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Abstract. In two earlier papers, we presented a perturbation theory for laminated, or fo-
liated, invariant sets Ko for a given finite-dimensional system of ordinary differential
equations, see [20,21]. The main objective in that perturbation theory is to show that: if the
given vector field has a suitable exponential trichotomy on Ko, then any perturbed system
that is C1-close to the given vector field near Ko has an invariant set Kn , where Kn is
homeomorphic to Ko and where the perturbed vector field has an exponential trichotomy
on Kn .

In this paper we present a dual-faceted extension of this perturbation theory to include:
(1) a class of infinite-dimensional evolutionary equations that arise in the study of reaction
diffusion equations and the Navier–Stokes equations and (2) nonautonomous evolutionary
equations in both finite and infinite dimensions. For the nonautonomous problem, we require
that the time-dependent terms in the problem lie in a compact, invariant set M. For example,
M may be the hull of an almost periodic, or a quasiperiodic, function of time.

Key words. evolutionary equations – Navier–Stokes equations – proper negative continu-
ation – quasiperiodic – skew product dynamics

1. Introduction

Explain the apparent persistence of chaotic dynamics, as is seen in such
real-world phenomena as (autonomous or nonautonomous) Lagrangian tur-
bulence.

This statement describes one of the major challenges facing mathematical
scientists today, but it does not raise a new issue. Like a specter, chaotic dynamics
has lurked in the wings of the shadows of dynamical systems from the beginning. In
the mid 1900s, chaotic behavior began to assume a central role as a principal object
of study. Much of the recent work on hyperbolic dynamics can be interpreted as an
attempt to find a mathematical explanation of the persistence of chaotic dynamics.
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In the context of dynamical systems, the notion of “persistence” can best be
explained in terms of the compact invariant sets. For example, one begins with
a compact invariant set K for a given system. Next one makes a small perturbation
in the given system, thereby obtaining new dynamics and a new compact invariant
set Kn . A reasonable mathematical explanation of persistence of the dynamics on
K is to show that: (1) Kn is “close to” K (perhaps even being homeomorphic
to K) and (2) the new dynamics on Kn is “close to” the given dynamics on K. In
this way, the explanation of the persistence of the dynamics follows from a good
perturbation theory.

It is in this setting that the theory of foliated invariant sets comes on stage.
The concept of a foliated invariant set is a relatively new notion in the study of
dynamical systems. The family of all such invariant sets comes to us as the result
of a mathematical marriage, viz., the union of the family of (normally hyperbolic)
compact invariant manifolds with the family of hyperbolic sets (i.e., Anosov flows).
As is well known, there are good perturbation theories for both invariant manifolds
and for Anosov flows. (See [28,9,14] for normally hyperbolic invariant manifolds
and [35,3,19,25] for hyperbolic sets.) Furthermore, these theories have proven to
be satisfactory when restricted to those perturbations where the perturbed problem
remains within the same family. However, except for some trivial cases, neither
perturbation theory could be applied to the other family. Moreover, neither theory
can be used to explain the persistence of the dynamics resulting from a coupling be-
tween the dynamics of a normally hyperbolic invariant manifold and the dynamics
of an Anosov flow.

As is shown here, the perturbation theory of foliated invariant sets fills this gap.
In this paper, we present two important extensions of the basic theory of foliated in-
variant sets, as developed in [20,21,23,24]. First we extend the perturbation theory
to include foliated invariant sets in an infinite-dimensional setting, including the
Navier–Stokes equations. (This extension unifies the earlier work on compact in-
variant manifolds, see [24,5], on the one hand, and the work on hyperbolic sets, see
[15], on the other.) Second, we treat both the autonomous and the nonautonomous
problems in this new perturbation theory. Previous works have been restricted to
the autonomous theory alone.

To put this into context, we begin with a pair of evolutionary equations

∂tu + Au = F(u),

∂t y + Ay = F(y) + G(y, t),
(1.1)

where the first equation is the “given” equation, an autonomous equation, and
G = G(y, t) is a time-varying perturbation term. We are also interested in the fully
nonautonomous problem

∂tu + Au = F(u, t),

∂t y + Ay = F(y, t) + G(y, t),
(1.2)

where again G = G(y, t) is the perturbation term. Note that problem (1.1), like the
fully autonomous problem
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∂tu + Au = F(u),

∂t y + Ay = F(y) + G(y),
(1.3)

is a special case of (1.2). Each of the six equations in (1.1)–(1.3) is an evolutionary
equation on a Banach space W , where u, y ∈ W . Among other things, we assume
that the problems are well defined for all t ≥ 0.

Let us turn next to the initial value problem

∂tu + Au = F(u), where u(0) = u0 and u0 ∈ W,(1.4)

for the autonomous equation in (1.1). We assume that the problem (1.4) is well
posed and we let S(t)u0 denote the maximally defined mild solution of this problem.
Recall that a set K in W is invariant whenever one has S(t)K = K, for all t ≥ 0.
A heuristic description of a foliated invariant set K is:

• K is a compact, invariant set for S(t);
• For each x ∈ K, there is a leaf S(x) with the property that S(x) is invariant with

x ∈ S(x) ⊂ K;
• There is an integer k ≥ 1 and a ρ0 > 0 such that for each x ∈ K, the leaf S(x)

contains a k-dimensional Lipschitz continuous disk Dρ0(x), of radius ρ0 with
center at x and x ∈ Dρ0(x) ⊂ S(x); and

• S(x) = ∪y∈S(x)Dρ0(y).

We will refer to k as the (local) dimension of the leaves of K . The foliated
invariant set K is said to be smooth if the disks Dρ0(y) are of class C1,1. The two
prototypical examples of foliated invariant sets are:

• A compact, connected k-dimensional invariant manifold M, where S(x) = M,
for all x ∈ M, and

• A hyperbolic set, where k = 1 and each leaf S(x) is the full orbit through
x ∈ K. (In this case, it is typically assumed that the set K contains no stationary
solutions, see [3].)

It follows directly that if Ki is a foliated invariant set for a semiflow Si(t) on
a space Wi , for i = 1, 2, then the product K = K1 × K2 is a foliated invariant
set for the product semiflow on the product space W = W1 × W2. Furthermore, if
x = (x1, x2) ∈ K , then the leaf S(x) satisfies S(x) = S(x1) × S(x2), where S(xi)

is the leaf in Ki containing xi , for i = 1, 2. By using these set-theoretic products,
one quickly encounters foliated invariant sets that are not included among the
prototypical examples. Other examples appear in [20].

In Section 4, we present a more detailed formulation of the concept of a foliated
invariant set, for both the autonomous problem (1.4) and the nonautonomous
problem

∂tu + Au = F(u, t).(1.5)

Our interest in foliated invariant sets K only begins with the geometric description
given above. Since our goal is to better understand the dynamical behavior in the
vicinity of K – and especially the behavior as one adds the time-varying term G
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to either (1.4) or (1.5) – we require that the given equation have an exponential
trichotomy on K. In particular, we want to show that if G is “small”, see (5.5),
then the perturbed equation has dynamical properties that are close to those seen
on K.

Let us turn to the fully autonomous problem (1.3) to illustrate the three theorems
we will prove: the robustness property, the shadow property, and the homeomor-
phism property. We will let S1(t)u0 denote the mild solutions of the first equation
in (1.3), the given equation, and let S2(t)y0 denote the mild solutions of the second
equation, the perturbed equation.

Theorem (A: Robustness property). Let K be a smooth foliated invariant set
for the given equation in (1.3) and assume that linearized dynamics on K has an
exponential trichotomy, where a Lipschitz property is satisfied. If the perturbation
term G is “small,” then there is a continuous mapping h : K → W such that KG =
h(K) is a foliated invariant set for the perturbed equation and ‖h(u) − u‖ ≤ ε0,
for all u ∈ K, where εo is “small.”

The smallness of ε0 means that the mapping h is close to the identity mapping;
thus K is close to KG . If there exists an induced flow SG(t) on K, where K is an
invariant set, for SG(t) and

S2(t)h(u0) = h(SG(t)u0), for all u0 ∈ K, t ≥ 0,(1.6)

then we refer to SG(t) as the shadow flow on K. We now have the following result:

Theorem (B: Shadow property). Under the hypotheses of Theorem A, there is
a shadow flow SG(t) on K, and the identity (1.6) holds.

The commutivity relationship (1.6) contains some valuable dynamical infor-
mation. For example, if K is a stable periodic orbit, then its image KG is also
a cycle, and the shadow flow SG(t) differs from the unperturbed dynamics S1(t) by
a change in the speed, in the period, and/or in the phase along the orbit K. When h
is a homeomorphism, then equation (1.6) is a statement of the lower semicontinuity
with respect to the perturbation term G. In this connection, we have the following
result.

Theorem (C: Homeomorphism property). Under the hypotheses of Theorem A,
the mapping h is a homeomorphism of K onto KG.

In Section 2 we present the function-analytic underpinnings of the theory of
evolutionary equations in a Banach space. For the most part, this brief summary
is taken from [33]. In Section 3 we present the basic theory of skew product
semiflows that is required for the nonautonomous problem. Our main goal here
is to formulate the necessary theory for quasiperiodic forcing of the equations.
A more detailed concept of a foliated bundle, for both the autonomous and the
nonautonomous problems, is developed in Section 4. In the case of quasiperiodic
forcing, we will show that the nonautonomous problem (1.2) can be reformulated
as a suitable autonomous problem, see equations (5.3)–(5.4). Some preliminary
estimates of properties of solutions are presented in Section 5. Section 6 contains
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the main lemmas and proofs of the robustness property, the shadow property, and
the homeomorphism property, for both the autonomous problem and the nonau-
tonomous problem with quasiperiodic forcing. Finally, in Section 7 we present
some extensions of our basic theory. These extensions include cases where the
time dependence is not quasiperiodic.

2. Evolutionary equations

In this section we review some of the classical issues arising in the study of the
dynamics of linear and nonlinear evolutionary equations. In particular, we present
various features of the longtime dynamics of the evolutionary equations (1.4) and
(1.5) on a Banach space W , with norm ‖w‖ = ‖w‖W . Additional information and
details can be found, for example, in [12,18,33]. We begin with the linear problem

∂tu + Au = 0.(2.1)

2.1. Linear theory

Hypothesis A: We assume here that the linear operator A is a positive sectorial
operator on W . As a result, A is a closed operator on W , with a domain D(A)

that is dense in W , and −A is the infinitesimal generator of an analytic semigroup
e−At on W . Thus for each u0 ∈ W , the function u(t) = e−Atu0 is the (unique)
solution of equation (2.1) with u(0) = u0. Since the operator A is positive, there
exist constants a > 0 and M0 ≥ 1 such that

‖e−At u0‖ ≤ M0‖u0‖e−at , for all u0 ∈ W and t ≥ 0.(2.2)

For each α ≥ 0, we let Aα denote the fractional power of A, and we set V 2α =
D(Aα), the domain of Aα. Each Aα is a closed, densely defined, linear operator
on W , and one has the continuous imbedding D(Aα) �→ D(Aβ), whenever α ≥ β.
This means that there is a constant c = cα,β > 0 such that ‖u‖V 2α ≤ c‖u‖V 2β , for
all u ∈ D(Aα), where the norm ‖u‖V 2α is the graph norm, ‖u‖V 2α = ‖Aαu‖ =
‖Aαu‖W . Thus the identity mapping I : V 2α → V 2β is in L = L(V 2α, V 2β),
the space of bounded linear transformations from V 2α into V 2β . For M ∈ L, the
operator norm ‖M‖L is defined by

‖M‖L
def= sup{‖Aβ Mu‖ : ‖Aαu‖ ≤ 1}.

There is no loss in generality in assuming that the sectorial operator A is
positive. Indeed, if A is any sectorial operator, there is a real number a ∈ R such
that the linear operator B = A + aI is a positive, sectorial operator. In this case,
the first equation in (1.1) is equivalent to the equation ∂tu + Bu = H(u), where
H(u) = F(u) + au. The positivity of the sectorial operator A offers a convenient
way of describing the fractional power spaces V 2α. If A is not positive, then one
can achieve the same goals indirectly by using B and its fractional powers, since
the semigroups satisfy e−Bt = e−ate−At , for t ≥ 0, see [12].
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In some cases, such as the Navier–Stokes equations and many reaction diffusion
equations, the linear operator A appearing in (1.1)–(1.5) and (2.1) has additional
properties that are useful for the analysis of the solutions of nonlinear equations.
For example, W may be a Hilbert space and A is a self-adjoint operator with
compact resolvent. In this case A has an orthonormal basis of eigenvectors for W .
By using the Bubnov–Galerkin scheme with this basis, one can develop a family
of finite-dimensional ordinary differential equations, which in turn can be used to
approximate the solutions of the infinite-dimensional problem (1.1). For example,
the Leray–Hopf theory of weak solutions of the Navier–Stokes equations is con-
structed in this way. See [33] for more details and [24] for a related application to
the Couette–Taylor flow.

The fundamental theorem on sectorial operators gives some very valuable
information about the connection between the analytic semigroup e−At and the
fractional powers Aα, for α ≥ 0. In particular, one has Aαe−Atu = e−At Aαu, for all
u ∈ D(Aα) and t ≥ 0, and e−At is an analytic semigroup on Vα, for each α ≥ 0.
In this setting, for β ≥ 0, there is a constant M1 ≥ 1 such that

‖Aβe−Atu0‖ ≤ M1e−at‖Aβu0‖, for all u0 ∈ V 2β.(2.3)

In addition, for any α ≥ 0 and t > 0, the semigroup e−At maps W into D(Aα), and
there is a constant Mα > 0 such that

‖e−At‖L(W,D(Aα)) = ‖Aαe−At‖L(W,W ) ≤ Mαt−αe−at, for all t > 0,(2.4)

where a > 0 is given by (2.2). Moreover, for 0 < α ≤ 1, there is a constant Kα > 0
such that

‖e−Atw − w‖ ≤ Kαtα‖Aαw‖, for t ≥ 0 and w ∈ D(Aα).(2.5)

Furthermore, the solutions e−Atw are Lipschitz continuous in t, for t > 0. More
precisely, for every β ≥ 0, there is a constant Cβ > 0 such that

‖Aβ(e−A(t+h) − e−At)w‖ ≤ Cβ|h|t−(1+β)‖w‖,(2.6)

for all t > 0 and w ∈ W , see [18,33].
The coefficients Mα, Kα, and Cβ appearing above depend on properties of the

spectrum of the linear operator A. Furthermore, it follows from inequality (2.4)
and the definition of the Gamma function Γ that∫ t

0
‖Aβe−Aτ‖L(W,W ) ≤ Mβ

∫ t

0
τ−βe−aτ dτ ≤ Mβ aβ−1Γ(1 − β), for all t ≥ 0.

2.2. Nonlinear theory

In this section, we define the function spaces CLip and C1
F , which contain the

nonlinear terms F and G in equations (1.2). We also introduce the related topologies
on these spaces, and we outline the basic theory concerning the properties of
the solutions of these equations. For the linear problem (2.1) we assume that
Hypothesis A holds.
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We define the space of functions

CLip = CLip(V 2β ×R, W ), where 0 ≤ β < 1,(2.7)

to be the collection of all functions F : V 2β × R → W such that, for every
bounded set U in V 2β , there exist constants k0 = k0(U) = k0(F, U) ≥ 0 and
k1 = k1(U) = k1(F, U) ≥ 0, such that

‖F(u, t)‖ ≤ k0, for all u ∈ U and all t ∈ R,(2.8)

and

‖F(u1, t) − F(u2, t)‖ ≤ k1‖Aβ(u1 − u2)‖,(2.9)

for all u1, u2 ∈ U and all t ∈ R. When F = F(u) is autonomous, we say that F is
in Ca

Lip, where

Ca
Lip

def= Ca
Lip(V 2β, W ) ⊂ CLip(V 2β × R, W )(2.10)

and the superscript a in Ca
Lip refers to this autonomous feature.

Also, we define

C1
F = C1

F(V 2β × R, W ), for some β with 0 ≤ β < 1,(2.11)

to be the collection of all functions F ∈ CLip such that F = F(u, t) is continuously
Fréchet differentiable in u on V 2β , where the derivative DF(u0, t) = Du F(u0, t)
satisfies DF(u0, t) ∈ L(V 2β, W ), for each u0 ∈ V 2β and t ∈ R. Thus F satisfies

F(u0 + v, t) = F(u0, t) + DF(u0, t)v + E(u0, v, t),(2.12)

for all u0, v ∈ V 2β and t ∈ R, where the error term E = E(u0, v, t) satisfies (5.7)–
(5.11). The continuity of DF = Du F means that the mapping (u0, t) → DF(u0, t)
is a strongly continuous mapping of V 2β ×R into L = L(V 2β, W ). It follows from
(2.9) that, for each bounded set U in V 2β , the Fréchet derivative DF(u, t) satisfies

‖DF(u0, t)‖L ≤ k1, for all (u0, t) ∈ U × R.

