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Abstract We consider a one-parameter family of delay differential equations
which has been proposed as a model for a prize and prove that at a critical param-
eter where the linearization at equilibrium has a double zero eigenvalue periodic
solutions bifurcate off with periods descending from infinity.

Keywords Delay differential equation · Takens-Bogdanov singularity ·
Bifurcation · Periodic solution

AMS Subject Classification. 34K18, 34K13, 37G15

1 Introduction

In [1] the delay differential equation

ẋ(t) = a(x(t) − x(t − 1)) − b|x(t)|x(t)

with parameters a > 0, b > 0 was introduced as a model for a price under the
sole influence of rational behaviour of trading agents, with fundamental economic
quantities being constant. A detailed derivation of the model is given in [2]. Very
roughly, the linear term on the right-hand side of the equation corresponds to the
tendency to follow the trend, while the quadratic term represents the tendency to
turn back when the price is too far from an equilibrium defined by the fundamental
economic quantities. A similar model was proposed and discussed in [3].

Multiplication of solutions by b
a reduces the model to the equation

a−1 ẋ(t) = x(t) − x(t − 1) − |x(t)|x(t) (1)

H.-O. Walther (B)
Mathematisches Institut, Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany
E-mail: hans-otto.walther@math.uni-giessen.de



578 H.-O. Walther

with the single parameter a > 0, which is more convenient for mathematical
analysis.

Incidentally, recall that solutions are either differentiable functions x : IR →
IR which satisfy Eq. 1 everywhere, or continuous real functions on some interval
of the form [t0 − 1, ∞), t0 ∈ IR, which are differentiable and satisfy Eq. 1 for all
t > t0. Let C denote the Banach space of continuous real functions on the initial
interval [−1, 0], with the norm given by

‖φ‖ = max
−1≤t≤0

|φ(t)|.

Data φ ∈ C uniquely determine solutions x = xa,φ on [−1,∞) by the initial
conditions x |[−1, 0] = φ. The equations

Fa(t, φ) = xt , x = xa,φ and xt (s) = x(t + s)

define a semi-flow Fa : [0,∞) × C → C . The only constant solution of Eq. 1 is
zero; 0 ∈ C is the only stationary point of the semi-flow Fa . Let us also recall that
slowly oscillating solutions are defined by the property that for any pair of zeros
z < z′ we have z + 1 < z′.

Early numerical observations in [5] indicated that the equilibrium 0 ∈ C is
asymptotically stable for a < 1, and that for a > 1 there are stable periodic
orbits, with amplitudes becoming small and minimal periods growing to infinity
as a ↘ 1. The main results in [1] establish asymptotic stability of the equilibrium
for a < 1, instability for a > 1, and existence of a slowly oscillating periodic
solution with orbit in the boundary of a global centre-unstable manifold for a >
1. In [12] the asymptotic shape of the periodic solutions found in [1], for a →
∞, is determined. There are also other periodic orbits, see Sect. 1 of [12], and
the result on asymptotic shape has implications on the number and location of
continua in the global bifurcation diagram which are beyond the earlier numerical
observations.

The present paper deals with bifurcation of periodic solutions from zero at
a = 1. There is no Hopf bifurcation, since the only imaginary eigenvalue of the
generator of the linearized semi-flow is 0 ∈ C. The multiplicity of this eigenvalue
is 2 at a = 1 and 1 otherwise. So for a close to 1 the situation may be seen as
part of a Takens-Bogdanov scenario with two parameters (see, e.g., [7]). Notice,
however, that the non-linear part in Eq. 1 is given by the C1-function

f : IR 	 ξ 
→ (1 − |ξ |)ξ ∈ IR

which has no second derivative at 0. This means that the standard approach to
identify the local dynamics, i.e., centre manifold reduction, expansion and trunca-
tion of the resulting vectorfields on the plane and transformation to a normal form,
seems not amenable here, due to lack of smoothness.

The main result of the present paper is the following.

Theorem 1. For every ε > 0 there exist a = aε ∈ (1 − ε, 1 + ε) so that Eq. 1 has
a slowly oscillating periodic solution pε : IR → (−ε, ε) with minimal period τε

given by three consecutive zeros. We have

τε → ∞ as ε → 0.
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The proof of the theorem begins in Sect. 2 with preliminary results on the semi-
flows Fa , on linearization at the stationary point 0, and on the change of stability
of the stationary point when the parameter a crosses the critical level 1. As in
[1] we choose a certain complementary subspace N ⊂ C of the two-dimensional
centre space L1 at a = 1 and a basis of L1, to the effect that projection along N
onto L1 and taking coordinates coincides with the evaluation map

E : C 	 φ 
→ (φ(0), φ(−1)) ∈ IR2.

This implies that for a ≥ 1 not too large coordinates on centre-unstable manifolds
are given by the map E .

The analysis of plane curves of the form t 
→ (x(t), x(t − 1)) = Ext , or
equivalent ones, along special slowly oscillating solutions x has been used suc-
cessfully in numerous papers on periodic solutions of delay differential equations,
beginning with work of Kaplan and Yorke [8]. It is closely related to the discrete
Lyapunov function from [10, 11]. For further references, see [8–11]. The identi-
fication of the evaluation map with coordinates on invariant manifolds in [1] is
similar to an earlier construction in Chapter 6 of [9].

Section 3 deals with a centre manifold W∗ for the augmented system

ẋ(t) = α(t)[x(t) − x(t − 1) − |x(t)|x(t)]
α̇(t) = 0 (2)

and with the foliation of W∗ by locally positively invariant manifolds Wa of the
semi-flows Fa ; W1 is a centre manifold and Wa for a > 1 are center-unstable
manifolds.

In Sect. 4 it is shown that solutions x : [−1,∞) → IR which start in smaller
manifolds W a ⊂ Wa are slowly oscillating, continuously differentiable (on all of
[−1, ∞)), and have slowly oscillating derivatives.

In the beginning of Sect. 5 one sees among others that the coordinates given
by the evaluation E on each manifold W a fill a fixed open square Q. The result of
Sect. 4 is used in the proof of Proposition 5.2 about coordinate curves

[0, ∞) 	 t 
→ (x(t), x(t − 1)) ∈ IR2

along solutions x = xa,φ which start at initial data φ ∈ W a \ {0} with coordinates
Eφ in the graph f ⊂ IR2. For these curves the graph f and the vertical axis
are global transversals. Propositions 5.3–5.6 and Corollary 5.1 deal with the case
a = 1. We need that in this case the coordinate curves keep winding around
0. Moreover, the two maps which are given by successive intersections of the
coordinate curves with the branches of f in the first and third quadrant need to
have limit 0 at 0 ∈ |R2. The inherent difficulty is, loosely spoken, that the angular
speed tends to zero for curves in neighbourhoods shrinking to zero. The proof of
the desired winding behaviour and of the limit relation is based on the exclusion of
small solutions without zeros on unbounded intervals in Propositions 5.3 and 5.5.
Proposition 5.3 generalizes Corollary 5.2 of [1]; its proof by a short comparison
argument is new.

It is in Sect. 5 where our approach to local bifurcation diverges from the stan-
dard one: We study the coordinate flows on the square directly, without expan-
sion and truncation of underlying vectorfields and recourse to normal forms. The
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choice of coordinates explained earlier makes this relatively easy. For an analysis
of the dynamics on two-dimensional invariant manifolds which uses spectral pro-
jections instead of the projection along N see [13, 14] and the references given in
[14].

Section 6 completes the proof of the theorem. The change of stability of the
stationary point in the manifolds W a when the parameter crosses the level 1, the
information about coordinate curves from Sect. 5 and elementary continuity ar-
guments yield bifurcation of slowly oscillating periodic solutions with small am-
plitude. Depending on the stability properties of the stationary point at a = 1 we
obtain supercritical, subcritical, or critical bifurcation (Propositions 6.1–6.3). This
is slightly better than stated in the theorem. The last assertion of the theorem is
a consequence of the final Proposition 6.4, which makes precise what has been
said earlier about angular speed: Small amplitudes of slowly oscillating solutions
imply large distances between successive zeros.

The question whether the stationary point is asymptotically stable for a = 1
remains open. An affirmative answer would imply supercritical bifurcation.
Notation.. For a Banach space B and a real number r > 0 the open ball with centre
0 and radius r is denoted by B(r). SB stands for the unit sphere in B. The closure
and boundary of a subset M ⊂ B are denoted by M and ∂ M , respectively. If a
curve c : I → B, I ⊂ IR an interval with inner points, is differentiable at t ∈ I
then we set

c′(t) = ċ(t) = Dc(t)1 ∈ B.

Spectra of closed linear operators in a Banach space B over the field IR are defined
by complexification.

For a semi-flow S : [0,∞) × M → M and for t ≥ 0, φ ∈ M , I ⊂ [0,∞),
U ⊂ M we use the abbreviations S(t, U ) = S({t} × U ), S(I, φ) = S(I × {φ}),
S(I, U ) = S(I × U ).

Solutions of non-autonomous delay differential equations

ẋ(t) = g(t, x(t), x(t − 1)), (3)

for g : [t0, ∞) × IR2 → IR, t0 ∈ IR, are continuous real-valued functions on
[t0 − 1, ∞) which are differentiable and satisfy Eq. 3 for all t > t0. In case g
is continuous a solution has a right derivative at t0, and the differential equation
holds at t0 as well. For a function g : IR3 → IR we consider solutions on intervals
of the form [t0 − 1,∞) as before and solutions on IR which are differentiable and
satisfy Eq. 3 for all t ∈ IR.

In the sequel, equations are numbered separately in each section. Equation j
from Sect. k is quoted in Sect. m �= k as Eq. k. j . Analogous conventions apply to
propositions, corollaries, etc.

2 Preliminaries

In this section we recall basic facts about Eq. 1.1 with parameter a > 0. For
proofs which are omitted, compare [1] and [4]. If x : [−1,∞) → IR is a solution
of Eq. (1.1) then the restriction x |[0,∞) is differentiable, and Eq. (1.1) is satisfied
at t = 0 with the right derivative of x . The next result is a variant of Proposition
3.2 in [1].
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Proposition 1 Let a > 0 and let x : [−1,∞) → IR be a solution of Eq. (1.1)
without zeros on some interval (t, ∞) with t ≥ 0.

(i) If sign(ẋ(s)) = −sign(x(s)) on (t, ∞) then

lim
s→∞ x(s) = 0.

(ii) If sign(ẋ(s)) = sign(x(s)) for some s > t then ẋ has a zero z > s.

Proof 1. Proof of (i). If c = limu→∞ x(u) �= 0 then

ẋ(u) = a( f (x(u)) − x(u − 1)) → a( f (c) − c) �= 0 as u → ∞,

and we arrive at a contradiction.
2. Proof of (ii). Suppose ẋ has no zero on (s, ∞). In case x is bounded it

follows that c = limu→∞ x(u) �= 0, which yields a contradiction as in part 1.
In case x is unbounded and positive we infer that x is increasing on (s, ∞) with
x(u) → ∞ as u → ∞. Using this and the inequality

ẋ(u) = a( f (x(u)) − x(u − 1)) ≤ a( f (x(u)) on (t + 1,∞)

we get ẋ(u) < 0 for u sufficiently large, which yields a contradiction. The proof
in the remaining case is analogous. ��

The semi-flow

Fa : [0, ∞) × C 	 (t, φ) 
→ xa,φ
t ∈ C

is continuous. All maps Fa(t, ·), t ≥ 0, and the restriction of Fa to (1,∞)×C are
continuously differentiable. We have

D2 Fa(t, φ)χ = v
a,φ,χ
t

with the unique solution va,φ,χ : [−1,∞) → IR of the variational equation

a−1v̇(t) = v(t) − v(t − 1) − 2|xa,φ(t)|v(t),

with initial condition v0 = χ ∈ C . For t > 1 and φ ∈ C ,

D1 Fa(t, φ)1 = ẋa,φ
t .

