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Abstract In this work, we study a general class of partial neutral functional dif-
ferential equations. We assume that the linear part generates an analytic semi-
group and the nonlinear part is Lipschitz continuous with respect to the α-norm
associated to the linear part. We discuss the existence, uniqueness, regularity and
stability of solutions. Our results are illustrated by an example. This work extends
previous results on partial functional differential equations (Fitzgibbon and Parrot,
Nonlinear Anal., TMA 16, 479–487 (1991), Hale, Rev. Roum. Math. Pures Appl.
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1 Introduction

Let (X, |·|) be a Banach space, (L(X), ‖·‖) be the space of bounded linear oper-
ators on X , and α be a constant such that 0 < α < 1. We consider the following
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class of partial neutral functional differential equations (PNFDE)





d

dt
D(xt ) = −AD(xt ) + F(xt ), for t ≥ 0,

x0 = ϕ ∈ Cα,

(1.1)

where A : D(A) ⊆ X → X is a linear operator, Cα := C([−r, 0]; D(Aα)),
r > 0, denotes the space of continuous functions from [−r, 0] into D(Aα), and
the operator Aα is the fractional α-power of A. This operator (Aα, D(Aα)) will
be described in Sect. 2. For x ∈ C([−r, b]; D(Aα)), b > 0, and t ∈ [0, b], xt
denotes, as usual, the element of Cα defined by xt (θ) = x(t + θ) for θ ∈ [−r, 0].
F is a continuous function from Cα with values in X and D is a bounded linear
operator from C := C([−r, 0], X) into X defined by D(ϕ) = ϕ(0) − D0(ϕ), for
ϕ ∈ C, where the operator D0 is given by

D0(ϕ) =
∫ 0

−r
dη(θ)ϕ(θ), for ϕ ∈ C,

and η : [−r, 0] → L(X) is of bounded variation and non-atomic at zero; that is
var

[−ε,0]
(η) → 0 as ε → 0.

In this paper, we discuss the existence, uniqueness, regularity and stability in the
α-norm for Eq. (1.1).

It is well known, that if the phase space Cα is the space of all continuous
functions from [−r, 0] into X (i.e. α = 0), Eq. (1.1) has been studied by several
authors. For more details, we refer to the book of Wu [17]. For example, Wu and
Xia considered in [18] a system of partial neutral functional differential-difference
equations defined on the unit circle S1, which is a model for a continuous circular
array of resistively coupled transmission lines with mixed initial boundary condi-
tions. They obtained equations of the form

∂

∂t
[x(·, t) − qx(·, t − r)]

= K
∂2

∂ξ2
[x(·, t) − qx(·, t − r)] + f (xt ), t ≥ 0, (1.2)

where ξ ∈ S1, K a positive constant and 0 ≤ q < 1. The space of initial data
was chosen to be C([−r, 0]; H1(S1)). Motivated by this work, Hale presented,
in [11, 12], the basic theory of existence and uniqueness, and properties of the
solution operator, as well as Hopf bifurcation and conditions for the stability and
instability of periodic orbits for a more general class of PNFDE on the unit circle
S1. For the sake of comparison, let us briefly restate the equations considered by
Hale in [11, 12]. If ϕ ∈ C([−r, 0]; H1(S1)), we write it as ϕ(ξ, θ) for ξ ∈ S1

and θ ∈ [−r, 0]. For any function f̃ ∈ Ck+1(C([−r, 0]; R); R ), k ≥ 1, we let
f ∈ Ck+1(C([−r, 0]; H1(S1)); L2(S1) ) be defined by f (ϕ)(ξ) = f̃ (ϕ(ξ, .)),
ξ ∈ S1. Let D̃ ∈ L( C([−r, 0]; R) ; R ) be defined by






D̃ψ = ψ(0) − g̃(ψ),

g̃(ψ) =
∫ 0

−r
dη(θ)ψ(θ),

where η is of bounded variation and non-atomic at 0.
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We define D ∈ L(C([−r, 0]; H1(S1)) ; H1(S1) ) as

D(ϕ)(ξ) = D̃ (ϕ(ξ, .)) , for ξ ∈ S1. (1.3)

Hale considered, in [11, 12], PNFDE of the form

∂

∂t
Dxt = K

∂2

∂ξ2
Dxt + f (xt ) , t ≥ 0, (1.4)

with C([−r, 0]; H1(S1)) as the space of initial data. He considered the Laplace
operator A0 = K ∂2

∂ξ2 with domain H2(S1), which yields an operator generating an
analytic semigroup.

In [1–3], we considered a natural generalization of the work of Hale [11, 12].
We extended the study to the case when the linear part of PNFDE is non-densely
defined Hille-Yosida operator.

In [8] and [16], Eq. (1.1) has been studied with respect to the α-norm, but in
the particular case when D0 ≡ 0.

As far as we know, no general theory exists in the case of partial neutral func-
tional differential equations in fractional power spaces. Our aim in this paper, is
to develop a basic theory of existence, uniqueness, regularity and stability for this
problem.

This paper is organized as follows: in the first part of Sect. 2, we recall some
preliminary results about analytic semigroups and fractional power associated to
its generator. After that, we start to prove our main results. We prove the existence,
uniqueness and regularity of solutions in the α-norm. In Sect. 3, we use a result of
Desch and Schappacher [7], to develop a principle of linearized stability for Eq.
(1.1). Finally, in Sect. 4, we propose an application.

2 Existence, uniqueness and regularity of solutions

We first study the existence, uniqueness and regularity of mild solutions of
Eq. (1.1), using fixed point argument. We assume the following:
(H1) The operator −A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on the Banach space X and satisfies 0 ∈ ρ(A).

We know that there exist constants M ≥ 1 and ω ∈ R such that ‖T (t)‖ ≤
Meωt , for t ≥ 0.

If the assumption 0 ∈ ρ(A) is not satisfied, one can substitute the operator A
by the operator (A − σ I ) with σ large enough such that 0 ∈ ρ(A − σ I ). Then,
without loss of generality, we can assume that 0 ∈ ρ(A). This remark is valuable
here only for proving existence, uniqueness and regularity of solutions.

We consider, see Pazy [14], the fractional power (Aα, D(Aα)), for 0 < α < 1,
and its inverse A−α . We recall the following known results.

