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Abstract A detailed analysis is made of the structure of positive solutions of
fourth-order differential equations of the form

(p(t)|x ′′|α−1x ′′)′′ + q(t)|x |β−1x = 0, (A)

under the assumption that α, β are positive constants, p(t), q(t) are positive
continuous functions on [a,∞), and p(t) satisfies

∫ ∞

a
t1+(1/α)(p(t))−1/α dt < ∞.

Keywords Fourth-order nonlinear differential equation · Positive solution ·
Oscillation
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1 Introduction

This paper is concerned with the oscillatory and nonoscillatory behavior of fourth-
order nonlinear differential equations of the form

(p(t)|x ′′|α−1x ′′)′′ + q(t)|x |β−1x = 0, (A)
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where α > 0, β > 0 are constants and p, q : [a,∞) → (0, ∞) are continuous
functions, a ≥ 0. It is convenient to use the asterisk notation

ξγ ∗ = |ξ |γ−1ξ = |ξ |γ sgn ξ, ξ ∈ R, γ > 0, (1.1)

in terms of which Eq. (A) is expressed in the form

(p(t)(x ′′)α∗)′′ + q(t)xβ∗ = 0.

By a solution of (A) we mean a function x : [Tx , ∞) → R which has the prop-
erty that p(t)|x ′′|α−1x ′′ is twice continuously differentiable and satisfies Eq. (A)
at every point of [Tx ,∞). Those solutions of (A) which vanish identically in some
neighborhood of infinity will be excluded from our consideration. A solution of
(A) is called oscillatory if it has a sequence of zeros clustering at t = ∞ and
nonoscillatory otherwise.

Oscillation theory for equations of the type (A) was first developed by Wu [6],
who established sharp oscillation criteria for the case where the function p(t) in
(A) satisfies the integral conditions

∫ ∞

a
t (p(t))−1/α dt = ∞,

∫ ∞

a
t1/α(p(t))−1/α dt = ∞. (1.2)

His intention was to fully generalize the oscillation theorems of Kusano and Naito
[3, 4] for semilinear equations of the form

(p(t)x ′′)′′ +q(t)|x |β−1x = 0 (B)

to quasilinear equations of the type (A) involving nonlinear differential operators.
Wu’s theory has been enriched with information about the asymptotic behavior

of nonoscillatory solutions of (A) provided by Naito and Wu [5] and Kamo and
Usami [1, 2] for the case where p(t) satisfies (1.2), or one of the following

∫ ∞

a
t (p(t))−1/α dt = ∞,

∫ ∞

a
t1/α(p(t))−1/α dt < ∞, (1.3)

∫ ∞

a
t (p(t))−1/α dt < ∞,

∫ ∞

a
t1/α(p(t))−1/α dt = ∞, (1.4)

∫ ∞

a
t (p(t))−1/α dt < ∞,

∫ ∞

a
t1/α(p(t))−1/α dt < ∞. (1.5)

The aim of this paper is to proceed further along the path paved by Wu to
investigate the possibility of enlarging the class of equations of the type (A) for
which oscillation theory of a similar nature can also be developed. We will impose
the integral condition on p(t)

∫ ∞

a
t1+(1/α)(p(t))−1/α dt < ∞ (1.6)

and show that, for Eq. (A) with p(t) satisfying this condition, it is possible to gain
a detailed knowledge of the structure of nonoscillatory solutions, from which an
effective criterion for oscillation of all solutions can be drawn.
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The main body of the paper is divided into three sections. In Sect. 1 we classify
the totality of nonoscillatory solutions of (A) into several types according to their
asymptotic behavior at infinity. There a crucial role is played by the functions

ϕ1(t) =
∫ ∞

t
(s − t)(p(s))−1/α ds, ϕ2(t) =

∫ ∞

t
(s − t)s1/α(p(s))−1/α ds,

(1.7)
ϕ3(t) = 1, ϕ4(t) = t,

which are the particular solutions of the unperturbed differential equation

(p(t)|x ′′|α−1x ′′)′′ = 0. (A0)

In Sect. 2 we establish the existence of nonoscillatory solutions of (A) be-
longing to each of the classes appearing on the classification list. Fixed point
techniques are used for this purpose. Analysis of the structure of nonoscillatory
solutions of (A) allows us to indicate explicit conditions under which all nonoscil-
latory solutions of (A) cease to exist. Such conditions are nothing else but oscil-
lation criteria for (A). Our results, when specialized to the case α = 1, will serve
to supplement the oscillation theorems for (B) obtained in the papers [3, 4]. Some
examples illustrating our main results will be presented in Sect. 3.

