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1 Introduction

Smooth complex Fano threefold with Picard number 1 and with no harmonic 1, 2
forms play a special rôle. According to Iskosvskih’s classification [15, 16], there
exist four classes of such varieties, namely, P

3, Q3, V5 and V22, respectively, of
index 4, 3, 2 and 1, where the genus-12 variety V22 is the only one with non-trivial
infinitesimal deformations. Their degree, respectively 1, 2, 5 and 22, is maximal in
each index class; they are all rational and deformation equivalent to a smooth orbit
closure of the group SL(2, C). Moreover, their K -theory group is isomorphic to
Z

4. The geometry of these varieties has been studied in a great number of papers,
and we refer to [17] for their exhaustive treatment and to [2, 22, 27] for more
important results.

Here we will study the variety V22 in terms of vector bundles it and we will
prove the following result.
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Theorem 1.1 The general variety X of type V22 admits the resolution of the diag-
onal

0 → G3 � G3 → G2 � G2 → G1 � G1 → G0 � G0 → O� → 0

where (G3, . . . , G0) (respectively (G3, . . . , G0)) is an exceptional collection of
stable aCM bundles of rank 2, 3, 4, 1 (respectively of rank 2, 5, 3, 1).

This gives an analogue of Beı̆linson’s theorem over the projective space,
see [3]. Further instances of this fact were found, e.g. by Kapranov in [18], by
Canonaco for weighted projective spaces in [6], by Orlov in [26] for the threefold
V5, by the author in [11] still for the threefold V5.

The main tools are the results obtained by Schreyer in [27] and by Mukai in
[21] involving nets of quadrics, 3-instanton bundles on P

3 and nets of alternating
2-forms. It will turn out that mutations of the bundles Gi of the above theorem are
closely related to the different descriptions of the threefold V22.

The paper is organized as follows. In Sect. 2, we give the basic definitions
and lemmas. In Sect. 3, we provide the first description of V22 by means of nets
of quadrics, recall its relation with the moduli space of twisted cubics and with
3-instanton bundles on P

3. Section 4 takes care of the definition of V22 via nets of
alternating 2-forms and contains the technical core of the paper i.e. Theorem 4.5.
This theorem is crucial in Proposition 6.4, which in turn is the key to prove The-
orem 7.2, our main result. Section 5 is devoted to the description of V22 via polar
hexagons to a plane quartic. In Sect. 6 we give several results concerning bundles
on X and describe the homomorphism groups between them, while in Sect. 7 we
state precisely and prove the main result (cfr. Theorem 7.2), together with some
corollaries (cfr. Corollary 7.3 and 7.4). Finally in Sect. 8 we draw some remarks,
including helices and the Mukai–Umemura case, i.e. a threefold of type V22 with
an SL(2) quasi-homogeneous structure.

Remark After this paper was finished, the author learned of the existence of
an interesting preprint by Alexander Kuznetsov [20], where similar questions are
investigated, although making use of different methods.

2 Generalities

We will always assume that the ambient variety X is a compact complex algebraic
smooth variety with Pic(X) � Z = 〈OX (1)〉, OX (1) being a very ample line
bundle.

Definition 2.1 For a pair of vector bundles F and G on a variety X, define
pF ,G : Hom(F,G) ⊗F → G and iF ,G : F → Hom(F,G)∗ ⊗G as the canon-
ical evaluations. If pF ,G (respectively iF ,G)) is surjective (respectively injec-
tive) define the left mutation LF G = ker(pF ,G) (respectively the right mutation
RG F = (coker iF ,G)).

We refer to the book [1] useful properties of mutations, to [7] and [12] for their
original use over projective spaces.

For any complex vector space V denote by 1V (respectively by χV ) the identity
map of V (respectively the canonical map V ∗ ⊗ V → C). We write Si , where i
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is a finite sequence of nondecreasing integers, for the Schur functor associated to
the Young tableau defined by the partition given by i . More precisely, the tableau
defined by i has i j boxes on the j-th row. For example S j V , where j is an integer
and V is a vector space, is the j-th symmetric power of V .

Definition 2.2 Given a sheaf F over X, we say that F is aCM (for arithmetically
Cohen–Macaulay) if Hp(X,F(t)) = 0, for all t ∈ Z and for 0 < p < dim(X).

We will write Hp(−) or Hom(−, −) instead of Hp(X, −) or HomX (−,−)
unless the ambient variety X is not clear from the context.

Given a subvariety Z ⊂ X we denote its ideal sheaf by JZ ,X and, by abuse of
notation, the ideal of Z in the coordinate ring of X .

Definition 2.3 A variety X of type V22 is a smooth projective threefold with
Pic(X) = 〈OX (1)〉 = 〈ω∗

X 〉 and deg(OX (1)) = 22.

We refer to [14] for the definition of stability of bundles, in the sense of
Mumford–Takemoto, with respect to the positive generator c1(OX (1)) of Pic(X).

Recall from [17] that the Chow ring CH(X) is isomorphic to Z
4, where

CH2(X) (respectively CH3(X)) is generated by the class of a line (respectively
of a point) in X .

Given a vector bundle F on X we denote its Chern classes by ci (F), for 1 ≤
i ≤ 3 by ci ∈ Z, meaning ci (F) = ciξi , where ξ1 = c1(OX (1)), ξ2 is the
cohomology class of a line in X and ξ3 is the cohomology class of a point in X .
Denote by µ(F) the rational number c1(F)/ rk(F), called the slope of F . We say
that a bundle F is normalized if −1 < µ(F) ≤ 0. We write Fn for the unique
normalized twist of F . The proof of following lemma can be adapted from P

n

since Pic(X) � Z, see [25].

Lemma 2.4 (Hoppe) Let F be a rank r vector bundle on X. Then F is stable if
h0((∧pF)n) = 0 for 1 ≤ p < r .

3 Nets of dual quadrics and 3-instanton bundles on P
3

Let A � C
4 and B � C

3 be complex vector spaces, and let R = C[A] =
C[x0, . . . , x3] and T = C[B] be polynomial algebras over them. Considering
the dual ring R∗ = C[A∗] we have R∗ � C[∂0, . . . , ∂3]. Then define the apo-
larity action of R∗ on R by differentiation ∂ i (x j ) = i ! j/ i x j−i , where i, j are
multiindices and ∂ i (x j ) = 0 if j � i . Then for ∂ ∈ Si A∗ we have the apolarity
map ∂ : S j A → S j−i A. In the same way T ∗ acts on T by apolarity and we have
perfect pairings between degree d polynomials over R (respectively over T ) and
degree d differential operators over R (respectively over T ).

