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Abstract In this work, we study a class of Euler functionals defined in Banach
spaces, associated with quasilinear elliptic problems involving p-Laplace operator
(p > 2). First we obtain perturbation results in the spirit of the remarkable paper
by Marino and Prodi (Boll. U.M.I. (4) 11(Suppl. fasc. 3): 1–32, 1975), using the
new definition of nondegeneracy given in (Ann. Inst. H. Poincaré: Analyse Non
Linéaire. 2:271–292, 2003). We also extend Morse index estimates for minimax
critical points, introduced by Lazer and Solimini (Nonlinear Anal. T.M.A. 12:761–
775, 1988) in the Hilbert case, to our Banach setting.
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1 Introduction

In recent years, there has been a growing interest towards variational differential
problems, involving p-Laplacian (p > 2), which arise naturally in various physi-
cal contexts, for instance, in the study of non-Newtonian fluids and in the study of
elasticity problems (cf. [21, 25]).

It seems to be a very interesting problem to understand if global Morse rela-
tions can be used to obtain multiplicity results of solutions for such quasilinear
equations.

It is well known that Morse theory in Hilbert spaces has been largely used to
obtain multiplicity results of solutions for semilinear elliptic equations, having a
variational structure. It is standard to find such solutions as critical points of an

S. Cingolani (B) · G. Vannella
Dipartimento di Matematica, Politecnico di Bari, Via Amendola 126/B, 70126 Bari, Italy
E-mail: {cingolan, vannella}@poliba.it

Springer-Verlag 2006



156 S. Cingolani, G. Vannella

Euler functional f , defined on a Hilbert space H . Under a compactness assump-
tion on the sublevels of the Euler functional, the so-called (P.S.) condition, global
Morse relations can be applied to find a lower bound on the number of critical
points of f . A basic requirement, for obtaining multiplicity of different solutions,
is the nondegeneracy condition for the critical points of f , and this is a reason-
able assumption, as a remarkable perturbation result in [26], due to Marino and
Prodi, holds. This perturbation theorem guarantees that any C2 functional f on
H , having an isolated critical point u, such that the second derivative f ′′(u) of
f in u is a Fredholm operator, can be approximated locally by a C2 functional
g, having a finite number of nondegenerate critical points, i.e., critical points
in which g′′ is an isomorphism from H to its dual space. Furthermore, in [26]
similar perturbation results are proved near compact sets of critical points of the
functional.

We mention that perturbation results for G-invariant functionals with isolated
critical G-orbits are successively proved by Viterbo in [37].

We remark that all these perturbation results by Marino and Prodi rely on
an infinite dimensional version of Sard’s Theorem, due to Smale [31], and thus
they work under the crucial assumption that the second derivative of the Euler
functional f ′′(u) in the critical point u is a Fredholm operator.

Finally, for the approximating functional g, a classical result in Morse theory
for Hilbert spaces, based on Morse Lemma, can be applied to evaluate the local
behavior of the Euler functional near nondegenerate critical points, via differential
notions (see Theorem 4.1 in [13, Chapter 1]).

For quasilinear equations involving p-Laplacian, it happens that the associ-
ated Euler functionals are in general defined in a Banach space, which cannot be
equipped with an equivalent Hilbert norm. It is known that global Morse rela-
tions hold in a Banach setting if the (P.S.) condition holds (c.f. [13]). However,
it happens that some conceptual difficulties arise in order to develop local Morse
theory, and in particular to evaluate the critical groups of the Euler functional in
the critical points via Hessian type notions.

Now we list some difficulties that arise in the passage to a Banach (not Hilbert)
variational framework. Let X be a Banach space and f be a C2 functional. A first
problem is that the classical definition of nondegenerate critical point introduced
in a Hilbert space, i.e., f ′′(u) is an isomorphism from X to the dual space X∗,
does not seem very reasonable, since there are several examples of Banach spaces
which are not isomorphic to their dual spaces. Furthermore, the existence of a
nondegenerate critical point u ∈ X of f , having finite Morse index, implies the
existence of an equivalent Hilbert structure (see [27] for the proof).

We also notice that if f ′′(u) is a Fredholm operator, then X is isomorphic to its
dual space X∗. So, in a Banach (not Hilbert) setting, the classical Morse lemma
does not hold and also generalized versions of Morse lemma (see [13]), due to
Gromoll and Meyer, fail.

Therefore, in a Banach space, we do not have the main ingredients to apply
Smale’s version of Sard’s Theorem and so to obtain Marino–Prodi perturbation
theorems in [26]. As developed in [27], the perturbation result by Marino and
Prodi can be extended to a Banach space X , if there exists on X an equivalent
Hilbert norm.
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In this work, we are interested to obtain perturbation results, in the spirit of
Marino–Prodi theorems in [26], for some functionals defined in Banach space,
which cannot be equipped with an equivalent Hilbert norm.

Precisely, let A be an open subset of W 1,p
0 (�) and let us consider the C2

functional Fλ : A → R defined by setting

Fλ(u) = 1

p

∫
�

|∇u|p + λ

2

∫
�

|∇u|2 dx +
∫

�

G(u) dx (1)

where 2 < p < ∞, λ ≥ 0, and � is a bounded domain of R
N (N ≥ 1), with

sufficiently regular boundary ∂�. Here G(t) = ∫ t
0 g(s) ds and g ∈ C1(R, R)

satisfies the following assumption:

(g): |g′(t)| ≤ c1|t |q + c2 with c1, c2 positive constants and 0 ≤ q < p∗ − 2,
p∗ = N p/(N − p) if N > p, while q is any positive number, if N = p.

Otherwise, if N < p, no restrictive assumption on the growth of g is required.
We notice that for λ = 0 the functional F0 involves only the p-Laplacian.
At this point, fixed λ ≥ 0, p > 2, and g, we introduce the following class of

C2 functionals

Fλ(A) = { f : A → R : f (u) = Fλ(u) + h(PṼ u)} (2)

where h : Ṽ → R is a C2 function, Ṽ is a finite dimensional subspace of
W 1,p

0 (�) ∩ L∞(�), and PṼ : W 1,p
0 (�) → Ṽ is a continuous and linear pro-

jection on Ṽ .
In what follows, we shall use the following notation

F(A) =
⋃
λ≥0

Fλ(A).

We emphasize that any functional f belonging to F(A) is defined on an open
set of a Banach space and the second derivative f ′′(u), in each critical point, is
not a Fredholm operator. Moreover we remark that using the classical definition
given for Hilbert spaces, any critical point u of f is degenerate, as, being p > 2,
W 1,p

0 (�) is not isomorphic to the dual space W −1,p′
(�), with 1/p + 1/p′ = 1

(cf. [20]).
In the recent papers [15, 16] we have introduced a new weak notion of nonde-

generacy in the setting of functionals (1).

Definition 1.1 Let A be an open set in W 1,p
0 (�) and f ∈ C2(A). A critical point

u ∈ A of f is said to be nondegenerate if f ′′(u) : W 1,p
0 (�) → W −1,p′

(�) is
injective.

Definition 1.2 Let A be an open set in W 1,p
0 (�). We say that a functional f :

A → R belongs to the class M(A) if f ∈ C2(A), the critical points of f are
nondegenerate in A (in the sense of Definition 1.1) and, for any critical point
u ∈ A of f , there exists an open neighborhood U of u such that f|U ∈ Fλ(U ),
with λ > 0.
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When no confusion can arise, we shall denote by f the functionals in F(A)
and by g̃ the functionals in M(A).

In order to recall the main result in [16, 17], we need to introduce some useful
definitions (cf. [13]).

Definition 1.3 Let X be a Banach space and f be a C2 functional on X . Let K be
a field. Let u be a critical point of f , c = f (u), and U be a neighborhood of u.
We call

Cq( f, u) = Hq( f c ∩ U, ( f c \ {u}) ∩ U )

the q-th critical group of f at u, q = 0, 1, 2, . . . , where f c = {v ∈ X | f (v) ≤ c}
and Hq(A, B) stands for the q-th Alexander–Spanier cohomology group of the
pair (A, B) with coefficients in K (cf. [13]).

Definition 1.4 Let X be a Banach space and f be a C2 functional on X . If u is a
critical point of f , the Morse index of f in u is the supremum of the dimensions of
the subspaces of X on which f ′′(u) is negative definite. It is denoted by m( f, u).
Moreover, the large Morse index of f in u is the sum of m( f, u) and the dimension
of the kernel of f ′′(u). It is denoted by m∗( f, u).

In [16, 17], we have computed the critical groups of the functionals belonging
to the class M(A), in each critical point u, via Morse index.

Theorem 1.5 Let A be an open set in W 1,p
0 (�). Let g̃ ∈ M(A) and u ∈ A be a

critical point of g̃. Then m(g̃, u) is finite and

Cq(g̃, u) ∼= K, if q = m(g̃, u),

Cq(g̃, u) = {0}, if q �= m(g̃, u).

Injectivity of g̃′′(u) is sufficient to obtain a suitable finite dimensional reduc-
tion, which allows us to identify the critical groups of g̃ in u with the critical
groups of a suitable function defined on a finite dimensional subspace of W 1,p

0 (�).
So for the class of functionals in M(A), we are able to develop a local Morse the-
ory and to overcome all the mentioned difficulties in a Banach setting.

We underline that the notion of nondegenerate critical point, in Definition 1.1,
is weaker than the usual nondegeneracy condition in a Hilbert setting. Further-
more, we shall prove in Corollary 2.4 that a nondegenerate critical point, in our
new sense, is isolated.

The aim of this work is to prove that any functional (1) is near, in C2 norm, to a
functional belonging to the class M(A), in the spirit of Marino–Prodi perturbation
results.

We also mention that, in the literature, Uhlenbeck et al. [11, 35, 36] have in-
troduced the definition of weakly nondegenerate critical point for C2 functionals
defined on a Banach space X . Such a definition requires that u is a priori isolated
and involves the existence of an hyperbolic operator L : X → X which com-
mutes with the second derivative of the Euler functional f in the critical point
u and satisfies other additional conditions relating the first derivative of f in a
neighborhood of the critical point. In fact it does not seem very easy to prove the
existence of such operator and to obtain Marino–Prodi perturbation type results in
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terms of functions having weakly nondegenerate critical points. Moreover, as Uh-
lenbeck wrote in [36], in 1969 Smale conjectured that the only injectivity would
be enough for developing Morse theory in a Banach setting. So we can say that, in
the setting of class M(A), Smale’s conjecture is true. Furthermore, it is easy to see
that a weakly nondegenerate critical point, in the sense introduced in [11, 35, 36],
is also a nondegenerate critical point, in the new sense introduced in Definition 1.1.

We begin to consider the case f ∈ Fλ(A) with λ > 0 with an isolated critical
point. We state the following theorem, which is proved in Sect. 2.