2 Classification of positive solutions

We begin by classifying the set of all possible nonoscillatory solutions of (A)
according to their asymptotic behavior as t → ∞. Clearly, it suffices to restrict
our attention to the totality of eventually positive solutions of (A). Let x(t) be an
eventually positive solution of (A). Since, from (A), (p(t)(x ′′(t))α∗)′′ is eventually
negative, it follows that all the functions x(t), x ′(t), x ′′(t) and (p(t)(x ′′(t))α∗)′
are eventually monotone and one-signed. Using the fact that if a C2-function x(t)
satisfies x ′(t) < 0 and x ′′(t) < 0 for all large t , then x(t) → −∞ as t → ∞, we
see that the following four types of combination of the signs of x ′(t), x ′′(t) and
(p(t)(x ′′(t))α∗)′ are possible for an eventually positive solution x(t) of (A):

(p(t)(x ′′(t))α∗)′ > 0, x ′′(t) > 0, x ′(t) > 0; (I)

(p(t)(x ′′(t))α∗)′ > 0, x ′′(t) > 0, x ′(t) < 0; (II)

(p(t)(x ′′(t))α∗)′ > 0, x ′′(t) < 0, x ′(t) > 0; (III)

(p(t)(x ′′(t))α∗)′ < 0, x ′′(t) < 0, x ′(t) > 0. (IV)

We first investigate the precise asymptotic behavior (order of growth or decay)
as t → ∞ of solutions belonging to these types I–IV.

(Solutions of type I). Let x(t) be a positive solution of type I on [t0, ∞). The
function (p(t)(x ′′(t))α∗)′ is positive and decreasing, so that it tends to a finite limit
ω3 ≥ 0 as t → ∞. Integrating (A) from t to ∞, we have

(p(t)(x ′′(t))α∗)′ = ω3 +
∫ ∞

t
q(s)(x(s))β ds, t ≥ t0, (2.1)

with the understanding that the integral on the right-hand side converges:∫ ∞

t
q(s)(x(s))β ds < ∞, t ≥ t0. (2.2)
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We then integrate (2.1) on [t0, t] to obtain

x ′′(t) = (p(t))−1/α

[
ξ2 +

∫ t

t0

(
ω3 +

∫ ∞

s
q(r)(x(r))β dr

)
ds

]1/α

, (2.3)

where ξ2 = p(t0)(x ′′(t0))α > 0. Since
∫ t

t0

(
ω3 + ∫ ∞

s q(r)(x(r))β dr
)

ds = O(t)
as t → ∞, condition (1.6) enables us to integrate (2.3) over [t, ∞):

x ′(t) = ω1 −
∫ ∞

t
(p(s))−1/α

[
ξ2 +

∫ s

t0

(
ω3 +

∫ ∞

r
q(ρ)(x(ρ))βdρ

)
dr

]1/α

ds

(2.4)
for t ≥ t0, where ω1 = lim

t→∞x ′(t) > 0. Integration of (2.4) on [t0, t] yields the

integral equation for a type I-solution x(t) of (A):

x(t) = ξ0 +
∫ t

t0

{
ω1 −

∫ ∞

s
(p(r))−1/α

[
ξ2

+
∫ r

t0

(
ω3 +

∫ ∞

σ

q(ρ)(x(ρ))β dρ

)
dσ

]1/α

dr

}
ds, t ≥ t0, (2.5)

where ξ0 = x(t0) > 0, which implies that x(t) is asymptotic to a constant multiple
of ϕ4(t) = t as t → ∞. This fact is expressed by x(t) ∼ cϕ4(t) as t → ∞, where
the symbol ∼ is used to mean the asymptotic equivalence

f (t) ∼ g(t) as t → ∞ ⇔ lim
t→∞

f (t)

g(t)
= 1. (2.6)

(Solutions of type II). Let x(t) be a solution of type II on [t0, ∞). There exists
a finite limit ω1 = limt→∞ x ′(t) ≤ 0. If ω1 < 0, then the inequality x ′(t) ≤
ω1, t ≥ t0, yields limt→∞x(t) = −∞, an impossibility, and so ω1 must be zero.
Proceeding as in the above case and taking this fact into account, we arrive at (1.4)
with ω1 = 0. Since the limit ω0 = limt→∞x(t) ≥ 0 is clearly finite, integrating
(1.4) from t to ∞ shows that

x(t) = ω0 +
∫ ∞

t
(s − t)(p(s))−1/α

×
[
ξ2 +

∫ s

t0

(
ω3 +

∫ ∞

r
q(ρ)(x(ρ))β dρ

)
dr

]1/α

ds, t ≥ t0. (2.7)

There are two possible cases: either ω0 > 0 or ω0 = 0. If ω0 > 0, then it is clear
that x(t) ∼ ω0 = ω0ϕ3(t) as t → ∞. Suppose that ω0 = 0. Then, as easily
verified, we have limt→∞x(t)/ϕ2(t) =ω

1/α

3 , which implies that x(t) ∼ω
1/α

3 ϕ2(t) or
x(t) = o(ϕ2(t)) as t → ∞ according as ω3 > 0 or ω3 = 0. Furthermore, we find
that

lim
t→∞

x(t)

ϕ1(t)
=

[
ξ2 +

∫ ∞

t0

∫ ∞

s
q(r)(x(r))β dr ds

]1/α

, (2.8)
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where the repeated integral on the right-hand side diverges or converges according
to whether∫ ∞

tq(t)(x(t))β dt = ∞ or
∫ ∞

tq(t)(x(t))β dt < ∞, (2.9)

respectively. In the former case we have limt→∞ x(t)/ϕ1(t) = ∞, and in the latter
case we have x(t) ∼ cϕ1(t) as t → ∞, where c denotes the right-hand side of
(2.8). Summarizing the above arguments, we conclude that the four patterns of
asymptotic behavior are possible for a type II-solution x(t) of (A):

x(t) ∼ c0, x(t) ∼ c1ϕ1(t), x(t) ∼ c2ϕ2(t), ϕ1(t) ≺ x(t) ≺ ϕ2(t),

as t → ∞, where ci > 0, i = 0, 1, 2, are constants and the symbol f (t) ≺ g(t)
is used to mean

lim
t→∞

g(t)

f (t)
= ∞. (2.10)