We define the variety H to be the irreducible component of Hilb3t+1(P(A))
containing rational normal cubics in P(A), as constructed in [10]. The open sub-
set Hc consisting of points which are Cohen–Macaulay embeds in G(C3, S2 A) by
means of the vector bundle U∗

H whose fiber over [�] ∈ Hc is TorR
1 (R/J�,P3, C)2 �

C
3. Equivalently, we associate to any [�] ∈ Hc the net of quadrics on P(A) van-

ishing on �.
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Moreover, there exists a rank-2 bundle on Hc whose fiber over � is
TorR

2 (R/J�,P3, C)3 � C
2. Namely we take the space of first-order syzygies of

J�,P3 . We denote this bundle by EH.

Lemma 3.1 Over the variety Hc, the bundle U∗
H (respectively the bundle EH) is

globally generated with H0(U∗
H)∗ � S2 A (respectively with H0(E∗

H)∗ � S2,1 A =
ker(S2 A ⊗ A → S3 A)). The vector bundle E∗

H embeds Hc into G(C2, S2,1 A) =
G(P1, P

19).
We have the canonical isomorphisms Hom(EH, UH) � A∗, Hom

(∧2UH, EH) � A∗ and H0(∧2U∗)∗ � ∧2 S2 A � S3,1 A. The morphism i∧2UH,EH

is induced by the map ∧2 S2 A → A ⊗ S2,1 A in the diagram below

(1)

where the map m is the multiplication in C[A] and the maps ∧2 S2 A →
S2 A ⊗ S2 A and A ⊗ S2,1 A → S2 A ⊗ S2 A are the canonical injections.

Proof Over a point [�] in Hc we take the minimal graded free resolution of J�,P3

in degree 3. This yields the exact sequence

0 ← H0(J�,P3(3)) ← A ⊗ UH,� ← EH,� ← 0 (2)

The above map A ⊗ UH,� ← EH,� is induced by iE,U and the isomorphism
Hom(EH, UH) � A∗ is clear. Since det(UH) � OH(1) and det(EH) � OH(1) we
have Hom(∧2UH, EH) � Hom(E∗

H, ∧2U∗
H) � Hom(EH, UH) � A∗.

Since any quadratic form on A contains a twisted cubic in Hc, we have H0(U∗
H)

� S2 A∗ and globalizing (2) we get H0(E∗
H)∗ � S2,1 A = ker(S2 A ⊗ A → S3 A).

Since the 2×2 minors of the matrix A ⊗ UH ← EH in (2) define the twisted cubic
�, EH provides an embedding into G(C2, S2,1 A) and thus it is globally generated.

Finally, there are SL(A)-equivariant isomorphisms S2 A ⊗ S2 A � S2,2 A ⊕
S3,1 A ⊕ S4 A, A ⊗ S2,1 A � S2,1,1 A ⊕ S2,2 A ⊕ S3,1 A, ∧2 S2 A � S2,1,1 A.
Then by Schur’s Lemma the inclusion S2,1,1 A ↪→ S2 A ⊗ S2 A composes to zero
with m and therefore factors injectively through A ⊗ S2,1 A, so the last statement
is proved. �

Definition 3.2 A net of dual quadrics � (parametrized by B) on P(A) is defined
as a surjective map � : S2 A → B. We also denote by � the composition

A ⊗ A → S2 A
�−→ B. Let �� : B∗ → S2 A∗ be the transpose of � and let

V� = ker(�). For [�] ∈ H consider J�,P3 . Given a general net � define

X� ={[�] ∈ H ⊂ Hilb3t+1(P
3)|�(H0(J�,P3(2))) = 0}

={[�] ∈ H ⊂ Hilb3t+1(P
3)| H0(J�,P3(2)) ⊂ V�}

the following result is due to Schreyer.
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Lemma 3.3 Given a general net of dual quadrics � : S2 A → B, X� is a Fano
threefold of type V22, equipped with a rank-2 vector bundle EH and a rank-3
vector bundle UH.

Consider a net of dual quadrics � as defined in 3.2. We take the ideal J� of
polynomials in R annihilated by �, i.e.

J� = {p ∈ R | ��(β)(p) = 0, ∀ β ∈ B∗} (3)

where ��(β) sits in S2 A∗ and for ∂ ∈ S2 A∗, p ∈ S2 A we define ∂(p) by
apolarity action as at the beginning of this section.

Definition 3.4 For general � define the Artinian ring R� = R/J� . Taking its
minimal graded free resolution, put V i, j

� = TorR
i (R�, C) j . As shown in [27,

Lemma 4.1], the minimal graded free resolution of R� reads

0 ← R/J� ← R
p�←− V 1,2

� ⊗ R(−2)
q�←− V 2,3

� ⊗ R(−3) ⊕ V 2,4
� ⊗ R(−4)

r�←−
r�←− V 3,5

� ⊗ R(−5) ← (V 4,6
� ) ⊗ R(−6) ← 0 (4)

We have R�
1 � A, R�

2 � B and R�
d = 0 for d ≥ 3.

Recall by [27, Corollary 4.3] that there is an isomorphism (V 4,6
� )∗ � V 2,4

� .

The dimensions of the spaces V i, j
� are the following

dim(V 1,2
� ) = 7 dim(V 2,3

� ) = 8 dim(V 2,4
� ) = 3 dim(V 3,5

� ) = 8

There is a canonical isomorphism V 1,2
� � V� = ker(�), indeed we have

V 1,2
� = {p ∈ S2 A | ��(β)(p) = 0, ∀β ∈ B∗} � ker �. Thus we will identify

these spaces from now on.
Given a general net of dual quadrics � as in 3.2 and the ring R� defined in

3.4, consider the vector bundle ker(p�) over P(A) obtained sheafifying p�

0 → ker(p�) → V ⊗OP(A)(−2)
p�−→ OP(A) → 0 (5)

We get H0(ker(p�)(t)) = 0 for t < 3.

Lemma 3.5 (Schreyer) Given a general net of dual quadrics � as in 3.2, the
sheafification of the map q� gives an instanton bundle E� defined by

0 → E�(−5) → V 2,3
� ⊗OP(A)(−3)

q�−→ ker(p�) → 0 (6)

We have c2(E�) = 3 and h1(E�(t)) = 0 except for t = 0, 1, 2. Furthermore
we have the canonical isomorphisms

H1(ker(p�)) � C H1(ker(p�)(1)) � A H1(ker(p�)(2)) � B
H1(E�(−1)) � V 2,4

� H1(E�) � A∗ H1(E�(1)) � C



6 D. Faenzi

There exists an isomorphism H1(
1
P(A)

⊗ E�) � V 3,5
� and the vector space

V 3,5
� is endowed with a canonical alternating duality. Finally, the instanton bundle

E� is isomorphic to the cohomology of the monad

(V 2,4
� )∗ ⊗OP(A)(−1)

r�−→ V 3,5
� ⊗OP(A)

r�
�−→ V 2,4

� ⊗OP(A)(1)

where the map r� is defined by the minimal graded free resolution (4) and we
recall (V 4,6

� )∗ � V 2,4
� and (V 3,5

� )∗ � V 3,5
� .

