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Abstract We prove a realization result for the linear holonomy group of alge-
braic curves invariant by one-dimensional foliations of projective varieties. In the
case of projective surfaces we also treat the prescription of higher-order jets of
the holonomy group. Applications are given including the construction of stably
minimal foliations of arbitrary projective varieties.

Keywords Algebraic foliation · Invariant curves · Holonomy · Riemann–Hilbert
problem

1 Introduction and statement of results

The dynamical behavior of a foliation can be studied in a neighborhood of a leaf
by the holonomy representation of its fundamental group. This representation is
constructed as follows. We take a point p on the leaf L and a germ of transversal
� at p. Lifting closed paths γ starting at p along the leaves of the foliation in-
duces germs of diffeomorphisms hγ : (�, p) → (�, p) which do not depend on
the homotopy class of the path. The holonomy representation of π1(L , p) is the
morphism defined by

Hol(L) : π1(L , p) → Diff(�, p)

γ �→ hγ ,

and the holonomy group of the foliation along L is the image of this map (which
will be confounded with the representation itself). Different points in the leaf and
different sections give rise to representations conjugated by germs of holomorphic
diffeomorphisms.
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This paper deals with one-dimensional holomorphic foliations of projective
varieties and the holonomy groups of leaves whose closures are algebraic. First,
we will focus on the first-order approximation of the holonomy representation,
namely, the linear representation obtained from above by taking the derivative of
the maps at p:

Hollin(L) : π1(L , p) → GL(Tp�)

γ �→ Dhγ (p).

The image of this map is the linear holonomy group of the foliation along L .
We are concerned here with realizing subgroups of GL(Tp�) as linear holon-

omy groups of leaves which are smooth, projective curves (perhaps deprived of a
finite number of points).

Theorem 1.1 Let M be a smooth projective variety of dimension m + 1, C ⊂ M
a smooth algebraic curve, q ∈ C a point of C, P = {p1, . . . , pk} a set of points
of C \ {q} and � a germ of transversal to C at q. Given a homomorphism

φ : π1(C \ P, q) → GL(Tp�)

there exists a holomorphic foliation F of M satisfying the following properties:

i. C is invariant by F , q /∈ Sing(F) and P ⊂ Sing(F).
ii. The linear holonomy group of F along C \ Sing(F) is φ ◦ i∗ , where

i∗ : π1(C \ Sing(F), q) → π1(C \ P, q)

is the natural homomorphism.

The singularities in Sing(F) \ P give no contribution to the linear holonomy
group; for that reason, we call them apparent singularities and we will simply say
that the linear holonomy group of F along C \ P is φ. There are situations where
the presence of apparent singularities cannot be avoided. For instance when P is
empty and C has non-zero self-intersection the Index Theorem, see [3], implies
Sing(F) ∩ C 	= Ø.

It is worth mentioning the classical Riemann–Hilbert problem. One has
to construct a rank m meromorphic linear differential equation over C̄ such
that the induced foliation of M = C̄ × C

m has holonomy group along the leaf
C = C̄ × {0} given a priori by φ. Sing(F) is demanded to be exactly P and its
elements should be as simple as possible (fuchsian singularities); no apparent
singularities are allowed.

A particular case of Theorem 1.1 was proved in [12] for plane foliations, in-
cluding an estimate of its degree as a function of the degree of the curve; this
means that the cotangent bundle of the foliation can be controlled. In our more
general context, we no longer are able to have such a refinement. Although here
we are able to prescribe the linear holonomy also for germs of holomorphic fami-
lies of representations close to the identity at P . See Sect. 4 for a precise statement.

One of the motivations of this study is to present tools to produce examples
of foliations with prescribed dynamical properties. In particular, we may use
Theorem 1.1 to find stably minimal foliations on projective varieties using ideas
from [10]. We will denote by �M the tangent sheaf of M and by Fol(M,L) the
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space of foliations of the projective variety M with cotangent bundle isomorphic
to L, i.e., Fol(M,L) = PH0(M,�M ⊗ L)).

A holomorphic foliation of a projective variety is a minimal foliation if every
leaf is dense. We will say that F ∈ Fol(M,L) is a stably minimal foliation if there
exists an open set F ∈ U ⊂ Fol(M,L) such that every foliation of U is minimal.

As an application of Theorem 1.1 we obtain.

Theorem 1.2 Let L be an ample line-bundle on a projective variety V . Then for
n � 0 the set of stably minimal foliations with cotangent bundle isomorphic to
L⊗n is non-empty.

As in the approach of [10], we obtain stably minimal foliations perturbing folia-
tions with invariant algebraic curves (projective lines in [10]).