Theorem 1.6 Let A be an open subset of W 1,p
0 (�). Suppose that f ∈ Fλ(A) with

λ > 0 has a unique critical point u ∈ A. Then for any ε > 0 and γ > 0 such that
B̄γ (u) ⊂ A, where Bγ (u) = {v ∈ W 1,p

0 (�)|‖v − u‖ < γ }, there exists a func-
tional g̃ ∈ M(A) with the following properties:

(1) ‖ f (i)(v) − g̃(i)(v)‖ < ε for any v ∈ A, i = 0, 1, 2,

f (v) = g̃(v) if v ∈ A, ‖v − u‖ ≥ γ ;
(2) the critical points of g̃, if any, are in Bγ (u) and finitely many;
(3) g̃ verifies the (P.S.) condition on B̄γ (u).

As said before, in our setting we cannot apply the results in [26, 27]. In this
work, we shall overcome these difficulties, applying Sard’s Lemma, in the finite
dimensional version (see [28, 29]), to an ad hoc reduction function.

In Sect. 2, we establish that u is a critical point of a functional f ∈ Fλ(A),
with λ > 0, if and only if 0 is a critical point of a suitable C2 function ϕ defined
on a finite dimensional space. The construction of a continuous reduction map ϕ is
already contained in [16], but only in Sect. 2 of the present work we show that ϕ is
C2. The regularity of the map ϕ is the crucial ingredient to apply Sard’s Lemma,
in the finite dimensional version, and to find a C2 approximating function ϕ̃ of
ϕ, having nondegenerate critical points in the classical sense. Finally, using ϕ̃, we
construct a new functional g̃ ∈ M(A), approximating f , in a C2 sense, near the
critical point u and so we prove Theorem 1.6.

In Sects. 3 and 4, we drop the assumption that the critical point is isolated and
we deal with a compact set of critical points of f ∈ Fλ(A), λ > 0. Precisely in
Sect. 3 we carry out a suitable C2 finite dimensional reduction for any functional
f ∈ Fλ(A), λ > 0 near a compact set of critical points. In Sect. 4, using this
reduction and Sard’s Lemma, we approximate f near a compact set of critical
points by a functional g̃ ∈ M(A) (cf. Theorem 4.3). We emphasize that this
compact set of critical points is not required to be isolated in the critical set.

Furthermore, we prove upper (lower) semicontinuity properties of the large
(strict) Morse index of the functional g̃ approximating f .

We remark that the idea of combining the Splitting Theorem and Sard’s
Lemma, in the finite dimensional case, can be traced back to Chang [10] in the
special case of a C2 functional, defined on a Hilbert space, having an isolated
critical point.

In Sect. 5, we focus on the case λ = 0, which is more delicate. In order to
obtain perturbation results like in [26] for a functional f0 ∈ F0(A), involving
only p-Laplacian, we need to perform two approximations. The first step is to
penalize the functional f0 with a ‘small’ quadratic term λ

∫
�

|∇u|2 dx , with λ > 0,
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obtaining a new functional fλ, still belonging to Fλ(A), having a compact set of
critical points.

Using the approximating results in Sect. 4 for a compact set of critical points
of fλ, λ > 0, we obtain an approximating functional of f0 near an isolated critical
point.

Theorem 1.7 Let A be an open subset in W 1,p
0 (�). Let f ∈ F0(A) and u ∈ A

the only critical point of f . Then for any ε > 0 and γ > 0 such that B̄γ (u) ⊂ A,
there exists a functional g̃ ∈ M(A) with the following properties:

(1) ‖ f (i)(v) − g̃(i)(v)‖ < ε for any v ∈ A, i = 0, 1, 2,
f (v) = g̃(v) if v ∈ A, ‖v − u‖ ≥ γ .

(2) The critical points of g̃, if any, are in Bγ (u) and finitely many.
(3) g̃ verifies (P.S.) condition on B̄γ (u).

We notice that the computations of critical groups in [16, 17] does not cover the
case λ = 0. Nevertheless Theorem 1.7 keeps holding for f0. This guarantees that
near a functional involving only the p-Laplacian there is a functional containing a
semilinear term, for which we are able to evaluate the critical groups.

In Theorem 5.2, we generalize Theorem 1.7 with λ = 0 for a compact set of
critical points of f0.

Finally Sect. 6 is devoted to some applications of the perturbations results,
proved in the previous sections. First we extend some well-known results in a
Hilbert framework, due to Lazer and Solimini [24], to our Banach framework.
More precisely, we evaluate the Morse indices of minimax critical points for func-
tionals f ∈ Fλ(A), λ > 0 satisfying the assumptions of the Saddle-Point Theorem
by Rabinowitz [30] and we prove the following theorem (see also Theorem 6.4 in
Sect. 6).

Theorem 1.8 Let f ∈ Fλ(W 1,p
0 (�)), with λ > 0. Assume that W 1,p

0 (�) = Y ⊕Z,
where Y , Z are closed subspaces of W 1,p

0 (�) and 1 ≤ dimY = k. Let a < b
be two real numbers such that f satisfies the Palais–Smale condition on {z ∈
W 1,p

0 (�) : a ≤ f (z) ≤ b}. Moreover suppose that there exists R > 0 such that

max
y∈Y∩∂ BR(0)

f (y) ≤ a < inf
z∈Z

f (z), max
y∈Y∩B̄R(0)

f (y) ≤ b.

Then there exists a critical point x0 of f , with x0 ∈ f −1([a, b]), such that
m( f, x0) ≤ k ≤ m∗( f, x0).

We remark that the results in [24] work in a Hilbert setting and require the
Fredholm properties of the second derivative of the Euler functional, as the au-
thors need to exploit the perturbation result of Marino and Prodi, which is based
on Sard–Smale’s theorem. Nevertheless the main ingredients in [24] fail in our
Banach setting, we shall overcome the lack of the Fredholm property of the sec-
ond derivative, using the Marino–Prodi type perturbation results, developed in our
work, and the upper (lower) semicontinuity properties of the large (strict) Morse
index of the approximating functionals.

In this paper, we furnish an application of Theorem 1.8 for a quasilinear prob-
lem with an asymptotic nonlinearity as u p−1 at infinity. To this aim, we recall the
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following facts. Let E : W 1,p
0 (�) → R defined by E(u) = ∫

�
|∇u|p dx, and set

M = {u ∈ W 1,p
0 (�) : ∫

�
|u|p = 1}. We denote by σ(−�p) the spectrum of the

p-Laplace operator, namely the set of critical values of E|M . It is known that the
first eigenvalue µ1 = minu∈M E(u) is positive and it has associated an eigenfunc-
tion u1 which is positive in � (cf. [2]). Moreover the spectrum σ(−�p) of −�p
contains at least an increasing eigenvalue sequence µk having a variational char-
acterization [4, 5]. In [3] (see also [19]), it is proved that ]µ1, µ2[∩σ(−�p) = ∅.

Now let us define

µ̄2 = sup
Y

{
inf

u∈M∩Y
E(u) : W 1,p

0 (�) = Y ⊕ (Ru1)
}
. (3)

By Theorem 5.1 in [19], we have that µ1 < µ̄2 ≤ µ2.
We derive the following corollary of Theorem 1.8:

Corollary 1.9 Let us consider the problem

(P)

{−�pu − λ�u = µ|u|p−2u + q(u) on �

u = 0 on ∂�

where � is a bounded domain in R
N with smooth boundary, p > 2, λ > 0,

µ1 < µ < µ̄2 (µ̄2 is defined by (3)), q : R → R is a function of class C1 such
that

lim|s|→+∞
q ′(s)
|s|p−2

= 0. (4)

Then there exists a solution ū of problem (P) such that m(F, ū) ≤ 1 ≤ m∗(F, ū),
being F the Euler functional associated to problem (P).

In this work, we restrict ourself to study problem (P) in the case µ1 < µ <
µ̄2, as we can take advantage of a saddle structure connected with the decom-
position W 1,p

0 (�) = Y ⊕ (Rϕ1). The more complicated case µ ≥ µ̄2 has been
considered in a recent work [14], in which a suitable homological linking structure
has been recognized (for the case p = 2 see [1, 10, 12, 24]).

Finally we mention that the perturbation results, here obtained, are applied in
a recent paper [18] for obtaining a multiplicity result of solutions for quasilinear
problem using Morse relations and domain topology, in the spirit of a remarkable
paper by Benci and Cerami [7] for the semilinear case.

Notations

1. (·|·) denotes the scalar product in R
N .

2. ‖·‖ denotes the usual norm in W 1,p
0 (�) and also the usual norm in W −1,p(�).

3. ‖ · ‖1,2 denotes the usual norm in W 1,2
0 (�).

4. ‖ · ‖∞ denotes the usual norm in L∞(�).
5. 〈·, ·〉 : W −1,p′

(�) × W 1,p
0 (�) → R denotes the duality pairing.

6. Br (u) = {v ∈ W 1,p
0 (�) : ‖v − u‖ < r}.

7. K = {v ∈ W 1,p
0 (�) : f ′(v) = 0}, Kc ={v ∈ W 1,p

0 (�) : f ′(v)= 0, f (v)= c}.
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8. f c = {v ∈ W 1,p
0 (�) : f (v) ≤ c}, f b

a = {v ∈ W 1,p
0 (�) : a ≤ f (v) ≤ b}.

9. Let M ⊂ W 1,p
0 (�) and r > 0. Mr = {v ∈ W 1,p

0 (�) : d(v, M) < r}, where
d(·, ·) is the usual distance function.

10. From time to time, we omit the symbol dx in integrals over �.

2 A C2 finite dimensional reduction for an isolated critical point

Let X be a Banach space and f be a C2 real function on X . Let C be a closed
subset of X . A sequence (un) in C is a Palais–Smale sequence for f if ‖ f (un)‖ ≤
M uniformly in n, while ‖ f ′(un)‖ → 0 as n → ∞. We say that f satisfies (P.S.)
on C if any Palais–Smale sequence in C has a strongly convergent subsequence
(cf. [32]).

Proposition 2.1 Let A be an open subset of W 1,p
0 (�) and let f ∈ Fλ(A) be with

λ ≥ 0. Then f verifies (P.S.) condition on the bounded closed subsets of A.
Moreover f ′ is a proper map on the bounded closed subsets of A.