The relation between nets of quadrics and 3-instanton bundles has been thor-
oughly investigated by Gruson and Skiti in [13]. We give account of this in the
following remark.

Remark 3.6 (Gruson–Skiti) For a general instanton bundle E on P(A) with
c2(E) = 3, the homomorphism H1(E(−1)) ⊗ A → H1(E) gives a map ��

E :
H1(E(−1)) � C

3 ↪→ A∗ ⊗ A∗ since H1(E) � A∗. The map ��
E factors through

S2 A∗ and for E � E� it agrees with ��. Then we may indifferently start with a
general net � or with a general 3-instanton E .

4 Nets of dual quadrics and nets of alternating 2-forms

Remark 4.1 Given a general net of dual quadrics � as in 3.2, the space
TorR∗ (R�, C)∗ is endowed with a natural skew-commutative algebra structure,
see [27, Section 5]. In particular, we define the net of alternating 2-forms σ� as
the tor-multiplication ∧2V� → V 2,4

� .
By construction, see [9, exercise A.3.20], the map σ� fits in the commutative

diagram below.

(7)

It will turn out from Theorem 4.5 that V 2,4
� � B∗ so we will be able to write

with no ambiguity σ� as a map ∧2V� → B∗.

Let V be a complex vector space of dimension 7 and consider the Grassman-
nian G = G(C3, V ) endowed with the rank-3 universal subbundle UG. Given a
3-dimensional complex vector space B, let σ : ∧2V → B∗ be a net of alternating
2-forms.

Definition 4.2 Given a general net of alternating forms σ : ∧2V → B∗ define

Xσ = {C3 ⊂ V | σ�(b)(u ∧ v) = 0 for any u, v ∈ C
3, for any b ∈ B}

The variety Xσ is a Fano threefold of type V22 given in G as the zero locus of
the section σ of B∗ ⊗ ∧2(U∗

G).
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Lemma 4.3 (Schreyer) Given a general net dual quadrics � as in Definition 3.2,
and the net of alternating 2-forms σ� of Remark 4.1, we have an isomorphism
X� � Xσ� . Under this isomorphism UH is taken to UG.

Remark 4.4 For a general net σ define the map ς : V ⊗ B → V ∗ associated to
σ� : B → ∧2V ∗ by ς(u ⊗ b)(v) = σ�(b)(u ∧ v) for u ∈ B and u, v ∈ V . There
is an isomorphism

HomX (UG, Q∗
G) � B

.
The map ς is the transpose of the map induced on globas sections by the dual

of the surjective map pU,Q∗ : B ⊗ U → Q∗.

Proof The definition of ς is clear. Considering the Koszul complex of X in G one
computes easily H0(X, S2 U∗

G) � S2 V ∗ and H0(X, ∧2U∗
G) � coker σ�, obtain-

ing Hom(UG, Q∗
G) � H0(U∗

G ⊗ Q∗
G) � B. Now for b ∈ B, u ∈ UG, q ∈ QG, we

have pUG,Q∗
G
(b ⊗ u)(q) = σ�(b)(u ⊗ q). Therefore pUG,Q∗

G
agrees with ς . The

map ς is surjective for general σ so pUG,Q∗
G

is also surjective for U∗
G and QG are

globally generated. �

Theorem 4.5 For a general net of dual quadrics � we have the following natural
exact sequence

0 → Y�

1−→ A ⊗ V 2,3

�


2−→ B ⊗ V�

3−→ V ∗

� → 0 (8)

where the vector space Y� and the map 
2 are given by

Y� = ker(σ� : ∧2V� → V 2,4
� ) (9)


2 : A ⊗ V 2,3
�

q�−→ S2 A ⊗ V�

� ⊗ 1V�−−−−−→ B ⊗ V� (10)

The map 
3 is defined as ς as in Remark 4.4 with σ = σ� . The map 
1 is
defined lifting the inclusion Y� ↪→ S2 A ⊗ V� to A ⊗ V 2,3

� via the map q� , i.e. 
1
makes the following diagram commutative

(11)

There is a canonical isomorphism V 2,4
� � B∗.

Proof To prove the exactness in A ⊗ V 2,3
� we need to use the definition of σ� in

4.1. In fact, considering the resolution of the ideal J� , taken in degree 4, we write

0 → A ⊗ V 2,3
� ⊕ V 2,4

�

q�−→ S2 A ⊗ V� → S4 A → 0 (12)

and we need to consider the composition (10). Notice that the kernel of � ⊗ 1V�

in S2 A ⊗ V� is V� ⊗ V� . Moreover it is mapped to zero by m : S2 A ⊗ S2 A →
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S4 A, so it must lie in ∧2 S2 A. Therefore we have ker(� ⊗ 1V� ) = ∧2 S2 A ∩
V� ⊗ V� = ∧2V� . So we obtain the following exact sequence

0 → ∧2V� → A ⊗ V 2,3
� ⊕ V 2,4

�

� ⊗ 1V�
◦q�−−−−−−−→ B ⊗ V� (13)

where the map 
1 of the statement is the restriction to Y� of the above map
∧2V� → A ⊗ V 2,3

� ⊕ V 2,4
� and we still have to prove that 
1 takes image in

A ⊗ V 2,3
� . Now Tor multiplication identifies the map σ� : ∧2V� → V 2,4

� as the
arrow making diagram (7) commutative. This diagram, taken in degree 4, boils
down to the following commutative diagram

This, together with (13), proves at the same time that the map 
1 is well defined
in Y� and that the required sequence is exact in A ⊗ V 2,3

� . Consequently it is exact
also in Y� . In order to prove exactness in B ⊗ V� we will need to use the instanton
bundle E� .

Denote the kernel sheaf ker(p�) by K1
� . Taking the symmetrized powers of

the sequence (5) we get

0 → K2
� → S2 V� ⊗O → O(4) → 0 (14)

0 → ∧2K1
�(4) → V� ⊗K1

�(2) → K2
� → 0 (15)

0 → S2 K1
�(4) → S2 V� ⊗O → V� ⊗O(2) → 0 (16)

0 → ∧2K1
�(4) → ∧2V� ⊗O → K1

�(4) → 0 (17)

for some vector bundle K2
� . In turn the symmetrized square of the sequence (6)

gives the following

0 → O(−6) → ∧2V 2,3
� ⊗O(−2) → K3

� → 0 (18)

0 → K3
� → V 2,3

� ⊗K1
�(1) → S2 K1

�(4) → 0 (19)

for some vector bundle K3
� . So we get the the following commutative diagram

with exact rows and columns.