We are also interested in the higher-order jets of the holonomy group of an
algebraic leaf. So let k be a positive integer and Hk be the subgroup of Diff(�, p)
formed by the elements which are tangent to the identity up to order k. Since
Hk is a normal subgroup the cokernel of the inclusion of Hk in Diff(�, p) is the
group of k-jets of Diff(�, p). This group will denoted by J kDiff(�, p). Observe
that J 1Diff(Cm, 0) is isomorphic to GL(m, C) and for k ≥ 2 we have the exact
sequence

Id → Hk−1

Hk
→ J kDiff(�, p) → J k−1Diff(�, p) → Id

If L is a leaf of a foliation F and � is a transversal to F passing through p ∈ L
then the k-jet of the holonomy representation will be the morphism

Holk(L) : π1(L , p) → J kDiff(�, p),

obtained by composing the usual holonomy representation with the natural quo-
tient map

Diff(�, p) → J kDiff(�, p).

As before we are concerned here with realizing subgroups of J kDiff(�, p) as k-
jets of the holonomy groups of leaves which are smooth projective curves (perhaps
deprived of a finite number of points).

Theorem 1.3 Let M be a smooth projective surface, C ⊂ M a smooth algebraic
curve, q ∈ C a point of C, P = {p1, . . . , pk} a set of points of C \ {q} and �
a germ of transversal to C at q. Given a homomorphism φ : π1

(
C \ P, q

) →
J kDiff(�, p) there exists a holomorphic foliation F of M satisfying the following
properties:

i. C is invariant by F , q /∈ Sing(F) and P ⊂ Sing(F).
ii. The k-jet of the holonomy group of F along C \ Sing(F) is φ ◦ i∗, where

i∗ : π1(C \ Sing(F), q) → π1(C \ P, q) is the natural homomorphism.

If M is a projective variety and C ⊂ M is a smooth projective curve then we will
denote by �M,C the sheaf of vector fields on M tangent to C and by FolC (M,L)
the space of foliations of M leaving the curve C invariant and with cotangent
bundle isomorphic to L, i.e., FolC (M,L) = PH0(M,�M,C ⊗ L). We also define
Folsol

C (M,L) as the subset of foliations in FolC (M,L) whose holonomy group
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along C is solvable; it is postulated that if C is contained in the singular set of a
foliation F then its holonomy group is trivial.

As an application of Theorem 1.3 we obtain

Proposition 1.4 Let L be an ample line-bundle and n � 0 then Folsol
C (M,L⊗n)

is a closed subset of FolC (M,L⊗n) with empty interior.

2 The linear holonomy group

Let M be a projective variety of dimension m + 1 ∈ N and C ⊂ M a smooth,
compact curve. Let also �M denote the OM sheaf of holomorphic vector fields
on M and �M,C its subsheaf formed by the germs of vector fields which leave C
invariant. The sheaf �M,C fits into the exact sequence

0 → �M,C → �M → NC → 0,

where NC denotes the normal bundle of C on M .
If IC is the ideal sheaf defining C then we have the short exact sequence

0 → �M,C ⊗ IC → �M,C → N (1)
M,C → 0, (1)

where N (1)
M,C is the quotient sheaf �M,C

�M,C ⊗I C
. Observe that N (1)

M,C is supported on C
and naturally carries a structure of a sheaf of OC -modules.

A section of N (1)
M,C is described in local coordinates as follows. First, we cover

a neighborhood of C in M by open sets {Uα}, where the coordinates (xα,y(α))=
(xα,y(α)

1 ,...,y(α)
m ) are choosen in such a way that the points in Uα ∩ C satisfy y(α)

1 =
· · · = y(α)

m = 0. In each Uα we have a vector field

Xα

(
xα, y(α)

1 , . . . , y(α)
m

) = Aα(xα)
∂

∂xα

+
n∑

j,k=1

B(α)
jk (xα)y(α)

j
∂

y(α)
k

,

where Aα , B(α)
j are holomorphic functions, 1 ≤ j ≤ m. Furthermore, if Uα ∩

Uβ 	= Ø and (xα, y(α)) = φαβ(xβ, y(β)), then the obvious truncation of φ∗
αβ Xα is

equal to Xβ . This truncation simply replaces

φαβ

(
xβ, y(β)

) = (
fαβ(xβ) + . . . , gαβ(xβ) · y(β) + · · · )

by
ψαβ

(
xβ, y(β)

) = (
fαβ(xβ), gαβ(xβ) · y(β)

)
,

where . . . means higher-order terms in y(β) and gαβ(xβ) is a n × n matrix. We
have that ψ∗

αβ Xα = Xβ whenever Uα ∩ Uβ 	= Ø.
Clearly we may use the collection {φαβ(xβ)} as the transition functions, and

consequently {Xα} defines a section of N (1)
NC ,C , where NC denotes the total space

of the normal vector bundle of C on M , C denotes the zero section and

N (1)
NC ,C = �NC ,C

�NC ,C ⊗ IC
.