(Solutions of type III). Let x(t) be a positive solution of type III on [t0, ∞).
In this case we have (2.1) with ω3 = 0. In fact, if ω3 > 0, then integrating
(p(t)(x ′′(t))α∗)′ ≥ ω3, t ≥ t0, we have x ′′(t) > 0, t ≥ t0, which is impossible
for a type-III solution of (A). We now integrate (2.1) (ω3 = 0) on [t0, t], obtaining

−x ′′(t) = (p(t))−1/α

[
ξ2 −

∫ t

t0

∫ ∞

s
q(r)(x(r))β dr ds

]1/α

, t ≥ t0, (2.11)

where ξ2 = p(t0)(−x ′′(t0))α . We note that the repeated integral on the right-hand
side of (2.11) must remain bounded as t → ∞, so that the second relation of (2.9)
is satisfied. We now put ω1 = limt→∞ x ′(t). Since ω1 ≥ 0 is finite, (2.11) can be
integrated over [t, ∞) to yield

x ′(t) = ω1 +
∫ ∞

t
(p(s))−1/α

[
ξ2 −

∫ s

t0

∫ ∞

r
q(ρ)(x(ρ))β dρ dr

]1/α

ds, t ≥ t0.

(2.12)
Integrating (2.12) on [t0, t], we have

x(t) = ξ0 +
∫ t

t0

{
ω1 +

∫ ∞

s
(p(r))−1/α

×
[
ξ2 −

∫ r

t0

∫ ∞

ρ

q(σ )(x(σ ))β dσ dρ

]1/α

dr

}
ds (2.13)

for t ≥ t0, where ξ0 = x(t0) > 0, whence we find that if ω1 > 0, then x(t) ∼
ω1t = ω1ϕ4(t) as t → ∞, and if ω1 = 0, then x(t) ∼ ω0 = ω0ϕ3(t) as t → ∞
for some ω0 > 0. It follows that a solution of type III satisfies either x(t) ∼
c3ϕ3(t) or x(t) ∼ c4ϕ4(t) as t → ∞ for some constant c3 > 0 or c4 > 0.

(Solutions of type IV). Let x(t) be a positive solution of type IV on [t0, ∞).
Our first task is to integrate (A) twice over [t0, t]. As a result, we have

−x ′′(t) = (p(t))−1/α

[
ξ2 + ξ3(t − t0) +

∫ t

t0
(t − s)q(s)(x(s))β ds

]1/α

, t ≥ t0,

(2.14)
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where ξ2 = p(t0)(−x ′′(t0))α and ξ3 = (p(t)(−x ′′(t))α)′ at t = t0. The ex-
istence of the finite limit ω1 = limt→∞ x ′(t) ≥ 0 implies the integrability of
the right-hand side of (2.14) on [t0, ∞), in particular, the convergence of the
integral

∫ ∞

t0
(p(t))−1/α

[∫ t

t0
(t − s)q(s)(x(s))β ds

]1/α

dt < ∞. (2.15)

Integrating (2.14) on [t, ∞) and then integrate the resulting equation from t0 to t ,
we obtain

x(t) = ξ0 + ω1(t − t0) +
∫ t

t0

∫ ∞

s
(p(r))−1/α

[
ξ2 + ξ3(r − t0)

+
∫ r

t0
(r − ρ)q(ρ)(x(ρ))β dρ

]1/α

dr ds, t ≥ t0, (2.16)

where ξ0 = x(t0) > 0. From (2.16) we see that ω1 > 0 implies x(t) ∼ ω1t =
ω1ϕ4(t) as t → ∞, while ω1 = 0 implies limt→∞ x(t)/t = 0, i.e. x(t) ≺ ϕ4(t)
as t → ∞. Furthermore, if ω1 = 0 in (2.16), then it can be shown that
limt→∞ x(t) = ω0 (i.e. x(t) ∼ ω0ϕ3(t)) for some ω0 > 0 or limt→∞ x(t) = ∞
(i.e. ϕ3(t) ≺ x(t) as t → ∞) according to whether

∫ ∞

t0
t (p(t))−1/α

[∫ t

t0
(t − s)q(s)(x(s))β ds

]1/α

dt < ∞ (2.17)

or ∫ ∞

t0
t (p(t))−1/α

[∫ t

t0
(t − s)q(s)(x(s))β ds

]1/α

dt = ∞. (2.18)

Thus, a solution x(t) of type IV has the property that

x(t) ∼ c3ϕ3(t) or x(t) ∼ c4ϕ4(t) or ϕ3(t) ≺ x(t) ≺ ϕ4(t) as t → ∞
for some constant c3 > 0 or c4 > 0.