Proposition 2.1 ([14], pp. 69–75) Let 0 < α < 1 and assume that (H1) holds.
Then,

(i) D(Aα) is a Banach space for the norm |x |α := |Aαx |, x ∈ D(Aα),
(ii) T (t) : X → D(Aα), for every t > 0,
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(iii) AαT (t)x = T (t)Aαx, for every x ∈ D(Aα) and t ≥ 0,
(iv) for every t > 0, AαT (t) is bounded on X and there exists Mα > 0 such that

‖AαT (t)‖ ≤ Mα

eωt

tα
, for every t > 0, (2.1)

(v) A−α is a bounded linear operator on X with D(Aα) = Im(A−α),
(vi) there exists Nα > 0 such that

‖(T (t) − I )A−α‖ ≤ Nαtα, for t > 0 small enough.

We denote by Xα the Banach space (D(Aα), | · |α) and by Cα := C ([−r, 0] ; Xα)
the space of continuous functions from [−r, 0] into Xα endowed with the norm

‖ϕ‖α := sup
θ∈[−r,0]

|ϕ(θ)|α, ϕ ∈ Cα.

Remark that (Cα, ‖·‖α) is also a Banach space. To prove our result on existence
and uniqueness, we need to assume that
(H2) |F(ϕ1) − F(ϕ2)| ≤ k‖ϕ1 − ϕ2‖α, for ϕ1, ϕ2 ∈ Cα , where k is a positive
constant,

(H3) if x ∈ Xα and θ ∈ [−r, 0] then η(θ)x ∈ Xα and Aαη(θ)x = η(θ)Aαx .

The assumption (H3) implies that if ϕ ∈ Cα then D0(ϕ) ∈ Xα and Aα D0(ϕ) =
D0(Aαϕ), where the expression Aαϕ is defined, for ϕ ∈ Cα and θ ∈ [−r, 0] , by

(Aαϕ)(θ) := Aα(ϕ(θ)).

Definition 2.2 Let ϕ ∈ Cα . A continuous function x : [−r, +∞) → Xα is called
a mild solution of Eq. (1.1) if

(i) D (xt ) = T (t)D (ϕ) + ∫ t
0 T (t − s)F(xs) ds, t ≥ 0,

(ii) x0 = ϕ

Definition 2.3 Let ϕ ∈ Cα . A continuous function x : [−r, +∞) → Xα is called
a strict solution of Eq. (1.1) if

(i) t → D(xt ) is continuously differentiable on [0, +∞),
(ii) D(xt ) ∈ D(A), for t ≥ 0,

(iii) x satisfies (1.1).

Now, we state our first result.

Theorem 2.4 Assume that (H1), (H2) and (H3) hold. Then, for ϕ ∈ Cα , Eq. (1.1)
has a unique mild solution which is defined for all t ≥ 0.
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Proof Let T > 0 and ϕ ∈ Cα . We consider the set

� = {x ∈ C ([−r, T ] ; Xα) : x (θ) = ϕ (θ) , for θ ∈ [−r, 0]} .

� is a closed subset of C ([−r, T ] ; Xα) provided with the uniform norm topology.
Let J be the operator defined on C ([−r, T ] ; Xα) by

J (x)(t) =





D0(xt ) + T (t)D(ϕ) +
∫ t

0
T (t − s)F(xs) ds, if t ∈ [0, T ],

ϕ(t), if t ∈ [−r, 0].
First, we have immediately that J (�) ⊆ �. Furthermore, for x, y ∈ � and t ∈
[0, T ], one has

(J (x) − J (y))(t) = D0(xt − yt ) +
∫ t

0
T (t − s)(F(xs) − F(ys)) ds.

Taking the α-norm |·|α and using (2.1), we obtain

|(J (x) − J (y))(t)|α ≤ | Aα D0(xt − yt )| + Mαk
∫ t

0

eω(t−s)

(t − s)α
‖xs − ys‖α ds.

As η is non-atomic at zero, we can choose ε > 0 such that

var
[−ε,0]

(η) < 1.

Let 0 < T < ε. Then, for t ∈ [0, T ] and θ ∈ [−r, −ε], we have t + θ ≤ 0.
Consequently, for t ∈ [0, T ],

Aα D0(xt − yt ) =
∫ 0

−ε

dη(θ)(Aα(x(t + θ) − y(t + θ))).

This implies that

|Aα D0(xt − yt )| ≤ var
[−ε,0]

(η)‖xt − yt‖α ≤ var
[−ε,0]

(η) max
s∈[0,T ]

|x(s) − y(s)|α.

It follows that

|(J (x) − J (y))(t)|α ≤
[

var
[−ε,0]

(η) + Mαk
∫ T

0

eωs

sα
ds

]

max
s∈[0,T ]

|x(s) − y(s)|α.

Remark that

lim
T →0

∫ T

0

eωs

sα
ds = 0.

Then, we can choose T ∈ [0, ε] such that

var
[−ε,0]

(η) + Mαk
∫ T

0

eωs

sα
ds < 1.

Then, J is a strict contraction in �. That means that J has a unique fixed point
in �. We obtain the existence and uniqueness of a mild solution of Eq. (1.1) on
the interval [0, T ]. Proceeding inductively, we extend the solution uniquely and
continuously to [−r, +∞) . �
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If instead of assuming that D0 is given by a function of bounded variation and
Condition (H3), we make the assumption that

(H′
3) D0 ∈ L(Cα, Xα) and ‖D0‖L(Cα,Xα) < 1,

then, we obtain the same result as in Theorem 2.4.

Proposition 2.5 Assume that (H1), (H2) and (H′
3) hold. Then, for ϕ ∈ Cα , Eq.

(1.1) has a unique mild solution which is defined for all t ≥ 0.

Arguing as above, we prove that the operator J is a strict contraction in �, for
T > 0 small enough.

We focus now our study on the regularity of the mild solution of Eq. (1.1). Under
more restrictive conditions on F and ϕ, we obtain a strict solution of Eq. (1.1).

Theorem 2.6 Assume that (H1), (H2) and (H3) hold. Furthermore, assume that
F : Cα → X is continuously differentiable and F ′ is locally Lipschitz continuous.
Let ϕ ∈ Cα be such that

ϕ′ ∈ Cα, D(ϕ) ∈ D(A) and D(ϕ′) = −AD(ϕ) + F(ϕ).

Then, the mild solution x of Eq. (1.1) belongs to C1([0,+∞); Xα). Consequently,
it is a strict solution of Eq. (1.1).

Proof Let T > 0 and x be the mild solution of Eq. (1.1). Consider the equation





D(yt ) = T (t) D(ϕ′) +
∫ t

0
T (t − s) F ′ (xs) ys ds for t ∈ [0, T ] ,

y0 = ϕ′.
(2.2)

Then, using the same reasoning as in the proof of Theorem 2.4, we prove that
Eq. (2.2) has a unique continuous solution y on [−r, T ]. Let z ∈ C ([−r, T ] ; Xα)
be defined by

z(t) =





ϕ(0) +
∫ t

0
y(s) ds, for t ∈ [0, T ] ,

ϕ(t), for t ∈ [−r, 0] .