In other terms {Xα} defines a foliation of NC , which leaves C , the zero section,
invariant and is transversal to the fibers except when Aα(xα) = 0.

From the previous discussion we obtain the following.
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Lemma 2.1 As sheaves of OC -modules N (1)
M,C and N (1)

NC ,C are isomorphic.

If F is foliation of M with cotangent bundle isomorphic to L and is tangent to
C then F is defined by an element σF of H0(M, �M,C ⊗ L). The sequence (1)
induces a map

ξM,L : H0(M,�M,C ⊗ L) → H0(C,N (1)
M,C ⊗ L

)
, (2)

The proof of the following Proposition is standard.

Proposition 2.2 If σF ∈ H0(M, �M,C ⊗ L) defines a foliation F such that
Sing(F) ∩ C is a proper subset of C then the linear holonomy group of F along
C is completely determined by the image of σF under the map ξM,L.

Lemma 2.3 Let M be a smooth projective variety of dimension m + 1, C ⊂ M a
smooth curve and L an ample line-bundle on M. If n � 0 then

i. dimCH0(M,�M,C ⊗ L⊗n) � 0;
ii. the map ξM,L⊗n (from (2)) is surjective.

Proof It is enough to choose n � 0 to have H1(M,�M,C ⊗ IC ⊗ L⊗n) = 0.
Since �M,C is a coherent sheaf, this is granted by Serre’s Vanishing Theorem (see
[7], Theorem 5.2, pp. 228). �

3 Prescribing the linear holonomy group

The proof of Theorem 1.1 can be divided in three steps. The first two steps are
essentially known; they are sketched here for the reader’s convenience.

Step 1 We start constructing a rank m vector-bundle E over C and a holomorphic
foliation G of E satisfying the following properties

(i) the zero section of E , identified with C , is invariant by G;
(ii) the singular set of G is contained in the fibers of E over P;

(iii) the holonomy group of C \ P is conjugated to

φ : π1(C \ P, q) → GL(Tq�).

Let C̃ be the universal covering of C \P , G the group of its covering transforma-
tions and

µ : π1(C \ P, q) → G

the canonical isomorphism. The representations φ and α induce an action, α × φ,
on the trivial vector bundle over C̃ defined as follows

µ × φ : π1(C \ P, q) × C̃ × Tq� → C̃ × Tq�

(g, (x, v)) �→ (µ(g)(x), φ(g) · v).

The natural projection C̃ × Tq� → Tq� induces a non-singular one-dimensional
foliation G̃0 of C̃ × Tq� which is invariant by the action µ × φ. Therefore the
quotient of C̃ × Tq� by µ × φ is a vector bundle E0 over C \ P carrying a non-
singular foliation G0. By construction the zero section of E0 is invariant by G0 and
has holonomy group given by φ.
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Let D ⊂ C be a small disc centered at p ∈ P , γ ⊂ D be small loop
around p and p̃ ∈ γ ; let us fix some path α joining q to p̃ and define
γp = α∗γ ∗α−1. Let also A be a n×n complex matrix such that exp(A) = φ(γp).
If (x, (y1, . . . , ym)T ) = Y are coordinates for C × C

m then the linear differential
equation xdY − A · Y dx = 0 defines a one-dimensional foliation over C × C

m

which leaves the horizontal axis {y1 = · · · = ym = 0} invariant, has a unique
singularity at 0 and the local holonomy map along γ is exp(A). This foliation
is holomorphically conjugated over D \ {p} × C

m to G0 by a vector bundle
automorphism. Therefore one can extend E0 to a holomorphic vector bundle E
over C and G0 to a foliation G of E . By construction G satisfies (i), (ii) and (iii).

Step 2 We show now how to pull-back G to a foliation of NC .

Let L′ be a convenient power of an ample line bundle over C such that both
E ⊗L′ and NC ⊗L′ are generated by global holomorphic sections (see [7], Thm.
5.17). Let us fix q ∈ C ; there exist global sections e1, . . . , em and n1, . . . , nm such
that {e1(q), . . . , em(q)} is a basis for the fiber (E ⊗ L′)q and {n1(q), . . . , nm(q)}
is a basis for the fiber(NC ⊗ L′)q . If l is a section of L′ not vanishing at q then
{ e1

l , . . . , em
l } generates E and { n1

l , . . . , nm
l } generates NC over a Zariski open sub-

set U of C . The map

T|U : NC |U → E|U
∑

a j
n j

l
�→

∑
a j

e j

l
defines an isomorphism of vector bundles which extends to a bimeromorphic map
T : NC ��� E .