3 Existence of positive solutions

It has been shown above that a positive solution x(t) of Eq. (A) enjoys one of the
asymptotic properties:

x(t) ∼ ciϕi (t), i ∈ {1, 2, 3, 4}, ϕ1(t) ≺ x(t) ≺ ϕ2(t), ϕ3(t) ≺ x(t) ≺ ϕ4(t),

where ci , i = 1, 2, 3, 4, are positive constants.
Our purpose here is to prove that all of the above cases may occur.
(A) We first discuss the existence of a solution x(t) which is asymptotic to a

constant multiple of ϕ4(t) = t as t → ∞.
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Theorem 3.1 Equation (A) has a positive solution x(t) of type I such that
x(t) ∼ ct as t → ∞ for some c > 0 if and only if∫ ∞

a
tβq(t) dt < ∞. (3.1)

Theorem 3.2 Equation (A) has a positive solution x(t) of type III such that
x(t) ∼ ct as t → ∞ for some c > 0 if and only if∫ ∞

a
tβ+1q(t) dt < ∞. (3.2)

Theorem 3.3 Equation (A) has a positive solution x(t) of type IV such that
x(t) ∼ ct as t → ∞ for some c > 0 if and only if

∫ ∞

a
(p(t))−1/α

[∫ t

a
(t − s)sβq(s) ds

]1/α

dt < ∞. (3.3)

Proof of Theorem 3.1. Let a constant c > 0 be fixed arbitrarily. Choose t0 ≥ a so
that

2Q1/α

∫ ∞

t0
t1/α(p(t))−1/α dt ≤ c1−(β/α), where Q =

∫ ∞

0
tβq(t) dt. (3.4)

Define the set X1 ⊂ C[t0, ∞) and the operator F1 : X1 → C[t0,∞) by

X1 =
{

x ∈ C[t0, ∞) : 1

2
c(t − t0) ≤ x(t) ≤ c(t − t0), t ≥ t0

}
(3.5)

and

F1x(t) =
∫ t

t0

{
c −

∫ ∞

s
(p(r))−1/α

×
[∫ r

t0

∫ ∞

ρ

q(σ )(x(σ ))β dσ dρ

]1/α

dr

}
ds, t ≥ t0. (3.6)

Because of (3.4) F1 maps X1 into itself. It can be shown that F1 is a continuous
mapping by means of the Lebesgue dominated convergence theorem, and that
the set F1(X1) is precompact in C[t0, ∞) with the help of the Ascoli–Arzelà
theorem. Therefore, by the Schauder–Tychonoff fixed point theorem, there exists
an element x1 ∈ X1 such that x1 = F1x1 which is a special case of the integral
Eq. (2.5). It is easy to verify that the function x1 = x1(t) is a positive type I-
solution of (A) on [t0, ∞) satisfying x1(t) ∼ ct as t → ∞. �

Proof of Theorems 3.2 and 3.3 (Theorem 3.2) Let c > 0 be any constant, choose
t0 ≥ a so that∫ ∞

t0
(p(t))−1/α dt ≤ 1 and 2β

∫ ∞

t0
tβ+1q(t) dt ≤ cα−β (3.7)

and consider the set of functions

X2 = {x ∈ C[t0, ∞): c(t − t0) ≤ x(t) ≤ 2c(t − t0), t ≥ t0} . (3.8)
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The desired solution of (A) of type III is obtained, via the Schauder–Tychonoff
theorem, as a fixed point x2 ∈ X2 of the operator F2 defined by

F2x(t) =
∫ t

t0

{
c +

∫ ∞

s
(p(r))−1/α

×
[

cα −
∫ r

t0

∫ ∞

ρ

q(σ )(x(σ ))β dσ dρ

]1/α

dr

}
ds, t ≥ t0. (3.9)

Note that x2 = F2x2 is an integral equation of the type (2.13).
(Theorem 3.3) Given a c > 0, choose t0 ≥ a so that

2β/α

∫ ∞

t0
(p(t))−1/α

[∫ t

t0
(t − s)sβq(s) ds

]1/α

dt ≤ c1−(β/α), (3.10)

and define the integral operator F3 by

F3x(t) = c(t − t0) +
∫ t

t0

∫ ∞

s
(p(r))−1/α

×
[∫ r

t0
(r − ρ)q(ρ)(x(ρ))β dρ

]1/α

dr ds, t ≥ t0. (3.11)

Then, by the Schauder–Tychonoff theorem F3 has a fixed element x3 in the set
X2 defined by (3.8), and since this fixed element x3 = x3(t) satisfies an integral
equation of the type (2.16) it provides a solution of (A) of type IV with the desired
asymptotic property.

Noting that (3.2) ⇒ (3.1) ⇒ (3.3), we have the following corollary.

Corollary 3.1 Equation (A) has a positive solution x(t) such that x(t) ∼ ct as
t → ∞ for some c > 0 if and only if (3.3) is satisfied.

(B) Let us now provide criteria for the existence of solutions for (A) which
are asymptotic to constant multiples of ϕ3(t) = 1 as t → ∞.

Theorem 3.4 Equation (A) has a positive solution x(t) of type II such that x(t) ∼
c as t → ∞ for some c > 0 if and only if∫ ∞

a
q(t) dt < ∞. (3.12)

Theorem 3.5 Equation (A) has a positive solution x(t) of type III such that
x(t) ∼ c as t → ∞ for some c > 0 if and only if∫ ∞

a
tq(t) dt < ∞. (3.13)

Theorem 3.6 Equation (A) has a positive solution x(t) of type IV such that
x(t) ∼ c as t → ∞ for some c > 0 if and only if

∫ ∞

a
t (p(t))−1/α

[∫ t

a
(t − s)q(s) ds

]1/α

dt < ∞. (3.14)
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All the above theorems can also be proved by means of the Schauder–
Tychonoff fixed point theorem.