We are interested in the case where the Fréchet derivative DF is Lipschitz
continuous, which leads us to the following definition. We say that F ∈ C1,1

F if F
is in C1

F and for each bounded set U in V 2β , there is a constant k3 = k3(U) =
k3(F, U) ≥ 0 such that

‖DF(u1, t) − DF(u2, t)‖L ≤ k3‖Aβ(u1 − u2)‖,
for all u1, u2 ∈ U and all t ∈ R. We say that F ∈ C2

F if F is in C1,1
F and F has two

continuous Fréchet derivatives with respect to u ∈ V 2β . For example, the inertial
term in the Navier–Stokes equations is in C2

F , see [33], (61.32) in Section 6.1).
Let Hypothesis A be satisfied and let F = F(u, t) be in CLip. We say that

a function u = u(t) is a mild solution of

∂tu + Au = F(u, t), u(τ) ∈ V 2β, τ ∈ R(2.13)
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on some interval τ ≤ t < T , where τ < T ≤ ∞, provided that

u(t) = e−A(t−τ)u(τ) +
∫ t

τ

e−A(t−s) F(u(s), s) ds, for τ ≤ t < T.(2.14)

The basic theory on the existence, uniqueness, continuity, and regularity of mild
solutions of (2.13) can be found in [33, Sections 4.7–4.8]; also see [13] and [18].
We present here a summary of this theory for the convenience of the reader.

First we note that for every (u0, t0) ∈ V 2β × R and every F ∈ CLip, there
is a unique mild solution u = u(t) of (2.13) (with t0 = τ) on some interval
t0 ≤ t < T , where t0 < T ≤ ∞, and one has u ∈ C[t0, T ; V 2β). Furthermore,
this solution is maximally defined in the sense that either T = ∞ or one has

limt→T− ‖Aβu(t)‖ = ∞. Since f(t)
def= F(u(t), t) is in L∞

loc[t0, T ; W ), it follows
that the mild solution u(t) is locally Hölder continuous in time t, that is, u(t)
is in C0,φ0

loc (t0, T ; V 2β), for some φ0 with 0 < φ0 ≤ 1, see [33, Lemma 42.7].
If, in addition, the function f(t) itself is locally Hölder continuous, then u(t) is
a strong solution of (2.13), and it has additional regularity properties, as noted in
Section 2.4. Also see [33, Theorem 42.9].

In order that f(t) be Hölder continuous, it suffices to assume that the nonlinear
term F = F(u, t) is in CLip;φ, for some φ with 0 < φ ≤ 1, where

CLip;φ = CLip;φ(V 2β ×R, W ),

and the space CLip;φ is the collection of those functions F = F(u, t) in CLip with
the property that for any bounded sets U in V 2β and J in R, there exists a constant
k3 = k3(U, J ) = k3(F, U, J ) such that

‖F(u1, t1) − F(u2, t2)‖ ≤ k3
(‖Aβ(u1 − u2)‖ + |t1 − t2|φ

)
,(2.15)

for all (u1, t1), (u2, t2) ∈ U × J , with |t1 − t2| ≤ 1. Thus, if F satisfies (2.15), then
the mild solutions u = u(t) are strong solutions in V 2β , see [33, Lemma 47.2].
Notice that the space Ca

Lip of autonomous nonlinearities satisfies Ca
Lip ⊂ CLip;φ, for

any φ with 0 < φ ≤ 1.
Next, observe that if F ∈ CLip, then every translate Fτ is in CLip, where

Fτ (u, t) = F(u, τ + t), τ, t ∈ R.(2.16)

Furthermore, if F satisfies (2.8) and (2.9), then for each τ ∈ R, so does Fτ , with
the same bounds k0 and k1. On the space CLip, we will use a Fréchet space topology
of uniform convergence on bounded sets U × J in V 2β ×R. For each bounded set
U × J and F ∈ CLip, we define two pseudonorms:

‖F‖{U,J} = sup
t∈J

sup
u∈U

‖F(u, t)‖,

‖F‖{A;U,J} = sup
t∈J

∫ t

0
sup
u∈U

‖Aβe−A(t−s) F(u, s)‖ ds.
(2.17)

Note that (2.4), (2.8), and the definition of Gamma function imply that

‖F‖{A;U,J} ≤ Mβ aβ−1Γ(1 − β) ‖F‖{U,J}, where J = [0, n].(2.18)
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It follows that either family of pseudonorms in (2.17) generates a (Fréchet space)
metric on CLip, see [16] or [33].

The topologies T 0
bo and T 0

A on CLip: The topology on CLip generated by the
pseudonorms ‖ · ‖{A;U,J} will be denoted by T 0

A . The subscript refers to the role
played by the sectorial operator A in the definition of these pseudonorms. A second
topology on CLip is generated by the pseudonorms ‖F‖{U,J} and is denoted by T 0

bo,
i.e., it is the topology of uniform convergence on bounded sets, i.e., the bounded-
open (bo)-topology. It follows from inequality (2.18) that the topologies satisfy
T 0

A ⊂ T 0
bo.

Note that the space of autonomous nonlinearities Ca
Lip is a closed subset in

both T 0
A and T 0

bo. In fact, if F ∈ Ca
Lip, the pseudonorm ‖F‖{U,J} does not depend

on the bounded set J in R. As a result, we will write ‖F‖{U} = ‖F‖{U,J} in this
case. Note also that the restriction of the topology T 0

bo to Ca
Lip is generated by

the pseudonorms ‖F‖{U}, where U is a bounded set in V 2β . Furthermore, when
G ∈ CLip, the mapping

t → G(·, t) : R→ Ca
Lip

is a continuous mapping of R into Ca
Lip and the space C(R, Ca

Lip) agrees with the

space CLip = CLip(V 2β × R, W ), when Ca
Lip has the T 0

bo topology, as described
above.

We will use the notation S(F, t)u0 to denote the mild solution of (2.13) with
τ = 0 and u(0) = u0. By means of a simple change of variables in (2.14), one then
obtains u(τ + t) = S(Fτ , t)u(τ), for t ≥ 0. When u(τ) = S(F, τ)u0, this leads to
the cocycle identity

S(F, τ + t) = S(Fτ , t)S(F, τ), for τ, t ≥ 0.(2.19)

We let T(F, u0) satisfy 0 < T(F, u0) ≤ ∞, where 0 ≤ t < T(F, u0) is the interval
of definition for the maximally defined solution S(F, t)u0.

The mapping S : (F, u0, t) → S(F, t)u0 is a continuous mapping of the space

Ξ = {
(F, u0, t) ∈ CLip × V 2β × [0,∞) : 0 ≤ t < T(F, u0)

}
(2.20)

into V 2β , and Ξ is an open set in CLip × V 2β × [0,∞), see [33, Theorem 47.5].
For the space V 2β , we use the strong topology. We let (Ξ,T 0

A ) and (Ξ,T 0
bo) denote

the space Ξ with the respective topologies on CLip. We note that the mild solution
mapping S : (Ξ,T 0

A ) → V 2β is continuous, from which it follows that the mapping
S : (Ξ,T 0

bo) → V 2β is continuous as well, see [33, Theorem 47.5]. More precisely,
let Fi ∈ CLip and let ui = ui(t) be the mild solutions of the problems

∂tui + Aui = Fi(ui, t), ui(0) = ui0 ∈ V 2β, for i = 1, 2.

Set w = u1 − u2 and w0 = w(0) = u10 − u20. Let Fi(ui) = Fi(ui(t), t), for
i = 1, 2. Then w = w(t) is a solution of

w(t) = e−Atw0 +
∫ t

0
e−A(t−s)[F1(u1) − F2(u2) ± F1(u2)] ds.
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Assume that ‖Aβui(t)‖ ≤ a, for 0 ≤ t ≤ τ . Then there are positive constants Ca,τ

and Da,τ such that

‖Aβw(t)‖ ≤ Ca,τ‖Aβw0‖ + Da,τ‖F1 − F2‖{A;U2a,Jτ },(2.21)

where Ua = {u ∈ V 2β : ‖Aβu‖ ≤ a} and Jτ = [0, τ]. Thus one finds that S(F, t)u0

is locally Lipschitz continuous in F and u0, uniformly for t in compact sets.

The topologies T 1
bo and T 1

A on C1
F: Two C1-pseudonorms ‖F‖{C1;A;U,J} and

‖F‖{C1;U,J} are defined for F in C1
F as follows:

‖F‖{C1;A;U,J}
def= ‖F‖{A;U,J} + sup

t≥0

∫ t

0
sup
u∈U

‖Aβe−A(t−s)DF(u, s)‖L ds,

‖F‖{C1;U,J}
def= ‖F‖{U,J} + sup

t∈J
sup
u∈U

‖DF(u, t)‖L,

where L = L(V 2β, W ). As argued in (2.18), one has

‖F‖{C1;A;U,J} ≤ Mβ aβ−1Γ(1 − β)‖F‖{C1;U,J}, where J = [0, n].
Let T 1

A and T 1
bo denote the topologies generated on C1

F by the two pseudonorms
‖ · ‖{C1;A;U,J} and ‖ · ‖{C1;U,J}, respectively. The last inequality then shows that one
has T 1

A ⊂ T 1
bo.

When F ∈ Ca
Lip ∩ C1

F , then the C1-pseudonorm ‖F‖{C1;U,J} does not depend
on the bounded set J in R. In this case we will express this pseudonorm as
‖F‖{C1;U} = ‖F‖{C1;U,J}.

2.3. The linearized equation

In this section we consider various time-varying linear operators B(t), where B(t) ∈
L = L(V 2β, W ), for t in some interval in R. In particular, we consider the spaces

M∞(0,∞; L)
def= L∞(0,∞; L) ∩ C[0,∞; L) and

M∞(R; L)
def= L∞(R; L) ∩ C(R; L).

More explicitly, we now assume that F ∈ C1
F , see (2.11). Let u = u(t) be a solution

of the nonlinear evolutionary equation (2.13). Since F = F(u, t) has a continu-
ous Fréchet derivative in u, DF(u, t) = Du F(u, t), we linearize (2.13) along the
solution u(t) and thereby obtain the nonautonomous linear problem

∂tv + Av = DF(u(t), t)v.

Assume now that u = u(t) = S(F, t)u0 is a mild solution of (2.13) that satisfies
S(F, t)u0 ∈ U , for t ≥ 0, where U is some bounded set in V 2β . Then

B(t) = B(F, u0; t)
def= DF(S(F, t)u0, t)(2.22)
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is well defined, for all (F, u0, t) ∈ Ξ , and the mapping (F, u0, t) → B(F, u0, t) is
a mapping of Ξ into L. Since U is a bounded set, one has B(·) ∈ M∞(0,∞; L).
If, instead, the solution u(t) = S(F, t)u0 is a global solution, with u(t) ∈ U , for
all t ∈ R, then B(·) ∈ M∞(R,L). In the sequel we let M∞ = M∞(J; L), where
J = [0,∞), or J = R.

Next we consider two topologies for the space M∞ = M∞(0,∞; L). These
are T 0

bo and T 0
A . The metric topology on (M∞,T 0

bo) is generated by the family of
pseudonorms

‖B‖{Jτ } = sup
t∈Jτ

‖B(t)‖L, where B ∈ M∞ and Jτ = [0, τ].

Likewise, the metric topology on (M∞,T 0
A ) is generated by the family of pseudo-

norms

‖B‖{A;Jτ } = sup
t∈Jτ

∫ t

0
‖Aβe−A(t−s) B(s)‖L ds, where B ∈ M∞ and Jτ = [0, τ].

Let B ∈ M∞ and consider the linear problem

∂tv + Av = B(t)v, v(0) = v0 ∈ V 2β and t ∈ J,(2.23)

where A satisfies Hypothesis A. As noted in [33, Section 4.4], the solution operator
Φ(B, t) for (2.23) satisfies the equation

Φ(B, t)v = e−Atv +
∫ t

0
e−A(t−s) B(s) Φ(B, s)v ds,(2.24)

for v ∈ V 2β and t ≥ 0. The basic theory on the properties of the solution operator
Φ(B, t) is contained in [33, Theorem 44.1]. Among many such properties, one has
Φ(B, 0) = I , the identity; Φ(B, t) is the Fréchet derivative of the solution S(F, t)u,
with respect to u at time t, when B satisfies (2.22); and

Φ(B, t)v ∈ C[0,∞; V 2β) ∩ C0,φ
loc (0,∞; V 2r), for any B ∈ M∞,

for all r with 0 ≤ r < 1, where the Hölder exponent φ depends on r. If B ∈ M∞
satisfies the Hölder condition

B ∈ C0,φ1
loc (J; L),(2.25)

for some φ1 with 0 < φ1 ≤ 1, then the solutions Φ(B, t)v are strong solutions
of (2.23), see [33, Theorem 44.4]. For example, if B is given by (2.22), where
F ∈ C1,1

F ∩ CLip;φ, then B satisfies (2.25).
Furthermore, the mapping

(B, w0, t) → Φ(B, t)w0

is a continuous mapping of M∞ × V 2β × [0,∞) into V 2β with respect to either
the T 0

bo or the T 0
A topology on M∞. For B ∈ M∞, we define the translate Bτ by

Bτ(t) = B(τ + t), for τ, ∈ J and t ≥ 0.
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By means of a simple change of variables, one readily finds that Φ(B, t) satisfies
the cocycle identity:

Φ(B, τ + t) = Φ(Bτ , t) Φ(B, τ), for τ, t ≥ 0.(2.26)

Compare with (2.19). If B satisfies (2.22), for 0 ≤ t < ∞, then Bτ satisfies

Bτ (t) = B(F, u0; τ + t) = B(Fτ , S(F, τ)u0; t), for τ, t ≥ 0.(2.27)

Thus one has

Bτ (t) = DF (S(F, τ + t)u0, τ + t) = DFτ (S(Fτ , t)S(F, τ)u0, t) .

We define
Ξ1 def= {

(F, u0, t) ∈ Ξ : F ∈ C1
F

}
.

For (F, u0, t) ∈ Ξ1, we set

Z(F, u0) = B, where B(t) = DF(S(F, t)u0, t),(2.28)

for 0 ≤ t < T(F, u0). Thus B = B(t) is the time-varying linear operator that
satisfies B(t) ∈ L. One can readily verify that Ξ1 is an open set in C1

F×V 2β×[0,∞)

and that Z(F, u0, t) is a continuous mapping of Ξ1 into L, when C1
F has either

topology T 1
bo or T 1

A . See [33, Section 4.7].

2.4. Nonlinear theory revisited

Next we examine the linear inhomogeneous equation

∂tv + Av = B(t)v + g(t),(2.29)

where Hypothesis A is satisfied, B = B(t) ∈ M∞, g ∈ L∞
loc[0, T ; W ), and 0 <

T ≤ ∞. We will say that v = v(t) is a mild solution of equation (2.29) in V 2β on
the interval [0, T ), if v(0) = v0 ∈ V 2β , v(·) ∈ C[0, T ; V 2β), and the variation of
constants formula

v(t) = e−Atv0 +
∫ t

0
e−A(t−s)[B(s)v(s) + g(s)] ds, for 0 ≤ t < T,(2.30)

holds. We note that, for every v0 ∈ V 2β and every g ∈ L∞
loc[0, T ; W ), there is

a unique mild solution v = v(t) of equation (2.29) in V 2β on the interval [0, T ).
If g ≡ 0, then the mild solution v is given by v(t) = Φ(B, t)v0, for all t ≥ 0. For

the general case, the mild solution v of equation (2.29) satisfies a second variation
of constants formula:

v(t) = Φ(B, t)v0 +
∫ t

0
Φ(Bs, t − s) g(s) ds, for t ≥ 0,(2.31)

where v0 ∈ V 2β and Bs is the translate Bs(t) = B(s + t), for s, t ≥ 0. The proof of
(2.31) can be found in [33, Theorem 45.6].
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Finally, we note that, if v0 ∈ V 2β , then the mild solution v of equation (2.29)
satisfies

v(·) ∈ C[0, T ; V 2β) ∩ C0,φ
loc (0, T ; V 2r),

for every r with 0 ≤ r < 1, where 0 < φ < 1 − r. If, in addition, B and g satisfy

B ∈ C0,φ1
loc (0,∞; L(V 2β, W )) and g ∈ L1

loc[0, T ; W ) ∩ C0,φ2
loc (0, T ; W ),(2.32)

for some φi with 0 < φi ≤ 1, for i = 1, 2, then v is a strong solution of equation
(2.29) in W on 0 ≤ t < T , see [33, Theorem 44.6].

Let us now turn to the perturbed equation

∂tu + Au = F(u, t) + G(u, t),(2.33)

where Hypothesis A is satisfied and F and G are in C1
F . Let (F, u0, t) ∈ Ξ1 and let

B = B(t) satisfy (2.28). Assume further that B ∈ M∞(0,∞; L) and let Φ(B, t) be
given by (2.24). Let u1 = u1(t) be a mild solution of (2.33) in V 2β on the interval
0 ≤ t < T , and define w = u1 − u2, where u2 = u2(t) = S(F, t)u0. It then follows
that w is a mild solution of the equation

∂tw + Aw = F(u2 + w, t) − F(u2, t) + G(u2 + w, t).

Also, (2.12) implies that the last equation can be written in the form

∂tw + Aw = B(t)w + H(u2, w, t),(2.34)

where
H(u2, w, t) = E(u2, w, t) + G(u2 + w, t)

and E = E(u2, w, t) satisfies (5.7)–(5.11), with u0 = u2(t) and t ≥ 0. By setting
g(t) = H(u2(t),w(t), t), for 0 ≤ t < T , it follows from (2.30) and (2.31) that w

satisfies two variation of constants formulae:

w(t) = e−Atw0 +
∫ t

0
e−A(t−s)[B(s)v(s) + H(u2(s),w(s), s)] ds(2.35)

and

w(t) = Φ(B, t)w0 +
∫ t

0
Φ(Bs, t − s) H(u2(s),w(s), s) ds,(2.36)

for 0 ≤ t < T , where w0 = w(0) = u1(0) − u2(0) = u1(0) − u0.

