)

where sq is the scalar curvature of θ in the coordinates (x, t). Also, |sq | ≤
‖sθ‖L∞(M).

If necessary by passing to a subsequence, we can assume ξq −→ ξ ∈ M .
Denote by (Xq

1 , . . . , Xq
4n) the frame (i.e. local orthonormal basis with norm

√
2)

used to define �ξq , we may assume it converging to (X1, . . . , X4n). Let

Y q
µ = δq D

δ−1
q ∗ Xq

µ, µ = 1, . . . , 4n. (5.17)

Then (Y q
1 , . . . , Y q

4n) is a frame for θ(q). By using (5.2), we see that (Y q
1 , . . . , Y q

4n)

converge in Ck(Ba) to (Y1, . . . , Y4n) for each k, a > 0 as δq −→ 0, where
(Y1, . . . , Y4n) are left invariant vector fields of the quaternionic Heisenberg group
in (2.17). Similarly, θ(q) and �̃q converge uniformly in Ck(Ba) to θH and �H for
each k, a > 0 by using (5.2), respectively.

Note that |dhq |θ(q)
is bounded in B2a since it attains its maximum at the origin,

and
∫

|(x̃,t̃)|<a
|hq(x̃, t̃)|qψθ(q)

= δ

2q
q−2 −Q
q

∫

|(x,t)|<δq a
|uq(x, t)|qψθ . (5.18)

When q < p, we have that 2q/(q − 2) − Q > 0 and the right-hand side of
(5.18) is bounded. Moreover, ψθ(q)

= (1 + δO1)ψH on Ba by (5.2). We find that
hq ∈ Lq(Ba, ψH) with uniform bound. Consequently, hq ∈ L1(Ba, ψH) with a
uniform bound. This fact together with |dbhq |θ(q)

uniformly bounded by 1 gives
hq ∈ Sm

1 (Ba, ψH) for each m < ∞ by interpolation inequality (4.15). Conse-
quently, ηhq ∈ Lm(M) for each m ≥ 1, and by Theorem 4.8, ηhq is uniformly
bounded in Ck(Ba) for each k.

Now take a subsequence q j −→ p such that hq j converges in C2(Ba). Thus,
it defines a function u on H

n by first choosing a subsequence hq j convergent in
C2(B1); then choosing a subsequence of hq j convergent in C2(B2), etc. Note u ≥
0, u ∈ C2(Hn) and u is not zero since |du(0)|θH

= 1. Since θ(q j ) −→ θH and
λq j (M) −→ λ(M) by the continuity of λq(M) from left in q in Proposition 5.2,
by letting q j −→ p in (5.16), we have that for φ ∈ C∞

0 (Hn),
∫

Hn
(bn〈dbu, dbφ〉θH

− λ(M)u p−1φ)ψH = 0. (5.19)

Since ψθ(q j )
−→ ψH by (5.2), (5.18) implies

∫
Ba

u pψH ≤ 1 for each a > 0.

Hence,
∫
Hn u pψH ≤ 1. On the other hand,

∫

Ba

|dbu|2θHn ψHn = lim
j−→∞

∫

Ba

|dbhq j |2θ(q j )
ψθ(q j )

= lim
j−→∞

∫

M
δ

2q j
q j −2 −Q

q j |dbuq j |2θψθ

≤ lim sup
j−→∞

∫

M
|dbuq j |2θψθ < ∞ (5.20)



The Yamabe problem on quaternionic contact manifolds 379

by δ
2q j /(q j −2)−Q
q j ≤ 1. By taking a subsequence φl ∈ C∞

0 (Hn) to approximate u
in (5.19), we find that

bn

∫

Hn
|du|2θH

ψH = λ(M)

∫

Hn
|u|pψH (5.21)

Now taking ũ = u
‖u‖p

, we have

bn

∫

Hn
|dũ|2θH

ψH = λ(M) < λ(Hn), ‖ũ‖p = 1 (5.22)

which contradicts the definition of λ(Hn). Thus, case 2ii is impossible and the
theorem is proved. �

Similar to [11], we have

Proposition 5.5 If λ(M) ≤ 0, any two contact forms conformal to θ with constant
scalar curvatures are constant multiplier of each other.
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