Simple computations yield

zt = ϕ +
∫ t

0
ys ds, for t ∈ [0, T ] . (2.3)

We will show that x = z on [0, T ]. From Eq. (2.2), we get
∫ t

0
D (ys) ds =

∫ t

0
T (s) D(ϕ′) ds +

∫ t

0

∫ s

0
T (s − σ) F ′ (xσ ) yσ dσ ds. (2.4)

On the other hand, we have for t ∈ [0, T ]

d

dt

∫ t

0
T (t − s) F (zs) ds = T (t) F(ϕ) +

∫ t

0
T (t − s)F ′(zs)ys ds.
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This implies that
∫ t

0
T (s) F(ϕ) ds =

∫ t

0
T (t − s) F (zs) ds −

∫ t

0

∫ s

0
T (s − σ) F ′(zσ )yσ dσ ds.

(2.5)
It follows that

D(zt ) = D(ϕ) +
∫ t

0
T (s)(−AD(ϕ)+F(ϕ)) ds +

∫ t

0

∫ s

0
T (s − σ)F ′(xσ )yσ dσ ds,

= T (t)D(ϕ) +
∫ t

0
T (s)F(ϕ) ds +

∫ t

0

∫ s

0
T (s − σ)F ′(xσ )yσ dσ ds.

Using (2.5), we obtain that

D(zt ) = T (t)D(ϕ) +
∫ t

0
T (t − s)F(zs) ds

+
∫ t

0

∫ s

0
T (s − σ)(F ′(xσ ) − F ′(zσ ))yσ dσ ds,

and

D(xt − zt ) =
∫ t

0
T (t − s)(F(xs) − F(zs)) ds

−
∫ t

0

∫ s

0
T (s − σ)(F ′(xσ ) − F ′(zσ ))yσ dσ ds.

By Fubini’s Theorem, we obtain

D(xt − zt ) =
∫ t

0
T (t − s)(F(xs) − F(zs)) ds

−
∫ t

0
(

∫ t−s

0
T (σ ) dσ)(F ′(xs) − F ′(zs))ys ds.

To complete the proof, we need the following lemma. �

Lemma 2.7 Assume that (H1) and (H3) hold. There exist positive constants a, b
and c such that, if w ∈ C ([−r, +∞) ; Xα) is a solution of the equation

{
D (wt ) = f (t), t ≥ 0,

w0 = ϕ ∈ Cα,

where f is a continuous function from [0, +∞) into Xα , then

‖wt‖α ≤
(

a‖ϕ‖α + b sup
0≤s≤t

| f (s)|α
)

ect , t ≥ 0. (2.6)

The above lemma is an immediate consequence of the following which is the same
result but for α = 0.
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Lemma 2.8 [17] Assume that (H1) and (H3) hold. There exist positive constants
a, b and c such that, if w ∈ C ([−r, +∞) ; X) is a solution of the equation

{
D (wt ) = f (t), t ≥ 0,

w0 = ϕ ∈ C := C ([−r, 0] ; X) ,

where f is a continuous function from [0, +∞) into X, then

‖wt‖ ≤
(

a‖ϕ‖ + b sup
0≤s≤t

| f (s)|
)

ect , t ≥ 0. (2.7)

We put, for t ∈ [0, T ] ,

f (t) =
∫ t

0
T (t − s) (F (xs) − F (zs)) ds

−
∫ t

0

(∫ t−s

0
T (σ ) dσ

)

(F ′(xs) − F ′(zs))ys ds.

Then we get, for t ∈ [0, T ] ,

| f (t)|α ≤ K1

∫ t

0

eω(t−s)

(t − s)α
‖xs−zs‖α ds + K2

∫ t

0

(∫ t−s

0

eωσ

σα
dσ

)

‖xs − zs‖α ds,

for some positive constants K1 and K2 . Without loss of generality, we suppose
that ω > 0. Then, if we choose

0 < T ≤ α

ω
and K3 := T αe−ωT

∫ T

0

eωσ

σα
dσ,

we obtain, for t ∈ (0, T ],
∫ t

0

eωσ

σα
dσ ≤ K3

eωt

tα
.

This implies that, for t ∈ [0, T ]

| f (t)|α ≤ (K1 + K2 K3)

∫ t

0

eω(t−s)

(t − s)α
‖xs − zs‖α ds.

Suppose that T ≤ r . Then, for s ∈ [0, t],

‖xs − zs‖α ≤ max
0≤σ≤t

|x(σ ) − z(σ )|α,

because x(σ ) = z(σ ) = ϕ(σ), for σ ∈ [−r, 0]. Consequently, for t ∈ [0, T ] with
T ≤ min{ α

ω
, r}, we get

sup
0≤s≤t

| f (s)|α ≤ (K1 + K2 K3)

(∫ T

0

eωs

sα
ds

)

max
0≤σ≤t

|x(σ ) − z(σ )|α .
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Then,

‖xt − zt‖α = max
0≤σ≤t

|x(σ ) − z(σ )|α

≤ (K1 + K2 K3)

(∫ T

0

eωs

sα
ds

)

max
0≤σ≤t

|x(σ ) − z(σ )|α .

For T > 0 small enough, we have

(K1 + K2K3)

(∫ T

0

eωs

sα
ds

)

< 1.

It follows that x = z on [−r, T ] . Then, x is continuously differentiable on [0, T ]
with respect to the α-norm, for T > 0 small enough. By steps, we prove that x is
continuously differentiable on [0, T ] with respect to the α-norm, for every T > 0.
Since Xα ↪→ X , we deduce that x ∈ C1 ([0,+∞) ; X) and satisfies Eq. (1.1).

Remark 2.1 If the delay is discrete; that is for example for F(ϕ) = G(ϕ(−r)),
then, the Lipschitz condition on F is not needed to obtain the existence of mild
solutions. Also, the local Lipschitz condition on F ′ is not needed for the existence
of strict solutions. In this case, we can proceed by steps.

3 The nonlinear solution semigroup and linearized stability

Define the operator U (t), for t ≥ 0, on Cα by

U (t)(ϕ) = xt (., ϕ),

where x(., ϕ) is the mild solution of Eq. (1.1) for the initial condition ϕ ∈ Cα .
One can prove the proposition.