3. Skew product semiflows

We now turn to the dynamical issues underlying the perturbation theory arising in
problems (1.1) and (1.2). Let us begin with the space of nonlinearities CLip, see
(2.7). As noted above, we will use the Fréchet space topologies T 0

bo and T 0
A . When
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F ∈ C1
F , we also use the C1-topologies T 1

bo and T 1
A . Recall that if F ∈ CLip, then

the translate Fτ is in CLip, for any τ ∈ R, and the cocycle identity (2.19) is valid.
Since the mapping

(F, τ) → Fτ(3.1)

is a continuous mapping of CLip × R into CLip, this mapping is a flow on CLip in
either topology T 0

bo or T 0
A . Furthermore, the collection of autonomous nonlinearities

Ca
Lip is precisely the set of stationary motions for this flow, that is to say, Fτ = F,

for all τ ∈ R, if and only if F ∈ Ca
Lip. A set H in CLip is invariant if Fτ ∈ H , for

all τ ∈ R, whenever F ∈ H . Recall that if H is an invariant set in a flow, then its
closure is also invariant. Because of this, we will focus on closed invariant sets H
below. For example, if S0 is a nonempty set in CLip, then H(S0), the hull of S0, is
a closed, invariant subset of CLip, where

H(S0)
def= Cl{Fτ : τ ∈ R and F ∈ S0},(3.2)

and the closure Cl is taken in the respective topology T 0
bo or T 0

A .
The class of all compact, invariant subsets of CLip is of special interest in our

applications. Recall that a subset H in CLip is compact if for every sequence {F(k)}
in H , there is a subsequence – which we relabel as {F(k)} – such that {F(k)} is
convergent. The convergence is formulated in terms of the respective topology on
CLip, be it T 0

bo or T 0
A . For example, {F(k)} converges to F in (CLip,T

0
A ) provided

that for any bounded set U × J in V 2β × R, one has

‖F(k) − F‖{A;U,J} → 0, as k → ∞.

In the case of the topology T 0
bo, the Ascoli–Arzelá Theorem gives a characterization

of compactness, see, e.g., [32].
For our applications, the typical compact, invariant set H in CLip arises as the

continuous image of a known flow on a compact space. More precisely, let M be
a (nonempty) compact space and let σ(θ, t) = θ · t, for θ ∈ M and t ∈ R, denote
a flow on M. Next let h : M → Ca

Lip be a continuous mapping, that is, for each
θ ∈ M, the image h(θ) is a point in Ca

Lip, which we write as

h(θ) = F̂(u, θ), for u ∈ V 2β and θ ∈ M.(3.3)

For each θ ∈ M, we define ĥ(θ) ∈ CLip by ĥ(θ) = F, where

F(u, t) = F̂(u, θ · t) = F̂(u, σ(θ, t)), for u ∈ V 2β and t ∈ R.(3.4)

The collection H = ĥ(M), or

H = {F ∈ CLip : F(u, t) = F̂(u, θ · t), for some θ ∈ M},(3.5)

is the continuous image of the compact set M, and it is a compact, invariant set in
CLip. Moreover, when F = ĥ(θ), the translate Fτ satisfies Fτ = ĥ(θ · τ), that is to
say,

Fτ (u, t) = F(u, τ + t) = F̂(u, σ(θ · τ, t)), for τ, t ∈ R.(3.6)

Thus the flow (F, τ) → Fτ on K is a lifting of the flow (θ, τ) → θ · τ on M. We
note that any lifting ĥ maps full orbits in M onto full orbits in K = ĥ(M), see
(3.5). This happens even when ĥ is not a homeomorphism.
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3.1. Nonlinear dynamics

Next we introduce a single setting that is rich enough to include all the dynamical
features of the six equations appearing in (1.1)–(1.3) in a single framework. In
doing this, we build upon the theory of nonautonomous dynamics used in [26] for
the Navier–Stokes equations. Let H be any (nonempty) invariant set in CLip. Now
consider the family of evolutionary equations

∂tu + Au = F(u, t), where F ∈ H .(3.7)

For example, H may be the hull H(S0), where S0 = {F, G} and F and G are given
in (1.1)–(1.3).

Let Ξ and T(F, u0) be given by (2.19)–(2.20), and let S(F, t)u0 be the mild
solution of (3.7) with S(F, 0)u0 = u0. For (F, u0, t) ∈ Ξ , we define π(F, u0; t) by

π(F, u0; t) = (Ft , S(F, t)u0).(3.8)

Since S(F, t) satisfies the cocycle identity (2.19), it follows that if

τ ∈ [0, T(F, u0)) and t ∈ [0, T(Fτ , S(T, τ)u0)),

then τ + t ∈ [0, T(F, u0)), and π satisfies

π(F, u0; τ + t) = π(Fτ , S(F, τ)u0; t) = π(π(F, u0; τ); t).

When T(F, u0) = ∞, for all F ∈ H and all u0 ∈ V 2β , this implies that π is
a semiflow on the product space H × V 2β . Since the flow (F, τ) → Fτ does not
depend on u0, this is a skew product semiflow.

The requirement that T(F, u0) = ∞ for all u0 ∈ V 2β is too strong for some of
our applications since we are interested only in the dynamical behavior of (3.7) in
the vicinity of a specific compact set K in H × V 2β . To allow for this and to be
more precise, we make a definition:

Definition. A set K in H ×V 2β is said to be an invariant set for π if the following
holds:

• one has T(F, u0) = ∞, for all (F, u0) ∈ K; and
• one has π(t)K = K, for all t ≥ 0, where

π(t)K = {π(F, u0; t) : (F, u0) ∈ K}.
Let K be an invariant set for π in H × V 2β . Define H1, the shadow of K, by

H1
def= {F ∈ CLip : there is a u1 ∈ V 2β with (F, u1) ∈ K}.(3.9)

Thus H1 = P1K, where P1 is the projection P1 : H × V 2β → H given by
P1(F, u0) = F. Clearly, one has H1 ⊂ H and H1 is also an invariant set in CLip.
For each F ∈ H1, we define the fiber K(F) by

K(F)
def= {u0 ∈ V 2β : (F, u0) ∈ K}.(3.10)
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As a result of the skew product structure, the invariance condition π(t)K = K is
equivalent to asserting that

S(F, τ) K(F) = K(Fτ ), for all τ ≥ 0.(3.11)

Our interest will be in the theory of compact invariant sets in H × V 2β . In
this connection, we note the following result, which is easily verified. (Item 3 is
a standard result, see [33, Lemma 21.2], for example.)

Lemma 3.1. Let H be a nonempty invariant set in CLip and let K be a nonempty,
compact, invariant set for π in H × V 2β . Then the following hold:

1. The shadow H1, see (3.9), is a nonempty, compact, invariant set in H .
2. Each fiber K(F), see (3.10), is a nonempty, compact set in V 2β .
3. For every (F, u0) ∈ K, there is a negative continuation φ, that is, φ is in

C((−∞, 0], V 2β), and for every τ ≤ 0, one has (Fτ , φ(τ)) ∈ K with

S(Fτ ,−τ + t)φ(τ) = S(F, t)u0, for all t ≥ 0.

The theory we develop here for nonautonomous dynamics in infinite dimensions
builds upon the properties of mild solutions, as described above. However, a crucial
aspect of this theory is that the linear dynamics – which is outlined in Section 3.2
– must be a “good” approximation to the nonlinear dynamics of the problem. As
will be shown, this means that, if (F, u0) ∈ K, then S(F, t)u0, the solution of
the nonlinear problem, needs to be Fréchet differentiable in u0, for each t ∈ R.
In the case of the Navier–Stokes equations, for example, this requires that this
mild solution in K be a strong solution of the problem. In this connection, we
have the following result, which is essentially proved in [33, Lemma 47.2 and
Theorem 47.6].

Lemma 3.2. Let H be a nonempty, invariant set in CLip and assume that for each
F ∈ H , there is a φ ∈ (0, 1] such that F ∈ CLip;φ, see (2.15). Let K be a nonempty,
compact, invariant set for π in H × V 2β . Then for each (F, u0) ∈ K, the globally
defined mild solution u(t) = S(F, t)u0 is a strong solution and a classical solution
of (3.7) in V 2r , for all t ∈ R, and u satisfies

u(·) ∈ C0,1−r
loc (R; V 2r) ∩ C(R; D(A)),(3.12)

for each r with 0 ≤ r < 1.

3.2. Smooth nonlinearities

The considerations described above are applicable when the nonlinear terms F
have additional smoothness and lie in the space C1

F . For example, the mapping
(3.1), where (F, τ) → Fτ is continuous and defines a flow on C1

F , with respect to
either topology, T 1

bo or T 1
A . Also, if the set S0 is in C1

F , then the hull H(S0), see
(3.2), is a closed invariant set in C1

F , when the closure is taken in either topology
T 1

bo or T 1
A .
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When H is a (nonempty) invariant set in C1
F , then the system of equations (3.7)

generates a skew product flow π, see (3.8), on H × V 2β in either topology T 1
bo

or T 1
A . Furthermore, Lemmas 3.1 and 3.2 remain valid when H is a (nonempty)

invariant set in C1
F , where C1

F has either the T 1
bo or the T 1

A topology.
The new feature that now arises is the associate linearized equation (2.23). In

order to see the role to be played by the linearized equation, let us assume that H
is a nonempty, invariant set in C1

F , and let K be a nonempty, compact, invariant
set for π in H × V 2β . As noted above, Lemma 3.1 holds. Now let (F, u0) be an
element in K and let Z(F, u0) = B satisfy (2.28). Let Φ(B, t) satisfy (2.24). We
now define a mapping Π by

Π : K × V 2β × [0,∞) → K × V 2β

Π(F, u0, w0; t) = (Ft , S(F, t)u0,Φ(B, t)w0).
(3.13)

As a result of the two cocycle properties (2.19) and (2.26), the mapping Π is
a semiflow on E = K ×V 2β . This mapping Π is a (level 2) skew product semiflow
since Ft does not depend on (u0, w0) and (Ft, S(F, t)u0) does not depend on w0.
Since Φ(B, t)w0 is linear in w0, Π is referred to as a linear skew product semiflow.

Remark. The considerations in the last paragraph remain valid under far greater
generality than presented here. The set K need not be compact. For example, it
may be any bounded, positively invariant set in H × V 2β . In fact, it need not even
be bounded, but then the linear term B need not be in L∞(0,∞; L). The point is
that Π is still a linear skew product semiflow, with related topologies on the spaces.
We omit these details.

3.3. Quasiperiodicity

The principal application of the theory of evolutionary equations (1.1)–(1.2) to be
made in this study is to those nonautonomous equations that are quasiperiodic in
time. There are many equivalent formulations of quasiperiodicity in the literature,
see, e.g., [6,10,34]. We opt for the formulation that fits best in the framework
described above. For this purpose, we let M = T k denote the k-dimensional torus,
i.e., T k is the k-fold product T k = S1 × · · · × S1 of the circle S1. We will use
θ = (θ1, · · · , θk) to represent a typical point in T k, where θ j ∈ S1, for 1 ≤ j ≤ k,
and each coordinate is periodic with period 2π. The flow on T k is the twist flow

(θ, t) → θ · t
def= θ + ω t mod (2π), for t ∈ R, and ω ∈ Rk,(3.14)

where toroidal arithmetic is used here. We require that ω satisfy the condition

ω · n = 0 ⇐⇒ n = 0, where n ∈ Zk,(3.15)

ω · n = ω1n1 + · · · + ωknk, and the terms n1, · · · , nk are integers. The collection
of all real numbers

M = M(ω) = {ω · n : n ∈ Zk}(3.16)
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is called the frequency module generated by ω. The condition (3.15) implies
that the k-frequencies {ω1, · · · , ωk} form a basis for the module M(ω). Thus the
algebraic dimension of M(ω) is k.

Definition: A function F = F(u, t) in CLip is said to be quasiperiodic (in
time) if there exist an integer k ≥ 1, an ω ∈ Rk, and a continuous mapping
h : T k → Ca

Lip such that for each θ ∈ T k, the function h(θ) = F̂(θ, u)

satisfies

F(u, t) = F̂(θ0 + ω t, u), for all t ∈ R,(3.17)

and some θ0 ∈ T k, see equations (3.3)–(3.4).

Note that if F0 = F0(u, t) is quasiperiodic (in time), then H(F0), the hull of
F0, satisfies H(F0) = ĥ(T k), see (3.4)–(3.5). Thus the flow (F, τ) → Fτ on H(F0)

is a lifting of the twist flow (3.14) on the torus T k. It follows from (3.17) that the
hull H(F0) is homeomorphic to a torus T m and that the topological dimension
satisfies dim H(F0) = m, where m ≤ k. It then follows from the Cartwright
Theorem, see [7,8], that the frequency module M(H(F0)) of H(F0) has algebraic
dimension m, and that M(H(F0)) ⊂ M(ω). Consequently, there is a frequency
vector ω̂ = (ω̂1, · · · , ω̂m) such that:

• ω̂ j ∈ M(ω), for 1 ≤ j ≤ m;
• One has ω̂ · n̂ = 0 ⇐⇒ n̂ = 0, where n̂ ∈ Zm ; and
• M(H(F0)) = M(ω̂).

Thus the flow on H(F0) is (essentially) the twist flow on T m with frequency
vector ω̂.

In this definition, we require that the lifting h : T k → Ca
Lip, or ĥ : T k → CLip,

be only continuous, i.e., h ∈ C(T k, Ca
Lip) or ĥ ∈ C(T k, CLip). However, to address

some of the technical issues of interest in the study of quasiperiodic dynamics, one
sometimes requires that h, or ĥ, have additional smoothness. Hölder continuous
liftings are of special interest. We say that h is a Hölder continuous lifting of T k,
i.e., that h ∈ Cα(T k, Ca

Lip), if there is an α with 0 < α ≤ 1 and there are constants
Kα > 0 and eα, with 0 < eα ≤ 1, such that

d(h(θ), h(̃θ)) ≤ Kα |θ − θ̃|α, whenever |θ − θ̃| ≤ eα,(3.18)

where d is a fixed metric on Ca
Lip generated by any of the pseudonorms described

in Sections 2 or 3. (See [16] or [33, Appendix A] for more details.) A similar
definition of Hölder continuity is is in play when h ∈ C1

F , or when ĥ is in either
C(T k, CLip), or C(T k, C1

F).

Alternate notation: There is an alternate notation for the skew product semiflows π

and Π described in (3.8) and (3.13). What is involved is to rewrite the evolutionary
equation (3.7) by using F̂ = F̂(θ, u) in place of F = F(u, t), see (3.17). In this
notation, one needs to append the differential equation for the twist flow on the
torus T k, which is given by ∂tθ = ω, see (3.14). Thus (3.7) then becomes the
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system

∂tu + Au = F̂(θ, u) and ∂tθ = ω.(3.19)

It is convenient to use the abbreviated notation

θ · t = θ + ω t

for the solutions of the θ-equation, i.e., for the twist flow, see (3.14). We then let
S(θ, t)u0 denote the mild solutions of the u-equation that satisfy S(θ, 0)u0 = u0,
for u0 ∈ V 2β . It follows from the cocycle identities (2.19) and (3.6) that S(θ, t)
satisfies a related cocycle identity:

S(θ, τ + t) = S(θ · τ, t)S(θ, τ), for τ, t ≥ 0.(3.20)

The skew product semiflow π then assumes the form given in (3.21). In this
notation, the space Ξ , see (2.20), is replaced by

Ξ = {(θ, u, t) ∈ T k × V 2β × [0,∞) : 0 ≤ t < T(θ, u)},
where [0, T(θ, u)) is the interval of definition of the maximally defined mild solution
S(θ, t)u. A similar change is made when Ξ1 is used in place of Ξ . In the case of
the linear skew product semiflow Π, one obtains the representation

π(θ, u0; t) = (θ · t, S(θ, t)u0)

Π(θ, u0, w0; t) = (θ · t, S(θ, t)u0,Φ(B, t)w0),
(3.21)

where

B = Z(θ, u0) and B(t) = DF̂(θ · t, S(θ, t)u0),(3.22)

see (2.28). We now have the following result:

Lemma 3.3. Let h : T k → Ca
Lip be a Hölder continuous mapping that satis-

fies (3.18). Let F = F(u, t) and F̂ = F̂(θ, u) satisfy (3.17). Then F is Hölder
continuous in time t, and the conclusions of Lemma 3.2 are valid.

Proof. From (3.17) one obtains

F(u, t + h) − F(u, t) = F̂(θ0 + ωt + ωh, u) − F̂(θ0 + ωt, u).

Inequality (3.18) then implies that for (u, t) ∈ U × J , where U × J is a bounded
set in V 2β ×R, there is a constant êα > 0 such that

‖Aβ(F(u, t + h) − F(u, t))‖ ≤ êα|h|α, for all (u, t) ∈ U × J,

whenever |h| ≤ |ω|−1 eα. Hence, F is in the Hölder space CLip;α. ��
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3.4. Global solutions

The concept of an invariant set is closely connected with the notions of a negative
continuation and a global solution. Let S(t) be a semiflow on a space W and let K
be an invariant set in W , that is, one has S(t)K = K , for all t ≥ 0. Then for any
u ∈ K, there is a continuous function v in C(R,K) that satisfies v(0) = u and

S(t)v(τ) = v(τ + t), for all τ ∈ R and all t ≥ 0.(3.23)

It follows from (3.23) that v(t) = S(t)u, for all t ≥ 0. Any continuous function v

satisfying (3.23) is called a global solution, and the restriction of v to (−∞, 0] is
called a negative continuation of S(·)u.