The curves Fa(·, φ) have right derivatives at t = 1, given by the derivatives ẋa,φ

1 ∈
C of the continuously differentiable functions xa,φ

1 . For a > 0, φ ∈ C , x = xa,φ ,
and t ≥ 1,

D2 Fa(t − 1, x1)ẋ1 = ẋt .

Linearization at the unique stationary point 0 ∈ C yields a strongly continuous
semi-group given by

Ta(t) = D2 Fa(t, 0).
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The variational equation along the zero solution is

a−1v̇(t) = v(t) − v(t − 1). (1)

The generator Ga of the semi-group is defined on

doma = {χ ∈ C : χ continuously differentiable, a−1χ̇ (0) = χ(0) − χ(−1)},
and Gaχ = χ̇ . Its spectrum speca is given by the zeros of the characteristic func-
tion

C 	 z 
→ z − a(1 − e−z) ∈ C.

Obviously 0 is a zero for every a > 0; it is a simple eigenvalue of Ga for 0 <
a < 1 and for a > 1 and a double eigenvalue at a = 1. So there is always a
non-trivial linear centre space; the stationary point 0 ∈ C is non-hyperbolic. For
0 < a �= 1 there is a unique real solution ua �= 0, ua < 0 for 0 < a < 1 and
ua > 0 for a > 1. ua is a simple eigenvalue of Ga . The non-real z ∈ speca form
complex conjugate pairs of simple eigenvalues, with |Im z| > 2π for each a > 0,
Re z < ua for 0 < a < 1, and Re z < 0 for a ≥ 1. For any a > 0 there is a
leading pair; more precisely, there is a continuous map

(0,∞) 	 a 
→ za ∈ C

with za ∈ speca \ IR and Re z < Re za for all z ∈ speca \ (IR ∪ {za, za}).
Notice that there are no non-trivial imaginary eigenvalues, and Hopf bifurca-

tion of periodic solutions does not occur.
The spectra of the maps Ta(t), t > 0, are given by

{ezt : z ∈ speca} ∪ {0},
and for z ∈ speca the generalized eigenspace of (the complexification of) Ga
coincides with the generalized eigenspace of the eigenvalue ezt of the (complexi-
fication of the) operator Ta(t).

Set u0 = 0. For a > 0 let La ⊂ C denote the two-dimensional leading realified
generalized eigenspace, given by the spectral set {ua, 0}, and let Qa ⊂ C denote
the complementary realified generalized eigenspace given by speca \ {ua, 0}.

The centre space L1 consists of the segments vt of the solutions v : IR → IR
of Eq. 1 with a = 1 which have the form

v(t) = c + dt, t ∈ IR,

with real constants c, d . Notice that all non-trivial solutions of this form are slowly
oscillating with at most one zero. We have

L1 = IR1 + IR id|[−1, 0],
with 1(t) = 1 for −1 ≤ t ≤ 0.

For 0 < a �= 1 the space La consists of the segments of the solutions v : IR →
IR of Eq. 1 of the form

v(t) = c + d ηa(t), t ∈ IR,
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with real constants c, d and
ηa(t) = euat .

Again, all non-trivial solutions v of this form and their segments vt have at most
one zero.

For the non-linear equation (1.1) there is a change of stability at a = 1. The
zero solution is asymptotically stable for 0 < a < 1 and unstable for a > 1. More-
over, the instability properties of the stationary point in centre-unstable manifolds
which are stated at the beginning of Sect. 6 in [1] imply the following: If a > 1
and if W is any two-dimensional C1-submanifold of C which is locally positively
invariant with respect to Fa and satisfies

T0W = La

then no flowline Fa(·, φ) in W \ {0} tends to 0 as t → ∞.
Next we introduce a complementary space of L1 in C which later will facilitate

the description of projections of flowlines Fa(·, φ) in case the solution xa,φ is
slowly oscillating.

Notice that a solution of Eq. (1.1) is slowly oscillating if and only if all seg-
ments belong to the set

Z = {φ ∈ C : φ has at most 1 zero}.
Obviously, for every a > 0,

La ⊂ Z ∪ {0}.
For the closed subspace

N = {φ ∈ C : φ(−1) = 0 = φ(0)}
of codimension 2 we have N ∩ Z = ∅ and

C = L1 ⊕ N .

The functions

λ− = 1 + id|[−1, 0] and λ0 = −id|[−1, 0]
form a basis of L1 with

λ−(−1) = 0, λ−(0) = 1, λ0(−1) = 1, λ0(0) = 0,

which implies that the projection P : C → C along N onto L1 is given by

Pφ = φ(0)λ− + φ(−1)λ0.

The isomorphism

K : L1 	 y1λ− + y2λ0 
→ (y1, y2) ∈ IR2

and the evaluation

E : C 	 φ 
→ (φ(0), φ(−1)) ∈ IR2
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satisfy
E = K ◦ P.

For any solution x : [−1,∞) → IR of Eq. (1.1) and t > 0,

ẋ(t) = 0 if and only if x(t − 1) = f (x(t)),

i.e., if and only if
Ext ∈ f ⊂ IR2.

Incidentally, notice that for a slowly oscillating solution x : [−1,∞) → IR of
Eq. (1.1) all zeros in (0,∞) are simple.

It is convenient to introduce the closed hyperplane

H0 = {φ ∈ C : φ(0) = 0} ⊂ N

and the projections

p1 : C2 	 (φ, ψ) 
→ φ ∈ C, p2 : C2 	 (φ, ψ) 
→ ψ ∈ C.

On the space C2 we use the norm given by

‖(φ, ψ)‖ = ‖φ‖ + ‖ψ‖.

3 The augmented system

The segments (xt , αt ) of the solutions (x, α) : [−1,∞) → IR2 to the augmented
system (1.2) define a semi-flow F∗ on the space C2. A look at the second equation
of system (1.2) yields the following result.

Proposition 1 For φ, ψ in C and t ≥ 0,

p1 F∗(t, (φ, ψ)) = Fψ(0)(t, φ) and p2 F∗(t, (φ, ψ))(0) = ψ(0).

The linear variational equation of system (1.2) along the constant solution IR 	
t 
→ (0, 1) ∈ IR2 is the system

v̇(t) = v(t) − v(t − 1)

ẇ(t) = 0. (1)

For the associated strongly continuous semi-group of the operators

T∗(t) = D2 F∗(t, 0), t ≥ 0,

on C2 we have
T∗(t)(φ, χ) = (T1(t)φ, S(t)χ),

with the semi-group (S(t))t≥0 on C given by the segments wt of the solutions
w : [−1,∞) → IR to the equation

ẇ(t) = 0.
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Let G∗ : dom∗ → C and GS : domS → C denote the generators of the semi-
groups (T∗(t))t≥0 and (S(t))t≥0, respectively. Then

dom∗ = dom1 × domS and G∗(φ, χ) = (G1(φ), GS(χ)).

The characteristic functions for the spectra of GS and G∗ are

charS : C 	 z 
→ z ∈ C

and
char∗ : C 	 z 
→ z(z − (1 − e−z)) ∈ C,

respectively. z = 0 is a simple zero of charS and a triple zero of char∗. The
associated one- and three-dimensional realified generalized eigenspaces of GS
and G∗ are L S = IR 1 and

L∗ = L1 × L S,

respectively.

Proposition 2 C = L S ⊕ H0

Proof The equation
φ = φ(0) 1 + (φ − φ(0) 1)

yields C = L S + H0. For φ ∈ L S ∩ H0, φ(0) = 0 and φ = φ(0) 1, hence φ = 0.
Consequently, L S ∩ H0 = {0}. ��

It is not hard to show that the complementary realified generalized eigenspaces
of L S and L∗ are the hyperplane H0 and the space

Q∗ = Q1 × H0,

of codimension 3, respectively. We shall not make use of this, but need that the
closed subspace

N∗ = N × H0

of codimension 3 is a complement of L∗, i.e.,

C2 = L∗ ⊕ N∗,

which follows from the equation L∗ = L1 × L S in combination with Proposition
2 and the decomposition C = L1 ⊕ N .

Let P∗ : C2 → C2 denote the projection along N∗ onto L∗. Next, we state a
version of the centre manifold theorem for the stationary point (0, 1) of the semi-
flow F∗.

Proposition 3 There exist r > 0, ρ ∈ (0, 1), a C1-map w∗ : (0, 1)+ L∗(r) → N∗
with w∗(0, 1) = 0, Dw∗(0, 1) = 0, and an open neighbourhood U∗ of (0, 1) in
C2 so that for all (φ, ψ) in

W∗ = {(λ, σ ) + w∗(λ, σ ) : (λ, σ ) ∈ (0, 1) + L∗(r)}
and for all t ≥ 0 with F∗([0, t], (φ, ψ)) ⊂ U∗ we have

F∗(t, (φ, ψ)) ∈ W∗.
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The map F∗(1, ·) defines a C1-diffeomorphism from W∗ ∩ U∗ onto an open neigh-
bourhood of (0, 1) in W∗. If (x, α) : IR → IR2 is a solution to system (1.2) with
(xt , αt ) ∈ (0, 1) + C2(ρ) for all t ∈ IR then

(xt , αt ) ∈ W∗ for all t ∈ IR.

Corollary 1 For all a > 0 with |a − 1| < ρ,

w∗(0, a 1) = 0.

Proof For a > 0 with |a − 1| < ρ the constant solution IR 	 t 
→ (0, a) ∈ IR2 to
system (1.2) has all segments in (0, 1)+C2(ρ). It follows that (0, a 1) ∈ W∗ ∩ L∗,
which implies w∗(0, a 1) = 0. ��

The next result improves the invariance property of the centre manifold
slightly. Choose δ ∈ (0, ρ) and δ̄ > 0 so that

L1(δ) × (1 − δ, 1 + δ) 1 ⊂ (0, 1) + L∗(r),

L1(δ) × (1 − δ, 1 + δ) 1 + N (δ̄) × H0(δ̄) ⊂ U∗,
and

w∗(χ) ∈ N (δ̄) × H0(δ̄) for all χ ∈ L1(δ) × (1 − δ, 1 + δ) 1.

Corollary 2 For every χ ∈ L1(δ) × (1 − δ, 1 + δ) 1 and t > 0 so that φ =
χ + w∗(χ) satisfies

P∗F∗([0, t], φ) ⊂ L1(δ) × (1 − δ, 1 + δ) 1

we have
F∗(t, φ) ∈ W∗.