The pull-back of G by T is a holomorphic foliation H of NC whose holonomy
group along C \ P is φ.

Step 3 Finally we construct the foliation with the desired properties in M .

If σH ∈ H0(NC ,�NC ,C ⊗ T ∗H) defines H, we set θ = ξNC ,T ∗H(σH) (see
(2)). To conclude the proof of the Theorem we will take an ample line bundle L
on M and show that, for some n ∈ N, there exists σ ∈ H0(M,�M,C ⊗ L⊗n) and
f ∈ H0(C, (L⊗n ⊗ TH)|C ) such that ξM,L⊗n (σ ) = f ⊗ θ

Since deg(L|C ) > 0, an easy application of Riemann–Roch’s Theorem allows
us to choose a non-zero section f ∈ H0(C, (L⊗n ⊗ TH)|C ) for some n � 0. It

follows that f ⊗ θ ∈ H0(C,N (1)
M,C ⊗ (L⊗n)|C ).

From Lemma 2.3 we obtain, for n � 0, a section σ ∈ H0(M, �M,C ⊗ L⊗n)
such that ξM,L⊗n (σ ) = f ⊗ θ . The foliation of M induced by σ has the desired
properties.

4 Prescribing families of linear holonomy groups

Recall that γp = α ∗ γ ∗ α−1 where γ ⊂ C is an arbitrarily small loop around p,
p̃ ∈ γ and α is an arbitrary path joining q to p̃.
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Definition 4.1 Let {φs : π1(C \ P, q)}s∈(Cl ,0) → GL(Tq�)} be a germ of holo-
morphic family of homomorphisms parameterized by (Cl , 0). We will say that
{φs} is close to the identity at P if φ0(γp) = Id for every p ∈ P .

As stated in the introduction Theorem 1.1 has a version for families of repre-
sentations close to the identity at P .

Theorem 4.2 Let M be a smooth projective variety of dimension m + 1, C ⊂ M
a smooth algebraic curve, q ∈ C a point of C, P = {p1, . . . , pk} a set of points
of C \ {q} and � a germ of transversal to C at q. Given a germ of holomorphic
family of homomorphisms

{φs : π1(C \ P, q) → GL(Tq�)}s∈(Cl ,0)

close to the identity at P there exists a germ of families of holomorphic foliations
{Fs}s∈(Cl ,0) of M satisfying the following properties:

i. For all s ∈ (Cl , 0), C is invariant by Fs , q /∈ Sing(Fs) and P ⊂ Sing(Fs).
ii. The linear holonomy group of Fs along C \ P is equal to φs ◦ is∗, where

is∗ : π1(C \ Sing(Fs), q) → π1(C \ P, q) is the natural homomorphism.
iii. If s, s′ ∈ (Cl , 0) then the cotangent bundles of Fs and Fs′ are isomorphic.

Proof The proof is essentially the same as the proof of Theorem 1.1. In the first
step the construction can repeated as it is for the family {φs}s∈(Cl ,0) since the
{φs}s∈(Cl ,0) is close to the identity at P and therefore we can take an inverse branch
of the exponential containing φs(γp) for every p ∈ P and every s ∈ (Cl , 0).

The families of vector bundles and foliations obtained in Step 1 can be inter-
preted as a foliation of a vector bundle over M defined over Spec(O), where O is
the ring of germ of holomorphic functions on (Cl , 0). Since O is a noetherian ring
and Serre’s Vanishing Theorem of Serre is still true on this more general context
then Theorem 4.2 follows. �

5 Hyperbolic singularities

We say that a singularity is hyperbolic if all its eigenvalues are distinct non-zero
complex numbers and the quotient of any two of them is not a real number.

The following Proposition appears in [6, Theorem 6.7] when dimC V = 2.

Proposition 5.1 Let L be an ample line-bundle on a projective variety V . If n �
0, there exists an open and dense subset of P(H0(V, �V ⊗ L⊗n)) such that the
induced foliations have only hyperbolic singularities.

Let L be a line bundle on V , � = P(H0(V, �V ⊗L⊗n)) and define the subset
S of � × V by

S = {(F, x) ∈ � × V : x ∈ Sing(F)}.
We will denote by π the standard projection of S to �.

The proof of the proposition above is based in the next Lemma, which adapts
an argument from [4].
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Lemma 5.2 If �V ⊗L is generated by global sections then S is a smooth subva-
riety of � × V . Moreover dimCS = dimC�.