Proof We introduce the maps D, H : W 1,p
0 (�) → W −1,p′

(�) defined by

〈Dz, ϕ〉 =
∫

�

(λ + |∇z|p−2)(∇z|∇ϕ) dx,

〈H z, ϕ〉 =
∫

�

g(z)ϕ dx + 〈h′(PṼ (z), PṼ ϕ〉 (5)

for each z, ϕ ∈ W 1,p
0 (�), so that f ′ = D + H . It is known (see [6], Appendix

B) that D is an invertible operator and D−1 is continuous. As H is compact, the
assert comes. �

The aim of this section is to prove Theorem 1.6, stated in Sect. 1. We begin
to consider an open subset A of W 1,p

0 (�) and a functional fλ ∈ Fλ(A) with
λ > 0. For simplicity we set λ = 1, denoting f1 by f . Furthermore, let us fix
a critical point u ∈ A of f at level c = f (u). By [33, 34], u ∈ C1(�̄), so the
function b(x) = |∇u(x)|(p−4)/2∇u(x) ∈ L∞(�). As in [16, 17], we introduce
a Hilbert space Hb, defined as the closure of C∞

0 (�) under the scalar product
(v, w)b = ∫

�
(1 + |b|2)(∇v|∇w) dx + (p − 2)(b|∇v)(b|∇w) dx . The space Hb

is W 1,2
0 (�) equipped by an equivalent Hilbert structure and thus W 1,p

0 (�) ⊂ Hb
continuously. Denoting by 〈·, ·〉b : H∗

b × Hb → R the duality pairing in Hb, f ′′(u)
can be extended to a Fredholm operator Lb : Hb → H∗

b defined by setting

〈Lb v, w〉b = (v, w)b +
∫

�

g′(u)vw dx + 〈h′′(PṼ (u)) PṼ v, PṼ w〉.

We can consider the natural splitting Hb = H− ⊕ H0 ⊕ H+, where H−, H0, H+
are, respectively, the negative, null, and positive spaces, according to the spectral
decomposition of Lb in L2(�). We remark that H− and H0 have finite dimensions
and

〈Lb v, w〉 = 0 ∀v ∈ H− ⊕ H0, ∀w ∈ H+. (6)
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Since u ∈ C1(�̄), we can deduce from standard regularity theory that H−⊕ H0 ⊂
C1(�̄). Consequently, denoted by W = H+ ∩ W 1,p

0 (�) and V = H− ⊕ H0, we

get the splitting W 1,p
0 (�) = V ⊕ W .

Arguing as in [16, Lemma 4.5] we can prove that there exist r > 0 and
	 ∈]0, r [ such that u + (V ∩ B̄	(0)) + (W ∩ B̄r (0)) ⊂ A and, for each v in
V ∩ B̄	(0), there exists one and only one w̄ ∈ W ∩ Br (0) ∩ L∞(�) such that for
any z ∈ W ∩ B̄r (0), f (v+w̄+u) ≤ f (v+ z +u). Moreover w̄ is the only element
of W ∩ B̄r (0) such that

〈 f ′(u + v + w̄), z〉 = 0 ∀z ∈ W. (7)

So we can introduce the map ψ : V ∩ B̄	(0) → W ∩ Br (0) defined by ψ(v) =
w̄ and the function ϕ : V ∩ B̄	(0) → R defined by ϕ(v) = f (u + v + ψ(v)). In
[16, Sect. 5] we proved that ψ is a continuous map.

In the next lemma we shall show that ψ is also differentiable from V to W
with respect to the weaker norm ‖ · ‖b and thus we shall infer a regularity result
for the reduction map ϕ.

Lemma 2.2 The map ϕ is C2 and for any v ∈ V ∩ B̄	(0), z ∈ V , w ∈ V we have

〈ϕ′(v), z〉 = 〈 f ′(u + v + ψ(v)), z〉 (8)

〈ϕ′′(v)z, w〉 = 〈 f ′′(u + v + ψ(v))(z + ψ ′(v)(z)), w〉. (9)

Moreover ϕ′′(v) is an isomorphism if and only if f ′′(u + v + ψ(v)) is injective.

Proof Firstly we show that for any fixed v ∈ V ∩ B̄	(0), we have ψ(v) ∈ C1(�̄)

and the map ψ : V ∩ B̄	(0) → W is C1 with respect to the norm ‖ · ‖b.
Indeed, from Lemma 4.3 in [16] we know that zv = u + v + ψ(v) ∈ L∞(�)

and there exists k > 0 such that ‖zv‖∞ ≤ k, uniformly with respect to v. By
[33, 34], we can infer that zv ∈ C1(�̄), and thus ψ(v) ∈ C1(�̄), as V ⊂ C1(�̄).

Moreover, in consequence of Theorem 4.1 in [22, Chapter 4], ‖ψ(v)‖C1(�̄) is
bounded from above by a suitable constant k0. Therefore, there exists a constant
R1 > 0 such that ‖u + v + ψ(v)‖C1 ≤ R1 for any v ∈ V ∩ B̄	(0). Now, fixed
R2 > R1, let us consider a non increasing C∞ function ω : [0, +∞[→ R such
that ω(t) = 1 if t ∈ [0, R1], ω(t) = 0 if t ≥ R2. By a suitable choose of R2,
we can build a function ϑ : R

N → R such that ϑ(ξ) = ω(|ξ |) 1
p |ξ |p + 1

2 |ξ |2 is
strictly convex in R

N . Moreover we consider the function Ḡ : R → R defined by
Ḡ(t) = ω(|t |)G(t) and we can introduce the following C2 functional

f̄ (v) =
∫

�

ϑ(∇v) dx +
∫

�

Ḡ(v) dx + h(P̄Ṽ v) ∀ v ∈ Hb

where P̄Ṽ : Hb → Ṽ is the continuous extension of PṼ . We underline that for any
v ∈ A ∩ C1(�̄) with ‖v‖C1 ≤ R1, we have

f̄ (v) = f (v), f̄ ′(v)|
W 1,p

0 (�)
= f ′(v), f̄ ′′(v)|

(W 1,p
0 (�))2 = f ′′(v). (10)

Now recalling that Hb = V ⊕ H+ and applying the Implicit Function Theorem to
the map B : (V ∩ B̄	(0))× H+ → (H+)∗ given by B(v, w) = f̄ ′(u +v+w)|H+ ,
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we can infer that ψ : V ∩ B̄	(0) �→ W is C1 with respect to ‖ · ‖b. Now by (10),
it follows that ϕ is a C1 functional. By the chain rule, we infer (8), as f̄ ′(u + v +
ψ(v))|H+ = 0 and ψ ′(v)(z) ∈ W . This shows that ϕ is also a C2 functional and,
again by the chain rule, (9) derives.

In order to complete the proof, fix v ∈ V ∩ B̄	(0) and suppose that ϕ′′(v) is an
isomorphism. By contradiction, if f ′′(u + v + ψ(v)) is not injective, there exists
z̄ ∈ W 1,p

0 (�), z̄ �= 0 such that

〈 f ′′(u + v + ψ(v))(z + ψ ′(v)(z)), z̄〉 = 0 ∀z ∈ V . (11)

If we write z̄ as z1 + z2 with z1 ∈ V and z2 ∈ W , by (9) and (11), as the
function v ∈ V ∩ B̄	(0) �→ 〈 f ′(u + v + ψ(v),w〉 ∈ R for any fixed w ∈ W is
constantly equal to zero, we deduce 〈ϕ′′(v)z1, z〉 = 0 for any z ∈ V , which is a
contradiction. Clearly we can deduce in a similar way that if f ′′(u + v + ψ(v)) is
injective, then ϕ′′(v) is an isomorphism. �

Corollary 2.3 V and W are orthogonal with respect to f ′′(u). Moreover we have

(i) ψ ′(0) = 0;
(ii) 〈ϕ′′(0)z, w〉 = 0 ∀z ∈ V, w ∈ W.

Proof By (6), it follows that V and W are orthogonal with respect to f ′′(u).
In order to verify (i), let us fix v, z ∈ V . As V and W are orthogonal with

respect to f ′′(u) and 〈 f̄ ′(u + v + ψ(v)), w〉 = 0 for any w ∈ W , we deduce that,
for any w ∈ W , 〈 f̄ ′′(u)(ψ ′(0)z), w〉 = 0, so ψ ′(0) = 0, as ψ ′(0)z ∈ W .

Moreover by (9), we have, for any z ∈ V , w ∈ W 〈ϕ′′(0)z, w〉 =
〈 f ′′(u)z, w〉 = 0, �

Corollary 2.4 Each nondegenerate critical point, according to Definition 1.1, is
isolated.

Proof Let u be a critical point for f such that f ′′(u) : W 1,p
0 (�) → W −1,p′

(�)
is injective. By Lemma 2.2, 0 is a critical point of ϕ and ϕ′′(0) : V → V ∗ is
an isomorphism. Being V a finite dimensional Hilbert space, the fact that 0 is
nondegenerate implies that 0 is an isolated critical point of ϕ. So by (8), u is an
isolated critical point of f . �

We are ready to prove Theorem 1.6 given in Sect. 1.

Proof of Theorem 1.6 For simplicity, fix λ = 1 and consider f ∈ F1(A). As
u is the only critical point of f in A, by (8), 0 is the only critical point of ϕ in the
ball V ∩ B̄	(0). Let us fix ε > 0 and γ > 0 such that Bγ (u) ⊂ A. Fixed δ ∈]0, γ [,
there exists ν > 0 such that

‖ f ′(z)‖ ≥ ν for any z ∈ Bγ (u) \ Bδ(u). (12)

Since V is a finite dimensional space and ϕ : V ∩ B̄	(0) → R is a C2 function,
having only one critical point in 0, we can apply well-known perturbation results
based on Sard’s Lemma (cf. [28, 29]). So that, in correspondence of ε̄ > 0, there
exists a C2 function α : V ∩ B̄	(0) → R such that,
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(i) ‖α(i)(v)‖ < ε̄ for any v ∈ V ∩ B̄	(0), i = 0, 1, 2
α(v) = 0 if ‖v‖ ≥ δ;

(ii) the critical points of ϕ + α, if any, are nondegenerate.

Moreover these critical points are in Bδ(0) and they are finitely many.
Denoted by β : V → R the natural extension to V of the function α, namely

β(v) =
{

α(v) if‖v‖ ≤ 	

0 otherwise,

we consider the C2 perturbed functional g : A → R defined by setting

g̃(z) = f (z) + ξ(z) · β (PV (z − u))

where ξ : W 1,p
0 (�) → R is a C2 function such that ξ(z) = 0 if z /∈ Bγ (u),

ξ(z) = 1 if z ∈ Bδ(u).
As ξ and its derivatives are uniformly bounded, choosing ε̄ sufficiently small

we get

‖ f (i)(v) − g̃(i)(v)‖ ≤ min{ε, ν/2} for any v ∈ A, i = 0, 1, 2. (13)

So it is clear that g verifies (2) by construction, and its critical points belong
to Bδ(u).