Proof Suppose F∗(t, φ) /∈ W∗. The set

M = {s ∈ [0, t] : F∗(s, φ) /∈ W∗}
is given by

(id − P∗)F∗(s, φ) �= w∗(P∗F∗(s, φ))

and consequently open in [0, t]. By the assumption, t ∈ M . It follows that t0 =
inf M satisfies 0 ≤ t0 < t . We have 0 /∈ M , and by the choice of δ and δ̄, φ ∈ U∗.
Continuity yields

F∗([0, t1], φ) ∈ U∗
for some t1 ∈ (0, t). By Proposition 3,

F∗([0, t1], φ) ⊂ W∗.
Hence, [0, t1] ∩ M = ∅, and thereby 0 < t1 ≤ t0. As M is open in [0, 1], we
obtain t0 /∈ M . Arguing as before, with t0 in place of 0 and F∗(t0, φ) in place of
φ, we find t∗1 > t0 with

F∗([t0, t∗1 ], φ) ⊂ W∗.
Recall F∗(s, φ) ∈ W∗ for 0 ≤ s < t0. It follows that

F∗(s, φ) ∈ W∗ for all s ∈ [0, t∗1 ],
in contradiction to t0 = inf M . ��
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The centre manifold of the augmented system yields two-dimensional locally
positively invariant C1-submanifolds Wa ⊂ C for the semi-flows Fa : For a ∈
(1 − δ, 1 + δ) consider the C1-map

wa : L1(δ) 	 λ 
→ p1w∗(λ, a 1) ∈ N

and define
Wa = {λ + wa(λ) : λ ∈ L1(δ)}.

By Corollary 1, wa(0) = 0.

Proposition 4 (i) (Local positive invariance) For every a ∈ (1−δ, 1+δ), φ ∈ Wa
and t ≥ 0 with

P Fa([0, t], φ) ⊂ L1(δ)

we have Fa(t, φ) ⊂ Wa.
(ii) (Injectivity) For every a ∈ (1 − δ, 1 + δ), φ and φ̂ in Wa and t > 0 with

Fa([0, t], φ) ∪ Fa([0, t], φ̂) ⊂ Wa and Fa(t, φ) = Fa(t, φ̂),

φ = φ̂.

(iii) For every integer j > 0 and every ε ∈ (0, δ) there exists δ jε ∈ (0, δ) so that
for all a ∈ (1 − δ jε, 1 + δ jε),

Wa ∩ (L1(δ jε) + N ) ⊂ Fa( j, Wa ∩ (L1(ε) + N )).

Proof 1. Proof of (i). We have φ = λ+wa(λ) with λ ∈ L1(δ). Set ψ = (λ, a 1)+
w∗(λ, a 1) ∈ W∗. Notice that p2ψ(0) = a + 0 = a.

1.1. Proof of P∗F∗([0, t], ψ) ⊂ L1(δ)×(1−δ, 1+δ) 1. Let s ∈ [0, t] be given.
We have p1ψ = λ + p1w∗(λ, a 1) = λ + wa(λ) = φ. Using Proposition
1 we infer p1 F∗(s, ψ) = Fa(s, p1ψ) = Fa(s, φ) ∈ L1(δ) + N . Again
by Proposition 1, p2 F∗(u, ψ)(0) = p2ψ(0) = a for all u ≥ 0. Hence,
p2 F∗(s, ψ) ∈ a 1 + H0, and thereby

F∗(s, ψ) = (p1 F∗(s, ψ), p2 F∗(s, ψ)) ∈ L1(δ)×(1−δ, 1+δ) 1+N ×H0,

which yields the assertion.
1.2. Using Corollary 2 we infer F∗(t, ψ) ∈ W∗, and

F∗(t, ψ) = (λ̃, ã 1) + w∗(λ̃, ã 1)

for some λ̃ ∈ L1(δ) and ã ∈ (1 − δ, 1 + δ). It follows that

a = p2 F∗(t, ψ)(0) = ã + p2w∗(. . .)(0) = ã + 0 = ã,

and thereby

Fa(t, φ) = p1 F∗(t, ψ) = λ̃ + p1w∗(λ̃, a 1) = λ̃ + wa(λ̃) ∈ Wa .
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2. Proof of (ii). Set λ = Pφ, λ̂ = Pφ̂, ψ = (λ, a 1) + w∗(λ, a 1) ∈ W∗,
ψ̂ = (λ̂, a 1) + w∗(λ̂, a 1) ∈ W∗. Then

φ = λ + wa(λ), φ̂ = λ̂ + wa(λ̂), φ = p1ψ, φ̂ = p1ψ̂.

Using Proposition 1 we obtain for the largest integer j in [0, t] the equations

p1 F∗( j + 1, ψ) = Fa( j + 1, φ) = Fa( j + 1, φ̂) = p1 F∗( j + 1, ψ̂)

and
p2 F∗( j + 1, ψ) = a 1 = p2 F∗( j + 1, ψ̂).

Hence,
F∗( j + 1, ψ) = F∗( j + 1, ψ̂). (2)

2.1. Proof of F∗([0, t], ψ) ⊂ U∗. Let s ∈ [0, t]. Then

p1 F∗(s, ψ) = Fa(s, φ) ∈ Wa ⊂ L1(δ) + N (δ̄),

by the choice of δ and δ̄. For θ ∈ [−1, 0] we have

(p2 F∗(s, ψ))(θ) = a in case 0 ≤ s + θ,

and

(p2 F∗(s, ψ))(θ) = a + (p2w∗(λ, a 1))(s + θ) in case s + θ < 0.

Observe that p2w∗(λ, a 1) ∈ H0(δ̄). It follows that p2 F∗(s, ψ) ∈ a 1 +
H0(δ̄). Finally,

F∗(s, ψ) ∈ (L1(δ) + N (δ̄)) × ((1 − δ, 1 + δ)1 + H0(δ̄)) ⊂ U∗.

2.2 Analogously, we get F∗([0, t], ψ̂) ⊂ U∗. An application of Proposition 3
yields

F∗(k, ψ) ∈ W∗ ∩ U∗ 	 F∗(k, ψ̂) for all integers k ∈ [0, j].
Using the preceding equations, the injectivity of F∗(1, ·) on W∗ ∩ U∗ (see
Proposition 3), Eq. 2 and induction we infer ψ = ψ̂ , hence φ = p1ψ =
p1ψ̂ = φ̂.

3. Proof of (iii). Let j ∈ IN and ε ∈ (0, δ) be given. Proposition 3 implies that
F∗( j, ·) defines a diffeomorphism between neighbourhoods of (0, 1) in W∗. In
particular, there exists δ̂ ∈ (0, δ) so that

V = F∗( j, W∗ ∩ (C(δ̂) × (1 + C(δ̂)))

is an open neighbourhood of (0, 1) in W∗, and we may assume

Pp1(W∗ ∩ (C(δ̂) × (1 + C(δ̂)))) ⊂ L1(ε).

Choose δ jε ∈ (0, δ) so that for every a ∈ (1 − δ jε, 1 + δ jε) and for each
λ ∈ L1(δ jε) we have

(λ, a 1) + w∗(λ, a 1) ∈ V .
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Let a ∈ (1 − δ jε, 1 + δ jε), λ ∈ L1(δ jε), and consider φ = λ + wa(λ) ∈
Wa ∩ (L1(δ jε) + N ). Set ψ = (λ, a 1) + w∗(λ, a 1). Then p1ψ = φ and
(p2ψ)(0) = a, and by the preceding construction,

V 	 ψ = F∗( j, ψ̂) for some ψ̂ ∈ W∗ ∩ (C(δ̂) × (1 + C(δ̂))).

By Proposition 1, p2ψ is constant with value (p2ψ̂)(0) = (p2ψ)(0) = a.
Also,

ψ̂ = (λ̂, â 1) + w∗(λ̂, â 1)

for some (λ̂, â 1) ∈ L∗(r), and

â = (p2ψ̂)(0) = a ∈ (1 − δ jε, 1 + δ jε),

λ̂ = Pp1ψ̂ ∈ Pp1(W∗ ∩ (C(δ̂) × (1 + C(δ̂)))) ⊂ L1(ε).

Hence,

p1ψ̂ = λ̂ + p1w∗(λ̂, â 1) = λ̂ + p1w∗(λ̂, a 1) = λ̂ + wa(λ̂) ∈ Wa .

It follows that

φ = p1ψ = p1 F∗( j, ψ̂) = Fa( j, p1ψ̂) ∈ Fa( j, Wa ∩ (L1(ε) + N )).

��
Parts (ii) and (iii) of the preceding proposition are not optimal, of course. The

maps Fa(t, ·) define diffeomorphisms between neighbourhoods of 0 in Wa , but we
shall not need this in the sequel.

Proposition 5 There exists δ1 ∈ (0, δ) so that for every a ∈ (1 − δ1, 1 + δ1),

T0Wa = La .

Proof
1. Let a ∈ (1 − δ, 1 + δ) be given. Using Proposition 4 (i), continuity, and a

compactness argument we find that each Fa(t, ·), t ≥ 0, maps a neighbour-
hood of the stationary point 0 in Wa into Wa . It follows that Ta(t)T0Wa =
D2 Fa(t, 0)T0Wa ⊂ T0Wa for all t ≥ 0. The eigenvalues of the endomor-
phism Ea induced by Ta(1) on T0Wa are also eigenvalues of Ta(1), and T0Wa
is contained in the realified generalized eigenspace of Ta(1) given by these
eigenvalues.

2. Using Dw∗(0, 1) = 0 we find Dw1(0) = 0, and thereby T0W1 = {λ +
Dw1(0)λ : λ ∈ L1} = L1. It follows that the endomorphism E1 has a double
eigenvalue e0 = 1. By continuity, there exists δ1 ∈ (0, δ) so that for every
a ∈ (1 − δ1, 1 + δ1) the leading complex conjugate pair {za, za} ⊂ speca and
the eigenvalues z of Ea satisfy

|eza | < |z|.
For such a we conclude that the eigenvalues of Ea are e0 = 1 and eua , and
thereby T0Wa ⊂ La . ��
According to a remark in the preceding section we obtain from Propositions 4

(i) and 5 the following result on instability.

Corollary 3 For a ∈ (1, 1 + δ1) no curve Fa(·, φ) with trace in Wa \ {0} tends to
0 as t → ∞.
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4 Slowly oscillating solutions

In the present section it is shown that for a close to 1 solutions on [−1,∞) which
start from data in restrictions of the manifolds Wa are slowly oscillating, con-
tinuously differentiable, and have slowly oscillating derivatives. We begin with a
variant of Proposition 3.1 in [1]; for the proof, see [1] and the remark following
Proposition 2.3 in [12].

Proposition 1 Suppose h : [0,∞) × IR → IR is continuous and locally Lipschitz
continuous with respect to the second variable, and h(t, 0) = 0 for all t ≥ 0.
Suppose also that for any t0 ≥ 0, t1 ≥ t0, w0 ∈ IR, and for any continuous
function g : [t0, t1] → IR the unique maximal solution to the initial value problem

ẇ(t) = h(t, w(t)) + g(t), w(t0) = w0,

is defined on [t0, t1]. Let a > 0 and let v : [−1,∞) → IR be a solution of the
equation

v̇(t) = h(t, v(t)) − a v(t − 1).

(i) In case 0 �= v0 ∈ Z,

vt ∈ Z for all t ≥ 0,

and for some t ∈ [0, 3] the segment vt has no zero. For all s ≥ 3,

vs ∈ Z .

(ii) In case z ≥ 0 is a zero of v and v has no zero on [z − 1, z) we have

0 �= sign v(t) = −sign v(z − 1) for all t ∈ (z, z + 1].

Before we can make use of Proposition 1 we need another auxiliary result.

Proposition 2 (i) For every a ∈ (1 − δ, 1 + δ) and φ ∈ Wa \ {0}, Pφ �= 0 and

‖‖φ‖−1φ − ‖Pφ‖−1 Pφ‖ ≤ 2 sup
λ∈L1(‖Pφ‖)

‖Dwa(λ)‖.