Proof Denote by T the trivial bundle over V with fiber H0(V, �V ⊗ L). There
exists a surjective map of vector bundles u : T → TV ⊗L which takes (x, θ) ∈ T

to the vector θ(x) ∈ Tx V . Since �V ⊗L is generated by global sections it follows
that u is surjective, therefore ker(u) is also a vector bundle. Since S = P(ker u),
the assertions about S are proved. �

Proof of proposition 5.1 The crucial point is the following prescription property:
let p ∈ V be chosen; for n � 0, there exists a foliation in H0(M, �V ⊗ L⊗n)
which has a hyperbolic singularity at p. In fact, let us consider the short exact
sequence

0 → �V,p ⊗ L⊗n ⊗ m p → �V,p ⊗ L⊗n → �V,p ⊗ L⊗n

�V,p ⊗ L⊗n ⊗ m p
→ 0,

where m p is the maximal ideal associated to p and �V,p is the subsheaf of �V

whose local sections vanish at p. If n � 0 then H1(M, �V,p ⊗ L⊗n ⊗ m p) = 0,
so that we have a surjective map

H0(V, �V,p ⊗ L⊗n) → H0
(

V,
�V,p ⊗ L⊗n

�V,p ⊗ L⊗n ⊗ m p

)
.

It follows that we can prescribe any linear part for the singularity at p, in particular
to get a hyperbolic one.

Let us first guarantee (always by increasing n ∈ N if necessary) that foliations
in some Zariski open subset of H0(V, �V ⊗ L⊗n) have singularities with Milnor
number one whose eigenvalues are distinct. In fact, the subset of points (F, x) ∈ S
such that there are repeated eigenvalues of the singularity x of the foliation F is
an analytic subvariety S0; the prescription property implies that it is a strict subva-
riety. For the same reason, S1 = {(F, x) ∈ S; π |S is not a submersion at (F, x)} is
also an analytic subvariety strictly contained in S. It follows that π(S0 ∪ S1) is also
a strict analytic subvariety of �; let U0 be its complement. Finally, we consider
the Zariski open subset U1 of � such that π : π−1(U1) → U1 is a finite to one
map. It follows that the function defined in S′ = π−1(U0 ∩ U1)) that assigns to
(F, x) ∈ S′ the Milnor number of x ∈ V as a singularity of F is locally constant,
therefore constant since S′ is connected. We conclude that the Milnor number of
any singularity of a foliation in U0 ∩ U1 has to be one, because of the prescription
property.

Inside U0 ∩ U1 we define the (real) analytic subvariety R of foliations such
that the quotient of eigenvalues at some singularities belongs to R. Once more the
prescription property implies that this subvariety is strict. The statement of the
Proposition is therefore true for U = (U0 ∩ U1) \ R. �

The arguments can be easily adapted if we want to get hyperbolic singularities
along some invariant, smooth, algebraic subvariety H ; we replace P(H0(V, �V ⊗
L⊗n)) by P(H0(V, �V,H ⊗L⊗n)), where �V,H is the sheaf of germs of holomor-
phic vector fields in V which leave H invariant.
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6 Prescribing minimality

This section is devoted to proving Theorem 1.2. As already noted we adapt an
argument from [10], the induction trick. The proof consists in checking the steps
of that argument in our context. Stably minimal foliations will appear close to
special foliations, which correspond in [10] to the construction of foliations of P

n
C

possessing a flag of invariant projective spaces and a convenient holonomy. The
next lemma allow us to apply a similar construction in projective varieties.

Lemma 6.1 Let V be a (m + 1)-dimensional projective variety and L a ample
line-bundle. Then if n � 0 there exists a germ of family of holomorphic foliations
{Ft }t∈(Cl ,0) with cotangent bundle L⊗n satisfying the following properties:

1. F0 is tangent to smooth varieties C = V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ Vn = V ,
with dimCVj = j and Vi is ample in Vi+1.

2. the generators of the linear holonomy group of F0 along C \ Sing(F0) are
equal to I d;

3. any subgroup G of GL(Cm) generated by two elements on an open set W with
I d ∈ W is contained in the linear holonomy group of Ft for some t ∈ C small.

Proof Suppose we have subvarieties of the form Vi+1 ⊂ Vi+2 ⊂ . . . ⊂ Vm+1 =
V . Take Vi to be a generic hyperplane section of Vi+1. By Bertini’s and Lefschetz’
Theorems Vi is smooth and connected.

The Lemma follows from Theorem 4.2. �
We will need also the following

Lemma 6.2 Let V be a projective variety, H a hypersurface on V and L an ample
line-bundle on V . If n � 0 then every foliation on H with cotangent bundle given
by L⊗n

|H extends to V with L⊗n as its cotangent bundle.

Proof If we denote by �V,H the sheaf of germ of vector fields leaving H invariant
then �V,H fits in the exact sequence,

0 → �V,H ⊗ IH → �V,H → �H → 0.