(i) Suppose that (3.12) holds. For any c > 0 choose t0 ≥ a so that

2β/α Q1/α

∫ ∞

t0
t1+(1/α)(p(t))−1/α dt ≤ c1−(β/α), where Q =

∫ ∞

0
q(t) dt,

(3.15)
and define

G1x(t) = c +
∫ ∞

t
(s − t)(p(s))−1/α

×
[∫ s

t0

∫ ∞

r
q(ρ)(x(ρ))β dρ dr

]1/α

ds, t ≥ t0. (3.16)

Then, G1 has a fixed point x1 in the set

X = {x ∈ C[t0, ∞): c ≤ x(t) ≤ 2c, t ≥ t0} . (3.17)

Since the integral equation x1 = G1x1 is a special case of (2.7) it follows that
this x1(t) is of type II and satisfies x1(t) ∼ c as t → ∞.

(ii) Suppose that (3.13) holds. For any c > 0 choose t0 ≥ a so that∫ ∞

t0
t (p(t))−1/α dt ≤ 1 and 2β

∫ ∞

t0
tq(t) dt ≤ cα−β. (3.18)

Then, the operator G2 defined by

G2x(t) = c +
∫ t

t0

∫ ∞

s
(p(r))−1/α

×
[

cα −
∫ r

t0

∫ ∞

ρ

q(σ )(x(σ ))β dσ dρ

]1/α

dr ds, t ≥ t0,

(3.19)

has a fixed point x in the set X given by (3.17). It is easy to check that the
function x2 = x2(t) is a solution of type III satisfying x2(t) ∼ c as t → ∞.
The use of G2 was motivated by the derivation of (2.13).

(iii) In case (3.14) holds, one can construct a desired solution of type IV as a
solution of an integral equation of the type (2.16), more precisely, as a fixed
point of the operator G3 defined by

G3x(t) = c +
∫ t

t0

∫ ∞

s
(p(r))−1/α

×
[∫ r

t0
(r − ρ)q(ρ)(x(ρ))β dρ

]1/α

dr ds, t ≥ t0, (3.20)

where c > 0 is an arbitrarily given constant and t0 > 0 is chosen so large
that

2β/α

∫ ∞

t0
t (p(t))−1/α

[∫ t

t0
(t − s)q(s) ds

]1/α

dt ≤ c1−(β/α). (3.21)
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The existence of such an x3 in the set X defined by (3.17) follows from the
Schauder–Tychonoff fixed point theorem applied to G3.

From Theorems 3.4–3.6 combined with the observation that (3.13) ⇒ (3.12)
⇒ (3.14), we have the following result.

Corollary 3.2 Equation (A) has a positive solution x(t) such that x(t) ∼ c as
t → ∞ if and only if (3.14) is satisfied.

(C) We now turn to the existence of decaying positive solutions (of type II)
which behave like the functions

ϕ1(t) =
∫ ∞

t
(s − t)(p(s))−1/α ds, ϕ2(t) =

∫ ∞

t
(s − t)s1/α(p(s))−1/α ds.

Theorem 3.7 Equation (A) has a positive solution x(t) such that x(t) ∼ cϕ1(t)
as t → ∞ for some c > 0 if and only if

∫ ∞

a
t (ϕ1(t))

βq(t) dt < ∞. (3.22)

Theorem 3.8 Equation (A) has a positive solution x(t) such that x(t) ∼ cϕ2(t)
as t → ∞ for some c > 0 if and only if

∫ ∞

a
(ϕ2(t))

βq(t) dt < ∞. (3.23)

Proof of Theorems 3.7 and 3.8. Our aim is to solve two integral equations of the
type (2.7) which generate positive solutions of (A) with the desired asymptotic
properties. Let c > 0 be any fixed constant and choose ti ≥ 0, i = 1, 2, large
enough so that

2β

∫ ∞

t1
t (ϕ1(t))

βq(t) dt ≤ (2α − 1)cα−β, (3.24)

and

2β

∫ ∞

t2
(ϕ2(t; t2))

βq(t) dt ≤ (2α − 1)cα−β, (3.25)

where

ϕ2(t; t2) =
∫ ∞

t
(s − t)(s − t2)

1/α(p(s))−1/α ds, t ≥ t2.

Let the sets Xi , i = 1, 2, of continuous functions be defined by

X1 = {x ∈ C[t1, ∞): cϕ1(t) ≤ x(t) ≤ 2cϕ1(t), t ≥ t1} , (3.26)

X2 = {x ∈ C[t2, ∞): cϕ2(t; t2) ≤ x(t) ≤ 2cϕ2(t; t2), t ≥ t2} . (3.27)
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Application of the Schauder–Tychonoff theorem to the operators Hi , i = 1, 2,
defined by

H1x(t) =
∫ ∞

t
(s − t)(p(s))−1/α

×
[

cα +
∫ s

t1

∫ ∞

r
q(ρ)(x(ρ))β dρ dr

]1/α

ds, t ≥ t1, (3.28)

H2x(t) =
∫ ∞

t
(s − t)(p(s))−1/α

×
[∫ s

t1

(
cα +

∫ ∞

r
q(ρ)(x(ρ))β dρ

)
dr

]1/α

ds, t ≥ t2, (3.29)

shows that Hi has a fixed point xi in the set Xi , which gives a positive solution
xi = xi (t) of (A) on [ti ,∞), i = 1, 2. It is a matter of easy calculation to
verify that xi (t) ∼ ciϕi (t) for some constant ci > 0 as t → ∞, i = 1, 2. This
completes the proof of Theorems 3.7 and 3.8.