Let u0 ∈ A be a critical point of g. By (12) and (13) we infer also that ‖u0 −
u‖ ≤ δ, so that Bδ(u) ⊂ A is a neighborhood of u0 in which

g̃(z) = f (z) + β (PV (z − u)) . (14)

We notice that, for any z ∈ W 1,p
0 (�), 0 = 〈g̃′(u0), z〉 = 〈 f ′(u0), z〉 +

〈β ′ (PV (u0 − u)) , PV z〉. So in particular 〈 f ′(u0), w〉 = 0, for any w ∈ W , and
this means that

u0 ∈ Y = {u + v + ψ(v) : v ∈ V ∩ B̄	(0)}. (15)

Our aim is to prove that u0 is nondegenerate, i.e., g̃′′(u0) is injective.
Let z1 ∈ Ker g̃′′(u0). Denoted by v0 = PV (u0 − u), v1 = PV z1, w1 =

PW z1, we have that u0 = u + v0 + ψ(v0) and z1 = v1 + w1. First we note that
〈(ϕ + α)′(v0), v〉 = 〈g̃′(u0), v〉 = 0 for any v ∈ V so that v0 is a critical point of
ϕ + α. Moreover 〈g̃′′(u0)z1, v + ψ ′(v0)v〉 = 0, for any v ∈ V . Hence

0 = 〈 f ′′(u0)z1, v + ψ ′(v0)v〉 + 〈β ′′(v0)PV z1, PV (v + ψ ′(v0)v)〉
= 〈 f ′′(u0)v1, v + ψ ′(v0)v〉 + 〈 f ′′(u0)w1, v + ψ ′(v0)v〉 + 〈β ′′(v0)v1, v〉
= 〈ϕ′′(v0)v1, v〉 + 〈β ′′(v0)v1, v〉 = 〈ϕ′′(v0)v1, v〉 ∀v ∈ V .

(16)

Therefore, (ii) assures that v1 = 0, and 0 = 〈g̃′′(u0)w1, w〉 = 〈 f ′′(u0)w1, w〉, for
any w ∈ W . As Y is bounded in L∞ and δ is small, by [16, Lemma 4.4] there
exists C > 0 such that 0 = 〈 f ′′(u0)w1, w1〉 ≥ C‖w1‖2

b, so finally z1 = w1 = 0
and u0 is nondegenerate, as claimed. Moreover all the critical points of g are in
the compact set Y , so they have to be finitely many, otherwise Corollary 2.4 would
be contradicted.

Arguing as in the proof of Proposition 2.1, one can derives (3) of Theorem 1.6.
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3 A C2 finite dimensional reduction for a compact set of critical points

In this section, we also consider f ∈ Fλ(A) with λ > 0. For simplicity, we can
choose λ = 1. Let us denote by Z a compact set of critical points of f .

Now we need to obtain a finite dimensional reduction, for this more general
case, so we generalize the arguments developed in [16, 17] (see also Sect. 2).
Firstly, by standard regularity theory, we have the uniform C1-bound of Z .

Lemma 3.1 For any u ∈ Z, u ∈ C1(�̄). Moreover there exists k > 0 such that
for any u ∈ Z, ‖u‖C1 ≤ k.

For each u ∈ Z , arguing as in Sect. 2, we can consider the splitting W 1,p
0 (�) =

Vu ⊕ Wu , where Vu is a finite dimensional subspace of W 1,p
0 (�) and there exists

µ > 0 such that 〈 f ′′(u)v, v〉 ≥ µ‖v‖2
1,2 for any v ∈ Wu . Taking into account

Lemma 3.1, by Lemma 4.4 in [16], we can easily deduce the following result.

Lemma 3.2 For any u ∈ Z, there exist ru > 0 and Cu > 0 such that Bru (u) ⊂ A
and for any z ∈ Z ∩ Bru (u) we have 〈 f ′′(z)v, v〉 ≥ Cu‖v‖2

1,2 , for any v ∈ Wu.

Furthermore, as Z is a compact set, there exist u1, u2, . . . , un points in Z , and
r1, r2, . . . , rn positive numbers such that Z ⊂ ⋃n

i=1 Bri (ui ) ⊂ A and, for any
z ∈ Z with ‖z − ui‖ < ri , we have 〈 f ′′(z)v, v〉 ≥ Cui ‖v‖2

1,2 , for any v ∈ Wui .
In what follows, we set

V = Vu1 + Vu2 + · · · Vun (17)

so that V is a finite dimensional subspace of W 1,p
0 (�). Let us denote by W the

topological supplement in W 1,p
0 (�) of V . By standard computations it follows

that

W =
n⋂

i=1

Wui . (18)

By construction, denoting by C̄ = min{Cui : i = 1, 2 . . . n}, we immediately
infer the following result.

Lemma 3.3 There are a finite codimensional subspace W of W 1,p
0 (�) and a con-

stant C̄ > 0 such that

〈 f ′′(z)v, v〉 ≥ C̄‖v‖2
1,2 ∀z ∈ Z , ∀v ∈ W. (19)

As W 1,p
0 (�) = V ⊕ W , it makes sense to consider the projection PV :

W 1,p
0 (�) → V . Moreover, also L2(�) and H1

0 (�) can be projected on V and
the three functions

PV : W 1,p
0 (�) → V, P̃V : H1

0 (�) → V, P̄V : L2(�) → V

are all continuous with respect to each natural norm. As, in particular, P̃V is an
extension of PV , we can say that

∃c > 0 s.t. ‖PV (u)‖ ≤ c‖u‖1,2 ∀u ∈ W 1,p
0 (�). (20)
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Remark 3.4 Reasoning as in Lemma 4.3 of [16], we infer that, if X is a subset
of A which is bounded in W 1,p

0 (�)-norm and if 〈 f ′(z), w〉 = 0 for any z ∈ X ,
w ∈ W , then X ⊂ L∞(�). Moreover, there exists k > 0, k only depending on X ,
such that ‖z‖∞ ≤ k, for each z ∈ X .

At this stage, taking into account Lemma 3.3, we can deduce the next result,
whose proof follows the ideas contained in that of [16, Lemma 4.4].

Lemma 3.5 Let W be defined from (18). For any M > 0, there exist r > 0, γ > 0
such that

Zr = {z ∈ W 1,p
0 (�) : d(z, Z) < r} ⊂ A

and, for any z ∈ Zr ∩ L∞(�), with ‖z‖∞ < M, we have

〈 f ′′(z)v, v〉 ≥ γ ‖v‖2
1,2 ∀v ∈ W. (21)

This allows to obtain a finite dimensional reduction for each u ∈ Z . Firstly we
need the following lemma.

Lemma 3.6 There exists δ > 0 such that for any u ∈ Z , for any w ∈ W \{0} with
‖w‖ < δ we have

f (u + w) > f (u). (22)

Proof By assumption (g), and Lemma 3.1 there exist two constants c > 0, d > 0
such that, for any u ∈ Z , x ∈ � and s ∈ R, we have

|g′(s)| ≤ c + d|s − u(x)|p∗−2. (23)

Now let us define for any (x, s) ∈ � × R

ḡ(u, x, s) = g(s) + d

p∗ − 1
|s − u(x)|p∗−2(s − u(x))

and Ḡ(u, x, s) = G(s) + d
p∗(p∗−1)

|s − u(x)|p∗
. By (23) it is immediate to check

that
Ds ḡ(u, x, s) ≥ −c (24)

Now set q(ξ) = |ξ |p/p for any ξ ∈ R
N . Obviously there exist C1 > 0 and

C2 > 0 such that |q ′′(ξ)| ≤ C1|ξ |p−2 for any ξ ∈ R
N and |q ′′(ξ1 − ξ2)| ≤

C2(|ξ1|p−2 + |ξ2|p−2) for any ξ1, ξ2 ∈ R
N . Let us fix ε > 0 such that

1 − C2ε − C2εK p−2 ≥ 1/2, C̄ − 2C2εK p−2 ≥ C̄/2 (25)

where K > 0 is defined in Lemma 3.1 and C̄ > 0 is introduced in (19).
Moreover, let us define the functional tε : W 1,p

0 (�) → R by

tε(z) = ε

p

∫
�

|∇z|p dx − d

p∗(p∗ − 1)

∫
�

|z|p∗
dx, z ∈ W 1,p

0 (�)

and let us set k(u, z) = f (z) − tε(z − u), for any u ∈ Z , z ∈ A. Firstly, we
observe that there exist γ ′ > 0 and ε′ > 0 such that

tε(z) ≥ ε′
∫

�

|∇z|p dx ∀z ∈ A, ‖z‖ ≤ γ ′. (26)



168 S. Cingolani, G. Vannella

Now we shall prove that there exist σ > 0, C̃ > 0 such that Bσ (u) ⊂ A and
for any z ∈ Z ∩ Bσ (u), we have

〈Dzzk(u, z)w, w〉 ≥ C̃‖w‖2
1,2 ∀w ∈ W. (27)

By contradiction, we assume that there exist three sequences un in Z , zn ∈ A
and vn ∈ W \{0}, such that ‖vn‖1 = 1, ‖un − zn‖ → 0 and

lim inf
n→∞ 〈Dzzk(un, zn)vn, vn〉 ≤ 0. (28)

Since {vn} is bounded in H1, there exists v ∈ H1 such that vn weakly converges
to v in H1 and strongly in L2(�), up to subsequences. Moreover, v ∈ W . Since Z
is compact, there exists u ∈ Z such that zn → u, un → u, strongly in W 1,p

0 (�),
up to subsequences.

Firstly we prove that v �= 0. By contradiction, assume that v = 0. By (28), we
infer

〈Dzzk(un, zn)vn, vn〉 =
∫

�

|∇vn|2 dx +
∫

�

(q ′′(∇zn)∇vn|∇vn) dx

− ε

∫
�

(q ′′(∇zn − ∇un)∇vn|∇vn) dx

+
∫

�

g̃′(un, x, zn)v
2
n dx + 〈h′′(PṼ zn)PṼ vn, PṼ vn〉

≥ 1 +
∫

�

(q ′′(∇zn)∇vn|∇vn) dx − C2ε

∫
�

|∇zn|p−2|∇vn|2 dx

− C2ε

∫
�

|∇un|p−2|∇vn|2 dx − c
∫

�

v2
n dx + 〈h′′(PṼ zn)PṼ vn, PṼ vn〉

≥ 1 + (1 − C2ε)

∫
�

|∇zn|p−2|∇vn|2 dx − C2εK p−2
∫

�

|∇vn|2 dx

−c
∫

�

v2
n dx + 〈h′′(PṼ zn)PṼ vn, PṼ vn〉

≥ 1 − εC2K p−2 − c
∫

�

v2
n dx + 〈h′′(PṼ zn)PṼ vn, PṼ vn〉.