Therefore if n � 0 then by Serre’s vanishing theorem we obtain that H1(V, �V,H
⊗IH ⊗ L⊗n) = 0 and the surjectivity of the restriction map

H0(V, �V,H ⊗ L⊗n) → H0(H, �H ⊗ L⊗n). �
Theorem 1.3 follows from the next Proposition.

Proposition 6.3 Let V , L and Ft be as in Lemma 6.1. Then there exist stably
minimal foliations arbitrarily close to F0.

Proof We assume in the sequel that whenever necessary the foliations are taken
in PH0(V, T M ⊗ L⊗n) for n � 0.

The proof goes by induction in the dimension of V . First of all let dimCV = 2
and C be an ample curve of V .
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1. Given F0, there exists a nearby foliation H whose singularities along C (which
remains invariant) are hyperbolic (by Proposition 4.1). In particular, the singu-
lar set of H is finite; all leaves, except a finite number of algebraic leaves, have
to intersect a transverse section L to C since the complement of C is a Stein
space (see [5], Thm. 6.5) . Note that this is a stable property, that is, it persists
for a neighborhood of H.

When we perturb H to some H′, the generators of the holonomy group of
H change to the generators of a pseudo-group of diffeomorphisms acting on L;
we still call this the pseudo-group of holonomy of H′ associated to C .

2. We approximate H by H′ which has no algebraic invariant curves (by
Theorem 1 from [4]). It follows that all leaves of H′ have to intersect L and
the generators of the pseudo-group of holonomy of H′ associated to C have no
common fixed point (such a property is obviously a stable one). According to
Corollary 5.2 from [10], this pseudo-group acts minimally on L . Therefore H′
and its neighbors are minimal foliations.

Now we consider a foliation F0 as in the statement of Lemma 6.1. We assume
by induction that its restriction to Vm can be approximated by a stably minimal
foliation H0 in Vm .

1. Lemma 6.2 implies that H0 extends to V as a foliation close to F0. By its turn,
this foliation can be approximated by some H1 all of whose singularities along
Vm (which remains invariant) are hyperbolic, because of Proposition 4.1. In par-
ticular, the restriction of H1 to Vm is still stably minimal. Let L be a transverse
section to C . All leaves of H which intersect a neighborhood of Vm intersect
L as well, except perhaps the separatrices of the singularities on Vm which are
transversal to this variety (this is a stable property, by Lemma 9.5 of [10]).
Since Vm is ample in V , we may say (again by [5], Theorem 6.5): all leaves of
H1 except for a finite number of algebraic leaves intersect L(the separatrices we
mentioned previously are contained in algebraic curves, since the singular set is
finite).

2. We approximate H1 by H2 which has no algebraic leaves ([4], Theorem 1);
therefore, all leaves of H2 intersect L . This is still a stable property.

3. A further convenient approximation H3 of H2 guarantees that its pseudo-
group of holonomy associated to C acts minimally in L ([10], Corollary 5.2),
so that H3 is a minimal foliation. This last approximation may be done be-
cause of condition 3 of Lemma 6.1; in particular, minimality of H3 is a stable
property. �

7 Higher-order jets of the holonomy group

As before let F be a holomorphic foliation by curves of a projective variety M ,
dimC M = m + 1, and C ⊂ M a smooth, compact curve. If IC is the ideal sheaf
defining C then we have the short exact sequence

0 → �M,C ⊗ IC
k → �M,C → N (k)

M,C → 0, (3)

where N (k)
M,C is the quotient sheaf �M,C

�M,C ⊗Ik
C

.



Holonomy group of algebraic curves invariant by holomorphic foliations 267

Remark 7.1 If k ≥ 2 then, in contrast with the case k = 1, the sheaf N (k)
M,C ,

although geometrically supported on C , does not carry a structure of a sheaf of
OC -modules compatible with the exact sequence (3). The compatibility depends
on the sheaf N (k)

M,C to be seen as a sheaf of OM/I k
COM -modules. This will be one

of the sources of difficulties in this more general setting.

If F is foliation of M with cotangent bundle isomorphic to L and is tangent
to C then F is defined by an element σF of H0(M,�M,C ⊗L). The sequence (3)
induces a map

ξ
(k)

M,L : H0(M,�M,C ⊗ L) → H0(C (k),N (k)
M,C ⊗ L

)
, (4)

where C (k) is the non-reduced subscheme of M associated to the sheaf of ide-
als I k

C . Despite the differences with the linear case the Proposition 2.2 and the
Lemma 2.3 admit straightforward generalizations as stated below.

Proposition 7.2 If σF ∈ H0(M, �M,C ⊗ L) defines a foliation F such that
Sing(F) ∩ C is a proper subset of C then the k-jet of the holonomy represen-
tation of F along C is completely determined by the image of σF under the map
ξ

(k)

M,L.