(ii) For every a ∈ (1 − δ, 1 + δ) and φ ∈ Wa \ {0} with Fa([0, 2], φ) ⊂ Wa,
ψ = ẋa,φ

1 satisfies ψ �= 0 �= Pψ and

‖‖ψ‖−1ψ − ‖Pψ‖−1 Pψ‖ ≤ 2‖Dwa(P Fa(1, φ))‖.

(iii) There exists d > 0 so that for every λ ∈ L1 ∩ SC there is t = t (λ) ∈ [0, 2]
with

|[T1(t)λ](θ)| ≥ d > 0 for all θ ∈ [−1, 0].
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Proof 1. Proof of (i). From 0 �= φ = Pφ + wa(Pφ) and wa(0) = 0 we get
Pφ �= 0. It follows that

‖‖φ‖−1φ − ‖Pφ‖−1 Pφ‖ ≤ ‖Pφ‖−1‖φ − Pφ‖ + |‖φ‖−1 − ‖Pφ‖−1|‖φ‖
= ‖Pφ‖−1‖wa(Pφ)‖ + |‖Pφ‖ − ‖φ‖|

‖φ‖‖Pφ‖ ‖φ‖ ≤ ‖Pφ‖−1‖wa(Pφ)‖

+‖Pφ − φ‖
‖Pφ‖

= 2‖Pφ‖−1‖wa(Pφ)‖ ≤ 2 sup
λ∈L1(‖Pφ‖)

‖Dwa(λ)‖.

2. Proof of (ii). Let x = xa,φ .
2.1. Proof of ψ �= 0. Assume ψ = 0. Then x1 is constant. Equation 1.1 yields

that also x0 = f ◦ x1 − a−1 ẋ1 is constant. By continuity, x is constant on
[−1, 1]. Then 0 = a−1 ẋ(t) = x(t)− x(t −1)−|x(t)|x(t) = −|x(t)|x(t)
on (0, 1] yields x(t) = 0 on [−1, 1], in contradiction to x0 = φ �= 0.

2.3. Proof of Pψ �= 0. Differentiating the curve [1, 2] 	 t 
→ xt = Pxt +
wa(Pxt ) ∈ C at t = 1 we obtain

0 �= ψ = Pψ + Dwa(Px1)Pψ,

which implies Pψ �= 0.
2.4. It follows that

‖‖ψ‖−1ψ − ‖Pψ‖−1 Pψ‖ ≤ ‖Pψ‖−1‖ψ − Pψ‖
+ |‖ψ‖−1 − ‖Pψ‖−1|‖ψ‖

≤ ‖Pψ‖−1‖Dwa(Px1)Pψ‖ + ‖Pψ − ψ‖
‖ψ‖‖Pψ‖ ‖ψ‖

= 2‖Pψ‖−1‖Dwa(Px1)Pψ‖.
3. Proof of (iii). From the fact that L1 \ {0} ⊂ Z is positively invariant under

the operators T1(t), t ≥ 0, we deduce that for each λ ∈ L1 ∩ SC there exists
t (λ) ∈ [0, 2] so that T1(t (λ))λ has no zero. Moreover, for some d(λ) > 0,

|[T1(t (λ))λ](θ)| > d(λ) > 0 on [−1, 0].
Continuity implies that for each λ ∈ L1 ∩ SC there exists ε(λ) > 0 so that for
all λ̂ ∈ λ + C(ε(λ)) we have

|[T1(t (λ))λ̂](θ)| > d(λ) > 0 on [−1, 0].
The compact circle L1 ∩ SC is covered by a finite number of such neighbour-
hoods λ+C(ε(λ)). Define d by the minimum of the associated constants d(λ).

��
Proposition 3 There exists δ2 ∈ (0, δ) so that

Fa(t, φ) ∈ Z

for all a ∈ (1 − δ2, 1 + δ2), all φ ∈ (Wa \ {0}) ∩ C(δ2) and all t ≥ 2.
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Proof 1. Let a ∈ (1 − δ, 1 + δ), φ ∈ Wa \ {0}, t ∈ [0, 2]. Using Proposition 2 (i)
we infer Pφ �= 0 and

‖‖φ‖−1 Fa(t, φ) − ‖Pφ‖−1T1(t)Pφ‖
≤ ‖φ‖−1‖Fa(t, φ) − Ta(t)φ‖ + ‖‖φ‖−1Ta(t)φ − ‖Pφ‖−1T1(t)Pφ‖
= ‖φ‖−1‖

∫ 1

0
[D2 Fa(t, sφ) − D2 Fa(t, 0)]φds‖ + ‖‖φ‖−1Ta(t)φ

−‖Pφ‖−1T1(t)Pφ‖
≤ ‖φ‖−1 sup

ψ∈C(‖φ‖)
‖D2 Fa(t, ψ) − D2 Fa(t, 0)‖‖φ‖ + ‖‖φ‖−1Ta(t)φ

−‖Pφ‖−1T1(t)Pφ‖

= sup
ψ∈C(‖φ‖)

‖D2 Fa(t, ψ) − D2 Fa(t, 0)‖ + ‖‖φ‖−1Ta(t)φ − ‖Pφ‖−1T1(t)Pφ‖
≤ sup

ψ∈C(‖φ‖)
‖D2 Fa(t, ψ) − D2 Fa(t, 0)‖ + ‖Ta(t) − T1(t)‖

+ ‖T1(t)‖‖‖φ‖−1φ − ‖Pφ‖−1 Pφ‖
≤ sup

ψ∈C(‖φ‖)
‖D2 Fa(t, ψ) − D2 Fa(t, 0)‖ + ‖Ta(t) − T1(t)‖

+‖T1(t)‖ 2 sup
λ∈L1(‖Pφ‖)

‖Dwa(λ)‖.

2. There exists c > 0 with

‖T1(t)‖ ≤ c on [0, 2].
Using Dw∗(0, 1) = 0 and the definition of the maps wa we find δ21 ∈ (0, δ)
so that for all a ∈ (1 − δ21, 1 + δ21) and all λ ∈ L1(δ21),

‖Dwa(λ)‖ ≤ d

6c
.

Continuous dependence on parameters for solutions to variational equations
shows that in addition we may assume

‖D2 Fa(t, ψ) − D2 Fa(t, 0)‖ <
d

3
for a ∈ (1 − δ21, 1 + δ21), ψ ∈ C(δ21) and t ∈ [0, 2], and

‖Ta(t) − T1(t)‖ <
d

3
for such a and t .

3. Choose δ2 ∈ (0, δ21) so that P maps C(δ2) into L1(δ21). Let a ∈ (1 − δ2, 1 +
δ2), φ ∈ (Wa \ {0}) ∩ C(δ2). Choose t = t (‖Pφ‖−1 Pφ) ∈ [0, 2] according to
Proposition 2 (iii). The estimates in parts 1 and 2 combined with Proposition
2 (iii) imply

|[‖φ‖−1 Fa(t, φ)](θ)| > 0 on [−1, 0].
So Fa(t, φ) has no zero. Now one can apply Proposition 1 (ii) with h(t, ξ) =
a f (ξ) and deduce Fa(s, φ) ∈ Z for all s ≥ t . ��
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Proposition 4 There exists δ3 ∈ (0, δ) so that

D1 Fa(t, φ)1 = ẋa,φ
t ∈ Z

for all a ∈ (1 − δ3, 1 + δ3), all φ ∈ (Wa \ {0}) ∩ C(δ3) and all t ≥ 3.

Proof 1. Proof that there exists δ31 ∈ (0, δ) so that for all a ∈ (1 − δ31, 1 + δ31)
and φ ∈ (Wa \ {0}) ∩ C(δ31) we have

Fa([0, 3], φ) ⊂ Wa .

Continuity and compactness arguments and the fact that (0, 1) is a stationary
point for the semi-flow F∗ altogether imply that there exists δ31 ∈ (0, δ) so
that

Pp1 F∗([0, 3], C(δ31) × (1 + C(δ31))) ⊂ L1(δ).

For a ∈ (1 − δ31, 1 + δ31), 0 �= φ ∈ Wa ∩ C(δ31) and t ∈ [0, 3] we get

P Fa(t, φ) = Pp1 F∗(t, (φ, a 1)) (Proposition 3.1)

∈ L1(δ),

and Proposition 3.4 (i) yields the assertion.
2. For a ∈ (1 − δ31, 1 + δ31) and φ ∈ (Wa \ {0}) ∩ C(δ31) consider the solution

x = xa,φ . Recall

D2 Fa(t − 1, x1)ẋ1 = ẋt for all t ≥ 1.

By Proposition 2 (ii), ẋ1 �= 0 �= Pẋ1, and for all t ∈ [1, 3],
‖‖ẋ1‖−1 ẋt − T1(t − 1)‖Pẋ1‖−1 Pẋ1‖
≤ ‖‖ẋ1‖−1 D2 Fa(t − 1, x1)ẋ1 − Ta(t − 1)‖ẋ1‖−1 ẋ1‖ + ‖Ta(t − 1)

− T1(t − 1)‖ + ‖T1(t − 1)‖‖‖ẋ1‖−1 ẋ1 − ‖Pẋ1‖−1 Pẋ1‖
≤ ‖D2 Fa(t − 1, x1) − D2 Fa(t − 1, 0)‖ + ‖Ta(t − 1) − T1(t − 1)‖

+‖T1(t − 1)‖ 2 ‖Dwa(Px1)‖ (see Proposition 2 (ii)).

3. As in the proof of Proposition 3 there exists δ3 ∈ (0, δ31) so that for all a ∈
(1 − δ3, 1 + δ3), all φ ∈ (Wa \ {0}) ∩ C(δ3) and all s ∈ [0, 2] we have

‖D2 Fa(s, Fa(1, φ)) − D2 Fa(s, 0)‖ <
d

3
,

‖Ta(s) − T1(s)‖ <
d

3
,

2 ‖T1(s)‖‖Dwa(P Fa(1, φ))‖ <
d

3
.

Let a ∈ (1 − δ3, 1 + δ3), φ ∈ (Wa \ {0}) ∩ C(δ3), and set x = xa,φ . By
Proposition 2 (ii), ẋ1 �= 0 �= Pẋ1. Using the estimates in part 2 and the previ-
ous inequalities we obtain for s = t (‖Pẋ1‖−1 Pẋ1) ∈ [0, 2] (see Proposition
2 (iii)) the estimate

‖‖ẋ1‖−1 ẋs+1 − T1(s)‖Pẋ1‖−1 Pẋ1‖ < d
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which implies that ẋs+1 has no zero. Now one can apply Proposition 1 (ii) to
the solution ẋ(· + 1) : [−1,∞) → IR of the equation

v̇(t) = a(1 − 2|x(t + 1)|)v(t) − a v(t − 1)

and deduce that D1 Fa(t, φ)1 = ẋt ∈ Z for all t ≥ s + 1. ��
Corollary 1 There exists δ4 ∈ (0, δ) so that for every a ∈ (1 − δ4, 1 + δ4) and
for every φ ∈ Wa \ {0} with Pφ ∈ L1(δ4) the solution x = xa,φ is continuously
differentiable everywhere and slowly oscillating, with slowly oscillating derivative
ẋ : [−1,∞) → IR.