As vn → 0 in L2(�), the above inequality contradicts (28) as n → ∞, thus v �= 0.
At this point,we notice that

∫
�

(q ′′(∇u)∇v|∇v) dx ≤ lim inf
n→∞

∫
�

(q ′′(∇zn)∇vn|∇vn) dx . (29)

Moreover, by (24) and as vn → v in L2(�), we also obtain that

∫
�

g′(u)v2 dx ≤ lim inf
n→∞

∫
�

g̃′(un, x, zn)v
2
n . (30)
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Finally (29) and (30) imply

〈Dzzk(un, zn)vn, vn〉 =
∫

�

|∇vn|2 dx +
∫

�

(q ′′(∇zn)∇vn|∇vn) dx

− ε

∫
�

(q ′′(∇zn − ∇un)∇vn|∇vn) dx +
∫

�

g̃′(un, x, zn)v
2
n dx

≥
∫

�

(1 − εC2|∇un|p−2)|∇vn|2 dx +
∫

�

(1 − εC2)|∇zn|p−2|∇vn|2 dx

+ (p − 2)

∫
�

|∇zn|p−4|(∇zn|∇vn)|2 dx +
∫

�

g̃′(un, x, zn)v
2
n dx

+ 〈h′′(PṼ zn)PṼ vn, PṼ vn〉.
Then by (28), we deduce

0 ≥ lim inf
n→∞ 〈Dzzk(un, zn)vn, vn〉

≥ lim inf
n→∞

(∫
�

(1 − εC2|∇un|p−2)|∇vn|2 dx+
∫

�

(1−εC2)|∇zn|p−2|∇vn|2 dx

+ (p − 2)

∫
�

|∇zn|p−4|(∇zn|∇vn)|2 dx +
∫

�

g̃′(un, x, zn)v
2
n dx

+ 〈h′′(PṼ zn)PṼ vn, PṼ vn〉
)

≥ (1−εC2K p−2) lim inf
n→∞

∫
�

|∇vn|2 dx+(1−εC2) lim inf
n→∞

∫
�

|∇zn|p−2|∇vn|2 dx

+ (p − 2) lim inf
n→∞

∫
�

|∇zn|p−4|(∇zn|∇vn)|2 dx + lim inf
n→∞

∫
�

g̃′(un, x, zn)v
2
n dx

+ lim inf
n→∞ 〈h′′(PṼ zn)PṼ vn, PṼ vn〉

≥ (1 − 2εC2 K p−2)

∫
�

|∇v|2 dx +
∫

�

(h′′(∇u)∇v|∇v) dx +
∫

�

g′(u)v2 dx

+ 〈h′′(PṼ u)PṼ v, PṼ v〉

= 〈 f ′′(u)v, v〉 − 2εC2K p−2
∫

�

|∇v|2 ≥ C̄

2
‖v‖2

1,2

which is a contradiction.
At this point, for any u ∈ Z , for any w ∈ W with ‖w‖ ≤ min{γ ′, σ } we have

f (u + w) − f (u) = tε(w) + k(u, u + w) − k(u, u). (31)

Moreover, for any w ∈ W with ‖w‖ ≤ min{γ ′, σ }, there exists z ∈ W 1,p
0 (�) with

‖z − u‖ ≤ min{γ ′, σ } such that k(u, u + w) − k(u, u) = 1
2 〈Dzzk(u, z)w,w〉.

At this point, by (27), we infer

k(u, u + w) − k(u, u) ≥ C̃‖w‖2
1,2 (32)

C̃ being a suitable positive constant. Finally by (26), (31), and (32) we infer
(22). �
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Using arguments strictly related to Lemma 4.6 in [16], we derive the following
lemma.

Lemma 3.7 Let V , W be defined by (17) and (18), and δ > 0 the constant intro-
duced in the previous lemma. There exist r ∈]0, δ[ and 	 ∈]0, r [ such that for any
u ∈ Z ,

u + (
V ∩ B̄	(0)

) + (
W ∩ Br (0)

) ⊂ A

and for any u ∈ Z , v ∈ V ∩ B̄	(0) there exists one and only one w̄ = w̄(u, v) ∈
W ∩ Br (0) ∩ L∞(�) such that for any z ∈ W ∩ B̄r (0) we have

f (u + v + w̄) ≤ f (u + v + z).

Moreover w̄ is the only element of W ∩ B̄r (0) such that

〈 f ′(u + v + w̄), z〉 = 0 ∀z ∈ W. (33)

Proof We notice that if z ∈ A with d(z, Z) < δ, where δ is the positive constant in
Lemma 3.6, is a solution of 〈 f ′(z), w〉 = 0 for any w ∈ W , then, by Remark 3.4,
z ∈ L∞(�) and ‖z‖∞ ≤ M , where M > 0 only depends from Z δ . Now by
Lemma 3.5, in correspondence of 2M , there exists r0 ∈]0, δ[ and γ > 0 such that
(21) holds.

Let r ∈]0,
r0
3 [. Firstly, f is sequentially lower semicontinuous with respect

to the weak topology of W 1,p
0 (�). Therefore, for any u ∈ Z , v ∈ V ∩ Br (0),

there exists a minimum point w̄ = w̄(u, v) ∈ W ∩ B̄r (0) of the function w ∈
W ∩ B̄r (0) �→ f (u + v + w).

We shall prove the existence of 	 ∈]0, r [ such that, for any u ∈ Z and v ∈
V ∩ B̄	(0),

inf{ f (u + v + w) : w ∈ W, ‖w‖ = r} > f (u + v). (34)

Arguing by contradiction, we assume that there exist three sequences {un} in Z ,
{wn} in W ∩ ∂ Br (0) and {vn} in V , with ‖vn‖ → 0 as n → ∞, such that

f (un + vn + wn) ≤ f (un + vn). (35)

Since Z is compact, and {wn} is bounded, there exist ũ ∈ Z , w̃ ∈ W such that
un → ũ and wn ⇀ w̃ in W 1,p

0 (�), up to subsequences.
By Lemma 3.6, 0 is the unique minimum point of the function w ∈ W ∩

B̄r (0) �→ f (ũ + w), therefore we have f (ũ) ≤ f (ũ + w̃). Hence, by (35), it
follows that

f (ũ + w̃) ≤ lim inf
n→∞ f (un + vn + wn) ≤ lim sup

n→∞
f (un + vn) = f (ũ) ≤ f (ũ + w̃)

so that
f (ũ) = f (ũ + w̃). (36)
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Moreover, we deduce that

lim
n→+∞

∫
�

|∇un + ∇vn + ∇wn|p dx =
∫

�

|∇un + ∇w̃|p dx,

consequently wn → w̃ strongly in W 1,p
0 (�) and ‖w̃‖ = r which contradicts (36).

Hence, there exists 	 ∈]0, r [ such that, for any u ∈ Z , v ∈ V ∩ B̄	(0), (34)
holds.

Therefore, for any u ∈ Z , v ∈ V ∩ B̄	(0), the minimum point w̄ belongs to
W ∩ Br (0) and 〈 f ′(u + v + w̄), z〉 = 0, for any z ∈ W . Moreover w̄ ∈ L∞(�)
and ‖u + v + w̄‖∞ ≤ M .

Now we shall prove that for any fixed (u, v) ∈ Z × V ∩ B̄	(0), the minimum
point w̄ is unique. In fact, we shall prove even more, namely that w̄ is the only
element of W ∩ B̄r (0) such that 〈 f ′(u + v + w̄), z〉 = 0, for any z ∈ W .

By contradiction, let u1, u2 ∈ Z and v1, v2 ∈ V be such that PV u1 + v1 =
PV u2 + v2. We suppose that there exist w1, w2 ∈ W ∩ Br (0) ∩ L∞(�), such that
PW u1 + w1 = PW u2 + w2.

We have 〈 f ′(u1 + v1 + w1), z〉 = 0 and 〈 f ′(u2 + v2 + w2), z〉 = 0, for any
z ∈ W .

We notice that ‖v +w1 + t (w2 −w1)‖ = ‖v +w1(1 − t)+w2‖ ≤ 3r , for any
t ∈ [0, 1], hence ‖v + w1 + t (w2 − w1)‖ ≤ 3r < r0, for any t ∈ [0, 1] and thus
d(u + v + w1 + t (w2 − w1), Z) < r0 for any t ∈ [0, 1]. Furthermore, we have
‖u + v + w1 + t (w2 − w1)‖∞ ≤ 2M . Therefore, by (21), we deduce

0 = 〈 f ′(u + v + w1) − f ′(u + v + w2), w1 − w2〉
=

∫ 1

0
〈 f ′′(u + v + w1 + t (w2 − w1))(w1 − w2), w1 − w2〉 dt > 0.

The claim is proved. �

Since Z is compact, there exist u1, . . . uk , k points in Z such that

Z ⊂
k⋃

i=1

(ui + (B	/2(0) ∩ V ) + (Br (0) ∩ W )) = B ⊂ A. (37)

Moreover, for each ui + B	(0) ∩ V + Br (0) ∩ W , i = 1, 2, . . . k, the thesis of
Lemma 3.7 holds. So arguing as in [16], for any i = 1, 2, . . . , k we can introduce
the maps

ψi : V ∩ B̄	(0) → W ∩ Br (0) (38)

where ψi (v) = w̄ is the unique minimum point of the function w ∈ W ∩ B̄r (0) �→
f (ui + v + w), and the function

ϕi : V ∩ B̄	(0) → R (39)

defined by ϕi (v) = f (ui + v + ψ(v)). Arguing as in Sect. 2, one can prove the
following result.
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Lemma 3.8 For any i = 1, 2, . . . , k the map ϕi is C2, moreover, for any v ∈
V ∩ B̄	(0) and z, w ∈ V , we have

〈ϕ′
i (v), z〉 = 〈 f ′(ui + v + ψi (v)), z〉 (40)

〈ϕ′′
i (v)z, w〉 = 〈 f ′′(ui + v + ψi (v))(z + ψ ′

i (v)(z)), w〉. (41)

Furthermore, ϕ′′
i (v) is an isomorphism if and only if f ′′ (ui + v + ψi (v)) is injec-

tive.

4 An approximating functional of f ∈ Fλ(A), λ > 0 near a compact set of
critical points

We begin to prove a result concerning lower semicontinuity properties of the
Morse index for C2 functionals.

Proposition 4.1 Let A be a open set of a Banach space X. Let f : A → R be a
C2 functional. Let u0 a critical point of f . For any sequence {gn} of functionals
in C2(A, R) with g(i)

n → f (i) uniformly for i = 0, 1, 2, as n → ∞, and for any
sequence {un} of critical points of gn such that un → u0, as n → ∞, we have

m( f, u0) ≤ lim inf
n→∞ m(gn, un).

Proof Let X− be a finite dimensional subspace of X such that, for some constant
µ > 0, 〈 f ′′(u0)v, v〉 ≤ −µ‖v‖2, for any v ∈ X−. Since, for i = 0, 1, 2, g(i)

n →
f (i) uniformly and un → u0, as n → ∞, we have, for v ∈ X−

〈g′′
n (un)v, v〉 = 〈 f ′′(u0)v, v〉 + 〈( f ′′(un) − f ′′(u0))v, v〉

+ 〈(g′′
n (un) − f ′′(un))v, v〉 ≤ −µ‖v‖2 + ‖ f ′′(un)

− f ′′(u0)‖‖v‖2 + ‖g′′
n − f ′′‖‖v‖2 ≤ −µ/2‖v‖2.