When (3.23) holds, it is convenient to define S(t)u, for t ≤ 0, by setting
S(t)u = v(t). However, when doing this, keep in mind that, without additional
assumptions, the negative continuation need not be uniquely determined. We will
be using this notation for the invariant set K, as described in Lemmas 3.1 and
3.2. When (F, u0) ∈ K, then S(F, t)u0 is a global solution. Likewise, when
(F, u0, w0) ∈ K × V 2β and B = Z(F, u0) ∈ M∞(R,L), then Φ(B, t)w0 is also
a global solution.

4. Foliated invariant sets

In this section, we present a precise statement of the concept of a foliated invariant
set. This concept involves two aspects: (1) geometrical properties and (2) dynamical
properties. While our goal is the study of the properties of foliated, invariant sets in
the theory of nonautonomous dynamics, as in (1.2), it is convenient to begin with
a definition of a foliated invariant set for the autonomous problem

∂tu + Au = F(u),(4.1)

where A satisfies Hypothesis A and F ∈ Ca
Lip ∩ C1

F , see (2.10)–(2.11).

4.1. Autonomous theory

Let W be a Banach space. We begin with abbreviated statements of five properties
F1–F5 a set K in W may possess. More detailed statements of these properties are
given later in this section. A set K in W is said to be an F1–F2 set if it is nonempty
and there is an integer k ≥ 1 and a ρ0 > 0 such that:

• F1: K is a compact set; and
• F2: for each u ∈ K, there is a k-dimensional uniformly, Lipschitz continuous

disk Dρ0(u), of radius ρ0 and center at u, with u ∈ Dρ0(u) ⊂ K .

When K is an F1–F2 set in W , we define S1(u) = Dρ0(u),

Si+1(u) =
⋃

v∈Si(u)

Dρ0(v), for u ∈ K and i ≥ 1, and S(u) = ∪∞
i=1Si(u).

The set S(u) is called the leaf through u, and one has u ∈ Dρ0(u) ⊂ S(u) ⊂ K,
for all u ∈ K. A more detailed statement of property F2 is that, for any u ∈ K ,
there exist a disk D(u, ρ0) in a k-dimensional normed linear space X = X(u), with
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center at the origin and with radius ρ0 > 0, and a Lipschitz continuous function
ν : D(u, ρ0) → W such that the image

Dρ0(u)
def= {v = u + p + ν(p) : p ∈ D(u, ρ0)} = Graph ν(4.2)

is an open neighborhood of u in the leaf S(u). The uniformity condition in property
F2 refers to the feature that there is an L0 > 0 such that ν : D(u, ρ0) → W is
Lipschitz continuous with

‖ν(p1) − ν(p2)‖W ≤ L0 ‖p1 − p2‖W , for p1, p2 ∈ D(u, ρ0)(4.3)

and all u ∈ K. Since ν(0) = 0, one finds that

‖ν(p)‖W ≤ L0 ‖p‖W , for p ∈ D(u, ρ0) and u ∈ K.(4.4)

(Note that L0 does not depend on u ∈ K.)
We let TvS(u) denote the tangent space to the leaf S(u) at the point v, where

v ∈ S(u) and u ∈ K. The k-dimensional space X(u) can be identified with
the tangent space TuS(u). Since X(u) is a finite-dimensional space in a Banach
space W , there is a complementary space Y(u), where X(u) and Y(u) are closed
subspaces of W that satisfy W = X(u) + Y(u) and X(u) ∩ Y(u) = {0}. We let
P be the bounded linear projection on W , where the range and null space satisfy
R(P) = X(u) and N (P) = Y(u). LetQ = I−P be the complementary projection.
We assume, for now, that ν(p) ∈ Y(u), for all p ∈ D(u, ρ0), see (4.2). One then
has Q ν(p) = ν(p) and P p = p, for all p ∈ D(u, ρ0).

The foliated, invariant set K is said to be smooth when the function ν = ν(p)

in (4.2) is smooth on D(u, ρ0), for each u ∈ K. More precisely, the set K is
said to be C1-smooth when each such ν is a C1-mapping, i.e., ν has a continuous
derivative on D(u, ρ0). Likewise, K is said to be C1,1-smooth when each such ν is
a C1,1-mapping, i.e., ν has a continuous derivative on D(u, ρ0) and the derivative
of ν, Dν(p), is Lipschitz continuous on D(u, ρ0).

Definition: Let S(t)u denote a semiflow defined on a subset U in W . Thus
(u, t) → S(t)u is continuous for (u, t) ∈ U × (0,∞), S(0)u = u, and
S(t)S(s)u = S(t + s)u, for all u ∈ U and s, t ≥ 0, see [33, Section 2.1].
We say that a set K in U is a foliated, invariant set if it is an F1–F2 set
that satisfies F3, F4, and F5, where
• F3: K is a compact, connected, invariant set, and for each u ∈ K, the

leaf S(u) is an invariant set;
• F4: the induced linearized semiflow over K has an exponential tri-

chotomy and the four inequalities (4.10)–(4.13) hold, with dim Uo(u)

= k, for all u ∈ K; and
• F5: the tangency condition (4.15) holds.

Since the notation used in the definition of an exponential dichotomy is needed
below, we now present this definition in the setting where W is replaced by V 2β and
the semiflow on V 2β is generated by the mild solutions S(F, t)u0 of (4.1). We now
let K be an F1–F2 set in V 2β , and we assume that F3 holds. Thus K is invariant,
or S(F, t)K = K, for all t ≥ 0. For u ∈ K, we let S(F, t)u denote any global
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solution of (4.1) in K passing through u, see Section 3.4. We now use the linear
skew product semiflow on E = E(K) = K × V 2β , as described in Section 3.2.
Thus for (u, w) ∈ E , one has

Π(F, u, w; t) = (F, S(F, t)u,Φ(B, t)w), for t ≥ 0,(4.5)

since F is autonomous. Recall that B = Z(F, u), see (2.28), and Φ(B, t) satisfies
(2.24).

The fiber of E over the point u ∈ K is E(u) = {u} × V 2β . A mapping
P : E → E is said to be a projector if P is continuous and has the form
P(u, w) = (u, P(u)w), where P(u) is a continuous (linear) projection on the fiber
E(u). This means that P(u) : E(u) → E(u) is a bounded linear mapping that
satisfies P(u)P(u) = P(u). For any projector P : E → E we define the range and
null space by

R = R(P) = {(u, w) ∈ E : P(u)w = w} and

N = N (P) = {(u, w) ∈ E : P(u)w = 0}.
Note that the fibers R(u) and N (u) are closed linear subspaces of E(u) since P(u)

is a continuous linear mapping. Furthermore, these fibers vary continuously in u,
which implies that P(u) varies continuously in the operator norm in L(V 2β, V 2β).
The range and nullspace of a projector are subbundles of E . Also, one has R∩N =
K × {0} and R + N = E , i.e.,

R(u) ∩ N (u) = {0} and R(u) + N (u) = E(u), for all u ∈ K.(4.6)

If P is a projector on E , then the mapping Q = I − P, where Q : E → E is
defined by Q(u, w) = (u, (I − P(u))w), is also a projector on E . The projector
Q is called the complementary projector to P, and one has R(Q) = N (P) and
N (Q) = R(P). A projector P on E is said to be invariant if one has

P(S(F, t)u)Φ(B, t) = Φ(B, t)P(u), for all t ≥ 0 and u ∈ K.(4.7)

The invariance of a projector is equivalent to the assertion that both subbundles, R
and N , are positively invariant under the linear skew product semiflow Π. That is
to say, Π(t)R ⊆ R and Π(t)N ⊆ N . Note that P is invariant if and only if the
complementary projector Q is invariant.

The following definition is taken from [24] or [33, Section 4.5]. We say that Π

has an exponential trichotomy over an invariant set K in V 2β , with characteristics
λ1, λ2, λ3, λ4, and K , where

λ1 < λ2 ≤ 0 ≤ λ3 < λ4 and K ≥ 1(4.8)

if there exist three projectors Ps, Po, and Pu defined over K with the respective
ranges

R(Ps) = S = Us, R(Po) = Uo, R(Pu) = U = Uu
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and Uou = R(Qo), where Qo = I − Po = Ps + Pu satisfies1

Uou = Uo + Uu = {(u, wo + wu) ∈ E : wo ∈ Uo and wu ∈ Uu}.
Also, the following hold:

• Each of the projectors Pi , for i = s, o, u, is invariant on E = E(K).
• For each u ∈ K , the projections P(u), Q(u), and R(u) commute and one has

I = Ps(u) + Po(u) + Pu(u) and P j(u)Pk(u) = 0, when j �= k.(4.9)

• For each (u, w) ∈ Uu , let B = Z(F, u). Then there is a global solution

φu,w(t) = (S(F, t)u,Φ(B, t)w), for t ∈ R,

such that ‖e−λ4 tΦ(B, t)w‖ → 0, as t → −∞. (This global solution need not
be unique, and we let (S(F, t)u,Φ(B, t)w) denote any global solution through
(u, w) that satisfies ‖e−λ4 tΦ(B, t)w‖ → 0, as t → −∞.)

• For each (u, w) ∈ Uo, let B = Z(F, u). Then there is a global solution

φu,w(t) = (S(F, t)u,Φ(B, t)w), for t ∈ R,

such that ‖e−λ2 tΦ(B, t)w‖ → 0, as t → −∞. (This global solution need not
be unique, and we let (S(F, t)u,Φ(B, t)w) denote any global solution through
(u, w) that satisfies ‖e−λ2 tΦ(B, t)w‖ → 0, as t → −∞.)

• The following four inequalities are valid for all (u, w) ∈ E :

‖AβΦ(B, t)Ps(u)w‖ ≤ K‖Aβw‖eλ1t, for all t ≥ 0,(4.10)

‖AβΦ(B, t)Pu(u)w‖ ≤ K‖Aβw‖eλ4t, for all t ≤ 0,(4.11)

‖AβΦ(B, t)Po(u)w‖ ≤ K‖Aβw‖eλ3 t, for all t ≥ 0,(4.12)

‖AβΦ(B, t)Po(u)w‖ ≤ K‖Aβw‖eλ2 t, for all t ≤ 0,(4.13)

where B = Z(F, u) and (4.11)and (4.13)are valid for any negative continuation,
as described above.

• Since inequalities (4.10)–(4.13) hold at t = 0, one has

‖Aβ Pi(u)w‖ ≤ K‖Aβw‖, for all (u, w) ∈ E and i = s, o, u.(4.14)

Property F5, the tangency condition, states that

R(Po(u)) = Uo(u) = TuS(u), for all u ∈ K,(4.15)

1 The expression Uo+Uu defined here is referred to as the Whitney sum of the subbundles
Uo and Uu .
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where TuS(u) denotes the tangent space to the leaf S(u) at point u. In some cases,
Property F5 is a consequence of the other four properties F1–F4, see Lemma 5.7
below.

There are a number of properties of an exponential trichotomy that follow
directly from the definition, see [33, Section 4.5]. These properties include

Π(t)Us ⊂ Us and Π(t)Uo = Uo, and Π(t)Uu = Uu,(4.16)

for t ≥ 0. Consequently, the restriction of Φ(B, t) to Uo(u), or Uu(u), is an iso-
morphism onto Uo(S(F, t)u), or Uu(S(F, t)u), respectively, where B = Z(F, u).
In addition, the negative continuations Φ(B, t)w described above are uniquely
determined by w, and the extended cocycle identities

{
Φ(B, τ + t)Po(u) = Φ(Bτ , t)Φ(B, τ)Po(u),

Φ(B, τ + t)Ps(u) = Φ(Bτ , t)Φ(B, τ)Ps(u),
for all τ, t ∈ R,(4.17)

are valid, for all u ∈ K.
Because of the extended cocycle identity (4.17), one can reverse time in this

case. As a result, the following inequalities hold for all (u, w) ∈ E :

‖AβΦ(B, t)Pu(u)w‖ ≥ K−1‖Aβ Pu(u)w‖eλ4t , for all t ≥ 0,(4.18)

and

‖AβΦ(B, t)Po(u)w‖ ≥ K−1‖Aβ Po(u)w‖eλ2t, for all t ≥ 0,(4.19)

as well as

‖AβΦ(B, t)Po(u)w‖ ≥ K−1‖Aβ Po(u)w‖eλ3 t, for all t ≤ 0.(4.20)

In the infinite-dimensional setting, one is unable to convert inequality (4.10)
into a statement about the behavior of solutions in the stable bundle Us, for time
t ≤ 0. The reason is that, in general, the solution Φ(B, t)Ps(u)w need not exist for
t < 0. However, a partial negative extension is possible in the following case: Let
(u, w) ∈ E and let S(F, t)u be a global solution in K through u. Let B = Z(F, u),
where B ∈ M∞(R,L). Assume that there is a v ∈ V 2β and a τ > 0 such that
Φ(B−τ , τ)v = Ps(u)w. Since Ps(u)w ∈ Us(u), one has v ∈ Us(S(F,−τ)u).
Also, (4.7) and (4.10) imply that, for t ≥ 0, one has

‖Aβ Ps(S(F, t)u)Φ(B, t)w‖ = ‖AβΦ(B−τ , τ + t)Ps(S(F,−τ)u)v‖
≤ K‖Aβv‖eλ1(τ+t),

which goes to 0, as t → ∞, since λ1 < 0. We now adopt the convention of defining
Φ(B, t)Ps(u)w, for −τ ≤ t ≤ 0, by the formula

Φ(B, t)Ps(u)w
def= Φ(B−τ , τ + t)v, for − τ ≤ t ≤ 0.(4.21)
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Next we set v̂ = Φ(B, t)Ps(u)w, for some t with −τ ≤ t ≤ 0. Then v̂ ∈
Us(S(F, t)u) and

Φ(Bt,−t)̂v = Ps(u)w = Φ(Bt,−t)Ps(S(F, t)u))̂v.

Hence (4.10) implies that

‖Aβ Ps(u)w‖ = ‖AβΦ(Bt,−t)Ps(S(F, t)u)̂v‖ ≤ Keλ1(−t)‖Aβ v̂‖,
which in turn yields

‖Aβ v̂‖ ≥ K−1eλ1t‖Aβ Ps(u)w‖, for − τ ≤ t ≤ 0.

Consequently, we obtain

‖AβΦ(B, t)Ps(u)w‖ ≥ K−1eλ1t‖Aβ Ps(u)w‖, for − τ ≤ t ≤ 0.(4.22)

It should be emphasized that (4.21) depends on points Ps(u)w and v. There may
be several such points v that can be used since the negative continuations are not
assumed to be unique. However, in every case inequality (4.22) is valid.

Additional features: A foliated, invariant set for the semiflow π on V 2β may
satisfy additional properties of dynamical interest. Let us look first at properties F2
and F5. Because of the tangency condition (4.15), we fix the space X(u) to be the
tangent space TuS(u) = R(Po(u)) = Uo(u). Thus, D(u, ρ0) ⊂ Uo(u), that is,

D(u, ρ0) = {p ∈ Uo(u) : ‖Aβ p‖ ≤ ρ0}.(4.23)

The range of ν is assumed to be in R(Qo(u)), i.e., ν(p) ∈ R(Qo(u)), when p ∈
D(u, ρ0). Thus, one has Qo(u)ν(p) = ν(p) and Po(u)p = p, for all p ∈ D(u, ρ0).

Notice that, since Po(u) varies continuously in u ∈ K, the tangency condition
(4.15) implies that the function ν in (4.2) is a C1-mapping, i.e., the leaves of
a foliated, invariant set are C1-smooth. Indeed, if ν satisfies (4.2) and the tangency
condition (4.15) holds, then the derivative Dν satisfies

Dν(p) = Po(v), where v = u + p + ν(p).(4.24)

Since Po(v) varies continuously in v, this implies that ν is a C1-mapping.

In addition to smoothness, we will require that the exponential trichotomy on
K satisfy another technical condition, the Lipschitz property. In particular, we say
that the foliated, invariant set satisfies the Lipschitz property if the following hold:

1. There is an L0 > 0 such that (4.3)–(4.4) hold and

‖Aβ(Pi(u1) − Pi(u2))‖L ≤ L0‖Aβ(u1 − u2)‖, for i = s, o, u,(4.25)

for all u1 and u2 in the disk Dρ0(u) and all u in K, where L = L(V 2β, V 2β).
2. Moreover, the neutral projector Po satisfies

‖Aβ(Po(u1) − Po(u2))‖L ≤ L0‖Aβ(u1 − u2)‖,(4.26)

for all u1, u2 ∈ K with ‖Aβ(u1 − u2)‖ ≤ 2ρ0.
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In this setting, conditions (4.3) and (4.4) now read

‖Aβ(ν(p1) − ν(p2))‖ ≤ L0 ‖Aβ(p1 − p2)‖, for p1, p2 ∈ D(u, ρ0),(4.27)

and

‖Aβν(p)‖ ≤ L0 ‖Aβ p‖, for p ∈ D(u, ρ0) and u ∈ K.(4.28)

The proof of the following lemma, in the finite-dimensional case, appears in
[21]. Since the argument, which is based on the Gronwall inequality, extends readily
to the infinite-dimensional setting we study here, we omit the details.

Lemma 4.1. Let K be a foliated, invariant set that satisfies the five properties
F1–F5. If (4.25) holds for i = o, then for each u ∈ K, the disk Dρ0(u) is uniquely
determined. Furthermore, one has S(u) = S(v) if and only if v ∈ S(u).

Next we show that the Lipschitz property implies that K is C1,1-smooth.

Lemma 4.2. Let K be a foliated, invariant set that satisfies the five properties
F1–F5. If (4.25) holds for i = o, then the set K is C1,1-smooth.