Here the left vertical column is the canonical decomposition V ⊗ 2
� into sym-

metric and skew-symmetric tensors, the central vertical row is (12) and the bottom
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row is the cohomology sequence of (17). This yields two presentations of H1(K2
�)

(the vertical one from (15) and the horizontal one from (14)).
On the other hand K2

� defined in (14) and S2 K1
�(4) fit into the following short

exact sequence
0 → S2 K1

�(4) → K2
� → K1

�(4) → 0 (20)

Summing up we can then build the following commutative diagram (we omit
surrounding zeroes for brevity)

(21)

where the top (respectively bottom) horizontal row is (19) (respectively 6). The
central row defines some bundle K4

� as the kernel of the composition of the two

projections V 2,3
� ⊗ V� ⊗O(−1) → V� ⊗K1

�(2) and V� ⊗K1
�(2) → K2

� of
(6) and (15). The right (respectively central) vertical column comes from (20)
(respectively comes from (5)) . Use (18) to show H2(K3

�) � S2 A∗ and Lemma
3.5 for H1(E�(−1)) � B∗. Now taking cohomology in the diagram (21) we get

This provides the following isomorphisms

V 2,4
� � B∗

V ∗
� � coker(S2 V� → S4 A) � H1(K2

�)

V ∗
� � coker(A ⊗ V 2,3

� → B ⊗ V�) � H1(K2
�)

Thus we proved the exactness of the sequence (8). �

5 Polar hexagons to a plane quartic

5.1 The variety of sums of powers

Let B be a 3-dimensional C-vector space and f ∈ S4 B be a plane quartic. Put
P̌

2 = P(B∗). According to Mukai [21], we define the subvariety of Hilb6(P̌
2)

consisting of polar hexagons to f .
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Definition 5.1 Given a general quartic form f ∈ S4 B = H0(P2,O(4)) define
the variety of sums of powers as

VSP(6, f ) = {
f1, . . . , f6 | f 4

1 + . . . + f 4
6 = f

}

where the closure is taken in Hilb6(P̌
2).

Lemma 5.2 (Mukai, Schreyer) For general f the variety VSP(6, f ) is a Fano
threefold of type V22. Given a net of dual quadrics � as in Definition 3.2, there
exists a quartic such that VSP(6, f ) � X� .

Remark 5.3 Considering the apolarity action of T ∗ on T (cfr. Sect. 3) we may
view f as the map f : B∗ → S3 B taking ∂ to ∂( f ). This map is injective for gen-
eral f so we can define V f = S3 B/ f (B∗). Under the hypothesis of Lemma 5.2,
there is a natural isomorphism V� � S3 B/ f (B∗).

Definition 5.4 Let f be a general plane quartic and let X = VSP(6, f ). Then
there is a rank-3 vector bundle UVSP (respectively a rank-5 vector bundle KVSP)
on VSP(6, f ), whose fiber over an element � = ( f1, . . . , f6) ∈ VSP(6, f ) is
〈 f 3

1 , . . . , f 3
6 〉/ f (B∗) (respectively the fiber is 〈 f 4

1 , . . . , f 4
6 〉/ f ). This bundle em-

beds X into G(C3, V f ) (respectively into G(C3, S4 B/ f )) (see Remark 5.3). De-
note by Q∗

VSP the restriction to X of the universal rank-4 quotient bundle on
G(C3, V f ).

5.2 The Hilbert scheme

For any � ∈ Hilb6(P̌
2) we can consider the resolution of the ideal J

�,P̌2 over the
ring T ∗ = C[B∗]. For a general length-6 subscheme � the resolution reads

0 ← J
�,P̌2 ← T ∗(−3)4 ← T ∗(−4)3 ← 0

.
The resolution has this shape whenever no conic of P̌

2 passes through � and
no line cuts a length-3 subscheme of �. This open set, which we denote by
Hilb6(P̌

2)◦, embeds into G(C4, S3 B∗) by means of a rank-4 vector bundle Q∗
L.

The fiber of Q∗
L over � defined as TorT ∗

1 (T ∗/J
�,P̌2, C)3 � C

4 i.e. we take the

space of cubics vanishing on �. We have H0(QL)∗ � S3 B∗.
Moreover we have a rank-3 vector bundle UL on Hilb6(P̌

2)◦ whose
fiber over � is the 3-space of first-order syzygies of �. Equivalently
we take TorT ∗

2 (T ∗/J
�,P̌2, C)4 � C

3. We have H0(U∗
L )∗ � S3,1 B∗ �

ker(S3 B∗ ⊗ B∗ → S4 B∗). One computes dim(S3,1 B∗) = 15. The bundle U∗
L

provides an embedding Hilb6(P̌
2)◦ ⊂ G(C3, S3,1 B∗). The following Lemma

is proved in [27, Theorem 2.3] except for the last statement that follows from
[27, Theorem 2.6].
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Lemma 5.5 (Schreyer) Let f ∈ S4 B be a general quartic and, making use of
the apolarity pairing (cfr Sect. 3), define the ideal

J f = {s ∈ T ∗ | s( f ) = 0}
Then the ring (T ∗) f = T ∗/J f is Artinian Gorenstein and its minimal graded

free resolution over T ∗ takes the form

0 ← (T ∗) f ← T ∗ ← V 1,3
f ⊗ T ∗(−3) ← V 2,4

f ⊗ T ∗(−4) ← T ∗(−7) ← 0
(22)

where V i, j
f = TorT ∗

i ((T ∗) f , C) j . We have dim(V1,3
f ) = dim(V2,4

f ) = 7 and there

is a canonical duality (V 1,3
f )∗ � V 2,4

f .

The map ς�
f : V 2,4

f → B∗ ⊗ V 1,3
f defined by (22) is skew-symmetric and

induces σ�
f : B → ∧2(V 2,4

f )∗ (cfr. Remark 4.4). We have Xσ f � VSP(6, f ) (see
Definitions 4.2 and 5.1).

Thus, the rank-4 bundle QL provides an embedding X ↪→ G(C4, V 1,3
f ) while

the rank-3 bundle U∗
L gives X ↪→ G(C4, V 2,4

f ) where V 1,3
f and V 2,4

f are dual
7-dimensional complex vector spaces.

Remark 5.6 After restriction to X = VSP(6, f ) there are natural isomorphisms
Q∗

VSP � Q∗
L and UVSP � UL. On X = VSP(6, f ) we have H0(QL)∗ � V 1,3

f �
ker( f � : S3 B∗ � B), H0(U∗

L )∗ � V 2,4
f � V f .