(D) It remains to examine positive solutions x(t) of (A) satisfying ϕ1(t) ≺
x(t) ≺ ϕ2(t) or ϕ3(t) ≺ x(t) ≺ ϕ4(t), which may well be called “intermedi-
ate”solutions of type II or of type IV, respectively.

From the discussions developed in Sect. 1 we see that an intermediate solution
x(t) of type II [respectively of type IV] satisfies both (2.2) and the first relation of
(2.9) [respectively both (2.15) and (2.18)]. Therefore, (A) admits no intermediate
solution of type II if either

∫ ∞

a
q(t)(x(t))β dt = ∞ (3.30)

or ∫ ∞

a
tq(t)(x(t))β dt < ∞ (3.31)

for all continuous x(t) such that ϕ1(t) ≺ x(t) ≺ ϕ2(t), and (A) admits no inter-
mediate solution of type IV if either

∫ ∞

a
(p(t))−1/α

[∫ t

a
(t − s)q(s)(x(s))β ds

]1/α

dt = ∞ (3.32)

or ∫ ∞
t (p(t))−1/α

[∫ t

t0
(t − s)q(s)(x(s))β ds

]1/α

dt < ∞ (3.33)

for all continuous x(t) such that ϕ3(t) ≺ x(t) ≺ ϕ4(t). We remark in addition that
condition (3.30) for all x(t) with ϕ1(t) ≺ x(t) ≺ ϕ2(t) [respectively (3.32) for all
x(t) with ϕ3(t) ≺ x(t) ≺ ϕ4(t)] precludes the existence of any positive solution
of type II [respectively of type IV] for Eq. (A).

Unlike those solutions of (A) which behave like ϕi (t), i = 1, 2, 3, 4, it seems
difficult to establish criteria characterizing the existence of intermediate solutions
for (A), and we have to be content with presenting sufficient conditions which are
applicable to some special cases of (A). �
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Theorem 3.9 If (3.23) holds and if

∫ ∞

a
t (ϕ1(t))

βq(t) dt = ∞, (3.34)

then (A) has a positive solution x(t) such that ϕ1(t) ≺ x(t) ≺ ϕ2(t).

Theorem 3.10 If (3.3) holds and if

∫ ∞

a
t (p(t))−1/α

[∫ t

a
(t − s)q(s) ds

]1/α

dt = ∞, (3.35)

then (A) has a positive solution x(t) such that ϕ3(t) ≺ x(t) ≺ ϕ4(t).

Proof of Theorem 3.9. Choose t0 ≥ max{a, 1} so that

2β/α

∫ t

t0
q(t)(ϕ2(t))

β dt ≤ 1, (3.36)

and define

X1 = {x ∈ C[t0, ∞) : ϕ1(t) ≤ x(t) ≤ 21/αϕ2(t), t ≥ t0}, (3.37)

Ix(t) =
∫ ∞

t
(s − t)(p(s))−1/α

×
(

1 +
∫ s

t0

∫ ∞

r
q(ρ)(x(ρ))β dρ dr

)1/α

ds, t ≥ t0. (3.38)

Because of (3.36) I maps X1 into itself. This fact combined with the continuity
of I and the relative compactness of I(X1) guarantees the existence of a function
x1 ∈ X1 satisfying the integral equation x1 = Ix1. It follows that x1(t) is a
solution of (A) on [t0, ∞) and satisfies

lim
t→∞

x1(t)

ϕ2(t)
= lim

t→∞

[
1 + ∫ t

t0

∫ ∞
s q(r)(x(r))β dr ds

t

]1/α

= 0, (3.39)

and

lim
t→∞

x1(t)

ϕ1(t)
≥ lim

t→∞

[∫ t

t0
(s − t0)q(s)(ϕ1(s))

β ds

]1/α

= ∞. (3.40)

Consequently, x1(t) is an intermediate solution satisfying ϕ1(t) ≺ x1(t) ≺
ϕ2(t). �

Proof of Theorem 3.10. Let t0 ≥ max{a, 1} be so large that

2α/β

∫ ∞

t0
(p(t))−1/α

[∫ t

t0
(t − s)sβq(s) ds

]1/α

dt ≤ 1. (3.41)
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Let J denote the integral operator

J x(t) = 1+
∫ t

t0

∫ ∞

s
(p(r))−1/α

[∫ r

t0
(r − ρ)q(ρ)(x(ρ))β dσ

]1/α

dr ds, t ≥ t0.

(3.42)
Then J is shown to have a fixed point in the set

X2 = {x ∈ C[t0, ∞) : 1 ≤ x(t) ≤ 2t, t ≥ t0} . (3.43)

From the integral equation x2 = J x2 one sees that x2 = x2(t) is a solution of
(A) on [t0, ∞), and moreover, with the help of (3.34), that x2(t) satisfies

lim
t→∞

x2(t)

t
= lim

t→∞

∫ ∞

t
(p(s))−1/α

[∫ s

t0
(s − r)q(r)(x2(r))βdr

]1/α

ds = 0,

(3.44)
and

x2(t) ≥
∫ t

t0
(s − t0)(p(s))−1/α

[∫ s

t0
(s − r)q(r) dr

]1/α

ds → ∞ as t → ∞.