Proof Choose ε ∈ (0, δ) so that for a ∈ (1 − ε, 1 + ε),

Wa ∩ (L1(ε) + N ) ⊂ C(min{δ2, δ3}).
Proposition 3.4 (iii) guarantees the existence of δ4 ∈ (0, min{ε, δ2, δ3}) so that for
a ∈ (1−δ4, 1+δ4) and for each φ ∈ Wa with Pφ ∈ L1(δ4) we have φ = Fa(3, φ̂)
for some

φ̂ ∈ Wa ∩ (L1(ε) + N ) ⊂ Wa ∩ C(min{δ2, δ3}).
Use Propositions 3 and 4 to complete the proof. ��

We choose
δ0 ∈ (0, min{δ1, δ4}),

set
W a = Wa ∩ (L1(δ0) + N )

for a ∈ (1 − δ0, 1 + δ0), and

Q = (−δ0, δ0)
2 ⊂ IR2.

5 Behaviour of coordinate curves

In this section we describe the behaviour of the curves

X : [0,∞) 	 t 
→ Ext ∈ IR2,

or equivalently,
[0, ∞) 	 t 
→ (x(t), x(t − 1)) ∈ IR2

along continuously differentiable slowly oscillating solutions x : [−1,∞) → IR
of Eq. (1.1). Corollary 4.1 guarantees that solutions starting from initial data in
W a , 1 − δ0 < a < 1 + δ0, have these regularity properties. For φ ∈ W a and
y = Eφ we denote the curve X associated with xa,φ by

Xa,φ = Xa,y .

Recall that the restrictions P|W a and E |W a = K ◦ P|W a are injective.
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Proposition 1 (i) Let a > 0, let x : [−1,∞) → IR be a continuously differen-
tiable and slowly oscillating solution to Eq. (1.1). The curve X = (X1, X2)
given by X (s) = (x(s), x(s − 1)) for all s ≥ 0 intersects the axis {0} × IR
transversally, with

Ẋ1(t) = ẋ(t)

{
<
>

}
0 for t ≥ 0 with X (t) ∈

{ {0} × (0,∞)
{0} × (−∞, 0)

}
.

(ii) For all a ∈ (1 − δ0, 1 + δ0),

K L1(δ0) = Q = EW a .

(iii) The map

(1 − δ0, 1 + δ0) × Q × [0,∞) 	 (a, y, t) 
→ Xa,y(t) ∈ IR2

is continuous.
(iv) For all a ∈ (1 − δ0, 1 + δ0), φ ∈ W a and all t ≥ 0 with Xa,φ([0, t]) ⊂ Q,

Fa(t, φ) ∈ W a .

(v) For all a ∈ (1 − δ0, 1 + δ0), y ∈ Q, s ≥ 0 with Xa,y([0, s]) ⊂ Q, t ≥ 0 and
for ŷ = Xa,y(s),

Xa,ŷ(t) = Xa,y(s + t).

(vi) For all a ∈ (1 − δ0, 1 + δ0), all y, ŷ in Q and all t > 0 with Xa,y([0, t]) ∪
Xa,ŷ([0, t]) ⊂ Q and Xa,y(t) = Xa,ŷ(t),

y = ŷ.

Proof

1. Proof of (i). In case X (t) ∈ {0} × (0, ∞), or x(t) = 0 < x(t − 1), Eq. (1.1)
yields a−1 ẋ(t) = 0 − x(t − 1) < 0, with the right derivative in case t = 0.
The proof for X (t) ∈ {0} × (−∞, 0) is analogous.

2. Proof of (ii). For each λ ∈ L1(δ0) we have λ = Pλ = λ(0)λ− + λ(−1)λ0,
and therefore Kλ = (λ(0), λ(−1)). Both components of the preceding pair
are bounded by δ0. Hence,

K L1(δ0) ⊂ Q.

Conversely, let y = (y1, y2) ∈ Q be given. Then

λ = y1λ− + y2λ0 ∈ L1

satisfies Kλ = y and

λ(t) = y1(1 + t) − y2t = y1 + (−t)(y2 − y1) ∈ (−δ0, δ0)

for all t ∈ [−1, 0]. Consequently, λ ∈ L1(δ0), and we obtain

Q ⊂ K L1(δ0).

The remaining part of (ii) follows from EW a = K PW a = K L1(δ0).
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3. Assertion (iii) follows from

Xa,y(t) = E Fa(t, K −1 y + wa(K −1 y)) = Ep1 F∗(t, (K −1 y, a 1) + w∗
×(K −1 y, a 1)).

4. Proof of (iv). Suppose Xa,φ([0, t]) = E Fa([0, t], φ) ⊂ Q. As E = K ◦ P and
K is an isomorphism, we obtain from part (ii) that P Fa([0, t], φ) ⊂ L1(δ0).
Next, Proposition 3.4 (i) yields Fa(t, φ) ∈ Wa , and finally P Fa(t, φ) ∈ L1(δ0)
gives Fa(t, φ) ∈ W a .

5. Proof of (v). For φ ∈ W a with Eφ = y we obtain from (iv) that Fa(s, φ) ∈
W a . Set φ̂ = Fa(s, φ). Then E φ̂ = E Fa(s, φ) = Xa,y(s) = ŷ, and conse-
quently

Xa,ŷ(t) = E Fa(t, φ̂) = E Fa(t, Fa(s, φ)) = E Fa(s + t, φ) = Xa,y(t).

6. Proof of (vi). For φ and φ̂ in W a with Eφ = y and E φ̂ = ŷ, part (iv) yields

Fa([0, t], φ) ∪ Fa([0, t], φ̂) ⊂ W a .

Using this and E Fa(t, φ) = Xa,y(t) = Xa,ŷ(t) = E Fa(t, φ̂) we get
Fa(t, φ) = Fa(t, φ̂). Proposition 3.4 (ii) gives φ = φ̂, hence y = Eφ =
E φ̂ = ŷ. ��
Recall that for any solution x : [1,∞) → IR of Eq. (1.1) and for any t > 0 we

have

ẋ(t)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 if and only if x(t − 1)

⎧⎨
⎩

<
=
>

⎫⎬
⎭ f (x(t)),

i.e., if and only if Ext is strictly below, on, or strictly above the graph f ⊂ IR2.
Let

f< = {y ∈ IR2 : y2 < f (y1)} and f> = {y ∈ IR2 : y2 > f (y1)}.
Recall also that all zeros z > 0 of slowly oscillating solutions of Eq. (1.1) on
[−1, ∞) are simple.

Proposition 2 Let a > 0, and let x : [−1,∞) → IR be a continuously differ-
entiable solution of Eq. (1.1) so that x and ẋ are slowly oscillating. Let t ≥ 0,
ẋ(t) = 0, and x(t) > 0. Then

ẋ(s) > 0 on [t − 1, t),

and in case 0 < x(t) < 1,
0 < x(t − 1).

The curve X : [0,∞) 	 s 
→ (x(s), x(s−1)) ∈ IR2 intersects f at t transversally,
i.e.,

Ẋ(t) = DX (t)1 = (ẋ(t), ẋ(t − 1)) /∈ TX (t) f = IR(1, f ′(x(t))),
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and for some τ > 0,

X (s) ∈ f< on (t − τ, t) ∩ [0,∞) and X (s) ∈ f> on (t, t + τ).

In case x(s) > 0 on [t, ∞) we have ẋ(s) < 0 on (t, ∞) and lims→∞ x(s) = 0.
Otherwise there are zeros z ∈ (t, ∞) of x and ζ ∈ (z, ∞) of ẋ with

ẋ(s) < 0 on (t, ζ ),

and if in addition 0 < x(t) < 1 then

X ((t, ζ )) ⊂ f> ∩ (x(ζ ), x(t)]2.

Proof 1. By x(t) > 0, x(t) > f (x(t)). By ẋ(t) = 0, f (x(t)) = x(t − 1).
Hence, x(t) > x(t − 1), and consequently ẋ(s) > 0 for some s ∈ [t − 1, t).
As t is a zero of the slowly oscillating function ẋ we infer ẋ(s) > 0 for all
s ∈ [t − 1, t). In case 0 < x(t) < 1 we have x(t − 1) = f (x(t)) > 0.
The assertion about transversality is obvious from ẋ(t − 1) > 0 which gives
(ẋ(t), ẋ(t − 1)) ∈ {0} × (0, ∞).

2. Next we observe that in case t > 0 the derivative ẍ(t) of the slowly oscillating
solution ẋ to the variational equation

a−1v̇(t) = (1 − 2|x(t)|)v(t) − v(t − 1)

equals −aẋ(t − 1) < 0; in case t = 0 this holds true for the right derivative of
ẋ . Using the preceding statements and the fact that ẋ is slowly oscillating we
get ẋ(s) < 0 on (t, t + 1].

3. Consider the case x(s) > 0 on [t, ∞). Suppose ẋ(s) ≥ 0 for some s > t + 1.
Then there is a smallest zero ζ of ẋ in (t, ∞), and t +1 < ζ . We have ẋ(u) < 0
on (t, ζ ), and thereby x(ζ ) < x(ζ − 1), in contradiction to

x(ζ − 1) = −a−1 ẋ(ζ ) + x(ζ ) − |x(ζ )|x(ζ ) = x(ζ ) − |x(ζ )|x(ζ ) < x(ζ ).

It follows that ẋ(u) < 0 on (t, ∞). Proposition 2.1 (i) gives

lim
u→∞ x(u) = 0.

4. The case x(s) ≤ 0 for some s > t . Then there is a smallest zero z of x in
(t, ∞). By part 2, ẋ(u) < 0 on (t, t + 1]. If z ≤ t + 1 then obviously ẋ(u) < 0
on (t, z]. If z > t + 1 then arguments as in part 3 yield ẋ(u) < 0 on (t, z] as
well.
In the subcase x(u) ≥ 0 for some u > z there is a smallest zero ζ of ẋ in
(z, u), and clearly ẋ(u′) < 0 on (t, ζ ).
In the other subcase x(u) < 0 on (z, ∞) Proposition 2.1 (ii) shows that ẋ has
a zero in (z,∞). For the smallest zero ζ of ẋ in (z, ∞) we have ẋ(u) < 0 on
[z, ζ ).

5. The remaining assertions are now obvious. ��
Remark Of course, the analogue of Proposition 2 for the case ẋ(t) = 0 with
x(t) < 0 holds as well.
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The next results concern the case a = 1. At first we show that curves X1,y

starting at y ∈ f with 0 < y1 < δ0 intersect the y2-axis, or equivalently, that
solutions x : [−1,∞) → IR of Eq. (1.1) which start in W 1 \ {0} and have a
maximum at t = 0 must have a zero z > 0. This is similar to the result of Corollary
5.2 from [1]. Notice that the following proof is by a simple comparison argument,
whereas in [1] a centre manifold reduction was used.

Proposition 3 Every solution x = x1,φ with φ ∈ W 1 and ẋ(0) = 0 < x(0) has a
zero z > 0.

Proof Suppose x has no positive zero. Then Proposition 2 yields ẋ(t) < 0 < x(t)
on (0, ∞) and x(t) → 0 as t → ∞. On the interval [1, 2] the function ẋ has
a negative maximum c < 0. There exist b ∈ IR and s ≥ 2 so that the solution
v : IR 	 t 
→ b + ct ∈ IR of the linear equation

v̇(t) = v(t) − v(t − 1)

satisfies v(t) ≤ x(t) on [1,∞) and v(s) = x(s). It follows that v̇(s) = ẋ(s). On
the other hand,

ẋ(s) = x(s) − x(s − 1) − |x(s)|x(s) = v(s) − x(s − 1) − |x(s)|x(s)

≤ v(s) − v(s − 1) − |x(s)|x(s) < v(s) − v(s − 1) = v̇(s),

in contradiction to the previous equation. ��
Set

f+ = {y ∈ f : 0 < y1} and f+0 = {y ∈ f : 0 < y1 < δ0},
f− = {y ∈ f : y1 < 0} and f−0 = {y ∈ f : −δ0 < y1 < 0}.