Proof The isomorphism V 1,3
f � ker( f � : S3 B∗ � B) is clear, indeed, by

the definition of J f , the cubic forms that generate J f (i.e. the space V 1,3
f by

Lemma 5.5) are those annihilated by f � : S3 B∗ � B under the apolarity pairing
(i.e. the space ker( f �)). Also, we have H0(QL)∗ � V 1,3

f since by Lemma 5.5 the
cubic forms vanishing on a length-6 subschema � with [�] ∈ VSP(6, f ) lie in
V 1,3

f .
Now, given � = ( f1, . . . , f6) ∈ VSP(6, f ), the fiber of Q∗

L,�
consists of

those elements in S3 B∗ (and actually in V 1,3
f ⊂ S3 B∗) that vanish identically on

�, i.e. that annihilate f 3
1 , . . . , f 3

6 under the apolarity pairing (cfr. Remark 5.3).
Equivalently we take the degree-3 generators of the ideal J

�,P̌2 , i.e. Q∗
VSP,�. Thus

we have Q∗
L,�

� Q∗
VSP,�.

Then we also have UL � UVSP since they are both isomorphic to ker pO,QVSP .

By virtue of the duality in Lemma 5.5, we also have H0(U∗)∗ � V 2,4
f �

(V 1,3)∗f � V f . �

5.3 The variety of Kronecker modules

Following Drezet we introduce the following variety of Kronecker modules. Con-
sider the space of 3 × 4 matrices with entries in B∗ and the G.I.T. quotient

K = M3×4(B∗)// SL(3) × SL(4)
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An element [γ ] ∈ K is represented by γ : Vs(γ ) → Vt (γ ) ⊗ B∗ where Vs(γ ) �
C

3 and Vt (γ ) � C
4 denote the source and target vector spaces of the map γ . The

variety K has been studied in detail in [8]. It is endowed with two natural bundles,
Q∗

K (respectively UK) of rank 4 (respectively 3), whose fiber over [γ ] ∈ K is Vs(γ )

(respectively Vt (γ )). The bundles UK and Q∗
K are related by

HomK(UK, Q∗
K) � B

Lemma 5.7 (Drezet) There is a birational map δ : Hilb6(P̌
2) ��� K de-

fined over Hilb6(P̌
2)◦ associating to � the map γ : TorT ∗

2 (T ∗/J
�,P̌2, C)4 →

B∗ ⊗ TorT ∗
1 (T ∗/J

�,P̌2, C)3. Denote by K◦ the open subset of K isomorphic via δ

to Hilb6(P̌
2)◦.

Notice that under the isomorphism δ| Hilb6(P̌
2)◦ , the bundle UK is pulled back

to UL and Q∗
K is pulled back to Q∗

L.

Lemma 5.8 Define PK as PK = coker(iUK,Q∗
K

: UK → B∗ ⊗ Q∗
K). Then PK is

locally free of rank 9 over K◦. The fiber of PK is identified with H0(J
�,P̌2(4))/ f .

The bundle P∗
K is globally generated with H0(P∗

K) � S4 B. The zero locus in
G(3 × 4, B∗) of its general section f is a Fano threefold of type V22 of the form
VSP(6, f ) defined in 5.1.

Proof The bundle P∗
K is globally generated since QK and U∗

K are. Recall that
H0(QL)∗ � S3 B∗ and H0(U∗

L )∗ � S3,1 B∗. Computing global sections of P∗
K

via the map δ defined in 5.7 we get the H0(P∗
K) � S4 B. Now the condition for

a point � ∈ Hilb6(P̌
2) to lie in X is that the generators of its ideal, as elements

of S3 B∗, multiplied by any linear form ∂ ∈ B∗, map to zero under the evaluation
with f ∈ (S4 B∗)∗ � S4 B.

This means that � lies in the zero locus of the section f of the kernel bundle
P∗

K , since the map induced on global sections by the evaluation B ⊗ QK → U∗
K is

just the multiplication m in T . So the zero locus of a section f of P∗
K is isomorphic

to the variety VSP(6, f ). �

Remark 5.9 In the framework of Lemma 5.8, there exists a rank-5 bundle KK =
ker(pO,P∗

K
: H0(P∗

K) ⊗OK → P∗
K). Under the identifications of Remark 5.6 we

have an isomorphism on X, KVSP � KK.

Proof It is easy to show that there exists the following commutative diagram with
exact rows and columns (we omit zeroes surrounding all the diagram for brevity).

(23)
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Here f is considered alternatively as a map S3 B∗ → B (in the central column)
or as an element of S4 B � (S4 B∗)∗ (in the right column) and the bottom row
is defined by Remark 4.4. Since K ∗

VSP is globally generated with H0(K ∗
VSP)∗ �

ker f ⊂ S4 B∗ by Definition 5.4, the bottom row of (23) proves the following

KVSP � ker
(

pUVSP,Q∗
VSP

: B ⊗ UVSP → Q∗
VSP

)
(24)

On the other hand by definition of KK we have

KK � ker
(

pUK,Q∗
K

: B ⊗ UK → Q∗
K

)
(25)

Thus we conclude keeping in mind Lemma 5.7. �

6 Bundles on X

Throughout the rest of the paper, X will be a Fano threefold of type V22 defined
by a general net of dual quadrics � as X = X� according to Definition 3.2. In
particular, we fix a 3-dimensional (respectively, 4-dimensional) C-vector space B
(respectively A). We will keep in mind the isomorphisms of Lemmas 4.3, 5.2 and
of Remarks 5.3, 5.6 and 5.9.

Then, we denote by U (respectively Q∗ and K ) the rank-3 (respectively rank-4
and rank-5) bundles on X defined by any of the constructions of Sects. (3), (4) and
(5). We will often drop the subscript �, e.g. V 2,3

� = V 2,3 and we will write E for
the bundle EH restricted to X .

Lemma 6.1 There are the following natural isomorphisms

Hom(U, Q∗) � B Hom(E, U ) � A∗ Hom(K , U ) � B∗ (26)

Furthermore there are the following natural exact sequences

0 → K → B ⊗ U → Q∗ → 0 (27)

0 → U → B∗ ⊗ Q∗ → P → 0 (28)

0 → K → H0(K ∗)∗ ⊗O → P∗ → 0 (29)

0 → U → V ⊗O → Q∗ → 0 (30)

Finally we have the following Chern classes

c1(U ) = −1 c2(U ) = 10 c3(U ) = −2

c1(Q∗) = −1 c2(Q∗) = 12 c3(Q∗) = −4

c1(K ) = −2 c2(K ) = 40 c3(K ) = −20

c1(P) = −2 c2(P) = 48 c3(P) = −36

Proof It is straightforward to compute the Chern classes of the bundles involved
in our statement. Further, the isomorphisms in (26) follow the from Remarks 5.9,
4.4 and Lemma 3.1 by restriction to X , as well as the exact sequences (27). The
exact sequence (28) follows from Lemma 5.8. Combining (27) and (28) one ob-
tains the following commutative diagram with exact rows and columns (we omit
surrounding zeroes for brevity)
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where ς is defined in Remark 4.4 and the vertical arrows in the first two columns
are the obvious ones. Then the last column yields the exact sequence (29). �

Lemma 6.2 The bundles U, Q, K are aCM stable sheaves on X.