(3.45)

Thus x2(t) is an intermediate solution of (A) such that ϕ3(t) ≺ x2(t) ≺ x4(t). �

Remark 3.1 Theorem 3.9 applies only to the special case of (A) with α > β, since
otherwise the inequality t (ϕ1(t))β ≤ (ϕ2(t))β, t ≥ max{a, 1}, would imply that
conditions (3.23) and (3.34) are inconsistent.

Remark 3.2 Let us consider the conditions∫ ∞

a
q(t)(ϕ1(t))

β dt = ∞, (3.46)

∫ ∞

a
(p(t))−1/α

[∫ t

a
(t − s)q(s) ds

]1/α

dt = ∞. (3.47)

It (3.46) [respectively (3.47)] holds, then (A) possesses no positive solutions
of type II [respectively of type IV], since it implies (3.30) for all x(t) such that
ϕ1(t) ≺ x(t) ≺ ϕ2(t) [respectively (3.32) for all x(t) such that ϕ3(t) ≺ x(t) ≺
ϕ4(t)]. Furthermore, since (3.46) and (3.47) clearly imply∫ ∞

a
tq(t)(ϕ1(t))

β dt = ∞ (3.48)

and ∫ ∞

a
(p(t))−1/α

[∫ t

a
(t − s)sβq(s) ds

]1/α

dt = ∞, (3.49)

respectively, from Corollaries 3.1 and 3.2 it follows that (A) has none of the posi-
tive solutions that are asymptotic to constant multiples of ϕ3(t) = 1 or ϕ4(t) = t
as t → ∞. Summarizing the above observations, we have the following “oscilla-
tion theorem” for Eq. (A).

Theorem 3.11 If (3.46) and (3.47) hold, then (A) has no nonoscillatory solution,
that is, all proper solutions of (A) are oscillatory.
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4 Examples

Our main results developed in the preceding section will be illustrated by the fol-
lowing examples.

Example 4.1 Consider the equation

(eλt |x ′′|α−1x ′′)′′ + keµt |x |β−1x = 0, t ≥ 0, (4.1)

where λ > 0, µ and k > 0 are constants. For the function p(t) = eλt , condition
(1.6) is clearly satisfied, and the functions ϕi (t), i = 1, 2, given by (1.7) have the
asymptotic behavior

ϕ1(t) ∼
(α

λ

)2
e−λ/αt , ϕ2(t) ∼

(α

λ

)2
t1/αe−λ/αt . (4.2)

It is easy to see that, for this p(t) and q(t) = keµt , conditions (3.1), (3.2), (3.12)
and (3.13) hold if µ < 0, (3.3) and (3.14) hold if µ < λ, and (3.22) and (3.23)
hold if µ < (β/α)λ. Using this fact, we have the following statements for Eq. (4.1)
from Theorems 3.1–3.8.

(i) If µ < 0, then (4.1) possesses all types of positive solutions x(t) satisfying
x(t) ∼ ciϕi (t) for some constants ci > 0, i = 1, 2, 3, 4. (Note that
ϕ3(t) = 1, ϕ4(t) = t .)

(ii) If 0 ≤ µ < min{1, β/α}λ, then (4.1) possesses positive type II-solutions
satisfying x(t) ∼ ciϕi (t), i = 1, 2, as well as positive type IV-solutions
satisfying x(t) ∼ ciϕi (t), i = 3, 4.

(iii) Let α �= β and min{1, β/α}λ ≤ µ < max{1, β/α}λ. If α < β, then (4.1)
possesses only positive type II-solutions x(t) such that x(t) ∼ ciϕi (t), i =
1, 2. If α > β, then (4.1) possesses only positive IV-solutions x(t) such that
x(t) ∼ ciϕi (t), i = 3, 4.

(iv) Let µ > max{1, β/α}λ, where α and β may or may not be equal. Then,
(3.46) and (3.47) are satisfied, and so by Theorem 3.11 all proper solutions
of (4.1) are oscillatory.

It should be remarked that (4.1) has neither of the two types of positive
intermediate solutions. In fact, the nonexistence of a solution x(t) such that
ϕ1(t) ≺ x(t) ≺ ϕ2(t) [respectively ϕ3(t) ≺ x(t) ≺ ϕ4(t)] follows from the obser-
vation that conditions (3.31) and (3.32) for some x(t) with ϕ1(t) ≺ x(t) ≺ ϕ2(t)
[respectively (3.33) and (3.34) for some x(t) with ϕ3(t) ≺ x(t) ≺ ϕ4(t)] are satis-
fied if and only if µ ≥ (β/α)λ and µ < (β/α)λ [respectively µ ≥ λ and µ < λ],
respectively, which obviously is an impossibility.