Recall δ0 < 1. By Proposition 3 the set

�− = {(a, y) ∈ (1 − δ0, 1 + δ0) × f+0 : Xa,y(z) ∈ {0} × IR for some z > 0}
is non-empty, and

{1} × f+0 ⊂ �−.

Proposition 2 implies that for each (a, y) ∈ �− the smallest zero z+(a, y) of Xa,y
1

in (0,∞) satisfies Xa,y
2 (z+(a, y)) > 0, and that there is a smallest t−(a, y) >

z+(a, y) so that Xa,y(t−(a, y)) ∈ f ; we have Xa,y(t−(a, y)) ∈ f− and

Xa,y(t) ∈ f> ∩ (Xa,y
1 (t−(a, y)), y1]2 on (0, t−(a, y)). (1)

Using Proposition 1 (i) and (iii) and Proposition 2 we see that �− is open in
(1 − δ0, 1 + δ0) × f , and that the maps

z+ : �− 	 (a, y) 
→ z+(a, y) ∈ (0, ∞) and t− : �− 	 (a, y) 
→ t−(a, y) ∈ (0, ∞)

are continuous. It follows that the map

J− : �− 	 (a, y) 
→ Xa,y(t−(a, y)) ∈ f−
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is continuous. Our next aim is to show that the map J−(1, ·) : f+0 → f− satisfies

lim
f+0	y→0

J−(1, y) = (0, 0).

This requires some preparations. Observe that for y ∈ f+0,

X1,y(z+(1, y) + 1) ∈ (−∞, 0) × {0}.

Proposition 4 The map I : f+0 	 y 
→ X1,y
1 (z+(1, y) + 1) ∈ (−∞, 0) satisfies

lim
f+0	y→0

I (y) = 0.

Proof For y ∈ f+0, 0 < y1 < 1. Proposition 2 therefore yields

X1,y([0, z+(1, y)]) ⊂ [0, y1]2.

Consequently,
lim

f+0	y→0
X1,y(z+(1, y)) = (0, 0).

Moreover, Proposition 1 (v) shows that for all y ∈ f+0,

X1,y(z+(1, y) + 1) = X1,ŷ(1) with ŷ = X1,y(z+(1, y)).

Apply Proposition 1 (iii). ��
Incidentally, notice that there is no bound for z+(1, y) with y ∈ f+0 small,

and that one can not invoke continuity of the semi-flow F1 and the fact that 0 ∈ C
is stationary in order to obtain the previous result.

We need to control the behaviour of curves X1,y with −1 < I (y) on the
interval [z+(1, y)+1, t−(1, y)], where they travel from (−1, 0)×{0} to the branch
f− of f . The subsequent result can be viewed as an analogue of Proposition 3 for
backward solutions. In part 2.2 of the proof we use a comparison argument as in
the proof of Proposition 3.

Proposition 5 There exists δ− ∈ (0, δ0) so that for each y ∈ f−0 with −δ− <
y1 < 0 there are η ∈ (y1, 0) and t > 0 with

y = X1,(η,0)(t)

and
X1,(η,0)((0, t)) ⊂ f> ∩ ((y1, 0) × (y2, 0)).

Proof 1. Proposition 3.4 shows that there are open neighbourhoods U and V of
0 in W 1 such that F1([0, 1], U ) ⊂ W 1 and V ⊂ F1(1, U ). It follows that
there is δ− ∈ (0, δ0) so that for each y ∈ (−δ−, δ−)2 there exists ŷ ∈ Q
with y = X1,ŷ(1) and X1,ŷ([0, 1]) ⊂ Q. We may assume δ− < 1

2 . Then f is
strictly increasing on (−δ−, 0). Consider y ∈ f−0 with −δ− < y1 < 0. Then
y2 = f (y1) ∈ (y1, 0) ⊂ (−δ−, 0).
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2. Suppose
X1,(η,0)(t) �= y for all η ∈ (y1, 0) and t ≥ 0. (2)

Let
Y = f> ∩ ((y1, 0) × (y2, 0)).

2.1. Proof that there is a solution x : IR → IR of Eq. (1.1) with a = 1 so that
x0 ∈ W 1, Ex0 = y, and

ẋ(t) < 0 and y1 < x(t) < 0 on (−∞, 0). (3)

2.1.1. We have y = X1,ŷ(1) with

X1,ŷ([0, 1]) ⊂ Q \ {(0, 0)}.
By transversality as in Proposition 2, X1,ŷ(t) ∈ f> on some interval

(1 − τ, 1) with 0 < τ ≤ 1. Hence, Ẋ1,ŷ
1 (t) < 0 on this interval. So we

may assume that on (1 − τ, 1),

X1,ŷ(t) ∈ f> ∩ ((y1, 0) × (−∞, 0)) = f> ∩ ((y1, 0) × (y2, 0))

= Y ⊂ f> ∩ (−δ−, 0)2.

2.1.2. Proof of X1,ŷ([0, 1)) ⊂ Y . Suppose the assertion is false. Then there
exists a largest t ∈ [0, 1 − τ ] with

X1,ŷ(t) /∈ Y.

It follows that X1,ŷ(t) is in ∂Y , and X1,ŷ((t, 1)) ⊂ Y . Using the as-
sumption (2) and Proposition 1 (v) we obtain

X1,ŷ(t) /∈ (y1, 0) × {0}.
Hence, (0, 0) �= X1,ŷ(t) ∈ f− or X1,ŷ(t) ∈ ({y1} × IR) ∩ f>. In
the first case transversality yields X1,ŷ(s) ∈ f< ⊂ IR2 \ Y for some
s ∈ (t, 1), and we obtain a contradiction. In the second case we have
Ẋ1,ŷ

1 (t) < 0, and thereby X1,ŷ
1 (s) < y1 for some s ∈ (t, 1), hence

X1,ŷ(s) ∈ IR2 \ Y , and we get the same contradiction as before.
2.1.3. In particular, ŷ ∈ Y . Using arguments as in parts 2.1.1 and 2.1.2 and

induction one extends the solution x1,φ with φ ∈ W 1 and Eφ = y
backward to a solution on IR with property (3).

2.2. Let c = min ẋ |[−2,−1] < 0. Choose sc ∈ [−2,−1] with ẋ(sc) = c.
There exist b ∈ IR and s ≤ sc so that the solution

v : IR 	 t 
→ b + ct ∈ IR

of the linear variational equation

v̇(t) = v(t) − v(t − 1)

satisfies v(s) = x(s) and v(t) ≥ x(t) on (−∞, s]. In both cases s < sc
and s = sc we have v̇(s) = ẋ(s). On the other hand,

ẋ(s) = x(s) − x(s − 1) − |x(s)|x(s) > x(s) − x(s − 1) = v(s) − x(s − 1)

≥ v(s) − v(s − 1) = v̇(s),

which yields a contradiction.
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2.3. It follows that there exist η̂ ∈ (y1, 0) and t̂ > 0 with y = X1,(η̂,0)(t̂).
3. As in part 2.1.1 we have X1,(η̂,0)((t̂ − τ, t̂)) ⊂ Y for some τ ∈ (0, t̂). Set

s = max{t ∈ [0, t̂ − τ ] : X1,(η̂,0)(t) ∈ IR2 \ Y }.
Then (0, 0) �= X1,(η̂,0)(s) ∈ ∂Y . As in part 2.1.2 we exclude the cases
X1,(η̂,0)(s) ∈ f− and X1,(η̂,0)(s) ∈ {y1} × IR. It follows that X1,(η̂,0)(s) ∈
(y1, 0) × {0}, and Proposition 1 (v) shows that the assertion holds for η =
X1,(η̂,0)

1 (s) and t = t̂ − s. ��
Part 2.2 of the preceding proof shows that in case a = 1 there are no solutions

x : IR → IR of Eq. (1.1) so that x and ẋ are negative on (−∞, 0). For any a > 1
this is false: The branches of the one-dimensional local unstable manifold at 0
consist of segments of solutions x so that x and ẋ have no zero and are of the
same sign on (−∞, 0). For a proof, see [1].

Proposition 6 lim f+0	y→0 J−(1, y) = (0, 0).

Proof 1. Let ε ∈ (0, δ−) be given. Proposition 5 guarantees the existence of
η ∈ (−ε, 0) and t > 0 so that

(−ε, f (−ε)) = X1,(η,0)(t) and X1,(η,0)((0, t)) ⊂ f>∩((−ε, 0)×( f (−ε), 0)).

In particular, Ẋ1,(η,0)

1 (s) < 0 on (0, t). It follows that the set X1,(η,0)([0, t]) ∪
((η, 0] × {0}) is given by a continuous function g : [−ε, 0] → IR. The open
set

Y = {ŷ ∈ IR2 : −ε < ŷ1 < 0, f (ŷ1) < ŷ2 < g(ŷ1)}
is contained in the square (−ε, 0)2 and has the boundary

∂Y = X1,(η,0)([0, t]) ∪ ((η, 0] × {0}) ∪ ( f ∩ ((−ε, 0) × IR)).

By Proposition 4 there is d > 0 with

I ( f+0 ∩ ((0, d) × IR)) ⊂ (η, 0).

In the sequel we show that for y ∈ f+0 ∩ ((0, d) × IR) we have

J−(1, y) = X1,y(t−(1, y)) ∈ Y ⊂ [−ε, 0]2.

2. Let y ∈ f+0 ∩ ((0, d) × IR) be given. Then

X1,y(z+(1, y)+1) ∈ (η, 0)×{0} and X1,y
2 (s) < 0 on (z+(1, y)+1, t−(1, y)),

by Proposition 2. It follows that for some τ > 0,

X1,y(s) ∈ Y on (z+(1, y) + 1, z+(1, y) + 1 + τ).

Suppose
X1,y(t−(1, y)) ∈ IR2 \ Ȳ .
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Then there exists s ∈ [z+(1, y) + 1 + τ, t−(1, y)) with X1,y(s) ∈ ∂Y . Propo-
sition 2 shows that X1,y(s) is neither in IR × {0} nor in f . Consequently,

X1,y(s) = X1,(η,0)(u) for some u ∈ (0, t).

Notice that for 0 < v < s we have

−ε < X1,(η,0)

1 (u) = X1,y
1 (s) < X1,y

1 (v) < y1.

due to Proposition 2. Again by Proposition 2,

X1,y([0, s]) ⊂ (−ε, y1]2 ⊂ Q.

Recall
X1,(η,0)([0, u]) ⊂ Q.

2.1. In case s = z+(1, y) + 1 + u Proposition 1 (v) and (vi) yield

X1,y(z+(1, y) + 1) = X1,y(s − u) = X1,(η,0)(u − u) = (η, 0),

in contradiction to the choice of y.
2.2. In case s < z+(1, y) + 1 + u Proposition 1 (v) and (vi) yield

X1,(η,0)(u − (s − (z+(1, y) + 1))) = X1,y(s − (s − (z+(1, y) + 1)))

= X1,y(z+(1, y) + 1) ∈ (−∞, 0) × {0},
in contradiction to X1,(η,0)

2 (v) < 0 for 0 < v < t .
2.3. In case s > z+(1, y) + 1 + u Proposition 1 (v) and (vi) yield

X1,y(s − u) = X1,(η,0)(u − u) = (η, 0),

in contradiction to X1,y
2 (v) < 0 on (z+(1, y) + 1, t−(1, y)).