Proof It follows from Definition 4.2 that X is the zero locus in G(C3, V ) of a
section of the globally generated bundle U (1)3. Taking the Koszul complex as-
sociated to this section tensorized by U (t) and using Bott theorem (see [5]) over
G(C3, V ) one computes the required vanishing for U and Q in order to show that
they are aCM sheaves. Using the exact sequence (27) it is immediate to show that
K is also an aCM sheaf.

Since c1(U ) = c1(Q∗) = −1 and h0(U ) = h0(Q∗) = 0, and since U∗ and Q
are globally generated, it follows easily from Lemma 2.4 that U and Q are stable.
From the exact sequence (27) one sees that h0(K ) = h0(∧2 K ) = 0. Finally from
∧p K (1) � ∧5−p K ∗(−1) and again using (27) it follows that h0((∧3 K )n) =
h0((∧4 K )n) = 0. Thus we conclude by Lemma 2.4. �

Lemma 6.3 The bundle E∗ is globally generated with H0(E∗)∗ � V 2,3 � C
8.

There is a rank-6 bundle L defined by the exact sequence

0 → E → V 2,3 ⊗O → L∗ → 0 (31)

There exists a rank-10 vector bundle M with H0(M∗)∗ � S3 A, whose fiber
over [�] ∈ X = X� is H0(J�,P(A)(3)) � C

10 according to Definition 3.2. There
are the exact sequences

0 → E
iE,U−−→ A ⊗ U

pU,M−−−→ M → 0 (32)

0 → V 2,3 → A ⊗ V
m−→ S3 A → 0 (33)

where (33) is obtained dualizing global sections of the dual of (32) and m is the
composition of the obvious maps A ⊗ V ↪→ A ⊗ S2 A → S3 A.

Finally, M∗ is globally generated and there exists a rank-10 vector bundle N
defined by the exact sequence

0 → M → S3 A ⊗O → N∗ → 0 (34)

Proof By the discussion in Sect. 3 and Definition 3.4, the fiber of the bundle E
over any point of X embeds in V 2,3

� � C
8, so H0(E∗)∗ � V 2,3

� and E∗ is globally
generated and we have the exact sequence (31).

The map E → A ⊗ U in (32) is obtained globalizing q� in the resolution (4).
Equivalently over any [�] ∈ Hc we take the linear map A ⊗ Tor2(R/J�,P3, C)3 →
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Tor1(R/J�,P3, C)2 given by the 2 × 3 matrix of linear forms whose 2 × 2 minors
define �. Therefore (33) follows at once from (4).

Finally, it is clear that M∗ is globally generated and rk(N ) = dim(S3 A)−10 =
10. �

Proposition 6.4 We have Hom(∧2U, E) � A∗ and we define the following maps
(cfr. Lemma 6.1)

e1 = i∧2U,E : ∧2U → A ⊗ E (35)

e2 = � ◦ iE,U : A ⊗ E → B ⊗ U (36)

e3 = pU,Q∗ : B ⊗ U → Q∗ (37)

Then the following sequence is exact

0 → ∧2U
e1−→ A ⊗ E

e2−→ B ⊗ U
e3−→ Q∗ → 0 (38)

Proof The dual of all the bundles appearing in the sequence (38) are globally
generated, hence the sequence is exact if we prove that transpose of the maps e1,
e2 and e3 induce an exact sequence on global sections of the dual bundles. Denote
these maps by e j for j = 1, 2, 3.

It is clear that e3
� = 
3 of Theorem 4.5. Since iE,U maps the syzygy of a

twisted cubic � with [�] ∈ X to the 2 × 3 matrix of linear forms in the mini-
mal graded free resolution of J�,P3 (see Lemma 6.3), the map on global section
A ⊗ H0(E∗)∗ → S2 A ⊗ H0(U∗)∗ induced by iE,U agrees with q� . Therefore we
have e2

� = 
2.
Now recall that Hom(∧2U, E) � Hom(E∗, ∧2U∗) � Hom(E, U ) � A∗ (cfr.

Lemma 6.1 and Lemma 3.1), thus we have the map i∧2U,E : ∧2U → A ⊗ E .
Since σ = σ� by Definition 4.2 and Lemma 4.3 we have H0(∧2U∗)∗ � ker(σ :
∧2V → B∗) � Y� . Thus we have the map e1

� : Y� → A ⊗ V 2,3
� , and we need

to prove that is coincides with 
1. Observe that the map i∧2U,E is defined by
restriction from H of the map i∧2UH,EH

. Now by Lemma 3.1 i∧2U,E is induced
by the diagram (1). On the other hand by Theorem 4.5 i∧2U,E is induced by
the diagram (11). Since the diagram (11) is obtained restricting to X the global
sections spaces appearing in the diagram (1), we have e1

� = 
1. Thus we
conclude by Theorem 4.5. �

Remark 6.5 We can define a map ψ : A → A∗ ⊗ B associated to the net �� :
B∗ → S2 A∗. Indeed we put ψ(a)(b ⊗ ∂) = �(∂(a ⊗ b)) for a, b ∈ A and
∂ ∈ B∗. In turn we have a map

ψ : A ⊗ U → A∗ ⊗ Q∗ (39)

and the map ψ�:A ⊗ Q → A∗ ⊗ U∗ is defined by the formula ψ�(a ⊗ q) (b ⊗ u)
= �(a ⊗ b)(u)(q) under the identification B � Hom(U, Q∗).

Lemma 6.6 Given a general net of dual quadrics � : A ⊗ A → B, using σ = σ�

of Remark 4.1 define a map κ : A ⊗ V → A∗ ⊗ V ∗ by

κ(a ⊗ u)(b ⊗ v) = σ�(�(a ⊗ b))(u ⊗ v) (40)
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The map κ is induced on global sections by ψ . There is an exact sequence

0 → V 2,3 q�−→ A ⊗ V
κ−→ A∗ ⊗ V ∗ q�

�−→ (V 2,3)∗ → 0

Furthermore, there is a skew-symmetric duality κ : S3 A → S3 A∗ such that
the following diagram is commutative

(41)

Proof The definition of κ is clear and implies κ(a ⊗ u)(b ⊗ v) = κ(b ⊗ u)(a ⊗ v)
= −κ(b ⊗ v)(a ⊗ u). Since κ�(a ⊗ u) (b ⊗ v) = κ(b ⊗ v)(a ⊗ u), we have that
κ is skew-symmetric.