Proof. As noted in (4.24), the function ν is a C1-mapping. When (4.25) holds, then
Po(v) is Lipschitz continuous for v ∈ Dρ0(u) and ν is a C1,1-mapping. Hence K
is C1,1-smooth. ��

4.2. Nonautonomous theory

Instead of the autonomous equation (4.1), we now turn to the nonautonomous
problem

∂tu + Au = F̂(θ, u) and ∂tθ = ω,(4.29)

where we use the alternate notation described in Section 3. As usual, we assume
that A satisfies Hypothesis A.

Hypotheses B: The function F̂ = F̂(u, t) is assumed to be in C1
F and to be quasi-

periodic in time in the sense described in (3.14)–(3.17). Furthermore, we require
that the lifting ĥF : T k → C1

F be Hölder continuous, see Lemma 3.3. We let π and
Π denote the skew product semiflows given by (3.21).

Let K denote a compact, invariant set in T k × V 2β . For any set M in T k, we
define the fiber K(M) by

K(M) = {(θ, u) ∈ K : θ ∈ M}.
For (θ, u) ∈ K, we let S(θ, t)u denote a global solution of the u-equation in (4.29)
that satisfies S(θ, 0)u = u. Since K is a compact set, it follows that, for each
θ ∈ T k, the fiber K(θ) is a compact set in V 2β , and S(θ, t)K(θ) = K(θ · t). This
brings us to an important concept, the foliated bundle.
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Definition: A set K in T k × V 2β is said to be a foliated bundle provided
the following hold:
• FB1: K is a nonempty, compact, connected, invariant set for π;
• FB2: there is an integer k ≥ 1 and a ρ0 > 0 such that, for each θ ∈ T k,

the fiber K(θ) is an F1–F2 set with disks Dρ0(θ, u) = Dρ0(u) and leaves
S(θ, u) = S(u) satisfy the invariance property

S(θ, t)S(θ, u) = S(θ · t, S(θ, t)u), for all t ≥ 0,

and all (θ, u) ∈ K;
• FB3: the mappings f defined by (4.2) depend on (θ, u) ∈ K, and the

Lipschitz coefficient L0 in (4.3) does not depend on (θ, u) in K;
• FB4: the induced linear skew product semiflow Π has an exponential

trichotomy on E = K×V 2β and the four inequalities (4.10)–(4.13) hold,
with dim Uo(θ, u) = k, for all (θ, u) ∈ K; and

• FB5: the tangency condition (4.33) holds.

A foliated bundle K in T k ×V 2β is said to have a fiber bundle structure if, for
every θ0 in T k, there is a neighborhood U = U(θ0) in T k and a homeomorphism
H : U × K(θ0) → K(U) of U × K(θ0) onto K(U) such that for each θ ∈ U ,
one has

H−1(K(θ)) = {θ} × K(θ0).(4.30)

In particular, one has K(θ) = H({θ} × K(θ0)), for all θ ∈ U .
For example, let K0 be a foliated, invariant set in V 2β for the autonomous

problem (4.1). Consider the equation

∂tu + Au = F(u) and ∂tθ = ω,(4.31)

where θ ∈ T k and ω is a frequency vector that satisfies (3.15). Note that equation
(4.31) is a special case of (3.19). The dynamics for (4.31) is in the product space
K = T k × K0, and K is a foliated bundle for (4.31) and has the fiber bundle
structure.

Abbreviated notation: In the case of a foliated bundle, we will use the abbrevi-
ated notation described in this paragraph: Dρ0(u) = Dρ0(θ, u), for the disks Dρ0 ;
S(u) = S(θ, u), for the leaves S; R(u) = R(P(θ, u)) and N (u) = N (P(θ, u)),
for the range and null space of a projector P; Pi(u) = Pi(θ, u), for i = s, o, u,
and Qo(u) = Qo(θ, u), for the projectors arising in the definition of an expo-
nential trichotomy; and Ui(u) = Ui(θ, u), for i = s, o, u, for the ranges of the
projectors Pi . The inequalities (4.10)–(4.14) should be be interpreted with this
abbreviated notation. In particular, the characteristics λ1, λ2, λ3, λ4, and K do not
depend on (θ, u) ∈ K. In the case of a foliated bundle, the invariance property
(4.7) now takes on the form

P(θ · t, S(θ, t)u)Φ(B, t) = Φ(B, t)P(θ, u), for t ≥ 0(4.32)

and (θ, u) ∈ K, where B = Z(θ, u) ∈ M∞(R,L). The tangency condition (4.15)
now reads

R(Po(θ, u)) = Uo(θ, u) = TuS(θ, u), for all (θ, u) ∈ K.(4.33)
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5. Statements of theorems

We begin the section with precise statements of the four main theorems to be
developed in the work: the robustness property (Theorem 5.1), the shadow property
(Theorem 5.2), the fiber structure property (Theorem 5.3), and the homeomorphism
property (Theorem 5.4). The proofs of these theorems are presented in Section 6.
Some preliminary results, which are used in these proofs, are presented in this
section.

We now turn to the fully nonautonomous problem (1.2), where

∂tu + Au = F(u, t), F ∈ H(5.1)

is the given equation and

∂t y + Ay = F(y, t) + G(y, t), F, G ∈ H(5.2)

is the perturbed equation. As usual, we assume that A satisfies Hypothesis A.
The assumptions on F and G given below will insure that the set H is a suit-
able compact, invariant set in C1

F . In Sections 5 and 6, we focus on the quasi
periodic problem, because the main features of our theory can be seen in fully in
this context, with a minimal of notation. Some extensions of this theory, to the
setting where H is a more general compact, invariant set in C1

F , are presented in
Section 7.

Alternate notation: The alternate notation described in (3.19) is useful here in
simplifying the formulation of the perturbation problem (5.1)–(5.2) when the time
dependence is quasiperiodic. Thus, we rewrite these two equations as the two
systems

∂tu + Au = F̂(θ, u) and ∂tθ = ω(5.3)

and

∂t y + Ay = F̂(θ, y) + Ĝ(θ, y) and ∂tθ = ω.(5.4)

We let S1(θ, t)u0 denote the mild solution of the u-equation in (5.3), with S1(θ, 0)u0

= u0, and let S2(θ, t)y0 denote the mild solution of the y-equation in (5.4), with
S2(θ, 0)y0 = y0. For i = 1, 2, we let πi and Πi denote the semiflows given by
(3.21), where S(θ, t) is replaced by Si(θ, t).

We assume throughout that both F̂ and Ĝ satisfy Hypothesis B. This includes
the case where F̂ and Ĝ are spawned on different tori, say, T m and T n , with
different frequency vectors, say, ω̂ and ω̃. However, by using suitable liftings, say,
hF and hG , one can do this over a single (perhaps higher dimensional) torus T k

with a single frequency vector ω. What is needed here is that the frequency modules
M(ω̂) and M(ω̃) be contained in M(ω) and that hF and hG are chosen so that
F̂ ∈ hF(T k) and Ĝ ∈ hG(T k). The set H in (5.1)–(5.2) is then replaced by the
torus T k.
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5.1. The main theorems

Hypotheses C: We now consider equations (5.3) and (5.4) as described above. We
let K be a foliated bundle in T k × V 2β for (5.3), and we assume that for a fixed
σ0 > 0, one has:

• K is C1,1-smooth; and
• K satisfies the Lipschitz property, i.e., (4.3), (4.25), and (4.26) hold; and
• For 0 ≤ σ ≤ σ0, we let U(σ) be the bounded set in T k × V 2β consisting of all

points (θ, y) with the property that ‖Aβ(y − x)‖ ≤ σ , for some (θ, x) ∈ K . Note
that

U(0) =
⋂

0<σ≤σ0

U(σ) = K.

With the parameter σ0 > 0 now fixed, the constants k0, k1, and k3 – as used in
Section 2.2 – are then determined by using the nonlinear function F = F̂ and the
bounded set U = U(σ0). W assume that the perturbation term G satisfies

‖G‖{C1;A;U,R} ≤ δ,(5.5)

where δ > 0 is described in the perturbation theory presented below. The pseudo-
norm in (5.5) is defined by

‖G‖{C1;A;U,R} = sup
t≥0

sup
τ∈R

∫ t

0
sup
u∈U

‖Aβe−A(t−s)Gτ (u, s)‖ ds

+ sup
t≥0

sup
τ∈R

∫ t

0
sup
u∈U

‖Aβe−A(t−s) DGτ (u, s)‖L ds.

With this background, we can state our main theorem for the perturbation
problem (5.3)–(5.4).

Theorem 5.1 (Robustness property). Let equations (5.3) and (5.4) be given,
where A satisfies Hypothesis A and F̂ and Ĝ satisfy Hypothesis B. Let K satisfy
Hypothesis C; in particular, K is a C1,1-smooth foliated bundle for (5.1) and K
satisfies the Lipschitz property, see (4.25)–(4.26).

Then, for every ε > 0, there is a δ = δ(ε) > 0 such that if G satisfies (5.5)
with this δ, then there is a continuous mapping h : K → V 2β with the following
properties:

1. The image Kn def= h(K) is a compact, invariant, connected set for the perturbed
equation (5.4), and it satisfies the four properties FB1–FB4.

2. One has ‖Aβ(h(v) − v)‖ ≤ 2ε, for all (θ, v) ∈ K .
3. For all (θ, v) ∈ K, both global solutions S1(θ, t)v and S2(θ, t)h(v) are strong

solutions of (5.3) and (5.4), respectively, and they both satisfy (3.12). In par-
ticular, for each θ ∈ T k, the fibers K(θ) and Kn(θ) are in D(A), the domain
of A.
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Note that item 3 in the last theorem follows from Lemmas 3.2–3.3 since F̂ and
Ĝ are Hölder continuous liftings of the torus T k, see Section 3.3.

There are conditions under which Kn satisfies the tangency property FB5, see
(4.33). These conditions are described in a remark at the end of Section 6.

The concept of a shadow flow arises in the perturbation theories in [20,21,
24]. As will be seen, the nonautonomous feature in this study results in a suitable
variation. A mapping Ŝ(θ, t) is said to be a shadow semiflow on K (generated by
the dynamics of (5.4)) provided that

h(θ · t, Ŝ(θ, t)v) = S2(θ, t)h(θ, v), for all (θ, v) ∈ K and all t ≥ 0.(5.6)

Note that if h(θ, v1) = h(θ, v2), for (θ, v1), (θ, v2) ∈ K , then (5.6) implies that

h(θ · t, Ŝ(θ, t)v1) = h(θ · t, Ŝ(θ, t)v2), for all t ≥ 0.

As noted in the main theorem, we will show the existence of such a mapping
h : K → V 2β , for each G satisfying inequality (5.5), with δ sufficiently small. We
will also prove the following result:

Theorem 5.2 (Shadow property). Let Hypotheses A, B, and C of Theorem 5.1
be satisfied, and let h : K → T k × V 2β satisfy the conclusions. Then there
exists a shadow semiflow Ŝ(θ, t) on K, for every G satisfying inequality (5.5).
In particular, Ŝ(θ, t) satisfies the cocycle property (3.20), and π̂(θ, v; t) =
(θ ·t, Ŝ(θ, t)v) is a semiflow on K. Furthermore, when Ĝ ≡ 0, then Ŝ(θ, t) = S1(θ, t)
on K.

One can show that the shadow flow Ŝ depends continuously on Ĝ in the T 1
A

topology. For the finite-dimensional argument, see [21].

Theorem 5.3 (Fiber bundle property). Let Hypotheses A, B, and C of Theo-
rem 5.1 be satisfied, and let h : K → T k × V 2β satisfy the conclusions. Assume
that

• K has the fiber bundle structure and
• h is a homeomorphism of K onto Kn.

Then Kn has the fiber bundle structure.

We thus see that it becomes useful to know when the mapping h : K → Kn

given by Theorem 5.1 is a homeomorphism. In this regard, we have the following
result:

Theorem 5.4 (Homeomorphism property). Let Hypotheses A, B, and C of Theo-
rem 5.1 be satisfied, and let h : K → T k × V 2β satisfy the conclusions. Assume
further that the semiflow π1 has a proper negative continuation on K , see Sec-
tion 5.2. Then with ε small, the mapping h is a homeomorphism of K onto h(K).
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The class Σ: In the sequel we will use the class Σ consisting of all positive,
real-valued functions β1 = β1(r) = β1(r1, r2), defined for r = (r1, r2) with
0 < ri < ri0, where ri0 = ri0(β1) > 0, for i = 1, 2, and satisfying β1(r) → 0,
as r → 0. For example, if some real-valued function ξ(ε) is of order o(ε), as
ε → 0, then one can write this in the form |ξ(ε)| = εβ1(ε), where β1 ∈ Σ. We
let β1, β2, · · · and b0, bF

1 , bF
2 , · · · denote various elements of Σ.2 We will use the

terms β1, β2, · · · as local variables, which may be redefined from time to time.
Global variables, which have a unique definition in this work, will be denoted by
b0, bF

1 , bF
2 , · · · . The superscript F will be used to denote elements of Σ that depend

on F̂ but that are independent of the perturbation term Ĝ.

Let us return to the function E = E(u0, v, t) arising in (2.12). In terms of the
new notation used in (5.3), this function E has a representation Ê = Ê(θ, u0, v)

that satisfies

F̂(θ, u0 + v) − F̂(θ, u0) = DF̂(θ, u0)v + Ê(θ, u0, v),(5.7)

where D = ∂
∂u . Due to the Fréchet differentiability, the error term Ê satisfies

lim
‖Aβv‖→0

‖Ê(θ, u0, v)‖
‖Aβv‖ = 0, for each u0 ∈ V 2β,(5.8)

and uniformly for θ ∈ T k. It follows that, as a function of v, one has

Ê(θ, u0, ·) ∈ CLip(V 2β, W ) ∩ C1
F(V 2β, W ),(5.9)

with Ê(θ, u0, 0) = 0 and DÊ(θ, u0, 0) = 0, where DÊ(θ, u0, v) = ∂
∂v

Ê(θ, u0, v).
Since DÊ(θ, u0, v) ∈ L = L(V 2β, W ), for each v ∈ V 2β , and since it is continuous
in v, it follows from (5.8) that there is a function γ = γ(ρ) in Σ such that
‖DÊ(θ, u0, v)‖L ≤ γ(ρ), for all v ∈ V 2β with ‖Aβv‖ ≤ ρ and all θ ∈ T k. Since
one has

Ê(θ, u0, v1) − Ê(θ, u0, v2) =
∫ 1

0
DÊ(θ, u0, v2 + s(v1 − v2)) ds (v1 − v2),

and ‖Aβ(v2 + s(v1 − v2))‖ ≤ ρ, when ‖Aβv1‖, ‖Aβv2‖ ≤ ρ and 0 ≤ s ≤ 1, one
finds that

‖Ê(θ, u0, v1) − Ê(θ, u0, v2)‖ ≤ γ(ρ)‖Aβ(v1 − v2)‖,(5.10)

whenever ‖Aβv1‖, ‖Aβv2‖ ≤ ρ and θ ∈ T k. Since Ê(θ, u0, 0) = 0, it follows
from inequality (5.10) that for ‖Aβv‖ = ‖Aβ(u − u0)‖ ≤ ρ, one has

‖Ê(θ, u0, v)‖ ≤ γ(ρ)‖Aβv‖ ≤ ρ γ(ρ).(5.11)

2 Note that the subscript in βi will distinguish an element βi ∈ Σ from the special
parameter β used in Standing Hypothesis A and the Aβ-norm on V 2β = D(Aβ).
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5.2. Proper negative continuation

Let K be a compact, invariant set in T k × V 2β for the semiflow π generated by
(5.3), see Hypothesis B. Let (θ, v) ∈ K and let B = Z(θ, v), see (3.22). Then there
is a constant K ≥ 1 and a0 ≥ 0 such that one has

‖AβΦ(B, t)w‖ ≤ Kea0 t‖Aβw‖, for all t ≥ 0,(5.12)

as well as

‖AβΦ(B, t)w‖ ≤ Kt−βea0t‖w‖, for all t > 0,(5.13)

see [33, Theorem 44.1]. Furthermore, if Π has an exponential trichotomy on K,
then we choose a0 ≥ λ3, see (4.12), and we choose a larger value of K in (5.12)
and (5.13), if necessary, so that the inequalities (4.10)–(4.22) also hold.

In the following results, we will treat ρ as a parameter, with 0 < ρ ≤ ρ0. In this
way, we study the behavior of solutions starting in smaller disks Dρ(v) = Dρ(θ, v).
In the next lemma, we only require that K be a compact, invariant set. The
exponential trichotomy is not used here.

Lemma 5.5. Let (5.3) be given, where A satisfies Hypothesis A and F satisfies
Hypotheses B. Let K be a compact, invariant set for (5.3) in T k × V 2β . Let T > 0
be fixed. Then there is a ρ0 and a function bF

1 ∈ Σ such that for any two points
(θ, u1), (θ, u0) ∈ K with ‖Aβ(u1 − u0)‖ ≤ ρ0, there is a function H2(t) with the
property that

S(θ, t)u1 − S(θ, t)u2 = Φ(B, t)(u1 − u0)+ H2(t), for all t ∈ [0, 2T ],(5.14)

where B = Z(θ, u0), see (3.22). Furthermore, if ‖Aβ(u1 − u0)‖ ≤ ρ ≤ ρ0, then

‖Aβ H2(t)‖ ≤ bF
1 (ρ)‖Aβ(u1 − u0)‖, for all t ∈ [0, 2T ].(5.15)

Proof. Fix ρ0 so that 0 < ρ0 ≤ 1. Let H2(t) be defined by (5.14) and let
(θ, u1), (θ, u0) ∈ K with ‖Aβ(u1 − u0)‖ ≤ ρ0. Set w = w(t) = S(θ, t)u1 −
S(θ, t)u0, for 0 ≤ t ≤ 2T . Then w is a mild solution of (2.34) with G ≡ 0 and
H ≡ E. It follows from (2.36) that

w(t) = Φ(B, t)(u1 − u0) +
∫ t

0
Φ(Bs, t − s)Ê(θ · s, S(θ, s)u0, w(s)) ds,

for 0 ≤ t ≤ 2T . From (5.14) we obtain

H2(t) =
∫ t

0
Φ(Bs, t − s)Ê(θ · s, S1(θ, s)u0, w(s)) ds.