2.4. It follows that

J−(1, y) = X1,y(t−(1, y)) ∈ Y ⊂ [−ε, 0]2.

��
By arguments as before, the set

�+ = {(a, y) ∈ (1 − δ0, 1 + δ0) × f−0 : Xa,y(z) ∈ {0} × IR for some z > 0}
is non-empty with

{1} × f−0 ⊂ �+
and open in (1 − δ0, 1 + δ0) × f , and for each (a, y) ∈ �+ there exists a smallest
local extremum t+(a, y) > 0 of Xa,y

1 = xa,φ , where φ ∈ W a and Eφ = y. For
each (a, y) ∈ �+, Xa,y(t+(a, y)) ∈ f+ and

Xa,y(t) ∈ f< ∩ [y1, Xa,y
1 (t+(a, y)))2 on (0, t+(a, y)). (4)

The maps
t+ : �+ 	 (a, y) 
→ t+(a, y) ∈ (0, ∞)

and
J+ : �+ 	 (a, y) 
→ Xa,y(t+(a, y)) ∈ f+

are continuous, and J+(1, ·) : f−0 → f+ has limit (0, 0) at (0, 0).
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Corollary 1 For every ε ∈ (0, δ0) there exist y = yε ∈ f+ with (1, y) ∈ �− and
(1, J−(1, y)) ∈ �+ so that with ŷ = J−(1, y) we have

X1,y(t) ∈ (−ε, ε)2 on [0, t−(1, y) + t+(1, ŷ],
X1,y(t) ∈ f> ∩ (ŷ1, y1]2 on (0, t−(1, y)),

and

X1,y(t) ∈ f< ∩ [ŷ1, Xa,ŷ
1 (t+(1, ŷ)))2 on (t−(1, y), t−(1, y) + t+(1, ŷ)).

Proof Use Proposition 6 and lim f−0	ŷ→0 J+(1, ŷ) = (0, 0) in order to find

y ∈ f+ with 0 < y1 < ε, −ε < X1,y
1 (t−(1, y)) = J−(1, y)1 < 0, and

0 < X1,ŷ
1 (t+(1, ŷ)) < ε, where ŷ = X1,y(t−(1, y)) = J−(1, y). Properties (1)

and (4) yield

X1,y((0, t−(1, y))) ⊂ f> ∩ (ŷ1, y1]2 ⊂ (−ε, ε)2

and
X1,ŷ((0, t+(1, ŷ))) ⊂ f< ∩ [ŷ1, X1,ŷ

1 (t+(1, ŷ)))2 ⊂ (−ε, ε)2.

Use Proposition 1 (v) to complete the proof. ��
Proposition 7 Let (a, y) and (a, y∗) in �− be given with y∗

1 < y1 and
Xa,y([0, t−(a, y)]) ⊂ Q. Then

Xa,y
1 (t−(a, y)) < Xa,y∗

1 (t−(a, y∗)).

Proof Consider φ and φ∗ in W a with Eφ = y and Eφ∗ = y∗, and set x = xa,φ ,
x∗ = xa,φ∗

, X = Xa,y , X∗ = Xa,y∗
. Set s = t−(a, y) and s∗ = t−(a, y∗).

From ẋ < 0 on (0, s) and ẋ∗ < 0 on (0, s∗) we infer that the arcs X ([0, s]) and
X∗([0, s∗]) can be written as continuous maps

A : [x(s), x(0)] → IR and B : [x∗(s∗), x∗(0)] → IR,

respectively, with

(x(s), A(x(s))) = X (s) ∈ f−, (x∗(s∗), B(x∗(s∗))) = X∗(s∗) ∈ f−,

(x(0), A(x(0))) = X (0) ∈ f+, (x∗(0), B(x∗(0))) = X∗(0) ∈ f+,

and

(ξ, A(ξ)) ∈ f> on (x(s), x(0)), (ξ, B(ξ)) ∈ f> on (x∗(s∗), x∗(0)).

Assume x∗(s∗) ≤ x(s). Then the graphs A and B intersect. Notice that X∗(0) ∈
f+ is different from X (0) and does not belong to X ((0, s)), and that X (0) ∈
(x∗(0), ∞)×IR does not belong to X∗([0, s∗]). It follows that there exist t ∈ (0, s]
and t∗ ∈ (0, s∗] with X (t) = X∗(t∗). Proposition 2 shows that the arc X∗([0, t∗])
is contained in

[x∗(t∗), x∗(0)] × [min{0, x∗(t∗)}, x∗(0)] = [x(t), x∗(0)]
×[min{0, x(t)}, x∗(0)]
⊂ [x(s), x(0)]2 ⊂ Q.

Now the inclusion X ([0, s]) ⊂ Q and arguments as in part 2 of the proof of
Proposition 6 yield a contradiction. ��
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Remark The analogue of Proposition 7 for �+ instead of �− holds as well.

6 Bifurcation

We complete the proof of the theorem from Sect. 1. It is convenient to consider
for ε > 0 and a > 0 the following property.

(Pεa) Eq. (1.1) has a slowly oscillating periodic solution p : IR → (−ε, ε)
whose minimal period is given by three consecutive zeros. There is a first zero
z > −1 and 0 < x(t) ≤ x(0) on (−1, z).

Proposition 1 (Supercritical bifurcation) Let ε ∈ (0, δ0) and assume y = y(ε)

satisfies
X1,y

1 (t−(1, y) + t+(1, J−(1, y))) < y1.

Then there exists aε ∈ (1, 1 + ε) so that (Pεa) holds for every a ∈ (1, aε).

Proof 1. Let ε ∈ (0, δ0) be given and consider y = yε as in Corollary 5.1. Then
(1, y) ∈ �−, and (1, ŷ) with ŷ = J−(1, y) = X1,y(t−(1, y)) belongs to �+,
and

J+,1(1, J−(1, y)) = X1,ŷ
1 (t+(1, ŷ)) = X1,y

1 (t−(1, y) + t+(1, ŷ)) < y1,

by Proposition 5.1 (v). Choose t0 > t−(1, y) + t+(1, ŷ) with X1,y([0, t0]) ⊂
(−ε, ε)2. Using Proposition 5.1 (iii), the openness of �− and �+, and the
continuity of t−, J−, t+ and J+ we find aε ∈ (1, 1 + ε) so that for every
a ∈ (1, aε) the following holds: (a, y) ∈ �−, (a, y∗) with y∗ = J−(a, y)
belongs to �+,

t−(a, y) + t+(a, y∗) < t0,

J+,1(a, J−(a, y)) < y1,

and
Xa,y(t) ∈ (−ε, ε)2 on [0, t0].

Let a ∈ (1, aε) be given and set X = Xa,y , s1 = t−(a, y), y∗ = J−(a, y) =
Xa,y(s1) and t1 = s1 + t+(a, y∗). Using Proposition 5.1 (v) we get

X (s1 + t) = Xa,y∗(t) on [0, t+(a, y∗)].
From (5.1) and (5.4) in combination with the preceding statement we infer

X ((0, s1)) ⊂ f> ∩ (X1(s1), X1(0)]2 = f> ∩ (X1(s1), y1]2

and
X ((s1, t1)) ⊂ f< ∩ [X1(s1), X1(t1))

2;
we have X (s1) ∈ f−, X (t1) ∈ f+, and

X1(t1) < X1(0).

In particular,
X ([0, t1]) ⊂ (−ε, ε)2 ⊂ Q,
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and

Xa,X (t1)(t) = X (t1 + t) for all t ≥ 0, (1)

due to Proposition 5.1 (v).
2. Proof of (a, X (t1)) ∈ �−. Proposition 5.1 (iv) yields Fa(t1, φ) ∈ W a for

φ ∈ W a with Eφ = y. Let x = xa,φ . Suppose x has no zero in (t1,∞). Then
Proposition 5.2 gives ẋ(t) < 0 on (t1, ∞), limt→∞ x(t) = 0, and 0 < x(t) <
δ0 < 1 on [t1 − 1,∞). Proposition 5.1 (iv) yields xt ∈ W a on [t1, ∞), and
we obtain a contradiction to Corollary 3.3. It follows that there is a smallest
zero of x in (t1, ∞). From this and from xt1 = Fa(t1, φ) ∈ W a we obtain
(a, X (t1)) ∈ �−.

3. Set s2 = t1 + t−(a, X (t1)). An application of Proposition 5.7 to (a, y) and
(a, X (t1)) in combination with (1) yields

x(s1) < x(s2).

We have

X (s2) = Xa,X (t1)(t−(a, X (t1))) ∈ f−,

X (t) ∈ f> on (t1, s2),

and
X ([t1, s2]) ⊂ [x(s2), x(t1)]2 ⊂ [x(s1), x(0)]2 ⊂ (−ε, ε)2.

4. As in part 2 we get (a, X (s2)) ∈ �+. Using the remark following Proposition
5.7 and arguments as in part 3 we find t2 > s2 with

X ([s2, t2]) ⊂ (−ε, ε)2, X ((s2, t2)) ⊂ f<, X (t2) ∈ f+,

and
x(t2) < x(t1).

Let t0 = 0. Induction shows that the local maxima and local minima of x
on (−1, ∞) form strictly increasing sequences (tn)∞0 and (sn)

∞
1 , respectively,

with t0 = 0, so that for all integers n ≥ 0, tn < sn+1 < tn+1 and

−ε < x(sn+1) < x(sn+2) < 0 < x(tn+1) < x(tn) < ε.

Also, xt ∈ W a for all t ≥ 0.
5. Using the preceding statement and Corollary 3.3 we infer that

(I) lim
n→∞ x(tn) > 0 or (II) lim

n→∞ x(sn) < 0.

5.1 Case (I). Set p∗
1 = limn→∞ x(tn) > 0. Then p∗ = (p∗

1, f (p∗
1)) belongs

to f+0 ∩ (−ε, ε)2. Set X∗ = Xa,p∗
, and for φ∗ ∈ W a with Eφ∗ = p∗,

x∗ = xa,φ∗
. The inequality 0 < p∗

1 < y1 = x(0) and arguments as in
parts 2–4 show that there are a first local minimum s∗

1 > 0 and a first local
maximum t∗1 > s∗

1 of x∗, with

−ε < x(s1) < x∗(s∗
1 ) < 0 < x∗(t∗1 ) < x(t1) < ε.
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It follows that

|x∗(t)| < ε on [−1, t∗1 ],
and

x∗
t ∈ W a on [0, t∗1 ].

Continuity of the maps J− and J+ implies that for n → ∞ the points

(x(tn+1), f (x(tn+1))) = X (tn+1) = J+(a, J−(a, (X (tn))))

= J+(a, J−(a, (x(tn), f (x(tn)))))

converge to

X∗(0) = p∗ = J+(a, J−(a, p∗)) = X∗(t∗1 ).

Hence, φ∗ = Fa(t∗1 , φ∗). It follows that x∗ extends to the desired periodic
solution pε of Eq. (1.1), with minimal period t∗1 .

5.2 The proof in case (II) is analogous. ��

The next result establishes subcritical bifurcation in case the curve X1,y(ε)
of

Corollary 5.1 spirals outward. The following proof differs from the preceding one
in that the periodic orbit is not obtained as a limit cycle.

Proposition 2 Let ε ∈ (0, δ0) and assume y = y(ε) satisfies

X1,y
1 (t−(1, y) + t+(1, J−(1, y))) > y1.

Then there exists aε ∈ (1 − ε, 1) so that (Pεa) holds for every a ∈ (aε, 1).