Lemma 7.3 Let M be a smooth projective variety of dimension m + 1, C ⊂ M a
smooth curve and L an ample line-bundle on M. If n � 0 then

i. dimCH0
(
M,�M,C ⊗ L⊗n

) � 0;

ii. the map ξ
(k)

M,L⊗n (from (4)) is surjective.

8 Prescribing the k-jets

The proof of Theorem 1.3 will follow the same strategy of the proof of
Theorem 1.1. The only obstruction to generalize Theorem 1.3 to arbitrary pro-
jective varieties is in Step 2. The argument there is based on Grauert’s Tubular
Neighborhood Theorem valid only for surfaces. The general case will be treated
elsewhere.

On the case of k-jets an extra step will be needed. This will be the

Step 0 Let
φ : π1(C \ P, q) → J kDiff(�, p)

be a homomorphism. We will construct a homomorphism

φ̃ : π1(C \ P̃, q) → Diff(�, p),

where P̃ is the union of P with an extra point of C distinct from q , such that the
following diagram

π1(C \ P̃, q)
φ̃−→ Diff(�, p)

↓i∗ ↓
π1(C \ P, q)

φ−→ J kDiff(�, q)
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commutes. Of course the vertical arrows correspond to the natural maps.
Let γ1, . . . , γl be the generators of π1(C \ P, q). We can choose a point p in

C \ P such that after setting P̃ as P ∪ {p} then π1(C \ P̃, q) is a free group with
generators γ1, . . . , γl .

Once we have chosen a system of coordinates for � we can define an injective
map τk : J kDiff(�, p) → Diff(�, p) by setting the terms of order greater than k
as 0. The map τk is a homomorphism only for k = 1, although, since π1(C \ P̃, q)
is the free group generated by γ1, . . . , γl we can set φ̃([γi ]) = τk(φ([γi ]) for
i = 1 . . . l, and this will extend as a homomorphism.

Step 1 An analogous construction to the one made in Step 1 of the proof of
Theorem 1.1 will assure the existence of a complex surface U containing C and a
holomorphic foliation G of U satisfying the following properties:

i. the curve C is invariant by G;
ii. the singular set of G is contained in C and contains P̃;

iii. the holonomy group of C \ P̃ is conjugated to

φ̃ : π1(C \ P̃, q) → Diff(�, p).

Away from the set P̃ the construction is the essentially the same as before. The
local construction near the points of P̃ is more subtle and requires the use of
a realization theorem by Pérez-Marco and Yoccoz, see [11]. Since a completely
similar construction has been carried out by Ilyashenko in [9] we invite the reader
to consult these works to provide the details for the construction of G.

Blowing-up points of C ⊂ U and enlarging the singular set of G we can
assume that

iv. deg(NC/U ) � 0;

where NC/U denotes the normal bundle of C in U . It follows from Riemann-
Roch’s Theorem that there exists a non identically zero section s ∈ H0(C, N∗

C/U ⊗
NC/M ).

Thus we will make these assumptions, preparing the ground for the next step
where we will use Grauert’s Theorem on holomorphic tubular neighborhoods, see
[2, Theorem 4.4, pp. 68].

Step 2 Let s ∈ H0(C, N∗
C/U ⊗ NC/M ) be the section as above. Let π : M0 → M

be the blow-up M at the points of (s)0 the divisor of zeros of s, a subset of C .
Therefore, as OC -sheafs, we have that

NC/M0
∼= NC/M ⊗ OC (−(s)0).

From the choice of s we conclude that the restrictions of NC/M0 and NC/U to C
are isomorphic invertible sheaves.

By [iv] we can use Grauert’s Theorem to assure the existence of a biholomor-
phism between small neighborhoods of C in U and in M0. Therefore the foliation
G pulls-back to a foliation H, defined in a small neighborhood U0 ⊂ M0 of C .

Note that the singularities of H on C \ P̃ which appears along the above con-
struction have the identity as its local holonomy map. Thus, we can say that the
holonomy group of H along C is given by φ̃.

Step 3 We will now we construct the foliation with the desired properties in M0.
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If σH ∈ H0(U0, �U0,C ⊗ T ∗H) defines H, we define θ as the image of σ|H
under the natural map 4, i.e., σ = ξ

(k)

U0,T ∗H(σH).

If L is an ample line-bundle on M0 then L is still ample when restricted to C (k).
Thus follows from Serre’s Vanishing Theorem that for n ∈ N large enough there
exists f ∈ H0(C (k), (L⊗n ⊗ TH)|C(k) ) not vanishing identically when restricted
to C . It follows that

f ⊗ θ ∈ H0(C (k),
(
N (k)

M0,C(k) ⊗ L⊗n)|C(k)

)
.