Proposition 3.1 The family (U (t))t≥0 is a nonlinear strongly continuous semi-
group on Cα; that is

(i) U (0) = I ,
(ii) U (t + s) = U (t)U (s), for t, s ≥ 0,

(iii) for all ϕ ∈ Cα , U (t)(ϕ) is a continuous function of t ≥ 0 with values in Cα ,
(iv) for all t ≥ 0, U (t) is continuous from Cα into Cα ,
(v) (U (t))t≥0 satisfies the following translation property, for t ≥ 0 and θ ∈

[−r, 0],

(U (t)(ϕ)) (θ) =
{

(U (t + θ)(ϕ)) (0), if t + θ ≥ 0,

ϕ(t + θ), if t + θ ≤ 0.

We are now interested in the stability of the equilibriums of Eq. (1.1). By equilib-
rium, we mean a constant mild solution x∗ of (1.1). Without loss of generality, we
can assume that x∗ = 0 and F(0) = 0.
We need the following assumption.

(H4) F : Cα → X is differentiable at zero.
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Then, the linearized equation at zero of Eq. (1.1) is given by
{ d

dt
D (yt ) = −AD (yt ) + L(yt ), for t ≥ 0,

y0 = ϕ ∈ Cα,
(3.1)

where L = F ′(0). Let (S(t))t≥0 be the solution semigroup on Cα associated to
the linear Eq. (3.1).

Theorem 3.2 Assume that the conditions (H1), (H2), (H3) and (H4) hold. Then,
for every t ≥ 0 the derivative at zero of U (t) is S(t).

Proof Let t ≥ 0 be fixed and ϕ ∈ Cα . We have

D [U (t)(ϕ) − S(t)ϕ] =
∫ t

0
T (t − s) (F(U (s)(ϕ)) − L(S(s)ϕ)) ds.

We put
wt = U (t)(ϕ) − S(t)ϕ,

and

g(t) =
∫ t

0
T (t − s) (F(U (s)(ϕ)) − L(S(s)ϕ)) ds.

Then,

g(t) =
∫ t

0
T (t − s) (F(U (s)(ϕ)) − F(S(s)ϕ)) ds

+
∫ t

0
T (t − s) (F(S(s)ϕ) − L(S(s)ϕ)) ds.

Using Lemma 2.7, we obtain

‖wt‖α ≤ bect sup
0≤s≤t

|g(s)|α, t ≥ 0.

On the other hand, we have

|g(t)|α ≤ Mαk
∫ t

0

eω(t−s)

(t − s)α
‖ws‖α ds

+ Mα

∫ t

0

eω(t−s)

(t − s)α
|F(S(s)ϕ) − L(S(s)ϕ)| ds.

Let ε > 0. By virtue of the continuous differentiability of F at 0, we deduce that
there exists δ > 0 such that

Mα

∫ t

0

eω(t−s)

(t − s)α
|F(S(s)ϕ) − L(S(s)ϕ)| ds ≤ ε‖ϕ‖α, for ‖ϕ‖α ≤ δ.

Then, for ‖ϕ‖α ≤ δ,

|g(t)|α ≤ ε‖ϕ‖α + Mαk
∫ t

0

eω(t−s)

(t − s)α
‖ws‖α ds.
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Since w0 = 0, then

‖ws‖α = max
0≤σ≤s

|w(σ)|α ≤ ‖wt‖α, for s ∈ [0, t] and t ∈ [0, r ] .

Consequently, for t ∈ [0, r ] fixed

sup
0≤s≤t

|g(s)|α ≤ ε‖ϕ‖α + Mαk

(∫ t

0

eωs

sα
ds

)

‖wt‖α.

Then, we obtain for T ∈ (0, r ] small enough and t ∈ [0, T ] fixed

‖wt‖α ≤ bect

1 − bMαkect

∫ t

0

eωs

sα
ds

ε ‖ϕ‖α, for ‖ϕ‖α ≤ δ.

That means that U (t) is differentiable at 0, for each t ∈ [0, T ] and DϕU (t)(0) =
S(t).

Now, suppose that t ∈ [T, 2T ] is fixed. It follows that, for max{‖ϕ‖α, ‖U (t −
T )(ϕ)‖α} ≤ δ0, where δ0 > 0 is small enough

‖U (t)(ϕ) − S(t)ϕ‖α ≤ ‖U (T ) (U (t − T )(ϕ)) − S(T )U (t − T )(ϕ)‖α

+‖S(T )‖‖U (t − T )(ϕ) − S(t − T )ϕ‖α,

≤ ε‖ϕ‖α.

By steps, we conclude that U (t) is differentiable at 0, for each t ≥ 0 and
DϕU (t)(0) = S(t). �

Theorem 3.3 Assume that the conditions (H1), (H2), (H3) and (H4) hold. If the
zero equilibrium of (S(t))t≥0 is exponentially stable, then the zero equilibrium of
(U (t))t≥0 is locally exponentially stable, in the sense that there exist δ > 0, µ >
0, k ≥ 1 such that

‖U (t)(ϕ)‖α ≤ ke−µt‖ϕ‖α, for ϕ ∈ Cα with ‖ϕ‖α ≤ δ and t ≥ 0.

Moreover, if Cα can be decomposed as Cα = H1 ⊕ H2 where Hi are S-invariant
subspaces of Cα , H1 is finite-dimensional and with

ω = lim
h→∞

1

h
log ‖S(h)/H2‖α,

we have
inf {|λ| : λ ∈ σ (S(t)/H1)} > eωt ,

then, the zero equilibrium of (U (t))t≥0 is not stable, in the sense that there exist
ε > 0 and a sequence (ϕn)n converging to 0 and a sequence (tn)n of positive real
numbers such that ‖U (tn)ϕn‖α > ε.

The proof of this theorem is based on Theorem 3.2 and the following result.
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Theorem 3.4 [7] Let (V (t))t≥0 be a nonlinear strongly continuous semigroup on
a subset � of a Banach space (Z , ‖ · ‖). Assume that x0 ∈ � is an equilibrium
of (V (t))t≥0 such that V (t) is differentiable at x0 for each t ≥ 0, with W (t) the
derivative at x0 of V (t), t ≥ 0. Then, (W (t))t≥0 is a strongly continuous semi-
group of bounded linear operators on Z and, if the zero equilibrium of (W (t))t≥0
is exponentially stable, then the equilibrium x0 of (V (t))t≥0 is locally exponen-
tially stable. Moreover, if Z can be decomposed as Z = Z1 ⊕ Z2 where Zi are
W -invariant subspaces of Z and Z1 is finite-dimensional and with

ω = lim
h→∞

1

h
log ‖W (h)/Z2‖,

we have
inf {|λ| : λ ∈ σ (W (t)/Z1)} > eωt ,

then the equilibrium x0 of (V (t))t≥0 is not stable in the sense that there exist
ε > 0 and a sequence (xn)n converging to x0 and a sequence (tn)n of positive real
numbers such that ‖V (tn)xn − x0‖ > ε.