Taking the minimal graded free resolution (4) of R� in degree 3 and 4 we get
the exact sequences (33) and (12), and we denote, for the sake of this proof, by q3

ψ

(respectively by q4
ψ ) the map q� in degree 3 (respectively in degree 4).

Now, by the exact sequence (8) we have
∑

αi, jσ
�(�(ai ⊗ b))(u ⊗ v j ) =

0 if
∑

αi, j b ⊗ ai ⊗ v j ∈ Im(q4
�), for some coefficients αi, j . Then∑

αi, jσ
�(�(ai ⊗ b))(u ⊗ v j ) = 0 if

∑
αi, j ai ⊗ v j ∈ Im(q3

�). Thus there ex-
ists a map φ : S3 A → A∗ ⊗ V ∗ with φ ◦ m = κ . On the other hand, again by
(8), if

∑
αi, jκ(ai ⊗ u j ) = 0 then

∑
αi, j ai ⊗ u j ∈ Im(q3

�). It follows that φ is
injective.

Now, since (q3
�)� ◦ κ = 0, there exists a map κ such that m� ◦ κ = φ. This

map is bijective since φ is injective and it is skew-symmetric since κ is. �

Lemma 6.7 We have the following exact sequences.

0 → ∧2U → A ⊗ E → K → 0 (42)

0 → M → A∗ ⊗ Q∗ → L → 0 (43)

Furthermore, in the notation of Lemmas 6.3 and 6.6, there is a natural isomor-
phism η : M � N which makes the following diagram commutative

(44)

Proof The exact sequence (42) follows immediately by (38) and (27).
It is easy to check that the exact sequences (30), (31), (32), (33) and (34)

induce the following exact commutative diagram (omitting surrounding zeroes)



Bundles over Fano threefolds of type V22 17

(45)

thus the dual of the bottom row provides (43).
Further, since the diagram (41) is commutative, and since the homo-

morphism κ is induced by the map ψ (cfr. Lemma 6.6), we get the fol-
lowing exact commutative diagram (again we omit surrounding zeroes)

(46)

where the central column is the dual of (30), tensorized with 1A, and the last
column is induced by the first two (and in turn it is the same as the dual of (31)).

It is easy to prove that the two maps in the bottom row of (45) (respec-
tively of (46) agree with iL∗,Q and pQ,N∗ (respectively agree with iN∗,U∗ and
pU∗,E∗). Since pU∗,E∗ = i�E,U , the bottom row of (46) and the first row of (45)
give the isomorphism η. It is clear also that η is induced by κ , so that (44) is
commutative. �

Tracing back the above proof, it is straightforward to prove the following
corollary.

Corollary 6.8 There are the following natural isomorphisms

Hom(E, K ) � A (47)

Hom(E, Q∗) � coker(ψ) (48)

Hom(Q∗, L) � A∗ (49)

Hom(M, Q∗) � A (50)

Hom(U, L) � coker(ψ) (51)

Hom(U, M) � A (52)

Lemma 6.9 The bundle E is stable aCM with c1(E) = −1 and c2(E) = 7. The
bundle L is also stable and aCM.

Proof The invariants of E are clear by Lemmas 6.1, 6.3, 6.7. The Cohen–Maculay
condition for E follows (42) and Lemma 6.2. The bundle L is also aCM by the
dual of (31) since the map pO,E∗ is surjective on global sections for any twist.

Stability of E and L is obvious from Lemma 2.4 and (31) since c1(E) =
c1(L) = −1. �
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7 Resolution of the diagonal

Define the collection (G3, . . . , G0) = (E, U, Q∗,O).

Lemma 7.1 (Kuznetsov) The collection (G3, . . . , G0) = (E, U, Q∗,O) is
strongly exceptional, i.e. Extp(G j , Gi ) = 0 if p > 0 or if i > j and
Hom(Gi , Gi ) � C.

For the original proof we refer to [19]. However it is easy to reprove
Lemma 7.1 using Corollary 6.8 and the exact sequences of Lemmas 6.1, 6.3 and
6.7. The dual collection is defined as (G3, . . . , G0) = (E, K , U,O).

Theorem 7.2 The general variety X admits the following resolution of the diag-
onal

(53)

where the arrows are given by the following natural elements

Hom(P0,P1) � A∗ ⊗ A � 1A

Hom(P1,P2) � B ⊗ B∗ � 1B

Hom(P2,P3) � V ∗ ⊗ V � 1V

Proof Let us look at the maps in more detail

The map d2 is the restriction from G = G(C3, V ) of a map d̃ : UG � Q∗
G →

OG and it is a classical fact that coker(d̃) � O�(G). Thus we have coker(d2) �
O� and the sequence is exact in P3.
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Let us now look at the composition in P2. It is convenient to prove exactness
for the dualized maps which we then write

This yields

ker(d�
1 ) = Q � U∗ ∩ U∗ � Q ⊂ B∗ ⊗ U∗ � U∗

Then the mixed tensor products can be separated by factoring out the identity
over U∗. If τ is the involution interchanging factors in X × X , then we have the
symmetry U∗ � Q = τ ∗(Q � U∗). So exactness in P2 is proved if we prove
surjectivity of the map p below

(54)

Hence we are done if we prove that the map p is the universal quotient (which
is clearly surjective), i.e. if we prove that pO,Q∗ makes the diagram (54) commu-
tative when replacing p. And indeed this holds since any morphism b : U → Q∗
comes from a skew-symmetric homomorphism b : V → V ∗ of the ambient space
and we have σ�(b)(u ∧ v) = b(v)(u).

Let us turn to P1. Looking at the definition we have

ker(d2) = U � K ∩ K � U ⊂ B ⊗ U � U

Just as in the case of P2 we are allowed to separate the mixed tensor products
by factoring out the identity over U and so reduce to prove surjectivity below

(55)

Thus we are done if we prove that the following sequence is exact in B ⊗ U

0 → ∧2U → A ⊗ E
�◦iE,U−−−−→ B ⊗ U

pU,Q∗−−−→ Q∗ → 0
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But this is proved in Proposition 6.4. �

By the classical argument in [3], we get the following corollary.

Corollary 7.3 Any coherent sheaf F on X is functorially isomorphic to the coho-
mology a complex CF whose terms are given by

Ck
F =

⊕

i− j=k

Hi (F ⊗ G j )⊗ G j

Alternatively F is functorially isomorphic to the cohomology a complex DF
whose terms are given by

Dk
F =

⊕

i− j=k

Hi (F ⊗ G j )⊗ G j

We have the following standard consequence of Theorem 7.2, namely
Castelnuovo–Mumford regularity associated to the collection (G3, . . . , G0).