Hence, lim inf
n→∞ m(gn, un) ≥ dim X−. �

Now using the same notations of the previous section, we deduce the following
results, based on Sard’s Lemma (cf. [28, 29]).

Lemma 4.2 Let V be a finite dimensional subspace of W 1,p
0 (�), 	 > 0 and ϕ :

V ∩ B̄	(0) → R a C2 function.
For any triple (ε, δ, δ′), such that ε > 0 and 0 < δ′ < δ < 	, there exists a C2

function α : V ∩ B̄	(0) → R such that,

(i) ‖α(l)(v)‖ < ε for any v, l = 0, 1, 2,
α(v) = 0 if ‖v‖ ≥ δ;

(ii) the critical points of ϕ +α in V ∩ B̄δ′(0), if any, are nondegenerate and finitely
many.
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Theorem 4.3 Suppose that f ∈ Fλ(A) with λ > 0. Let U, U ′ U ′′ be open
bounded sets in A where Ū ⊂ U ′ and Ū ′ ⊂ U ′′. Then there exist an open neigh-
borhood Ũ of {v ∈ Ū : f ′(v) = 0}, Ũ ⊂ U ′, and a C2 sequence g̃n : A → R

with the following properties:

(1) lim
n→∞‖ f (l)(v) − g̃(l)

n (v)‖ = 0 for any v ∈ A, l = 0, 1, 2;

f (v) = g̃n(v) if v ∈ A, v /∈ U ′′;
(2) The critical points of g̃n in Ū , if any, are in Ū ∩Ũ and finitely many. Moreover

g̃n ∈ M(Ũ ).
(3) g̃′

n is proper on Ū ′.
(4) If, for any n ∈ N, un ∈ Ũ ∩ Ū is a critical point of g̃n with un → u0 ∈ Ũ as

n → ∞, then u0 is a critical point of f and

lim inf
n→∞ m(g̃n, un) ≥ m( f, u0),

lim sup
n→∞

m(g̃n, un) ≤ m∗( f, u0).

Proof For simplicity, we can choose λ = 1 and consider f ∈ F1(A). Fixed ε > 0,
let us consider Z = {v ∈ Ū : f ′(v) = 0}. Since, by Proposition 2.1, f ′ is proper
on Ū , Z is a compact set of critical points of f . Consequently, we can carry out
the reduction as in the previous section. Let us fix δ > 0 such that Z δ ⊂ B ⊂ U ′,
where B is the set introduced in (37) with A replaced by U ′. Z δ is a neighborhood
of Z which will play the role of Ũ in the statement. Moreover, let ψi and ϕi ,
i = 1, . . . k, be defined respectively as in (38) and (39).
We introduce a C2 function ξ : W 1,p

0 (�) → R, such that ξ(z) = 0 if z /∈ U ′′,
ξ(z) = 1 if z ∈ U ′ (see [8] for the construction). For any i = 1, . . . k, Lemma 4.2
can be applied to the function ϕi and the triple (εi , 3	/4, 	/2), where εi > 0
will be fixed later, so that a perturbation function αi is obtained. Let us denote by
βi : V → R the natural extension to V of the corresponding functions αi , namely

βi (v) =
{

αi (v) if ‖v‖ ≤ 	

0 otherwise.

Moreover let us consider the C2 perturbed functional g : A → R defined by
setting

g̃(z) = f (z)+ ξ(z) · (β1(PV (z −u1))+β2(PV (z −u2))+· · ·+βk(PV (z −uk))).

As ξ and its derivatives are uniformly bounded, there exists ε̄ = ε̄(ξ, ε) > 0, such
that, choosing each εi less or equal to ε̄,

‖ f (l)(v) − g̃(l)(v)‖ ≤ ε for v ∈ A, l = 0, 1, 2. (42)

Now let us see as ε1, ε2, . . . , εk have to be chosen. For i = 1, let ε1 = ε̄ and α1
be a corresponding perturbation, according to Lemma 4.2, so that ϕ1 +α1 has only
nondegenerate critical points in V ∩ B	/2(0). Now there exists ε̄1 > 0 such that,
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if α ∈ C2(V ∩ B	/2(0)) and ‖α(l)(v)‖ < ε̄1 for any v ∈ V ∩ B	/2(0), l = 0, 1, 2,
then also ϕ1 + α1 + α has only nondegenerate critical points in V ∩ B	/2(0).

For i = 2, we choose ε2 = min{ε̄, ε̄1/(k − 1)}. As before, a corresponding
ϕ2 + α2 has only nondegenerate critical points in V ∩ B	/2(0) and there exists
ε̄2 > 0 such that if α ∈ C2(V ∩ B	/2(0)) and ‖α(l)(v)‖ < ε̄2 for any v ∈
V ∩ B	/2(0), l = 0, 1, 2, then also ϕ2 + α2 + α has only nondegenerate critical
points in V ∩ B	/2(0). For i = 3 we choose ε3 = min{ε̄, ε̄1/(k − 1), ε̄2/(k − 2)},
and so on.

Moreover as f ′ is proper in Ū , then f satisfies (P.S.) and the critical points
of g̃ in Ū are in Ū ∩ Z δ , if δ is small enough.

Let u0 ∈ Z δ be a critical point of g̃. Then there exists i ∈ {1, 2, . . . , k} such
that u0 ∈ Ui , where Ui = ui + (B	/2(0) ∩ V ) + (Br (0) ∩ W ).
Now we want to prove that u0 is nondegenerate, i.e., g̃′′(u0) is injective.

If u0 ∈ Ui and u0 does not belong to U j with i �= j , then in a suitable
neighborhood U0 ⊂ Ui of u0 we have g̃(z) = f (z) + βi (PV (z − ui )). Hence, for
any w ∈ W , 0 = 〈g̃′(u0), w〉 = 〈 f ′(u0), w〉, so that u0 = ui +v0 +ψi (v0), where
v0 = PV (u0 − ui ).

Let z1 ∈ Kerg̃′′(u0). Denoted by v1 = PV z1, w1 = PW z1, we have that
u0 = ui + v0 + ψi (v0) and z1 = v1 + w1. First we note that 〈(ϕi + αi )

′(v0), v〉 =
〈g̃′(u0), v〉 = 0, for any v ∈ V , so that v0 is a critical point of ϕi + αi . So arguing
as in the proof of Theorem 1.6 and using Lemma 4.2, we deduce that u0 is a
nondegenerate critical point for g̃, i.e., g̃′′(u0) is injective.

If, instead, u0 belongs to Ui ∩ U j , with i < j and u0 does not belong to Ur ,
with r �= i, r �= j , then in a suitable neighborhood U0 ⊂ Ui ∩ U j of u0 we have
g̃(z) = f (z) + βi (PV (z − ui )) + β j (PV (z − u j )) and so, for any z ∈ W 1,p

0 (�),

0=〈g̃′(u0), z〉 = 〈 f ′(u0), z〉+〈β ′
i (PV (u0 − ui )) , PV z〉+〈β ′

j (PV (u0−u j )), PV z〉.
Since 0 = 〈g̃′(u0), w〉 = 〈 f ′(u0), w〉, for any w ∈ W , we infer that u0 = ui +
v0

i + ψi (v
0
i ), where v0

i = PV (u0 − ui ), and u0 = u j + v0
j + ψ j (v

0
j ), where

v0
j = PV (u0 − u j ). Now we note that, for any v ∈ V ,

〈(ϕ′
i+αi+αi

j )(v
0
i ), v〉 = 〈 f ′(u0), v〉+〈β ′

i (v
0
i ), v〉+〈β ′

j (v
0
j ), v〉 = 〈g̃′(u0), v〉 = 0,

so that v0
i is a critical point of ϕi + αi + αi

j , where we define αi
j (v) = α j (v +

PV (ui − u j )).
Let z1 ∈ Kerg̃′′(u0). Denoted by v1 = PV z1, w1 = PW z1, we have that

z1 = v1 + w1.
We can deduce that

0 = 〈
g̃′′(u0)z1, v + ψ ′

i

(
v0

i

)
v
〉 = 〈

ϕ′′
i

(
v0

i

)
v1, v

〉
+ 〈

β ′′
i

(
v0

i

)
v1, v

〉 + 〈
β ′′

j

(
v0

j

)
v1, v

〉 ∀v ∈ V .

Since ‖Dlαi
j (v)‖ = ‖Dlα j (v)‖ ≤ ε̄i for any v, l = 0, 1, 2, we infer ϕi + αi + αi

j
has nondegenerate finitely many critical points in B	(0) ∩ (u j − ui + B	(0)).
Hence, v1 = 0.

If u0 belongs to more than two neighborhoods Ui , we argue in analogous way.
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As δ is small, by (21) there exists C > 0 such that 0 = 〈 f ′′(u0)w1, w1〉 ≥
C‖w1‖b , so finally z1 = w1 = 0 and u0 is nondegenerate, as claimed. As ε is
arbitrarily chosen, the proof of points (1) and (2) is complete.
As regards point (3), the same arguments of the proof of Proposition 2.1 can be
repeated, adding to H defined in (5) a suitable compact term.

Now we shall prove the last statement of the theorem. Let u0 ∈ Ũ ∩ Ū be a
critical point of f . We can consider an approximating sequence of functionals {gn}
satisfying the points (1)–(3) of the theorem. Let us assume that {un} ∈ W 1,p

0 (�)
is a sequence of points such that g̃′

n(un) = 0 and un → u0 as n → ∞. By
Proposition 4.1, we have that m( f, u0) ≤ lim infn→∞ m(gn, un). Moreover argu-
ing as in Sect. 2, we can consider Vu0 and Wu0 closed subspace of W 1,p

0 (�) such

that W 1,p
0 (�) = Vu0 ⊕ Wu0 with dim Vu0 = m∗( f, u0) < +∞ and

〈 f ′′(u0)w, w〉 ≥ C‖w‖2
1,2 ∀w ∈ Wu0 .

By standard regularity theory we have that un ∈ L∞(�) and there exists
M > 0 such that ‖un‖∞ ≤ M. Furthermore, by Lemma 4.4 in [16], we have
〈 f ′′(un)w, w〉 ≥ C‖w‖2

1,2, for any w ∈ Wu0 and for n ∈ N large enough. By
construction, we can write, for any z ∈ U ′, gn(z) = f (z) + γn(PV z), where
γn ∈ C2(A, R) is a perturbation such that ‖γ ′′

n ‖ → 0, as n → ∞. Hence, using
(20), we have, for n sufficiently large,

〈g′′
n (un)w, w〉 = 〈 f ′′(un)w, w〉 + 〈γ ′′

n (PV un)PV w, PV w〉
≥ C‖w‖2

1,2 − c‖γ ′′
n ‖‖w‖2

1,2 ≥ C/2‖w‖2
1,2 ∀w ∈ Wu0 .