In the following, we will concentrate our study on the linear Eq. (3.1). Let
(AS, D(AS)) be the generator of the semigroup (S(t))t≥0 on Cα. We have the
result.

Theorem 3.5 Assume that the conditions (H1), (H2), (H3) and (H4) hold. Then,
the operator (AS, D(AS)) is given by
{

D(AS) = {ϕ ∈ Cα : ϕ′ ∈ Cα, D(ϕ) ∈ D(A) and D(ϕ′) = −AD(ϕ) + L(ϕ)},
ASϕ = ϕ′, ϕ ∈ D(AS).

Proof Let B be the infinitesimal generator of the semigroup (S(t))t≥0 on Cα and
ϕ ∈ D(B). Then,






lim
t→0+

1

t
(S(t)ϕ − ϕ) = ψ exists in Cα,

Bϕ = ψ.

The first expression yields to

lim
t→0+

1

t
(ϕ(t + θ) − ϕ(θ)) = ψ(θ), for θ ∈ [−r, 0) .

This means that the right derivative

ϕ′+ = ψ

exists and is continuous on [−r, 0). To complete the proof, we need the following
lemma.

Lemma 3.6 [14] Let x be a continuous and right differentiable function on [a, b).
If the function x ′+ is continuous on [a, b), then x is continuously differentiable on
[a, b).
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From the above lemma, we deduce that the function ϕ is continuously differen-
tiable on [−r, 0) and ϕ′ = ψ on [−r, 0). On the other hand, for θ = 0, one has
limθ→0 ϕ′+(θ) exists and is equal to ψ(0). From this, we conclude that the func-
tion ϕ is continuously differentiable from [−r, 0] into Xα and ϕ′ = ψ. Moreover,
one has

1

t
(T (t)D(ϕ) − D(ϕ)) = 1

t
D(S(t)ϕ − ϕ) − 1

t

∫ t

0
T (t − s)L(S(s)ϕ) ds.

First, it is clear that

1

t

∫ t

0
T (t − s)L(S(s)ϕ) ds → L(ϕ) as t → 0

in X -norm and
1

t
D(S(t)ϕ − ϕ) → D(ϕ′) as t → 0

in α-norm. Since Xα ↪→ X, we deduce that

1

t
D(S(t)ϕ − ϕ) → D(ϕ′) as t → 0

in X -norm. This implies that

D(ϕ) ∈ D(A) and
1

t
(T (t)D(ϕ) − D(ϕ)) → AD(ϕ) as t → 0

in X -norm. Consequently, we conclude that





D(B) ⊆ {ϕ ∈ Cα : ϕ′ ∈ Cα, D(ϕ) ∈ D(A) and D(ϕ′) = −AD(ϕ) + L(ϕ)},
Bϕ = ϕ′.

Conversely, let ϕ ∈ Cα such that

ϕ′ ∈ Cα, D(ϕ) ∈ D(A) and D
(
ϕ′) = −AD (ϕ) + L(ϕ).

In Theorem 2.6, it has been proved that t 
→ T (t)ϕ is continuously differentiable
from [0, +∞) into Xα . Hence, ϕ ∈ D(B). �

Let C be the space of continuous functions from [−r, 0] into X provided with the
uniform norm topology and let

CD = {ϕ ∈ C : D(ϕ) = 0} .

Definition 3.7 [13] D is said to be stable if the zero solution of the difference
equation {

D (yt ) = 0, t ≥ 0,

y0 = ϕ ∈ CD,
(3.2)

is exponentially stable.
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Lemma 3.8 If D is stable, then there exist positive constants a, b, c and d such
that for any ε ∈ (0, r ] sufficiently small and any continuous function h from
[0, +∞) into X, the solution v of the equation

D (vt ) = h(t), t ≥ 0, (3.3)

satisfies the inequality

‖vt‖ ≤ e−a(t−ε)
[
b‖v0‖ + c sup

0≤s≤ε

|h(s)|
]

+ d sup
max(ε,t−r)≤s≤t

|h(s)|, t ≥ ε. (3.4)

Proof The idea of the proof comes from [5], in which there is the same estimate
(3.4) but in finite-dimensional case. To prove (3.4) we will make a transformation
of variables in Eq. (3.3) such that h(ε) = 0.

Consider the mapping � : X → C defined, for c ∈ X and θ ∈ [−r, 0] by

�(c)(θ) =






0, −r ≤ θ ≤ −ε,
(

1 + θ

ε

)

c, −ε < θ ≤ 0.
(3.5)

Since
−r ≤ r − ε

r
θ − ε ≤ −ε, for all θ ∈ [−r, 0] ,

then
|D(�(c))| ≤ var

[−ε,0]
(η) |c|.

We can choose ε ∈ (0, r ] sufficiently small such that

var
[−ε,0]

(η) < 1.

We conclude that the linear operator D̃(�) : X → X defined by

D̃(�)(c) = D(�(c)),

is invertible.
We make now the following transformation of variables in Eq. (3.3)

z(t) = v(t) − y(t), for t ≥ ε − r,

where y : [ε − r, +∞[ → X is defined by

y(t) =
{

�([D̃(�)]−1(h(ε)))(t − ε), ε − r ≤ t ≤ ε,

[D̃(�)]−1(h(t)), t > ε.

Thus, we can rewrite Eq. (3.3) as

D(zt ) = h∗(t), t ≥ ε, (3.6)

where
h∗(t) = h(t) − D(yt ), t ≥ ε.
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Note that

yε(θ) = y(ε + θ) = �([D̃(�)]−1(h(ε)))(θ), for θ ∈ [−r, 0].
This gives

D(yε) = D(�([D̃(�)]−1(h(ε)))) = D̃(�([D̃(�)]−1))(h(ε)) = h(ε).

Hence
h∗(ε) = 0.

We can now start the proof of estimate (3.4).
It is immediate that

|h∗(t)| ≤ |h(t)| + K4‖yt‖, t ≥ ε,

and
‖yt‖ = sup

t−r≤s≤t
|y(s)|, t ≥ ε.