Example 4.2 Consider the equation

(tλ|x ′′|α−1x ′′)′′ + (λ − 2α)(λ − 2α − 1)tλ−2α−2(log t)−β |x |β−1x = 0, t ≥ e,
(4.3)

where λ > 2α + 1, which is a special case of (A) with p(t) = tλ and q(t) =
(λ− 2α)(λ− 2α − 1)tλ−2α−2(log t)−β . Condition (1.6) is clearly satisfied for this
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equation. It is easy to verify that

ϕ1(t) ∼ a1(α, λ)t−(λ−2α)/α, ϕ2(t) ∼ a2(α, λ)t−(λ−2α−1)/α, (4.4)∫ t

e
(t − s)q(s) ds ∼ b1(α, β, λ)tλ−2α(log t)−β, (4.5)

∫ t

e
(t − s)sβq(s) ds ∼ b2(α, β, λ)tλ+β−2α(log t)−β, (4.6)

where ai and bi , i = 1, 2, are positive constants depending only on the indicated
parameters.

We first note that∫ ∞

e
tmq(t) dt = ∞ for m = 0, 1, β, β + 1, (4.7)

which means that (3.1), (3.2), (3.12) and (3.13) fail to hold. Using (4.4)–(4.6),
we can show that (3.3) holds if and only if α > β, that (3.4) holds if and only
if α < β, and that (3.22) and (3.23) hold if and only if α < β or α = β > 1.
Applying Theorems 3.1–3.8, we conclude that:

(i) Equation (4.3) has positive solutions x(t) such that x(t) ∼ ciϕi (t) for some
ci > 0, i = 1, 2, if and only if α < β or α = β > 1.

(ii) Equation (4.3) has neither type II- nor type III-solutions x(t) such that
x(t) ∼ c3 = c3ϕ3(t) for any c3 > 0; such a solution of type IV exists if and
only if α < β.

(iii) Equation (4.3) has neither type I- nor type III-solutions x(t) such that
x(t) ∼ c4t = c4ϕ4(t) for any c4 > 0; such a solution of type IV exists if and
only if α > β.

From the above statements it follows that (4.3) with α = β ≤ 1 admits none
of the positive solutions that are asymptotic to constant multiples of ϕi (t), i =
1, 2, 3, 4, which are the particular solutions of (tλ|x ′′|α−1 x ′′)′′ = 0.

Turning our attention to the intermediate solutions of (4.3), we first note that
Theorem 3.9 is not applicable, since (3.23) and (3.34) are inconsistent. But this
by no means implies the nonexistence of solutions x(t) of (4.3) such that ϕ1(t) ≺
x(t) ≺ ϕ2(t). On the other hand, conditions (3.3) and (3.35) are satisfied if α > β,
and it follows that (4.3) with α > β possesses a solution x(t) such that ϕ3(t) =
1 ≺ x(t) ≺ t = ϕ4(t). One such solution x0(t) = log t . The fact that x0(t) satisfies
(4.3) for any values of α > 0 and β > 0 suggests that improving Theorem 3.10 to
some degree could be possible.

Example 4.3 Suppose that α > 1, β ≥ 1 and 3α < λ < 3α + 1, and consider the
equation

(tλ|x ′′|α−1x ′′)′′ +2α(λ−3α)(3α+1−λ)tλ+β−3α−2|x |β−1x = 0, t ≥ 1. (4.8)
Clearly, the function p(t) = tλ satisfies (1.6) and (4.4), and the function q(t) =
const.tλ+β−3α−2 satisfies∫ t

1
(t − s)q(s) ds ∼ c1(α, β, λ)tλ+β−3α, (4.9)

∫ t

1
(t − s)sβq(s) ds ∼ c2(α, β, λ)tλ+2β−3α, (4.10)

for some positive constants ci (α, β, λ), i = 1, 2, depending only on α, β, λ.
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It can be shown that, for this q(t), (4.7) (with e replaced by 1) holds, that (3.3),
(3.14) and (3.23) hold if and only if α > β, and that (3.22) holds if and only if
α < β. From Theorems 3.1–3.8 it follows that:

(i) Equation (4.8) has a positive solution x(t) such that x(t) ∼ c1ϕ1(t) for some
c1 > 0 if and only if α < β;

(ii) Equation (4.8) has a positive solution x(t) such that x(t) ∼ c2ϕ2(t) for some
c2 > 0 if and only if α > β;

(iii) Equation (4.8) has neither of type II- nor type III-solutions x(t) such that
x(t) ∼ c3 = c3ϕ3(t) for any c3 > 0; such a solution of type IV exists only if
α > β;

(iv) Equation (4.8) has neither of type I- nor type III-solutions x(t) such that
x(t) ∼ c4t = c4ϕ4(t) for any c4 > 0; such a solution of type IV exists only
if α > β.

From the above statements it follows in particular that Eq. (4.3) with α = β
possesses none of the positive solutions that are asymptotic to the functions ϕi (t),
i = 1, 2, 3, 4, as t → ∞.

Since conditions (3.23) and (3.34) are satisfied if α > β, Theorem 3.9 implies
that (3.8) with α > β has an intermediate positive solution x(t) such that ϕ1(t) ≺
x(t) ≺ ϕ2(t).

The function x0(t) = 1/t is actually a solution of (4.8). Note that x0(t) satis-
fies (4.8) for any values of α > 0 and β > 0. On the other hand, Theorem 3.10
does not apply to (4.8), since (3.3) and (3.35) are easily seen to be inconsistent.
Nothing definite can be said about the existence of an intermediate solution x(t)
of (4.8) satisfying 1 = ϕ3(t) ≺ x(t) ≺ t = ϕ4(t).
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