Therefore, it follows that lim supn→∞ m(gn, un) ≤ dim Vu0 ≡ m∗( f, u0). �

If the compact critical set of f is isolated, the statement of the Theorem 4.3
becomes more precise.

Corollary 4.4 Suppose that f ∈ Fλ(A) with λ > 0. Let U ′′ be an open bounded
set in A. Assume that Z ⊂ U ′′ is a compact set of critical points of f such that
K ∩ U ′′ = Z and let U ′ be a neighborhood of Z such that Ū ′ ⊂ U ′′. Then there
exist an open neighborhood Ũ of Z with Ũ ⊂ U ′ and a C2 sequence g̃n : A → R

with the following properties:

(1) lim
n→∞‖ f (l)(v) − g̃(l)

n (v)‖ = 0 for any v ∈ A, l = 0, 1, 2;

f (v) = g̃n(v) if v ∈ A, v /∈ U ′′.
(2) The critical points of g̃n|U ′′ , if any, are in Ũ and finitely many.

Moreover g̃n ∈ M(U ′′).
(3) g̃′

n is proper on Ū ′. Furthermore, g̃′
n satisfies (P.S.) on the closed subset of

U ′′.
(4) If un ∈ U ′′ is a critical point of g̃n with un → u0 as n → ∞, then u0 ∈ Ũ , it

is a critical point of f and

lim inf
n→∞ m(g̃n, un) ≥ m( f, u0),

lim sup
n→∞

m(g̃n, un) ≤ m∗( f, u0).
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Proof Using the same notations of the previous proof, we can fix ν > 0 such that
‖ f ′(z)‖ ≥ ν, for any z ∈ U ′′ \ Ũ . Let us consider a C2 function ξ : W 1,p

0 (�) →
R as before. As ξ and its derivatives are uniformly bounded, there exists ε̄ =
ε̄(ξ, ε, ν) > 0, such that if we choose each εi ≤ ε̄, then ‖ f (l)(v) − g̃(l)(v)‖ ≤
min{ε, ν/2}, for any v ∈ A, l = 0, 1, 2. By construction, it is clear that the
critical points of g̃|U ′′ belong to Ũ . The proof can be completed arguing as in
Theorem 4.3. �

5 Perturbation results for functionals involving only the p-Laplacian

In this section, we focus on the case λ = 0 and we prove Theorem 1.7 stated in
Sect. 1. Let us fix a functional f0 ∈ Fλ(A) with λ = 0 and an isolated critical
point u0 ∈ A of f0. Without restriction, we can suppose that u0 is the only critical
point of f0 in A.

Now we need to perform two approximations. Firstly the following lemma
proves that f0 can be approximated by a functional f ∈ Fλ(A), with λ > 0.

Lemma 5.1 For any ε > 0 and γ > 0 sufficiently small, there exist 0 < γ1 < γ ,
a positive number λ = λ(ε, γ ) and a C2 functional h such that

(1) ‖ f (i)
0 (v) − h(i)(v)‖ < ε/2 for any v ∈ A, i = 0, 1, 2.

(2) The critical points of h are a compact set contained in the ball Bγ1(u0) and
h|Bγ1 (u0) ∈ Fλ(Bγ1(u0)).

(3) f0(v) = h(v) if v /∈ Bγ (u0).

Proof Fixed γ1 ∈]0, γ [, let us consider a C2 function χ : A → R such that

χ(v) = 1 i f ‖v − u0‖ ≤ γ1, χ(v) = 0 i f ‖v − u0‖ ≥ γ.

We can also require that χ is uniformly bounded together with its derivatives.
Defining h by

h(v) = f0(v) + λ

2
χ(v)

∫
�

|∇v|2 dx,

the lemma follows from Proposition 2.1. �

Proof of Theorem 1.7. Let us denote by h the functional given by Lemma 5.1
applied to f0 in correspondence to the couple (ε, γ ).

Let us denote by Z the critical set of h which is a compact subset of Bγ1(u0)

and by fλ the function h|Bγ1 (u0) ∈ Fλ

(
Bγ1(u0)

)
, where λ > 0.

Let α > 0 be such that Zα ⊂ Bγ1(u0). Fixing α1 ∈]0, α[, we can apply
Corollary 4.4 to the penalized functional fλ ∈ F(Bγ1(u0)), where U ′ = Zα1 and
U ′′ = Zα .
Consequently there exists g ∈ M(Bγ1(u0)) such that

• ‖g(i)(v) − f (i)
λ (v)‖ < ε/2 for any v ∈ A, i = 0, 1, 2;

• g(v) = fλ(v) if v /∈ Zα;
• the critical points of g, if any, are in Zα1 and are finitely many.
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Denoting by g̃ : A → R the function defined by

g̃(v) = g(v) i f v ∈ Bγ1(u0), g̃(v) = h(v) i f v /∈ Bγ1(u0),

the theorem is completely proved.
Finally we state the following theorem, which deals with a compact subset of

the critical set of f0.

Theorem 5.2 Suppose that f0 ∈ F0(A). Let U, U ′ U ′′ be open bounded sets in A
where Ū ⊂ U ′ and Ū ′ ⊂ U ′′. Then there exist a sequence of open neighborhoods
Ũn of {v ∈ Ū : f ′

0(v) = 0} and a C2 sequence g̃n : A → R with the following
properties:

(1) g̃(l)
n → f (l)

0 uniformly, for any l = 0, 1, 2;

f0(v) = g̃n(v) if v ∈ A, v /∈ U ′′.

(2) The critical points of g̃n in Ū , if any, are in Ū ∩Ũn and finitely many. Moreover
g̃n ∈ M(Ũn).

(3) g̃′
n is proper on Ū ′.

Proof The proof of statements (1)–(3) follows performing two approximations as
just made in the previous proof. �

Now we restrict ourself to consider the functional introduced in (1) with λ = 0

F0(u) = 1

p

∫
�

|∇u|p +
∫

�

G(u) dx . (43)

In the next result, we shall deal with the case in which F0 has the origin like
isolated critical point. We shall prove some semicontinuity properties of the large
Morse index of F0 in 0, which are crucial in the applications to avoid the trivial
solutions (cf. Proposition 6.8 and [14]).

Theorem 5.3 Let us consider the functional F0 ∈ F0(A) defined in (43). Assume
that 0 ∈ A is the only critical point for F0 in A. For any γ > 0 such that B̄γ (0) ⊂
A, there exists a sequence hn ∈ M(A) such that

(1) h(l)
n → F (l)

0 uniformly, for any l = 0, 1, 2;

F0(v) = hn(v) if v ∈ A, ‖v‖ ≥ γ.

(2) The critical points of hn, if any, are in Bγ (u) and finitely many.
(3) hn verifies (P. S.) condition on B̄γ (u).
(4) If un ∈ A is a critical point of hn, un → 0 as n → +∞, then

lim inf
n→+∞ m(hn, un) ≥ m(F0, 0), (44)

lim sup
n→+∞

m(hn, un) ≤ m∗(F0, 0). (45)
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Proof We begin to consider the case g′(0) ≤ 0. By Theorem 1.7 we can construct
a sequence hn satisfying (1)–(3). Let un be a critical point of the functional hn such
that un → 0 as n → +∞. By Proposition 4.1 we deduce (44) and as m∗(F0, 0) =
+∞ we have

lim sup
n→+∞

m(hn, un) ≤ m∗(F0, 0).

Conversely if g′(0) > 0, we have m∗(F0, 0) = 0. Fix 0 < r1 < r small such
that B̄r (0) ⊂ A and ‖F ′

0(v)‖ ≥ m > 0 if r1 ≤ ‖v‖ ≤ r , v ∈ A.
Let us define the sequence of functionals

hn(v) = F0(v) + χ(v)

2n

∫
|∇v|2

where χ : W 1,p
0 (�) → R is a C2 function such that χ = 1 if ‖v‖ ≤ r1, χ(v) = 0

if ‖v‖ ≥ r and χ is uniformly bounded together with its derivatives.
By construction 0 is critical point of hn and m(hn, 0) = m∗(hn, 0) = 0. It

follows that 0 is nondegenerate for hn .
Now assume that un is a critical point of hn and un → 0 as n → +∞. By

standard regularity theory [22], we have that un ∈ C1(�̄) and there exists M > 0
such that ‖un‖C1 ≤ M for any n ∈ N. Hence we have un → 0 in L∞(�) as
n → +∞.

As g′(0) > 0, we can conclude that for n large enough

0 = 〈h′
n(un), un〉 ≥

∫
�

ung(un) ≥ ε‖un‖2
L2 (46)

where ε > 0 and thus un ≡ 0 eventually. We conclude that

0 = lim sup
n→+∞

m(hn, un) ≤ m∗(F0, 0).

By Proposition 4.1 we have deduce that hn satisfies (44). Finally by Proposi-
tion 2.1 and by construction we derive (1)–(3). �

6 Morse index estimate for minimax critical points and applications

This section is devoted to generalize some classical result in a Hilbert setting, due
to Lazer and Solimini [24], concerning Morse index estimates of minimax critical
points (cf. [30]).

For reader’s convenience, we start to recall the following result which is a
simple variant of Theorem 1.5 (Chapter II) in [13], where homological notions are
replaced by cohomological ones. We start to introduce the following assumption.

(S) Let f ∈ C2(W 1,p
0 (�), R), W 1,p

0 (�) = X ⊕ Z , where X and Z are closed
subspaces with 1 ≤ k ≡ dim X < +∞. Let D = X ∩ Br (0), where Br (0) =
{v ∈ W 1,p

0 (�)|‖v‖ < r}. There exists a ∈ R such that f (v) > a for any
v ∈ Z and f (v) ≤ a for any v ∈ ∂ D.
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Theorem 6.1 Let f : W 1,p
0 (�) → R be a functional, satisfying the hypothesis

(S).
Let us denote by j∗ the homomorphism induced by the inclusion map j of ∂ D

into f c, c ∈ [a,+∞[. Let us define

c̄ = sup{c ∈ [a, +∞[: j∗ : Hk−1( f c) → Hk−1(∂ D) is surjective}. (47)

Then in fZ f ≤ c̄ ≤ supD f . Suppose that f satisfies the (P.S.) condition at level
c̄ and Kc̄ is discrete in K , then there exists u0 ∈ Kc̄ such that f (u0) = c̄ and
Ck( f, u0) �= {0}.

In the next theorem we shall evaluate the Morse index of nondegenerate mini-
max critical points in our Banach framework, in the spirit of Theorem 2.3 in [24].