Let s ∈ [t − r, t]. If t − r ≥ ε

y(s) = [D̃(�)]−1(h(s)),

and if t − r < ε

y(s) =
{

�([D̃(�)]−1(h(ε)))(s − ε), t − r ≤ s ≤ ε,

[D̃(�)]−1(h(s)), ε < s ≤ t.

Then, we can assert that

‖yt‖ ≤ K5 sup
max(ε,t−r)≤s≤t

|h(s)|, t ≥ ε, (3.7)

and
|h∗(t)| ≤ K6 sup

max(ε,t−r)≤s≤t
|h(s)|, t ≥ ε. (3.8)

Our next objective is to estimate ‖zt‖, for t ≥ ε.
By the superposition principle of solutions of linear systems, we have

z(t) = z1(t) + z2(t), t ≥ ε − r,

where {
D(z1

t ) = 0, t ≥ ε,

z1
ε = zε,

and {
D(z2

t ) = h∗(t), t ≥ ε,

z1
ε = 0.

Since D is stable, it follows that
∥
∥z1

t

∥
∥ ≤ βe−α(t−ε)‖zε‖.
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As zε = vε − yε, we obtain

‖zε‖ ≤ ‖vε‖ + K5|h(ε)|.
Applying (2.7), we conclude that

‖vε‖ ≤ K7‖v0‖ + K8 sup
0≤s≤ε

|h(s)|. (3.9)

This gives

‖z1
t ‖ ≤ βe−α(t−ε)(K7‖v0‖ + (K5 + K8) sup

0≤s≤ε

|h(s)|).

We also have
‖z2

t ‖ ≤ K9 sup
ε≤s≤t

|h∗(s)|,
(see, for example, Theorem 2.1 in [10] which is easy to extend to infinite-
dimensional case). Then, (3.8) implies

‖z2
t ‖ ≤ K6 K9 sup

ε≤s≤t

(
sup

max(ε,s−r)≤σ≤s
|h(σ )|

)
≤ K10 sup

max(ε,t−r)≤s≤t
|h(s)|.

Consequently, for t ≥ ε

‖zt‖ ≤ e−µ(t−ε)
(
βK7‖v0‖ + β(K5 + K8) sup

0≤s≤ε

|h(s)|
)

+ K10 sup
max(ε,t−r)≤s≤t

|h(s)|.

Finally, using (3.7) we obtain

‖vt‖ ≤ e−µ(t−ε)
(
βK7‖v0‖ + β(K5 + K8) sup

0≤s≤ε

|h(s)|
)

+ (K5 + K10) sup
max(ε,t−r)≤s≤t

|h(s)|.

As the interval (0, r ] is bounded, the constants Ki can be chosen independent of
ε. This completes the proof. �

Estimate (3.4) is very interesting because, if |h(s)| is bounded on [0,+∞), then
the ultimate bound on vt as t → +∞ is determined by the bound on |h(s)| for s
in the delay interval [t − r, t] as t → +∞.

Proposition 3.9 [12] Let D(ϕ) = ∑p
k=0 akϕ(−rk). Then, D is stable iff

∑p
k=0 |ak | < 1.

In the sequel, we assume the followings.

(H5) The operator D is stable.

(H6) The semigroup operators T (t) are compact for every t > 0.
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Theorem 3.10 Assume that (H1) , (H2) , (H3) , (H5) and (H6) hold. Then the
semigroup (U (t))t≥0 can be decomposed as

U (t) = U1(t) + U2(t), for t ≥ 0,

where U1(t) is an exponentially stable semigroup on Cα and U2(t) is compact on
Cα for every t > 0.

Proof Without loss of generality, we can assume that there exist positive constants
M0 and γ such that the semigroup (T (t))t≥0 satisfies

‖T (t)‖ ≤ M0e−γ t , for t ≥ 0. (3.10)

Let U1(t) be defined by

(U1(t)ϕ) (θ) =
{

ϕ(t + θ), if t + θ ≤ 0,
v(t + θ), if t + θ ≥ 0,

where v is the unique solution of the problem
{

D (vt ) = T (t)D (ϕ) , for t ≥ 0,
v(t) = ϕ, for t ∈ [−r, 0] .

On the other hand, the operator D is stable. We deduce after applying the operator
Aα that

‖vt‖α ≤ e−a(t−ε)
[
b‖ϕ‖α + c sup

0≤s≤ε

|T (s)D (ϕ) |α
]
+ d sup

max(ε,t−r)≤s≤t
|T (s)D(ϕ)|α.

So, from (3.10) we get, for some constants N and ν, that

‖U1(t)ϕ‖α ≤ Ne−νt‖ϕ‖α, for t ≥ 0.

Let U2(t)ϕ := wt = ut − vt . Then,

D (U2(t)ϕ) = D (ut ) − D (vt ) =
∫ t

0
T (t − s) F (U (s)ϕ) ds.

Consequently,





D(wt ) = h(t, ϕ) :=
∫ t

0
T (t − s) F (U (s)ϕ) ds, for t ≥ 0,

w0 = 0.

(3.11)

Let (ϕk)k≥0 be a bounded sequence in Cα . We will show that the family
{h(., ϕk) : k ≥ 0} is equicontinuous and bounded on C ([0, σ ] ; Xα) , for any
σ > 0 fixed. Let β ∈ (α, 1) . Since A−β : X → Xα is compact, it is enough to
prove that

{
Aβh(t, ϕk) : k ≥ 0

}
is bounded in X , for each t ≥ 0. Since (U (t))t≥0

is locally bounded in t and ϕ, it follows that there exists a positive constant λ such
that

|Aβh(t, ϕk)| ≤ Mβλ

∫ t

0

eωs

sβ
ds, for every k ≥ 0.
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We get that {h(t, ϕk) : k ≥ 0} is compact in Xα , for each t ≥ 0. Its remains to
prove the equicontinuity property in α-norm. Let t > t0. Then,

Aαh(t, ϕk) − Aαh(t0, ϕk) =
∫ t0

0
Aα (T (t − s) − T (t0 − s)) F (U (s)ϕk) ds

+
∫ t

t0
AαT (t − s) F (U (s)ϕk) ds.

Consequently,
∣
∣
∣
∣

∫ t

t0
AαT (t − s)F(U (s)ϕk) ds

∣
∣
∣
∣

≤ Mαλ

∫ t

t0

eωs

sα
ds → 0 as t → t0 uniformly in k.