Now inequality (2.21), with F = F1 = F2, implies that there is a constant C2 =
C2(2T ) ≥ 1 such that

‖Aβw(t)‖ = ‖Aβ(S(θ, t)u1 − S(θ, t)u0))‖ ≤ C2‖Aβ(u1 − u0)‖,(5.16)



Foliated bundles and evolutionary equations S357

for 0 ≤ t ≤ 2T . If ‖Aβ(u1 − u0)‖ ≤ ρ and C2ρ = σ , then ‖Aβw(t)‖ ≤ σ , for
0 ≤ t ≤ 2T . Consequently, inequalities (5.10), (5.13), and (5.16) imply that there
is a γ ∈ Σ such that

‖Aβ H2(t)‖ ≤ γ(σ) C2 ‖Aβ(u1 − u0) ‖
∫ t

0
(t − s)−βea0(t−s) ds.

With C = ∫ 2T
0 (2T − s)−βea0(2T−s) ds and bF

1 (ρ) = Cγ(C2ρ), one obtains (5.15).
Since γ ∈ Σ, one has bF

1 ∈ Σ. (Note that bF
1 depends on T .) ��

Inequality (5.16) and its various consequences, such as (5.15), play a pivotal
role in our theory. As a matter of fact, we will need a stronger version of (5.15),
which leads us to the following concept.

Definition. Let equations (5.3) be given, where A satisfies Hypothesis A, and F
satisfy Hypotheses B. Let K be a compact, invariant set for (5.3) in T k × V 2β . We
say that the semiflow π has a proper negative continuation on K provided that
for any T > 0, there is a constant C2 = C2(2T ) ≥ 1 and there is a ρ = ρ(T ) > 0
such that the global solutions S(θ, t)u1 and S(θ, t)u0 satisfy

‖Aβ(S(θ, t)u1 − S(θ, t)u0)‖ ≤ C2‖Aβ(u1 −u0)‖, for − 2T ≤ t ≤ 2T,(5.17)

whenever (θ, u1), (θ, u0) ∈ K with ‖Aβ(u1 − u0)‖ ≤ ρ. Assume now that π has
a proper negative continuation on K. Then with a straightforward variation of the
argument given above, one concludes that if ‖Aβ(u1 − u0)‖ ≤ ρ ≤ ρ0, then

‖Aβ H2(t)‖ ≤ bF
1 (ρ)‖Aβ(u1 − u0)‖, for all t ∈ [−2T, 2T ].(5.18)

Remark. The PNC property, that is, the assumption that the semiflow π has a proper
negative continuation on a given foliated bundle K , is most noteworthy. One
can easily construct examples where this does not occur. However, if the PNC
property holds, then one has backward uniqueness of the initial value problem, see
[36, Chapter III, Section 6] and [17,1,4]. The PNC property is not equivalent to
backward uniqueness; it is stronger.

Nevertheless, the prototypical examples of foliated invariant sets described in
Section 1, that is, the compact manifolds, the hyperbolic sets, and the finite set-
theoretical products of these sets, will all have the PNC property when the nonlinear
function F(u), or F(u, t), is in C1

F .
More generally, in finite dimensions, the PNC property is a consequence of an

assumption that the semiflow is generated by a Lipschitz continuous vector field
on K. This is also applicable in infinite dimensions, when there exists an inertial
manifold for the unperturbed problem. The dynamics on the inertial manifold is the
dynamics of a finite-dimensional system of ordinary differential equations and the
foliated bundle lies in the inertial manifold, see, e.g., [33]. The PNC property also
holds in the infinite dimensional setting when the foliated set is simply a compact,
invariant manifold, see Pliss and Sell [24].

For the autonomous problem (4.1), it follows from Lemma 3.2 that any foliated,
invariant set K satisfies K ⊂ D(A), see (3.12). (Thus the mapping u → Au is
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a continuous mapping of K into W .) Consequently, one expects that the restriction
of the nonlinear evolutionary equation (4.1) to K to be a Lipschitz continuous
vector field, since F ∈ Ca

Lip ∩ C1
F . For the nonautonomous problem (5.3), each

fiber K(θ) satisfies K(θ) ⊂ D(A), by Lemma 3.2. There is reason to expect
that the PNC property may be somewhat common in our setting. The problem is
to turn these heuristic insights into a rigorous theory. This issue remains under
investigation.

In some instances in our theory, we do make the added assumption that the PNC
property holds for a semiflow π and a compact, invariant set K . When we need this
assumption, this will be stated explicitly. Any lemmas or theorems without such
an explicit statement are valid when the PNC property fails. (It would be desirable
to drop the assumption of the PNC property in part or entirely.)

5.3. Preliminary properties

In this subsection, we examine some dynamical properties of compact, invariant
sets K in T k × V 2β that satisfy some, but not all, of the properties for a foliated
bundle. In particular, we make the following Standing Hypotheses:

Standing Hypotheses: Let equation (5.3) be given, where A satisfies Hy-
potheses A and F̂ satisfies Hypotheses B. Let K be a compact, invariant
set in T k × V 2β for (5.3) and assume that K satisfies the four properties
FB1–FB4.

Lemma 5.6. Let the Standing Hypotheses be satisfied, and assume that the semi-
flow π has a proper negative continuation on K. Let ρ0 > 0 and bF

1 (ρ) be given
by Lemma 5.5. Then the following properties hold:

1. For any C4 > 0, there is a ρ with 0 < ρ ≤ ρ0, such that if (θ, v0), (θ, v1) ∈ K
satisfy ‖Aβ(v1 − v0)‖ ≤ ρ and

‖Aβ Qo(v0)(v1 − v0)‖ ≥ η ‖Aβ(v1 − v0)‖ > 0,(5.19)

then there is a τ ∈ R such that

‖Aβ Qo(S(θ, τ)v0))w(τ)‖ ≥ C4‖Aβ Po(S(θ, τ)v0))w(τ)‖,(5.20)

where w(t) = S(θ, t)v1 − S(θ, t)v0.
2. If, instead of (5.19), one has

‖Aβ Po(v0)(v1 − v0)‖ ≤ 1

2
‖Aβ(v1 − v0)‖,(5.21)

then for the same choice of ρ > 0 and τ ∈ R, one has

‖Aβ(S(θ, τ)v1 − S(θ, τ)v0)‖ ≥ 2‖Aβ(v1 − v0)‖,(5.22)

provided that ‖Aβ(v1 − v0)‖ ≤ ρ.
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Proof. Item 1: Without loss of generality we assume that η ≤ 1
2 . Since (5.20)

is true when v1 = v0, we let (θ, v0), (θ, v1) ∈ K be given so that (5.19) holds.
Consequently, one must have either

‖Aβ Pu(v0)(v1 − v0)‖ ≥ 1

2
‖Aβ Qo(v0)(v1 − v0)‖(5.23)

or

‖Aβ Ps(v0)(v1 − v0)‖ ≥ 1

2
‖Aβ Qo(v0)(v1 − v0)‖,(5.24)

where Pu(v0) = Pu(θ, v0) and Ps(v0) = Ps(θ, v0). When (θ, v) ∈ K , we let
S(θ, t)v denote a global solution of (5.3) with S(θ, 0)v = v and (θ ·t, S(θ, t)v) ∈ K ,
for all t ∈ R.

To prove inequality (5.20), we first treat the case where inequality (5.23) holds.
We define H2(t) by

w(t) = S(θ, t)v1 − S(θ, t)v0 = Φ(B, t)(v1 − v0) + H2(t), for t ≥ 0,(5.25)

where B = Z(θ, v0) ∈ M∞(R,L), see (3.22). It follows from Lemma 5.5 that
there is a bF

1 ∈ Σ such that H2 satisfies (5.15) whenever ‖Aβ(v1 −v0)‖ ≤ ρ, where
v1 = u1 and v0 = u0. We now fix τ > 0 and, after that, fix ρ > 0 so that

min(η, 1
2 )

2K
e(λ4−λ3)τ ≥ max(C4 + 1, 2 + 2K )e−λ3τ + K max(C4 + 1, 2)

and bF
1 (ρ) ≤ 1.

(5.26)

For an estimate of ‖AβΦ(B, t)(v1 − v0)‖, for 0 ≤ t ≤ 2T , we use the identity

v1 − v0 = Ps(v0)(v1 − v0) + Po(v0)(v1 − v0) + Pu(v0)(v1 − v0).

Using inequalities (5.19) and (5.23) one obtains

‖Aβ Pu(v0)(v1 − v0)‖ ≥ η

2
‖Aβ(v1 − v0)‖,

and, combining this with inequality (4.18), we find that, for all t ≥ 0, one has

‖AβΦ(B, t)Pu(v0)(v1 − v0)‖ ≥ K−1eλ4t‖Aβ Pu(v0)(v1 − v0)‖,
≥ η

2K
eλ4t‖Aβ(v1 − v0)‖.(5.27)

In addition, inequalities (4.10) and (4.12) imply that, for t ≥ 0, one has

‖AβΦ(B, t)Ps(v0)(v1 − v0)‖ ≤ Keλ1t‖Aβ(v1 − v0)‖,
‖AβΦ(B, t)Po(v0)(v1 − v0)‖ ≤ Keλ3t‖Aβ(v1 − v0)‖.

Next we use Lemma 5.5 to estimate both sides of inequality (5.20). Now for
0 ≤ t ≤ τ , and since λ1 ≤ λ3, (5.25) implies
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‖Aβ Qo(S(θ, t)v0)w(t)‖
≥ ‖Aβ Qo(S(θ, t)v0)Φ(B, t)(v1 − v0)‖ − ‖Aβ Qo(S(θ, t)v0)H2(t)‖

by the invariance of Qo, see (4.32),

≥ ‖AβΦ(B, t)Pu(v0)(v1 − v0)‖ − ‖AβΦ(B, t)Ps(v0)(v1 − v0)‖
− ‖Aβ Qo(S(θ, t)v0)H2(t)‖
from the inequalities above

≥
( η

2K
eλ4t − Keλ3t − KbF

1 (ρ)
)

‖Aβ(v1 − v0)‖.

(5.28)

Similarly, one obtains

‖Aβ Po(S(θ, t)v0)w(t)‖
≤ ‖Aβ Po(S(θ, t)v0)Φ(B, t)(v1 − v0)‖ + ‖Aβ Po(S(θ, t)v0)H2(t)‖
≤ ‖AβΦ(B, t)Po(v0)(v1 − v0)‖ + ‖Aβ Po(S(θ, t)v0)H2(t)‖
≤ (

Keλ3 t + KbF
1 (ρ)

)‖Aβ(v1 − v0)‖.

(5.29)

This then implies that

‖Aβ Qo(S(θ, τ)v0)w(τ)‖
‖Aβ Po(S(θ, τ)v0)w(τ)‖ ≥ η (2K )−1eλ4τ − Keλ3τ − KbF

1 (ρ)

Keλ3τ + KbF
1 (ρ)

≥ C4,

where the first inequality follows from the estimates immediately above, and the
second from (5.26). This then implies (5.20), when (5.23) is valid.

Next we assume that inequality (5.24) is valid. While this case appears to
be similar to the case where inequality (5.23) holds, there is a major difference
in connection with the negative continuations of solutions of the linear problem,
Φ(B, t)w, for t ≤ 0 and w ∈ Us(v0). When w is in Uu(v0) or in Uo(v0), then
Φ(B, t)w admits an extension to a global solution, see Section 3.4. As we have seen,
inequalities (4.18)–(4.20) contain useful information on the growth of Φ(B, t)w.
As noted above, when w ∈ Us(v0), then in general one cannot extend the linear
solution for t ≤ 0. Even the global solutions of the nonlinear dynamics in K are
not helpful here. We must use a different approach, an approach based on the partial
extension given in (4.21) and (4.22).

Assume now that inequality (5.24) holds. Next we fix τ < 0 and, after that,
ρ > 0 so that

min(η, 1
2 )

4K
e(λ1−λ2)τ ≥ 2e−λ2τ + 2K max(C4 + 1, 2)

and bF
1 (ρ) ≤ min

(
min(η, 1

2 )

4K
, 1

)
.

(5.30)

Since the semiflow π has a proper negative continuation on K, we may use
inequality (5.18). We now use the global solutions S(θ, t)v1 and S(θ, t)v0 to
define v̂1 = S(θ, τ)v1 and v̂0 = S(θ, τ)v0. Also, set ẑ1 = v̂1 − v̂0 and z1 =
Φ(Bτ ,−τ)ẑ1. Now we invoke inequality (4.22), and the terms (v,w) used there
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now become (v,w) = (Ps( v̂0)̂z1, z1) in the notation used here. (Notice that
Φ(Bτ ,−τ)Ps( v̂0 )̂z1 = Ps(v0)z1). Thus (4.22), with t = τ , now reads

‖AβΦ(B, τ)Ps(v0)z1‖ ≥ K−1eλ1τ‖Aβ Ps(v0)z1‖.(5.31)

Next we redefine H2(t) by using

S(θ · τ,−τ)v̂1 − S(θ · τ,−τ)v̂0) = Φ(Bτ , t)(v̂1 − v̂0) + H2(t), for |t| ≤ |τ|.
(5.32)

It then follows from (5.18) that

‖Aβ H2(t)‖ ≤ bF
1 (ρ)‖Aβ(v1 − v0)‖, for |t| ≤ |τ|,(5.33)

whenever ‖Aβ(v1 − v0)‖ ≤ ρ ≤ ρ0. By setting t = −τ in (5.32), we obtain

v1 − v0 = Φ(Bτ ,−τ)ẑ1 + H2(−τ) = z1 + H2(−τ).(5.34)

From the definition of z1, and (5.33) and (5.34), we obtain

‖Aβz1‖ ≤ (
1 + bF

1 (ρ)
)‖Aβ(v1 − v0)‖.(5.35)

Inequalities (5.24), (5.32), and (5.33) then yield

‖Aβ Ps(v0)z1‖ ≥ ‖Aβ Ps(v0)(v1 − v0)‖ − ‖Aβ Ps(v0)Ĥ2(−τ)‖
≥

(η

2
− KbF

1 (ρ)
)

‖Aβ(v1 − v0)‖.

Since (5.30) implies that KbF
1 (ρ) ≤ η

4 , we get

‖Aβ Ps(v0)z1‖ ≥ η

4
‖Aβ(v1 − v0)‖.(5.36)

Consequently, (5.31) and (5.36) yield

‖AβΦ(B, τ)Ps(v0)z1‖ ≥ K−1eλ1τ‖Aβ Ps(v0)z1‖
≥ η

4K
eλ1τ‖Aβ(v1 − v0)‖.(5.37)

Next we observe that inequalities (4.11), (4.13), and (5.35) imply that

‖AβΦ(B, τ)Pu(v0)z1‖ ≤ Keλ2τ‖Aβz1‖
≤ K

(
1 + bF

1 (ρ)
)
eλ4τ‖Aβ(v1 − v0)‖,

(5.38)

since λ2 < λ4 and τ < 0, and

‖AβΦ(B, τ)Po(v0)z1‖ ≤ Keλ2τ‖Aβz1‖
≤ K

(
1 + bF

1 (ρ)
)
eλ2τ‖Aβ(v1 − v0)‖.

(5.39)
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From inequalities (5.37) and (5.38) we get

‖AβΦ(B, τ)Qo(v0)z1‖ ≥ ‖AβΦ(B, τ)Ps(v0)z1‖ − ‖AβΦ(B, τ)Pu(v0)z1‖
≥

( η

4K
eλ1τ − K

(
1 + bF

1 (ρ)
)
eλ2τ

)
‖Aβ(v1 − v0)‖.(5.40)

We then obtain

‖Aβ Qo(S(θ, τ)v0)w(τ)‖
‖Aβ Po(S(θ, τ)v0)w(τ)‖ ≥ η (4K )−1eλ1τ − K

(
1 + bF

1 (ρ)
)
eλ2τ

K(1 + bF
1 (ρ))eλ2τ

≥ C4,

where the first inequality follows from the estimates immediately above, and the
second from (5.30). This then implies (5.20) when (5.23) is valid.

Item 2: Since v1 −v0 = Qo(v0)(v1 −v0)+ Po(v0)(v1 −v0), it follows from (5.21)
that

‖Aβ Qo(v0)(v1−v0)‖ ≥ ‖Aβ(v1−v0)‖−‖Aβ Po(v0)(v1−v0)‖ ≥ 1

2
‖Aβ(v1−v0)‖.

Hence, (5.19) holds with η = 1
2 . Let ρ > 0 and τ ∈ R be given by Item 1, where

η = 1
2 . We now return to the proof of Item 1 by treating the two cases τ > 0 and

τ < 0 separately. We set w(τ) = S(θ, τ)v1 − S(θ, τ)v0.
For τ > 0 we use (5.28) and (5.29) to obtain

‖Aβw(τ)‖ ≥ ‖Aβ Qo(S(θ, τ)v0)w(τ)‖ − ‖Aβ Po(S(θ, τ)v1)w(τ)‖
≥

( η

2K
eλ4τ − 2Keλ3τ − 2KbF

1 (ρ)
)

‖Aβ(v1 − v0)‖.