Proof 1. As in the proof of Proposition 1 we obtain aε ∈ (1 − ε, 1) so that for
each a ∈ (aε, 1) the following holds: (a, y) ∈ �−, y∗ = J−(a, y) belongs to
�+, and X = Xa,y , s1 = t−(a, y), and t1 = s1 + t+(a, y∗) satisfy

X ([0, t1]) ⊂ (−ε, ε)2,

X (t) ∈ f> ∩ (X1(s1), y1]2 = f> ∩ (X1(s1), X1(0)]2 on (0, s1),

X (t) ∈ f< ∩ [X1(s1), X1(t1))
2 on (s1, t1),

X (s1) ∈ f− and X (t1) ∈ f+,

X1(0) = y1 < X1(t1).

Let a ∈ (aε, 1) be given. For φ ∈ W a with Eφ = y set x = xa,φ and
s1 = t−(a, y). The set M of all ŷ1 ∈ (0, y1] so that for ŷ = (ŷ1, f (ŷ1)) we
have (a, ŷ) ∈ �−, J−(a, ŷ) ∈ �+, and

ŷ1 < J+,1(a, J−(a, ŷ))

contains y1 and is open in (0, y1].
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2. Proof of (0, y1]\M �= ∅. As 0 is asymptotically stable there is a neighbourhood
U of 0 in C so that for all φ ∈ U ,

Fa([0, ∞), φ) ⊂ C(y1) (2)

and
lim

t→∞ Fa(t, φ) = 0. (3)

Choose φ∗ ∈ W a ∩ U with Eφ∗ ∈ f+. The inclusion (2) in combination with
Proposition 5.1 (iv) shows that the solution x∗ = xa,φ∗

satisfies x∗
t ∈ W a for

all t ≥ 0. Using (3) and the fact that the local maxima of x∗ form a non-empty
set of isolated points we find a local maximum tm ≥ 0 with

x∗(t) < x∗(tm) on (tm, ∞).

Set φ̂ = x∗
tm , ŷ = E φ̂, and x̂ = xa,φ̂ = x∗(tm + ·). Then

ŷ1 = x̂(0) = x∗(tm) ∈ (0, y1),

by (2). Assume ŷ1 ∈ M . Set ŝ = t−(a, ŷ), y̌ = J−(a, ŷ), and t̂ = ŝ + t+(a, y̌).
Using (2) and Proposition 5.2 we see that on [−1, ŝ] the inequalities

−ε < −y1 < x∗(tm + ŝ) = x̂(ŝ) ≤ x̂(t) ≤ x̂(0) = ŷ1 < y1 < ε

hold. From this we infer

Xa,y̌(t) = Xa,ŷ(ŝ + t) for all t ≥ 0,

by Proposition 5.1 (v). It follows that

J+(a, J−(a, ŷ))= J+(a, y̌)= Xa,y̌(t+(a, y̌))= Xa,ŷ(ŝ + t+(a, y̌))= Xa,ŷ(t̂),

hence
J+,1(a, J−(a, ŷ)) = x̂(t̂) = x∗(tm + t̂) < x∗(tm) = ŷ1,

in contradiction to the definition of M .
3. Let ȳ1 = max ((0, y1] \ M). Then 0 < ȳ1 < y1. Set ȳ = (ȳ1, f (ȳ1)) ∈

(−ε, ε)2. Set X̄ = Xa,ȳ , and for φ̄ ∈ W a with E φ̄ = ȳ, x̄ = xa,φ̄ . In the
sequel we show that x̄ extends to the desired periodic solution.

4. Proof of (a, ȳ) ∈ �−.
4.1. Assume the contrary. Then Proposition 5.2 yields 0 < x̄(t) < ȳ1 on (0, ∞)

and limt→∞ x̄(t) = 0. Choose a neighbourhood V of 0 in C with

Fa([0,∞), V ) ⊂ C(ȳ1).

Choose u ≥ 0 so that x̄u ∈ V . By continuity there exists ŷ1 ∈ (ȳ1, y1)

so that the solution x̂ = xa,φ̂ with φ̂ ∈ W a , E φ̂ = ŷ, ŷ = (ŷ1, f (ŷ1)),
satisfies

0 < x̂(t) on [0, u] and x̂u ∈ V .

Set X̂ = Xa,ŷ .
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4.2. Suppose (a, ŷ) ∈ �−. Then u < t−(a, ŷ), by Proposition 5.2, and

x̂(t−(a, ŷ)) ≤ x̂(t) ≤ ŷ1 < y1 on [−1, t−(a, ŷ)],
and by the choice of V ,

|x̂(t)| < ȳ1 < ŷ1 < ε on [t−(a, ŷ), ∞).

In particular, X̂([0, ∞)) ⊂ Q, and for y̌ = J−(a, ŷ) = X̂(t−(a, ŷ))
Proposition 5.1 (v) yields

Xa,y̌(s) = X̂(t−(a, ŷ) + s) for all s ≥ 0.

4.3. Suppose (a, ŷ) ∈ �− and in addition (a, y̌) ∈ �+. Then we obtain

J+,1(a, J−(a, ŷ))= J+,1(a, y̌)= Xa,y̌
1 (t+(a, y̌))= X̂1(t−(a, ŷ)+t+(a, y̌))

= x̂(t−(a, ŷ) + t+(a, y̌)) < ŷ1.

4.4. It follows that ŷ ∈ (ȳ1, y1) \ M , in contradiction to the definition of ȳ1.
5. Let s̄ = t−(a, ȳ). Proposition 5.7 yields

x(s1) < x̄(s̄).

It follows that

−ε < x(s1) < x̄(s̄) ≤ x̄(t) ≤ x̄(0) = ȳ1 < y1 < ε (4)

on [−1, s̄], and X̄([0, s̄]) ⊂ [x̄(s̄), x̄(0)]2 = [x̄(s̄), ȳ1]2 ⊂ (−ε, ε)2. Let ỹ =
X̄(s̄) = J−(a, ȳ). By Proposition 5.1 (v),

Xa,ỹ(t) = X̄(s̄ + t) for all t ≥ 0. (5)

6. Proof of (a, J−(a, ȳ)) ∈ �+.
6.1. Assume the contrary. Then Proposition 5.2 yields x̄(s̄) < x̄(t) < 0 on

(s̄, ∞) and limt→∞ x̄(t) = 0. Choose a neighbourhood V of 0 in C with

Fa([0,∞), V ) ⊂ C(ȳ1).

Choose u > s̄ so that x̄u ∈ V . Recall that on [s̄, u], x̄(t) < 0. By continuity
there exists ŷ1 ∈ (ȳ1, y1) so that ŷ = (ŷ1, f (ŷ1)) satisfies (a, ŷ) ∈ �−,
and for ŝ = t−(a, ŷ),

ŝ < u and x(s1) < x̂(ŝ);

moreover the solution x̂ = xa,φ̂ with φ̂ ∈ W a and E φ̂ = ŷ satisfies

x̂(t) < 0 on [ŝ, u] and x̂u ∈ V .
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6.2. On [−1, ŝ) we obtain

−ε < x(s1) < x̂(ŝ) < x̂(t) ≤ x̂(0) = ŷ1 < y1 < ε,

by Proposition 5.2. In particular, X̂ = Xa,ŷ satisfies X̂([0, ŝ]) ⊂ Q. Using
this and Proposition 5.1 (v) we infer that for y◦ = X̂(ŝ) = J−(a, ŷ) and
for all t ≥ 0,

Xa,y◦
(t) = X̂(ŝ + t).

6.3. Suppose (a, y◦) ∈ �+. Then

J+(a, J−(a, ŷ)) = J+(a, y◦) = Xa,y◦
(t+(a, y◦)) = X̂(ŝ + t+(a, y◦)),

hence
J+,1(a, J−(a, ŷ)) = x̂(ŝ + t+(a, y◦)) < ȳ1

(by the choice of V )
< ŷ1.

6.4. It follows that ŷ1 /∈ M , in contradiction to the definition of ȳ1.
7. From ȳ1 ∈ (0, y1) \ M we have

J+,1(a, J−(a, ȳ)) ≤ ȳ1.

Continuity and the definition of M combined yield

J+,1(a, J−(a, ȳ)) = ȳ1.

As ȳ ∈ f and J+ maps into f we obtain

J+(a, J−(a, ȳ)) = ȳ.

On [−1, t+(a, ỹ)] we have

−ε < x(s1) < x̄(s̄) = ỹ1 = Xa,ỹ
1 (0) ≤ Xa,ỹ

1 (t) ≤ Xa,ỹ
1 (t+(a, ỹ))

= J+,1(a, ỹ) = ȳ1 < y1 < ε,

by the remark following Proposition 5.2. Set t̄ = s̄ + t+(a, ỹ). Using (5) we
infer that on [s̄, t̄],

x̄(t) = Xa,ỹ
1 (t − s̄) ∈ (−ε, ε).

Combining this with (4) we get x̄(t) ∈ (−ε, ε) on [−1, t̄]. Proposition 5.1 (iv)
gives

x̄t̄ ∈ W a .

We have

E φ̄ = ȳ = J+(a, J−(a, ȳ)) = J+(a, ỹ) = Xa,ỹ(t+(a, ỹ))

= X̄(s̄ + t+(a, ỹ)) = X̄(t̄) = Ex̄t̄ ,

and the injectivity of E on W a gives

x̄0 = φ̄ = x̄t̄ ;
x̄ extends to a periodic solution with the properties stated in (Pεa). ��
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Proposition 3 Let ε ∈ (0, δ0) and assume y = y(ε) satisfies

X1,y
1 (t−(1, y) + t+(1, J−(1, y))) = y1.

Then (Pε1) holds.

Proof Recall Corollary 5.1. Consider φ ∈ W 1 with Eφ = y. Set ŷ = J−(1, y)
and τ = t−(1, y) + t+(1, ŷ). Using Proposition 5.1 (iv) we infer F1(t, φ) ∈ W 1

on [0, τ ]. The previous hypothesis and the relations y ∈ f , X1,y(τ ) ∈ f yield

E F1(τ, φ) = X1,y(τ ) = y = Eφ.

By the injectivity of E on W 1, F1(τ, φ) = φ, which implies the assertion. ��
It remains to show that the minimal periods of the periodic solutions found in

Propositions 1–3 tend to infinity as ε → 0. This is a consequence of the next result.

Proposition 4 Let a > 0. Suppose the solution x : [−1,∞) → IR of Eq. (1.1)
and z > 0 satisfy x(0) ≥ x(t) > 0 on (−1, z) and x(z) = 0. Then

− log x(0)

a(1 − x(0))
≤ z.

Proof Let m = x(0). On (0, z),

a−1 ẋ(t) = x(t) − x(t − 1) − |x(t)|x(t) ≥ x(t) − m − m x(t)

= (1 − m)

(
x(t) − m

1 − m

)
.

Hence,

x(t) − m

1 − m
≥

(
x(0) − m

1 − m

)
ea(1−m)t ,

or

x(t) ≥ m

1 − m
+ m

1 − m
((1 − m) − 1)ea(1−m)t = m

1 − m

(
1 − m ea(1−m)t).

It follows that z is not smaller than the zero ζ of the decreasing function

t 
→ m

1 − m

(
1 − m ea(1−m)t),

ζ = − log m

a(1 − m)
.

��
Remark The analogue of Proposition 4 for solutions which have a zero z > 0
with x(0) ≤ x(t) < 0 on (−1, z) holds as well – apply Proposition 4 to the
solution −x of Eq. (1.1).
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