Moreover,
∫ t0

0
Aα (T (t − s) − T (t0 − s)) F (U (s)ϕk) ds

= (T (t − t0) − I )
∫ t0

0
AαT (t0 − s)F(U (s)ϕk) ds.

There is a compact set K in X such that
∫ t0

0
AαT (t0 − s)F(U (s)ϕk) ds ∈ K , for all k ≥ 0.

It is well known, form Banach–Steinhaus’s theorem, that

lim
t→t0

sup
x∈K

|(T ((t − t0) − I )x | = 0.

This implies that

lim
t→t+0

|h(t, ϕk) − h(t0, ϕk)|α = 0, uniformly in k ≥ 0.

The proof is similar for t < t0. Then, for any σ > 0, there exists a subsequence
(ϕk)k≥0 such that h(t, ϕk) converges as k → +∞ uniformly on [0, σ ] to some
function h(t) in α-norm. Let wk

t be the solution of Eq. (3.11) with ϕ = ϕk . Then,

D
(
w

j
t − wk

t

) = h(t, ϕ j ) − h(t, ϕk).

Consequently, there is a positive constant c such that
∥
∥w

j
t − wk

t

∥
∥

α
≤ c sup

0≤s≤t
|h(t, ϕ j ) − h(t, ϕk)|α.

This implies that the sequence
(
wk

t

)

k≥0 is a Cauchy sequence, which proves that
U2(t) is compact in Cα . �
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Let (Y, ‖·‖) be a Banach space. For a bounded linear operator B in Y , we define

‖B‖ess := inf {c > 0 : χ(B(H)) ≤ cχ(H), for every bounded set H of Y } ,

where χ(.) denotes the measure of noncompactness in Y .
The essential growth bound of (S(t))t≥0 in Cα is given by

ωess(S) := inf
t>0

1

t
log ‖S(t)‖ess.

It follows from Theorem 3.10, that

ωess(S) < 0.

Let

ω0(S) := inf
t>0

1

t
log ‖S(t)‖α

be the growth bound of (S(t))t≥0 in Cα . Then, it is well known (see [9]) that

ω0(S) = max{ωess(S) , s′(AS)},
where

s′(AS) = sup {Re λ : λ ∈ σ(AS)\σess(AS)}
and σess(AS) is the essential spectrum of AS . Consequently, the stability of
(S(t))t≥0 is completely determined by s′(AS). Note that σ(AS)\σess(AS) contains
a finite number of eigenvalues of AS .

We say that λ ∈ C is a characteristic value of Eq. (3.1) if there exists a nonzero
x ∈ D(�(λ))\ {0} such that �(λ)x = 0, where �(λ) is defined by

�(λ) := λD(eλ· I ) + AD(eλ· I ) − L(eλ· I ),

and the domain D(�(λ)) is given by

D(�(λ)) := {
x ∈ Xα : D(eλ.x) ∈ D(A) and AD(eλ.x) − L(eλ.x) ∈ Xα

}
.

Consequently, we deduce the following theorem.

Theorem 3.11 Assume that (H1) , (H2) , (H3) , (H4), (H5) and (H6) hold. Then,
the following assertions hold.

(i) λ is an eigenvalue of AS iff λ is a characteristic value of Eq. (3.1).
(ii) If s′(AS) < 0, then (S(t))t≥0 is exponentially stable and consequently, the

zero equilibrium of (U (t))t≥0 is locally exponentially stable.
(iii) If s′(AS) = 0, then there exists ϕ ∈ Cα , ϕ �= 0, such that ‖S(t)ϕ‖α =

‖ϕ‖α , for t ≥ 0.
(iv) If s′(AS) > 0, then there exists ϕ ∈ Cα such that ‖S(t)ϕ‖α → +∞ as

t → +∞ and consequently, the zero equilibrium of (U (t))t≥0 is instable.
(v) Assume that s′(AS) ≤ 0 and let s0(AS) := {λ ∈ Pσ(AS) : Re λ = 0}. If

each λ in s0(AS) is a pole of order 1 of the resolvent operator of AS, then
(S(t))t≥0 is stable in the sense that there exists a positive constant M such
that ‖S(t)‖α ≤ M, for all t ≥ 0.

Proof This result is an immediate consequence of (Theorem 3.7, p. 333, [9]). �
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4 Application

As an application of our abstract result, we consider the following partial neutral
functional differential equation






∂

∂t
[v(t, x) − qv(t − r, x)] = ∂2

∂x2 [v(t, x) − qv(t − r, x)]

+ f

(

v(t, x), v(t − r, x) ,
∂

∂x
[v(t, x) − qv(t − r, x)]

)

,

for x ∈ [0, π] , t ≥ 0,

v(t, 0) = qv(t − r, 0) and v(t, π) = qv(t − r, π), for t ≥ 0,

v(θ, x) = v0(θ, x), for θ ∈ [−r, 0] , x ∈ [0, π] ,

(4.1)

where v0 ∈ C ([−r, 0] × [0, π] ; R) , q is a positive constant and f : R
3→ R is a

Lipschitz continuous function.
Let A be the operator defined on X := L2([0, π]; R) by

{
D(A) = H2(0, π) ∩ H1

0 (0, π),

Ag = −g′′, g ∈ D(A).

Then, −A generates an analytic semigroup (T (t))t≥0 on X . Moreover, T (t) is
compact on X for every t > 0. The spectrum σ(−A) of −A is equal to the point
spectrum Pσ(−A) and is given by σ(−A) = {−n2 : n ≥ 1} and the associated
eigenfunctions (φn)n≥1 are given by φn(x) = sin(nx), x ∈ [0, π]. Actually, the
semigroup T (t) is explicitly defined by

T (t)y =
∞∑

n=1

e−n2t 〈y, φn〉 φn, t ≥ 0, y ∈ X.

Let α = 1
2 . From [16], we have for t ≥ 0






A
1
2 T (t)y = ∑∞

n=1 ne−n2t 〈y, φn〉φn, for y ∈ X,

A− 1
2 y = ∑∞

n=1
1

n
〈y, φn〉φn, for y ∈ X,

A
1
2 y = ∑∞

n=1 n 〈y, φn〉φn, for y ∈ D(A
1
2 ).

Lemma 4.1 [16] If φ ∈ D(A
1
2 ) then φ is absolutely continuous and φ′ ∈ X.

Let F : C 1
2

→ X be the mapping defined by

(F(ϕ)) (x) = f

(

ϕ(0)(x) , ϕ(−r)(x) ,
∂

∂x
[ϕ(0)(x) − qϕ(−r)(x)]

)

,

for x ∈ [0, π] ,

D : C := C ([−r, 0] , X) → X be the bounded linear operator defined by

D(ϕ)(x) = ϕ(0)(x) − qϕ(−r)(x), for x ∈ [0, π] ,
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y : [−r, +∞) → X be the function defined by

y(t) = v(t, ·), for t ≥ −r,

and ϕ(θ) = v0(θ, ·), for θ ∈ [−r, 0]. Then, Eq. (4.1) takes the abstract form





d

dt
D (yt ) = −AD (yt ) + F(yt ), for t ≥ 0,

y0 = ϕ ∈ C 1
2
.