Since η = 1
2 , it follows from (5.26) that

( η

2K
eλ4τ − 2Keλ3τ − 2KbF

1 (ρ)
)

≥ 2,

which in turn implies (5.22).
For τ < 0 we use instead (5.39) and (5.40) to obtain

‖Aβw(τ)‖ ≥
( η

4K
eλ1τ − 2K

(
1 + bF

1 (ρ)
)
eλ2τ

)
‖Aβ(v1 − v0)‖.

Since η = 1
2 , it follows from (5.30) that

( η

4K
eλ1τ − 2K

(
1 + bF

1 (ρ)
)
eλ2τ

)
≥ 2,

which in turn implies (5.22). ��
Theorem 5.7. Let the Standing Hypotheses be satisfied. Assume further that the
semiflow π has a proper negative continuation on K. Then K is a C1-smooth
foliated bundle that satisfies the tangency property FB5, see (4.33).



Foliated bundles and evolutionary equations S363

Proof. As noted above, it suffices to verify that R(Po(u)) = TuS(u), where
Po(u) = Po(θ, u), S(u) = S(θ, u), and (θ, u) ∈ K, see (4.33). In particular, we
will show that every (θ, v0) ∈ K, the space Uo(v0) = Uo(θ, v0) is tangent to the
leaf S(θ, v0) at the point v0. Observe that this tangency condition holds at v0 if and
only if, for every convergent sequence vi → v0, where vi ∈ Dρ0(v0) = Dρ0(θ, v0),
the projector Qo(v0) = Qo(θ, v0) satisfies

lim
i→∞

‖Aβ Qo(v0)(vi − v0)‖ ‖Aβ(vi − v0)‖−1 = 0.

Assume on the contrary that the space Uo(v0) is not tangent to S(θ, v0) at the
point v0. Then there exist an η > 0 and a sequence of points vi ∈ Dρ0(v0), for
i = 1, 2, . . . , such that vi → v0, as i → ∞, and

‖Aβ Qo(v0)(vi − v0)‖ ≥ η‖Aβ(vi − v0)‖ > 0, for all i ≥ 1.(5.41)

Now set C4 = L0+1, where L0 satisfies (4.3)–(4.26). Now choose i0 ≥ 1 so that
‖Aβ(vi0 −v0)‖ ≤ ρ, where ρ is given by Lemma 5.6. Next let τ ∈ R be chosen such
that (5.20) holds with v1 = vi0 . Now define v̂0 = S(θ, τ)v0 and v̂i0 = S(θ, τ)vi0 .
Then wi0(τ) = v̂i0 − v̂0 and ‖Aβ( v̂i0 − v̂0)‖ ≤ ρ0. Thus v̂i0 ∈ Dρ0( v̂0)). From
(4.2) one has

wi0(τ) = v̂i0 − v̂0 = p̂ + ν( p̂), where p̂ ∈ D( v̂0, ρ0).

Since p̂ ∈ R(Po( v̂0)) and ν( p̂) ∈ R(Qo( v̂0)), one has Po( v̂0)wi0(τ) = p̂ and
Qo( v̂0)wi0(τ) = ν( p̂). Therefore, inequality (5.20) implies that

‖Aβν( p̂)‖ ≥ (L0 + 1)‖Aβ p̂‖,

which contradicts (4.28). ��

Remark. It should be noted that a weaker form of the PNC property is required for
Theorem 5.7. Since vi ∈ Dρ0(v0), it suffices to assume only that (5.17) holds when
u1 ∈ Dρ(u0). The stronger version of the PNC, which is stated in the definition in
Section 5.2, is needed in the proof of Theorem 5.4, see Section 6.5.

6. Proofs of main theorems

This section contains the proofs of most of the main theorems. For these proofs,
we have two parameters to use. The first is the parameter ρ, which is used for the
disks Dρ(θ, v) with 0 < ρ ≤ ρ0. The other is the parameter σ , with 0 < σ ≤ σ0,
which is used to describe the neighborhoods U(σ) arising in the definition of an
exponential trichotomy. As these parameters get small, the nonlinear dynamics gets
closer to the linear theory, and it is here that we can exploit the hyperbolicity in the
exponential trichotomy.
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6.1. Unperturbed dynamics

We now return to the function ν = ν(p) used to describe the disk Dρ0(v). Because
of the Lipschitz property for K, see (4.25)–(4.28), the tangent space to the curve
r = ν(p) is Lipschitz continuous, which implies that the function ν in (4.2) is
of class C1,1, see Lemma 4.2. Since the space r = 0 coincides with the neutral
space Uo(v0) = R(Po(v0)), see (4.15), it follows that ν(0) = 0 and the derivative
Dpν = ∂ν

∂p satisfies Dpν(0) = 0. Furthermore, the derivative Dpν satisfies the
Lipschitz property

‖Dpν(p + p̂) − Dpν(p)‖L ≤ L̂ ‖Aβ p̂‖, for p̂ ∈ D(v0, ρ).

The constant L̂ depends on the Lipschitz coefficient for the mapping v → Po(v),
for v ∈ K, and is independent of the base point v. By using a larger value for L0,
if necessary, one then has the validity of

‖Aβ(ν(p1) − ν(p2))‖ ≤ L0ρ‖Aβ(p1 − p2)‖, for ‖Aβ p1‖, ‖Aβ p2‖ ≤ ρ

(6.1)

and

‖Aβν(p)‖ ≤ L0‖Aβ p‖2 ≤ L0ρ‖Aβ p‖ ≤ L0ρ
2, for ‖Aβ p‖ ≤ ρ,(6.2)

as well as inequalities (4.25)–(4.26).
In the four Lemmas 6.1–6.3, we look at some of the consequences of choosing

a specific number ρ1 with 0 < ρ1 ≤ ρ0 and satisfying

4K2 L0ρ1 < 1, KC2 L0ρ1 ≤ 1, 48KC2C4ρ1e−λ2T ≤ 1,

ρ1 ≤ 3

10
ρ0, C2ρ1 ≤ ρ0,

10L0ρ1 ≤ e(λ2−a0)t, for 0 ≤ t ≤ 2T, and

bF
1 (ρ1) ≤ 1

48K
eλ2t, for 0 ≤ t ≤ 2T.

(6.3)

The quantities T , L0, C2, a0, and bF
1 are given by (6.9), (6.1)–(6.2), (5.16), (5.12)–

(5.13), and Lemma 5.5, respectively. Note that when (6.3) holds, then one has

3L0ρ1 ≤ e(λ3−a0)t, for 0 ≤ t ≤ 2T,(6.4)

since λ2 ≤ λ3. Also, K ≥ 1 implies that

1

48K
eλ2 t < 2K2eλ3t, for t ≥ 0.(6.5)

In addition to (6.3), we require that if ‖Aβ(v1 − v0)‖ ≤ ρ1, where v1 ∈ Dρ0(θ, v0),
then the global solutions S1(θ, t)v1 and S1(θ, t)v0 satisfy

‖Aβ(S1(θ, t)v1 − S1(θ, t)v0)‖ ≤ ρ0, for − 2T ≤ t ≤ 2T.(6.6)

In Lemmas 6.1 and 6.2, we treat the radius ρ in Dρ(v0) as a parameter. Since
the proofs are straightforward, we omit the details.
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Lemma 6.1. Let the Standing Hypotheses be satisfied. Let Pi(v0) = Pi(θ, v0)

and Qo(v0) = Qo(θ, v0), for (θ, v0) ∈ K and i = s, o, u. Let ρ1 satisfy (6.3)–
(6.6). Then for all (θ, v0) ∈ K and all u1 and u2 in the disk Dρ(θ, v0), with
‖Aβ(u1 − u2)‖ ≤ ρ, where 0 < ρ ≤ ρ1, inequalities (4.25), (6.1), and (6.2) are
valid, and one has

3

4
‖Aβ Po(v0)(u1 − v0)‖ ≤ (1 − L0ρ)‖Aβ Po(v0)(u1 − v0)‖

≤ ‖Aβ(u1 − v0)‖
≤ (1 + L0ρ)‖Aβ Po(v0)(u1 − v0)‖
≤ 5

4
‖Aβ Po(v0)(u1 − v0)‖.

In addition, one obtains

⎧⎪⎨
⎪⎩

‖Aβ Ps(v0)(u1 − u2)‖
‖Aβ Pu(v0)(u1 − u2)‖
‖Aβ Qo(v0)(u1 − u2)‖

≤ K2 L0‖Aβ(u1 − u2)‖2 ≤ K2 L0ρ‖Aβ(u1 − u2)‖.

(6.7)

We will denote a typical point v ∈ Dρ(θ, v0) in the form v = v0 + p + ν(p),
where ‖Aβ p‖ < ρ ≤ ρ1. One then has

‖Aβ(v − v0)‖ ≤ (1 + L0ρ)ρ,

‖Aβ(v1 − v2)‖ ≤ (1 + L0ρ)‖Aβ(p1 − p2)‖ ≤ 5

4
‖Aβ(p1 − p2)‖,

(6.8)

where vi = v0 + pi +ν(pi) ∈ Dρ(v0) and ‖Aβ pi‖ ≤ ρ, for i = 1, 2. By combining
Lemma 6.1 with the properties of the exponential trichotomy (4.10), (4.12), and
(4.19) and inequalities (5.12), (4.25), and (6.7), we obtain the following result:

Lemma 6.2. Let the Standing Hypotheses be satisfied. For (θ, v0) ∈ K , let B =
Z(θ, v0) and Φ(B, t) satisfy (3.22). Then for all (θ, v0) ∈ K , all v1 ∈ Dρ(v0),
where 0 < ρ ≤ ρ1, the following properties hold:

‖AβΦ(B, t)Po(v0)(v1 − v0)‖ ≤ K2‖Aβ(v1 − v0)‖eλ3t,

‖AβΦ(B, t)Ps(v0)(v1 − v0)‖ ≤ K3 L0ρ‖Aβ(v1 − v0)‖eλ1 t,

‖AβΦ(B, t)Pu(v0)(v1 − v0)‖ ≤ K3 L0ρ‖Aβ(v1 − v0)‖ea0 t,

‖AβΦ(B, t)(v1 − v0)‖ ≤ K2‖Aβ(v1 − v0)‖eλ3t

+ K3 L0ρ‖Aβ(v1 − v0)‖ea0 t,

‖AβΦ(B, t)Po(v0)(v1 − v0)‖ ≥ K−1‖Aβ Po(v0)(v1 − v0)‖eλ2 t,

‖AβΦ(B, t)(v1 − v0)‖ ≥ (
4(5K )−1eλ2t − K2 L0ρea0t

) ‖Aβ(v1 − v0)‖,
for all t ≥ 0, where ρ1 satisfies (6.3)–(6.6).
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While the inequalities in this lemma are valid for all t ≥ 0, we will be using
them when t is restricted to a finite interval 0 ≤ t ≤ 2T , where T > 0 is fixed as
follows: With the characteristics K , λ1, λ2, λ3, and λ4 of K given by the exponential
trichotomy on K, we seek real numbers τ > 0 and T > 0 such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4K2eλ1τ < 1,

96K2e(λ1−λ2)τ < 1,

16K2e−λ4τ < 1,

48K3e(λ3−λ4)τ < 1,

for T ≤ τ ≤ 2T.(6.9)

Note that each of the exponents in inequalities (6.9) is negative. Consequently, there
does exist a time T > 0 such that, for all τ ≥ T , these inequalities are satisfied. We
fix one such T for the sequel. We will use the fact that (6.9) is valid for all τ , with
T ≤ τ ≤ 2T . Note that one has{

16K3C2 L0ρ1e−λ4T

48KC4ρ1e−λ2T
≤ 1.(6.10)

The first inequality in (6.10) follows from (6.3) and (6.9), and the second follows
from (6.3).

6.2. Local coordinates

For 0 < ρ ≤ ρ0 and 0 ≤ σ ≤ σ0, we define bF
3 = bF

3 (ρ, σ) by

bF
3 (ρ, σ)

def= sup
{‖DF̂(θ, y1) − DF̂(θ, y2)‖L : ‖Aβ(y1 − y2)‖ ≤ ρ

}
,(6.11)

where the supremum is taken over all y1, y2 in the fiber U(σ)(θ) and all θ ∈ T k.
Also, one has L = L(V 2β, W ). Since DF̂ = Du F̂ is bounded on U(σ0), it follows
that bF

3 (ρ, σ) is finite-valued. Since DF̂ is continuous and K is compact, one has
bF

3 (ρ, σ) → 0, as (ρ, σ) → 0. That is to say, bF
3 ∈ Σ. In addition to (6.3)–(6.6),

we require that ρ1 and σ1 satisfy

C3 bF
3 (ρ1, σ1) ≤ 1

144K2
e2λ2T ,(6.12)

where C3 = C3(2T ) > 0 is defined in Lemma 6.4.

For any set S in V 2β and any σ > 0, we define the σ-neighborhood N(S, σ) by

N(S, σ) = {y ∈ V 2β : there is an x ∈ S with ‖Aβ(y − x)‖ ≤ σ}.
We will use this notation when S = Dρ(θ, v) and (θ, v) ∈ K . The next step is to
construct a local coordinate system near K by restricting this coordinate system to
a suitable neighborhood of each disk Dρ(θ, v0), where (θ, v0) ∈ K. In addition to
(6.3)–(6.6), we require that ρ1 and σ1 satisfy 0 < σ1 ≤ σ0, and for each (θ, v) ∈ K
one has

Convex Hull
(
N

(
Dρ1(θ, v), σ1

)) ⊂ N
(
Dρ0(θ, v), σ0

)
.(6.13)

In addition, we ask that ρ1 and σ1 satisfy (6.20) and (6.29).
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We will require that σ1 and (especially) ρ1 satisfy a few auxiliary properties.
In particular, by using the Lipschitz property, one can show that if the radius ρ of
the disks Dρ(v0) and the number σ1 are replaced by smaller values, if necessary,
then one can construct a new (local) coordinate system in the vicinity of each disk
Dρ(v0). In addition to ρ1 and σ1 satisfying (6.3)–(6.6) and (6.13), we require that
these parameters satisfy (6.16) and the conclusions of the three Lemmas 6.1–6.3.
This can be accomplished by using smaller values of ρ1 and σ1 in the references
cited above.

The relationship (6.13) is important because it enables us to get a good estimate
for the effective Lipschitz coefficient for the nonlinear perturbation term Ĝ, as
required in (5.5). In particular, let wi = wi(t) denote two continuous functions
with

wi(t) ∈ N
(
Dρ1(θ · t, S1(θ, t)v), σ1

)
, for 0 ≤ t < t0,

where (θ, v) ∈ K and 0 < t0 ≤ ∞. Assume that G ∈ C1
Lip satisfies inequality

(5.5). Since λw1(s) + (1 − λ)w2(s) is in the convex hull, see (6.13), for 0 ≤ s < t0
and 0 ≤ λ ≤ 1, one obtains

G(θ,w1) − G(θ,w2) =
∫ 1

0
DG(θ,w2 + φ(w1 − w2)) dφ (w1 − w2),

for 0 ≤ s < t0, which implies that

e−A(t−s)[G(θ,w1) − G(θ,w2)]
=

∫ 1

0
e−A(t−s)DG(θ · s, w2 + φ (w1 − w2)) dφ (w1 − w2),

(6.14)

for 0 ≤ s < t0. We claim that
∫ t

0
‖Aβe−A(t−s)[G(θ · s, w1(s)) − G(θ · s, w2(s))]‖ ds

≤ δ sup
0≤s≤t

‖Aβ(w1(s) − w2(s))‖.
(6.15)

Indeed from (6.14) one has
∫ t

0
‖Aβe−A(t−s)[G(θ · s, w1(s)) − G(θ · s, w2(s))]‖ ds

≤
∫ t

0

∫ 1

0
‖Aβe−A(t−s) DG‖L dφ ‖Aβ(w1 − w2)‖ ds

≤ ‖G‖{C1;A;U,R} sup
0≤s≤t

‖Aβ(w1(s) − w2(s))‖;

thus inequality (6.15) now follows from (5.5).

Lemma 6.3. Let the hypotheses of Theorem 5.1 be satisfied, and let ρ1 and
σ1 satisfy (6.3)–(6.6), (6.13), and (6.20). Let y ∈ N(Dρ1 (θ, v0), σ1), where
(θ, v0) ∈ K. Then the following properties are valid:
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1. There is a unique point v ∈ Dρ0(θ, v0) such that y − v ∈ Us(v) ⊕ Uu(v).

Furthermore, the mapping ψ : y → v
def= ψ(y) = ψ(v0, y) is of class C1,1 on

N(Dρ1 (θ, v0), σ1), with ψ(v0, v1) = ψ(v1) = v1, for all v1 ∈ Dρ1(θ, v0).
2. If, in addition, one has ‖Aβ(y − v0)‖ < 2σ1, then v = ψ(y) ∈ Dρ1(v0).
3. Moreover, the Fréchet derivative Dψ(y) of ψ(y) with respect to y, where y ∈

N(Dρ1 (θ, v0), σ1), satisfies

Dψ(y) = Po(v) = Po(ψ(y)).(6.16)

4. The mapping ψ satisfies ψ(y) = ψ(v0, y) = y − φ(v0, y) = y − φ(y), for
y ∈ N(Dρ1 (θ, v0), σ1), where Dφ(y) = Qo(v) = Qo(ψ(y)). The mapping φ

has the property that for all v ∈ K, one has

φ(v + n) = n, for n ∈ R(Qo(v)).(6.17)

5. Let yi ∈ N(Dρ1 (θ, v0), σ1), for some v0 ∈ K, and set vi = ψ(yi), for i = 1, 2.
Then one has

v1 − v2 = ψ(y1) − ψ(y2) = Po(v2)(y1 − y2) + e3,(6.18)

and there is a bF
2 ∈ Σ such that e3 = e3(y2, y1 − y2) satisfies

‖Aβe3‖ ≤ bF
2 (ρ)‖Aβ(y1 − y2)‖(6.19)

whenever ‖Aβ(y1 − y2)‖ ≤ ρ ≤ ρ1.