From Lemma 7.3, since n � 0, we obtain a section σ ∈ H0(M0,�M0,C ⊗ L⊗n)

such that ξ
(k)

M0,L⊗n (σ ) = f ⊗ θ . The foliation F0 of M0 induced by σ has the
desired properties, except for being a foliation of M0 instead of M . The Theorem
follows taking F = π∗F0. �

9 Openness of non-solvable dynamics

9.1 Solvable subgroups of Diff(C, 0)

If G is a group then we say that G is solvable if there exists a positive integer l such
that the lth-derived group Dl G is trivial, where Dl G is defined by the following
recurrence relations

1. D0G = G;
2. Dl+1G = [Dl G, Dl G], where [Dl G, Dl G] is the group generated by the com-

mutators of Dl G.

We will say that G has length l when l is the smallest positive integer such
that Dl G is trivial. When G is a subgroup of Diff(C, 0) it is well-know that G
is solvable, if and only if, G is meta-abelian, i.e., G has length at most two. An
immediate consequence of this fact is the following

Lemma 9.1 If G is a subgroup of Diff(C, 0) then G is solvable if, and only if, for
every k ∈ N the group Jk G has length at most 2.

Proposition 9.2 Let L be a line bundle on a projective surface S and C ⊂ S be
a smooth projective curve. Then the subset Folsol

C (S,L) of FolC (S,L) formed by
the foliations such that the holonomy group of C is solvable is a closed subset.

Proof Given a foliation F on the surface S such that C � Sing(F), let � =
π1(C \ Sing(F) ∩ C, q). If U ⊂ FolC (S,L) is a small neighborhood of F , then
for every k ∈ N we obtain jk : U → Hom(�, J kDiff(C, 0)) such that

1. jk(F) = Holk(C,F) ;
2. jk(G) is the kth-jet of the subgroup of Hol(C,G) generated by using the holon-

omy maps associated to �.

Let us remark that jk is a holomorphic map in the sense that Hk
γ (G) = jk(G)(γ )

is holomorphic for each γ ∈ �.
If F ∈ U has non-solvable holonomy group along C , then by Lemma 9.1 there

exists k0 ∈ N and γ0 ∈ D2� such that Hk0
γ0 (F) 	= Id. It follows that Hk0

γ0 (G) 	= Id
for every G in a neighborhood V of F , that is, every G ∈ V has non-solvable
holonomy group along C . �
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Let �1 ⊂ FolC (S,L) be the Zariski open, connected subset of foliations with
singularities along C which have Milnor number equal to 1 (see also Sect. 5).

Proposition 9.3 �1 ∩ Folsol
C (S,L) is an analytic subset of �1.

Proof Let F ∈ �1∩FolC (S,L); since the statement is of local nature, it is enough
to prove it in a neighborhood U of F as above. We have then that

Folsol
C (S,L) ∩ U =

⋂

γ∈D2�,k∈N

(
Hk

γ

)−1
(I d)

so that Folsol
C (S,L) ∩ U is an analytic subset of U . �

Remark 9.4 If we denote by �2 the set of foliations with exactly one singularity
of C with Poincaré-Hopf index two we can repeat the arguments above to prove
that �2 ∩ Folsol

C (M,L) is a closed analytic subset. We can also proceed to obtain
a stratification of FolC (M,L) in quasi-projective varieties such that the set of
foliations with solvable holonomy group along C in each of these strata is a closed
analytic subvariety.

It would be interesting to know if Folsol
C (M,L) has a finite number of irre-

ducible components.

9.2 Proof of Proposition 1.4

If L is an ample line-bundle and n � 0 then by Theorem 1.3 we can construct a
foliation in FolC (S,L⊗n) such that the k-jet, k ≥ 3, of the holonomy group along
C has length at least 3. By Lemma 9.1 this foliation has a non-solvable holonomy
group along C . The result follows from Proposition 9.2 and Proposition 9.3.

Remark 9.5 To generalize Proposition 9.2 to arbitrary projective varieties is suf-
ficient to extend Lemma 9.1 to the case of subgroups of Diff(Cm, 0). Once this is
done Proposition 1.4 follows easily from the existence of finitely generated non-
solvable subgroups of GL(m, C), m ≥ 2, and Theorem 1.1.

The case of subgroups of Diff(C2, 0) has been treated in [1].

Proposition 9.6 Let G be a finitely generated subgroup of Diff(C2, 0). Then G is
a solvable if, and only if, G has length at most 7. In particular G is solvable if,
and only if, for every k ∈ N the group J k G has length at most 7.

A statement similar to Proposition 9.6 should hold for Diff(Cm, 0), m > 2 and
Propositions 1.4 and 9.2 should hold for arbitrary projective varieties.
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