Theorem 6.2 Let f ∈ M(W 1,p
0 (�)) be satisfying the hypothesis (S) and the

(P.S.) condition at level c̄, defined in (47). Then there exists a critical point u0 of
f such that m( f, u0) = k and f (u0) = c̄.

Proof By Theorem 6.1, there exists a critical point u0 of f at level c̄, introduced
in (47), such that Ck( f, u0) �= {0}. Moreover as u0 is nondegenerate, we can
apply Theorem 1.2 in [17] (see also Theorem 1.1 in [16]) and we can infer that
Cq( f, u0) = {0}, if q �= m( f, u0). Therefore, we deduce that m( f, u0) = k. �

Remark 6.3 Let us consider the case λ = 0 and a functional f ∈ F0(W 1,p
0 (�))

satisfying the hypothesis (S). If f also satisfies the (P.S.) condition at level c̄
introduced in (47) and Kc̄ is discrete, then by the paper of Lancelotti [23], we can
easily infer that there exists a critical point u0 of f at level c̄ such that m( f, u0) ≤
k.

Now we deal with the case in which the functional f ∈ Fλ(W 1,p
0 (�)) with

λ > 0 has degenerate critical points at level c̄. In the next theorem we shall extend
Theorem 2.6 in [24], to our Banach setting. We point out that in Theorem 2.6
in [24], Lazer and Solimini require that the second derivative of the functional
is a Fredholm map in the critical points at level c̄, as they need to exploit the
perturbation result due to Marino and Prodi, based on Sard–Smale’s theorem.

In our case, the functional f ∈ Fλ(W 1,p
0 (�)) with λ > 0 does not satisfy this

assumption. We are able to overcome the lack of the Fredholm property of the
second derivative, using the Marino–Prodi type perturbation result, developed in
Theorem 4.3.

Theorem 6.4 Let f ∈ Fλ(W 1,p
0 (�)) be with λ > 0, satisfying the hypothesis (S)

and the (P.S.) condition at level c̄, defined in (47). Then there exists a critical
point u0 ∈ Kc̄ such that m( f, u0) ≤ k ≤ m∗( f, u0).

Proof Fix ε′ > 0 and denote by A = f c̄+ε′
c̄−ε′ ∩ K where K denotes the set of the

critical points of f .
As f satisfies (P.S.) at level c̄, then any (P.S.) sequence of f at level c in

a suitable neighborhood of c̄ is bounded, hence, by Proposition 2.1, it converges
strongly, up to subsequences. Therefore, we can choose ε′ so small that A is com-
pact. Chosen ε ∈]0, ε′[, let us introduce the sets

U ′ = f −1]c̄ − ε′, c̄ + ε′[∩Aε′
U = f −1]c̄ − ε, c̄ + ε[∩Aε,



180 S. Cingolani, G. Vannella

so that U ′ and U are open and bounded and Ū ⊂ U ′.
For any n ∈ N there exists νn > 0 such that, if u ∈ f c̄+ε

c̄−ε \ A1/n , then
‖ f ′(u)‖ > νn .

Hence we can apply Theorem 4.3 and, denoted by Z = Ū ∩ K , we
can construct an open bounded neighborhood Ũ of Z , and a sequence g̃n ∈
C2(W 1,p

0 (�), R) such that ‖g̃(i)
n (v) − f (i)(v)‖ < min {1/n, νn/2} for any v ∈

W 1,p
0 (�), i = 0, 1, 2, the critical points of g̃n in Ū , if any, are in Ũ ∩ Ū and they

are nondegenerate.
If n is great enough,

1. g̃n has no critical points in (g̃n)
c̄+ε/2
c̄−ε/2 \ Z1/n ,

2. Z1/n ⊂ Ũ ,

consequently each critical point of g̃n in (g̃n)
c̄+ε/2
c̄−ε/2 is nondegenerate.

Moreover g̃n , like f , verifies the hypotheses of Theorem 6.1 where c̄n denotes
the critical value of g̃n defined by (47). Therefore, for n sufficiently big, Theo-
rem 6.2 can be applied to g̃n . So there exists a critical point un of g̃n such that
m(g̃n, un) = k.

As un ∈ Z1/n , we have that d(un, Z) → 0 as n → +∞. Furthermore, as Z is
compact, there exists a point u0 ∈ Z , such that un converges to u0, as n → +∞,
up to subsequences. By Proposition 4.1 and by (4) of Theorem 4.3, we deduce that
m( f, u0) ≤ k ≤ m∗( f, u0). �

We remark that Theorem 1.8 follows from the previous Theorem 6.4.

Remark 6.5 In the case f satisfies the assumptions of the Mountain Pass
Theorem, arguing as in Theorem 6.4, we can infer the existence of a minimax
critical point x0 such that m( f, x0) ≤ 1 ≤ m∗( f, x0).

We prove Corollary 1.9, stated in Sect. 1.

Proof of Corollary 1.9. It is standard that solutions of (P) correspond to critical
points of the functional

F(u) = 1

p

∫
�

|∇u|p + λ

2

∫
�

|∇u|2 − µ

p

∫
�

|u|p −
∫

�

Q(u)

where Q(s) = ∫ s
0 q(t)dt .

Moreover as lim|s|→+∞ q ′(s)
|s|p−2 = 0, then F has a saddle geometry. Indeed,

F(tu1) → −∞ as t → +∞.
Furthermore, as µ < µ̄2, we can fix ε > 0 small such that µ ≤ µ̄2 − ε. In

correspondence of ε/2 > 0, there exists Y , a subspace of W 1,p
0 (�) complementing

Ru1, such that for any v ∈ Y∫
�

|∇v|p >
(
µ̄2 − ε

2

) ∫
�

|v|p. (48)

Hence by (48) we deduce that

F(v) ≥ ε

p(2µ̄2 − ε)

∫
�

|∇v|p −
∫

�

Q(v). (49)
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As lim|s|→+∞ q ′(s)
|s|p−2 = 0, by (49), we infer F(v) → +∞ as ‖v‖ → +∞, v ∈ Y .

As µ1 < µ < µ̄2 ≤ µ2, we can deduce by standard arguments that F satisfies
the (P.S.) condition. Arguing by contradiction, we assume that there exists a se-
quence un , with ‖un‖ → +∞ as n → +∞, such that F(un) → c and that there
exists a decreasing sequence ξn converging to 0 such that

|〈F ′(un), v〉| ≤ ξn‖v‖ ∀n ∈ N, ∀v ∈ W 1,p
0 (�). (50)

Set zn = un‖un‖ , then zn converges weakly to some z in W 1,p
0 (�) and strongly in

Lq where q ∈ [p, p∗[ if N > p or q ≥ p if 1 ≤ N ≤ p.
Now dividing (50) by ‖un‖p−1, and then taking v = zn − z, we derive by the

assumption lim|s|→+∞ q ′(s)
|s|p−2 = 0 that

lim
n→+∞

∫
|∇zn|p−2∇zn∇(zn − z) dx = 0

which implies that zn → z strongly in W 1,p
0 (�), as n → +∞. Choosing v =

ϕ/‖un‖p−1 in (50) we infer that −�pz = µ|z|p−2z with homogeneous Dirichlet
boundary conditions on ∂�. But this equation, being µ ∈]µ1, µ̄2[, has zero as the
only solution by definition of µ̄2. Thus we conclude z = 0, which contradicts the
fact ‖zn‖ = 1. Thus ‖un‖ is bounded. Standard arguments prove that un converges
strongly in W 1,p

0 (�), up to subsequences.
We can apply Theorem 6.4 and deduce the existence of a critical point ū ∈

W 1,p
0 (�) of F such that m(F, ū) ≤ 1 ≤ m∗(F, ū).

We notice that the Morse index estimates can be useful to avoid the trivial so-
lution. By Theorem 6.4, we can directly deduce an existence result, analogous to
Theorem 1.1 of [24], in a Hilbert setting, dropping the assumption on the Fred-
holm properties of f ′′(0).

Theorem 6.6 Let f ∈ Fλ(W 1,p
0 (�)) be with λ > 0, satisfying the hypothesis (S)

and the (P.S.) condition at level c̄, defined in (47). If 0 is a critical point and
either dim X < m( f, 0) or m∗( f, 0) < dim X, then there exists a critical point u0
of f with u0 �= 0.

Remark 6.7 By Theorem 6.6 we can deduce that if q(0) = 0 in Corollary 1.9
(thus 0 solves problem (P)), then the found solution ū is not trivial, provided that
1 �∈ [m(F, 0), m∗(F, 0)].

On the contrary if we consider a functional f0 ∈ Fλ(W 1,p
0 (�)) with λ = 0,

(which is not covered by Theorem 6.6), having a critical point in 0, we prove by
regularity results in [22] that the large Morse index of the functionals approximat-
ing f0 near the origin (see Theorem 5.3) is upper semicontinuous. These results
are useful to avoid the trivial solution for quasilinear problems involving only p-
Laplacian.

Proposition 6.8 Let us consider the Euler functional I : W 1,p
0 (�) → R defined

by

I (u) = 1

p

∫
�

|∇u|pdx +
∫

�

G(u) dx (51)
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where p > 2, � is a bounded open set in R
N with smooth boundary and G(s) =∫ s

0 g(t)dt, g ∈ C1(R, R) which satisfies assumption (g).
Assume that I satisfies the assumption (S) and the (P.S.) condition at level c̄,

defined in (47).
If g(0) = 0 and g′(0) �= 0, then there exists a nontrivial critical point u0 of I .

Proof We assume that 0 is the only critical point of I , in the other case the state-
ment is trivial.

If g′(0) < 0, the Morse index m( f, 0) = m∗( f, 0) = +∞. Moreover by
Theorem 3.1 in [23], due to Lancelotti, it is known that Cq(I, 0) = {0} for any
q ≥ 0. So by Theorem 6.1, we deduce that there exists a critical point u0 of I such
that Ck(I, u0) �= {0} and this is absurd.

If g′(0) > 0, then we have m(I, 0) = m∗(I, 0) = 0. By Theorem 5.3, we
can consider an approximating sequence of functionals hn of I in C2, such that
hn(v) = I (v) if ‖v‖ > r (r > 0) and the critical points of hn in B̄r (0) are
in B1/n(0) and nondegenerate (in the new sense). Now for n ∈ N large enough
we can apply Theorem 6.2 and we can infer that there exists un �= 0 such that
h′

n(un) = 0 and m(hn, un) = k. As gn have no critical point outside the ball
B1/n(0), we deduce un → 0 as n → +∞. Thus by (45) in Theorem 5.3, we have

k = lim sup
n→+∞

m(hn, un) ≤ m∗(I, 0) = 0.

This is absurd. �

Remark 6.9 If g′(0) = 0, the Morse index m(I, 0) = 0 and m∗(I, 0) = +∞. In
this case, the statement of Proposition 6.8 is not true, in general.
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