(4.2)

Lemma 4.2 F is Lipschitz continuous from C 1
2

into X.

Proof Let ϕ1, ϕ2 ∈ C 1
2
. Then, for x ∈ [0, π], one has

(F(ϕ1) − F(ϕ2)) (x) = f

(

ϕ1(0)(x), ϕ1(−r)(x),
∂

∂x
[ϕ1(0)(x) − qϕ1(−r)(x)]

)

− f

(

ϕ2(0)(x), ϕ2(−r)(x),
∂

∂x
[ϕ2(0)(x) − qϕ2(−r)(x)]

)

.

Since f is Lipschitz continuous, then there exists a positive constant k such that

|F(ϕ1) − F(ϕ2)(x)| ≤ k

(

|ϕ1(0)(x) − ϕ2(0)(x) | + |ϕ1(−r)(x) − ϕ2(−r)(x) |

+
∣
∣
∣
∣

∂

∂x
[ϕ1(0)(x)−ϕ2(0)(x) − q(ϕ1(−r)(x)−ϕ2(−r)(x))]

∣
∣
∣
∣

)

.

Which implies that

|F(ϕ1) − F(ϕ2)| ≤ k

(√∫ π

0
|ϕ1(0)(x) − ϕ2(0)(x) |2 dx

+
√∫ π

0
|ϕ1(−r)(x) − ϕ2(−r)(x) |2 dx

+
√∫ π

0
| ∂

∂x
(ϕ1(0) − ϕ2(0))(x) |2 dx

+ q

√∫ π

0
| ∂

∂x
(ϕ1(−r) − ϕ2(−r))(x) |2 dx

)

.

By [16], p. 141, we have for every τ ∈ [0, r ]
√∫ π

0
|ϕ1(−τ)(x) − ϕ2(−τ)(x) |2 dx ≤ ‖ϕ1 − ϕ2 ‖ 1

2

and √∫ π

0
| ∂

∂x
(ϕ1(−τ) − ϕ2(−τ))(x) |2 dx ≤ ‖ϕ1 − ϕ2 ‖ 1

2
.

Which means that F is Lipschitz continuous from C 1
2

into X. �
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Consequently, we have the existence and uniqueness of mild solutions of Eq. (4.1).
Let v0 ∈ C 1

2
such that

(a) v0(0, ·) − qv0(−r, ·) ∈ H2(0, π) ∩ H1
0 (0, π) and ∂v0

∂θ
∈ C 1

2
,

(b)
∂v0
∂θ

(0, x) − q ∂v0
∂θ

(−r, x) = ∂2

∂x2 [v0(0, x) − qv0(−r, x)]

+ f
(
v0(0)(x) , v0(−r)(x) , ∂

∂x [v0(0)(x) − qv0(−r)(x)]
)
, for x ∈ [0, π] .

We deduce that

ϕ ∈ C 1
2
, ϕ′ ∈ C 1

2
, D(ϕ) ∈ D(A) and D

(
ϕ′) = −AD(ϕ) + F(ϕ).

Moreover, if we assume that f is continuously differentiable, then all assumptions
of Theorem 2.6 are satisfied. We conclude that every mild solution of Eq. (4.2) is
a strict solution which is also the solution of the partial differential Eq. (4.1).
In the sequel, we assume that

0 < q < 1.

This means that the operator D is stable. We also assume that f is continuously
differentiable and zero is a solution of (4.1), i.e. f (0, 0, 0) = 0. The linearized
equation at zero of Eq. (4.1) has the following form






∂

∂t
[u(t, x) − qu(t − r, x)] = ∂2

∂x2 [u(t, x) − qu(t − r, x)]

+ au(t, x) + bu(t − r, x) + c
∂

∂x
[u(t, x) − qu(t − r, x)] ,

for x ∈ [0, π] , t ≥ 0,

u(t, 0) = qu(t − r, 0), u(t, π) = qu(t − r, π), for t ≥ 0,

u(θ, x) = u0(θ, x),

for θ ∈ [−r, 0] , x ∈ [0, π] .
(4.3)

We obtain a region of stability of Eq. (4.3) as a function of parameters a, b, c and
q .

Theorem 3.3 Suppose that

b + qa < 0 and 1 + c2

4
+ b

q
≥ 0.

Then, for every r > 0, all characteristic values of Eq. (4.3) have negative real
parts.

Proof First, it is not difficult to prove that the spectrum σ( Ã) of the operator
Ã = ∂2

∂x2 +c ∂
∂x is equal to the point spectrum Pσ( Ã) and is given by {−n2 − c2

4 :n≥1}.
To justify this, consider

v′′ + cv′ = λv, v(0) = v(π) = 0,

whose nontrivial solutions can be obtained if and only if λ is one of the eigenvalues

λn = −n2 − c2

4
, n ≥ 1.
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Suppose that b + qa < 0. Then, the characteristic values of Eq. (4.3) are deter-
mined by the expression

λ − a + be−λr

1 − qe−λr
= −n2 − c2

4
, n ≥ 1. (4.4)

We put

Kn = n2 + c2

4
, n ≥ 1.

Then, Eq. (4.4) becomes

eλr (λ + Kn − a) = λq + Knq + b.

This implies that

e2 Re(λ)r ((Re(λ)+Kn−a)2+(Im(λ))2) = q2

((

Re(λ) + Kn + b

q

)2

+ (Im(λ))2

)

.

On the other hand, under the conditions

b + qa < 0 and 1 + c2

4
+ b

q
≥ 0,

we have, for all n ≥ 1 and λ ∈ C,

Re(λ) + Kn − a > Re(λ) + Kn + b

q
≥ Re(λ) + 1 + c2

4
+ b

q
≥ Re(λ).

Then, if we assume that Re(λ) ≥ 0, we obtain that

e2 Re(λ)r < q2,

which is a contradiction. Then, Re(λ) < 0. �

Remark that the stability result is independent of the delay. Finally, as an im-
mediate consequence of the last theorem, we have the local stability of the zero
equilibrium of Eq. (4.1).

Corollary 4.4 Under the same assumptions as in Theorem 3.3, zero equilibrium
of Eq. (4.1) is locally exponentially stable.
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