Corollary 7.4 Let F be a coherent sheaf on X and suppose Hp(G p ⊗F) = 0 for
p > 0. Then F is globally generated.

Proof Again by a standard argument, one looks at the term D0
F in the complex

DF , which is isomorphic to H0(F)⊗O in the hypothesis. On the other hand, in
the complex DF , any differential with source in H0(F)⊗O vanishes. Therefore
the evaluation map pO,F is surjective and the statement is proved. �

8 Further remarks

Remark 8.1 The diagram (55) can be completed to the following exact diagram,
where we omit surrounding zeroes for brevity.

where j is defined by the inclusion V ⊕∧2 A ↪→ A ⊗ A followed by ψ , defined by
(39) in Remark 6.5.
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Proof Exactness of the horizontal sequences is straightforward. The central col-
umn follows from the exact sequences (32) and (43). The right column is (27).
The left column is induced by the central and right ones, where the isomorphism

Hom(∧2U, U ) � ker(A ⊗ A
�−→ B) � V ⊕ ∧2 A, is clear. Commutativity of all

the squares is left to the reader. �

8.1 Helices

We refer to [1] and [4] for general definitions and properties concerning helices
and to [24] for the study of helices on Fano threefolds.

Consider the collection (G3, . . . , G0) of Sect. 7 (strongly exceptional by
Lemma 7.1) and extend it defining G j+4k = G j ⊗O(−1) for any j = 0,
1, 2, 3 and any k. We will show in the following remark that G j+1 �
LG j LG j−1 LG j−2 G j−3, for any j , according to Definition 2.1. All of the se-
quences from (56) to (59) below are obtained resolving Gi ⊗O(1) with respect to
the basis (G3, . . . , G0) according to Corollary 7.3.

Remark 8.2 There are the following exact sequences.

O(−1)
iO(−1),E−−−−−→ V 2,3 ⊗ E

h0
2−→ ker(ς)⊗ U

h0
1−→ V ⊗ Q∗ pQ∗,O−−−→ O (56)

Q∗(−1)
iQ∗,O−−−→ V ∗ ⊗O(−1)

h1
2−→ A ⊗ E

h1
1−→ B ⊗ U

pU,Q∗−−−→ Q∗ (57)

U (−1)
iU,Q∗−−−→ B∗ ⊗ Q∗(−1)

h2
2−→ ker(ς)∗ ⊗O(−1)

h2
1−→ A∗ ⊗ E

pE,U−−−→ U (58)

E
iE,U−−→ A ⊗ U

h3
2−→ A∗ ⊗ Q∗ h3

1−→ (V 2,3)∗ ⊗O
pO,E∗−−−→ E∗ (59)

where the first map in each sequence is injective and the last one is surjective.
In (56) ς is defined in Remark 4.4, h0

1 is the defined by the composition
ker(ς)⊗ U ↪→ V ⊗ B ⊗ U followed by 1V ⊗ pU,Q∗ and h0

2 is given by

V 2,3 ⊗ E
q� ⊗ iE,U−−−−−→ V ⊗ A ⊗ A ⊗ U

1V ⊗ � ⊗ 1U−−−−−−−→ V ⊗ B ⊗ U

In (57), h1
1 is the composition

A ⊗ E
1A ⊗ ıE,U−−−−−→ A ⊗ A ⊗ U

� ⊗ 1U−−−−→ B ⊗ U

while h1
2 is identified with the projection V ∗ ⊗O(−1) → ∧2U � U∗(−1).

In (58) we have ker(pE,U ) � K ∗(−1) by (42). This gives back the isomor-
phisms ker(ς)∗ � coker(ς�) � H0(K ∗), established in the proof of Lemma 6.1.
and the map h2

1. Then h2
2 is given by (28).

In (58) we have to glue together the exact sequences (31), (32) and (43).
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8.2 Quasi-homogeneous case

In this section we restrict our attention to U22, the Mukai–Umemura threefold,
i.e. the SL(2)-quasi homogeneous case. This is thoroughly studied in [2, 23, 21].
Let us denote Y1 the standard representation space of SL(2) and Yn the weight−n
representation, so that and Yn = Sn Y1.

In terms of plane quartics U22 corresponds to a double conic. The action of
SO(3) preserves this conic so we may view B as Y2 and the stabilizer in SO(3)
of a polar hexagon is the order 60 icosahedral group, isomorphic to A5.

In terms of the net � of dual quadrics, U22 corresponds to a net containing a
twisted cubic in the dual space, on which SL(2) naturally acts. In this case there
are isomorphisms of SL(2)-modules

B � Y2 A � Y3 (60)

The net of dual quadrics � is itself equivariant. Therefore by the isomorphism
S2 A � Y6 ⊕ Y2 we deduce V � Y6. Further, the resolution of R� takes the form
(3), so one computes V 2,3 � Y7. The instanton E� of Sect. 3 is endowed with an
SL(2)-action in this case and H1(
P(A) ⊗ E�) is isomorphic to Y1 ⊕ Y5.

The threefold U22 also corresponds to the (smooth) closure of the SL(2)-orbit
of the polynomial x11 y + 11 x6 y6 − x y11 in Y12. This appeared first in [23]. The
roots of this polynomial can be drawn in the Riemann sphere to form the vertices
of a regular icosahedron. For a quick sketch of how this relates to the other Fano
threefolds with b3 = 0 see also [11].

Proposition 8.3 The variety U22 admits the resolution of the diagonal (53), where
all maps are SL(2)-equivariant.

Proof The maps we have defined over the product X × X in Theorem 7.2
are equivariant under the SL(2)-action. Since di represents the identity in
HomX×X (Pi ,Pi+1) � Yw(i) ⊗ Yw(i), where w(0) = 3, w(1) = 2, w(2) = 6, it
lies in the unique 1-dimensional SL(2)-invariant subspace of HomX×X (Pi ,Pi+1).

Computing the weights of HomX×X (Pi ,Pi+2), one sees that there are no
SL(2)-invariant subspaces. Thus the composition di ◦ di−1 is zero for all i .

The sequence (8) in this case can be read in terms of SL(2)-modules and it
boils down to

This sequence is clearly exact. However the proof of exactness in (55) is forced
since the induced map A ⊗ E → K is SL(2)-invariant, hence it coincides (up to
a scalar) with the projection from A ⊗ E onto the cokernel of ∧2U → A ⊗ E and
as such it surjective. �
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Since all the maps defined in Theorem 7.2 are functorial, they lift to the moduli
space of V22 threefolds. So, once we prove that the sequence of morphisms (53)
is a complex, by semicontinuity we can deduce general exactness from exactness
over a point of the moduli space. By the above proposition this point can be taken
to be [U22].
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