In the sequel, we will require that

C2 bF
2 (ρ1) ≤ 1

144K2
e2λ2T (≤ K ),(6.20)

in which case one has ‖v1 − v2‖ ≤ 2K‖y1 − y2‖. The constant C2 is defined in
Lemma 6.4, and it satisfies C2 ≥ 1.

The proof of this lemma is essentially the same as the argument used in [24,
pp. 444–446] and [33, pp. 501–502]. In each case, one is concerned with the local
geometry near a disk Dρ1(v0). We omit the details here.

Notation: We will denote the new (nonlinear) coordinates of the point y by

y = v + s + u = v + n,(6.21)

where ‖y − v‖ < σ1, v ∈ K, s ∈ Us(v), u ∈ Uu(v), and n = s + u. By
(6.17) one then has φ(y) = n = s + u. In the sequel we fix ρ1 and σ1 so that
(6.3)–(6.6) (6.13), (6.20), and the conclusions of Lemmas 6.1–6.3 hold. This new
coordinate system for the point y depends on the base point (θ, v0) ∈ K. If two
disks Dρ1(θ, v0) and Dρ1(θ, v1) on the same leaf have a nontrivial intersection,
say, that y ∈ N(Dρ1 (θ, v0), σ1)∩ N(Dρ1 (θ, v1), σ1), then ψ(v0, y) = ψ(v1, y), i.e.,
the coordinate representations agree. More generally, let y = y(t) = S2(θ, t)y0 be
a solution of the perturbed equation in (5.4), where y0 = v0 + n0, v0 ∈ K , and
n0 ∈ R(Qo(v0)). Assume that one has y(t) ∈ N(Dρ1 (θ · t, S1(θ, t)v0), σ1) for t in
some interval I . Then the local coordinate representation

y(t) = v(t) + n(t), for all t ∈ I,(6.22)

where v(t) ∈ Dρ0(θ · t, S1(θ, t)v0), Po(v(t))n(t) = 0, and Qo(v(t))n(t) = n(t), is
well defined, for all t ∈ I .
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6.3. Perturbed dynamics near K

Let C(K, V 2β) denote the Banach space of continuous functions f : K → V 2β ,
where f = f(v) = f(θ, v), with the sup-norm

‖ f ‖∞ = sup{‖Aβ f(θ, v)‖ : (θ, v) ∈ K}.
Next we define two function classes: F = F (ε, �) and G = G(ε, �) in C(K, V 2β),
where the parameters ε > 0 and � > 0 will be chosen later. A vector-valued function
f is said to belong to F (ε, �) if f ∈ C(K, V 2β) and, for each (θ, v) ∈ K, one has
f(v) ∈ Us(v) with ‖Aβ f(v)‖ ≤ ε, and the restriction of f to each disk Dρ1(θ, v0)

in K is Lipschitz continuous with Lipschitz coefficient �. Similarly, a vector-valued
function g = g(v) = g(θ, v) is said to belong to G(ε, �) if g ∈ C(K, V 2β) and, for
each (θ, v) ∈ K, one has g(v) ∈ Uu(v) with ‖Aβg(v)‖ ≤ ε, and the restriction of
g = g(v) to each disk Dρ1(θ, v) in K is Lipschitz continuous in v with Lipschitz
coefficient �. Since

Us = {(θ, v, n) : (θ, v) ∈ K, n ∈ Us(v)} and

Uu = {(θ, v, n) : (θ, v) ∈ K, n ∈ Uu(v)}
are closed subsets of K × V 2β , see [29–31], it follows that, for every ε > 0 and
� > 0, the spaces F (ε, �) and G(ε, �) are closed sets in C(K, V 2β). Consequently,
the product space F (ε, �) × G(ε, �) is a complete metric space with the metric

‖( f1, g1) − ( f2, g2)‖∞
def= ‖ f1 − f2‖∞ + ‖g1 − g2‖∞,

where ( fi, gi) ∈ F × G, for i = 1, 2.
In the argument given below, our objective will be to find ( f, g) ∈ F × G so

that the mapping h, which is defined by

h(θ, u) = h(u) = u + f(u) + g(u) = u + f(θ, u) + g(θ, u), for (θ, u) ∈ K,

(6.23)

satisfies the conclusions of the four Theorems 5.1–5.4. The pair ( f, g) will be found
as a fixed point of a suitable mapping Aτ .

Let (θ, v0) ∈ K and y0 ∈ N(v0, σ1) be given, and set

w(t) = S2(θ, t)y0 − S1(θ, t)v0, with w0 = y0 − v0.

It follows that w(t) satisfies (2.34). Assume that ‖Aβw0‖ ≤ ε and G satisfies
inequality (5.5), where δ > 0. Then with F1 = F and F2 = F + G, inequality
(2.21) implies that, for t0 > 0, there is a constant K1 = K1(t0) > 0 such that

‖Aβw(t)‖ ≤ K1(t0)(ε + δ), for 0 ≤ t ≤ t0.

If ε and δ satisfy K2(ε + δ) ≤ σ1 ≤ σ0, where K2 = K1(2T ), then one can choose
t0 such that t0 ≥ 2T and

‖Aβw(t)‖ = ‖Aβ(S2(θ, t)y0 − S1(θ, t)v0)‖ ≤ K2(ε + δ),(6.24)
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for 0 ≤ t ≤ 2T . Next we define

e = e(t) = e(t, y0) = w(t) − Φ(B, t)w0,(6.25)

where w(0) = w0 = y0−v0 and B = Z(θ, v0), see (3.22). Since w(0) = Φ(B, 0) =
w0, it follows that e(0) = 0 and e(t) is the mild solution of

∂te(t) + Ae(t) = B(t)e(t) + E(S(t)v0, w(t)) + G(S(t)v0 + w(t)).

As a result of (2.34) and (2.35), the solution e satisfies

e(t) =
∫ t

0
e−A(t−s)B(s)e(s) ds +

∫ t

0
e−A(t−s) E(S(s)v0, w(s)) ds

+
∫ t

0
e−A(t−s)G(S(s)v0 + w(s)) ds.

(6.26)

Now inequalities (5.5), (5.10), and (5.13) imply that there is a γ ∈ Σ, such that,
for 0 ≤ t ≤ 2T , one has

‖Aβe(t)‖ ≤ Mβ‖B‖∞
∫ t

0
(t − s)−βe−a(t−s)‖Aβe(s)‖ ds

+
∫ t

0
(t − s)−βe−a(t−s)‖Aβw(s)‖γ(‖Aβw(s)‖) ds + δ.

From inequality (6.24) one obtains a β1 ∈ Σ, where

‖Aβe(t)‖ ≤ (ε + δ)β1(ε, δ) + δ + Mβ‖B‖∞
∫ t

0
(t − s)−βe−a(t−s)‖Aβe(s)‖ ds,

for 0 ≤ t ≤ 2T . It then follows from the Gronwall–Henry inequality, see Lemma 7.1,
that there is a constant C1 > 0 and a b0 ∈ Σ such that

‖Aβe(t)‖ ≤ (ε + δ)b0(ε, δ) + C1δ, for 0 ≤ t ≤ 2T.(6.27)

In addition to the functions bF
1 , bF

2 , and bF
3 introduced above, we define bF

4 and
bF

5 by

bF
4 = bF

4 (ρ, σ) = K
(
C3 bF

3 (ρ, σ) + C2 bF
2 (ρ)

)
,

bF
5 = bF

5 (ρ, σ) = 3bF
4 (ρ, σ) + bF

1 (ρ),
(6.28)

where the coefficients C2 and C3 are defined below in Lemma 6.4. We make
additional requirements on ρ and σ so that bF

4 and bF
5 are “small.” Detailed estimates

can be found in [24, pp. 449–474] or [33, pp. 505–528]. For example, we will use
the following below:

bF
4 ≤ bF

5 and 144K2bF
4 (ρ1, σ1) ≤ 1.(6.29)

Special notation: The following notation will be used from time to time in the
sequel: For i = 1, 2, we define yi = yi(t) = S2(θ, t)yi0, vi = vi(t) = v(t, yi0),
ni = ni(t) = n(t, yi0), si = si(t) = s(t, yi0), ui = ui(t) = u(t, yi0), and S1,i =
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S1,i(t) = S1(θ, t)vi0, where ψ(yi0) = vi0 with vi0 ∈ Dρ1(θ, v0), for some (θ, v0)

∈ K, and ni0 = yi0 − vi0 = si0 + ui0. Also, we define � by:

�y = �y(t) = y1 − y2, �v = �v(t) = v1 − v2,

�n = �n(t) = �y − �v, �w = �w(t) = �y − �S1,

�S1 = �S1(t) = S1,1 − S1,2, �z = �z(t) = �v − �S1,

�s = �s(t) = s1 − s2, and �u = �u(t) = u1 − u2.

(6.30)

We let the functions ES1 = ES1(t), Ey = Ey(t), Ev = Ev(t), and Es = Es(t) be
defined, for 0 ≤ t ≤ 2T , by

�S1(t) = Φ(B, t)�S1(0) + ES1(t),

�y(t) = Φ(B, t)�y(0) + Ey(t),

�v(t) = Φ(B, t)�v(0) + Ev(t),

�s(t) = Φ(B, t)Ps(v20)�n(0) + Es(t),

(6.31)

where B = Z(θ, v20), see (3.22). This special notation is used in the following
result and in the sequel. We also use the abbreviated notation for the skew product
semiflows π and Π, see Section 4.2. This permits us to draw a curtain over the
θ-variable. But never forget, while θ is out of view, its influence is omnipresent!

In the argument below, we will construct a series {εi} so that 0 < εi+1 ≤ εi ≤ ε0,
for i = 4, 5, · · · . We require that ε0 be positive and satisfy

2ε0 ≤ σ1, ε0 ≤ min
(

ρ0,
1

3
σ0

)
, 2L0ε0 ≤ 1.(6.32)

Lemma 6.4. Let the hypotheses of Theorem 5.1 be satisfied. Then there exists an
ε0 > 0 and a δ0 = δ0(ε) > 0, and nonnegative constants C0, C1, C2, and C3, which
depend on the characteristics of the exponential trichotomy on K and the time T
such that (6.32) holds:

C2 ≥ 1, C0(ε0 + δ0) ≤ min(ρ1, σ1);
additionally, whenever 0 < ε ≤ ε0, 0 < δ ≤ δ0, and G satisfies (5.5) with
δ = δ0(ε), the conclusions of Lemmas 6.1–6.3 hold, and the following are valid:

1. For any (θ, v0) ∈ K and y0 = v0 + n0, where n0 ∈ Us(v0) + Uu(v0) and
‖Aβn0‖ ≤ 2ε ≤ σ1, one has

⎧⎪⎨
⎪⎩

‖Aβ(S2(θ, t)y0 − S1(θ, t)v0)‖
‖Aβ(v(t, y0) − S1(θ, t)v0)‖
1
2‖Aβn(t, y0)‖

≤ C0(ε + δ), for 0 ≤ t ≤ 2T.(6.33)

Furthermore, w(t) = S2(θ, t)y0 − S1(θ, t)v0 satisfies equation (2.35), with
w(0) = n0 = y0 − v0. Also, y(t) = S2(θ, t)y0 = v(t) + n(t) satisfies (6.22), for
0 ≤ t ≤ 2T, and inequality (6.27) holds.
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2. Assume that (θ, vi0) ∈ K with ‖Aβ�v(0)‖ ≤ ρ1 and ‖Aβ(yi0 − vi0)‖ ≤ 2ε

≤ σ1, for i = 1, 2. Then one has

yi(t) = S2(θ, t)yi0 ∈ N(Dρ1 (θ · t, S1(θ, t)v10), σ1),

and ⎧⎪⎨
⎪⎩

‖Aβ�y(t)‖
‖Aβ�v(t)‖
‖Aβ�n(t)‖

≤ C2‖Aβ�y(0)‖, for 0 ≤ t ≤ 2T.(6.34)

3. Whenever ‖Aβ(yi0 − vi0)‖ ≤ 2ε ≤ σ0, with (θ, vi0) ∈ K, for i = 1, 2, and
‖Aβ�y(0)‖ ≤ C−1

2 ρ, with 0 < ρ ≤ ρ0, then

I =
∫ t

0
Φ(Bs, t − s)

∫ 1

0
[DF̂(y2 + φ(y1 − y2)) − DF̂(y2)] dφ �y(s) ds,

when DF̂(y2) = Du F̂(θ · s, y2(s)), etc. satisfies

‖Aβ I‖ ≤ C3 bF
3 (ρ, 2ε)‖Aβ�y(0)‖, for 0 ≤ t ≤ 2T,(6.35)

where B = Z(θ, v20), see (3.22), and bF
3 is given by (6.11).

4. There exist β1, β2 ∈ Σ such that, for 0 ≤ t ≤ 2T, one has

‖Aβ ES1(t)‖ ≤ bF
1 (ρ)‖Aβ�v(0)‖,

‖Aβ Ey(t)‖ ≤ (
C3bF

3 (ρ, 2ε) + β1(ε, δ)
) ‖Aβ�y(0)‖,

‖Aβ Ev(t)‖ ≤ (
bF

4 (ρ, 2ε) + β2(ε, δ)
) ‖Aβ�y(0)‖.

(6.36)

5. Let yi = yi0 and vi = vi0, i = 1, 2, be given as in item 2, and ‖Aβ�y(0)‖ ≤
3‖Aβ�v(0)‖. Then for 0 < ε ≤ ε0 and 0 < δ ≤ δ0, one has

1

2
‖Aβ�S1(t)‖ ≤ ‖Aβ�v(t)‖ ≤ 3

2
‖Aβ�S1(t)‖, for 0 ≤ t ≤ 2T.(6.37)

Define H5(t) by �v(t) = �S1(t)+ H5(t), for t ∈ [0, 2T ]. Then there is a β3 ∈ Σ

such that, for 0 ≤ t ≤ 2T, one has

‖Aβ H5(t)‖ = ‖Aβ�z(t)‖ ≤ (
bF

5 (ρ, 2ε) + β3(ε, δ)
) ‖Aβ�v(0)‖.(6.38)

6. Under the conditions stated in item 5, for 0 ≤ t ≤ 2T, one has

1

8K
eλ2 t‖Aβ�v(0)‖ ≤ ‖Aβ�v(t)‖ ≤ 6K2eλ3t‖Aβ�v(0)‖.(6.39)

Since the proof of this lemma is essentially the same as the argument used in
[24, pp. 453–457] and [33, pp. 508–512], we do not present the details here.

For any pair ( f, g) ∈ F × G = F (ε, �) × G(ε, �), we define h : K → V 2β

by (6.23). We assume that (6.32) holds. Since ‖Aβ(y0 − v0)‖ ≤ 2ε ≤ σ0, one
has S2(θ, t)y0 ∈ N(Dρ1 (θ · t, S1(θ, t)v0), σ1), for 0 ≤ t ≤ 2T . The mapping
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v(t, y0) = ψ(S2(θ, t)y0) = ψ(v0, S2(θ, t)y0), which is defined by the local coor-
dinate representation and which is valid for 0 ≤ t ≤ 2T , admits a well-defined
extension

v(t, y0) = ψe(S2(θ, t)y0) = ψ(S1(θ, t)v0, S2(θ, t)y0)(6.40)

on a larger time interval, as long as ‖Aβ(S2(θ, t)y0 − S1(θ, t)v0)‖ ≤ ρ1.
Let ( f, g) ∈ F × G be given, where � ≤ 1, and consider the collection of

all solutions S2(θ, t)y0 of the perturbed equation in (5.4) with y0 = h(θ, v0) =
h(v0), for (θ, v0) ∈ K, see (6.23). For 0 < ε ≤ ε0 and 0 ≤ δ ≤ δ0, one has
‖Aβ(S2(θ, t)y0 − S1(θ, t)v0)‖ ≤ σ1, for 0 ≤ t ≤ 2T . We claim that

Kt
def= {(θ · t, v(t, h(v0))) : (θ, v0) ∈ K} = K, for each t ∈ [0, 2T ].(6.41)

Since v(0, h(v0)) = v0, it follows that K0 = K . For t > 0 we note that the
mapping (v0, t) → v(t, h(v0)) is a continuous mapping of K × [0, 2T ] into K .
Since K is compact, it follows that Kt is compact. Furthermore, inequality (6.39)
implies that the mapping v0 → v(t, h(v0)) is an open mapping. Thus Kt is open.
Since K is connected, this implies that Kt = K , for all t ∈ [0, 2T ]. Due to the
choice of ρ1, see (6.13), we see that the mapping (θ, v0) → (θ · t, v(t, h(v0)) is
a homeomorphism of K onto Kt , for each t ∈ [0, 2T ].

6.4. The mapping Aτ

The basic idea in the proofs of the four main theorems 5.1–5.4 is to construct
a family of mappings Aτ : ( f, g) → ( f̄τ , ḡτ ), which are defined on F × G, for
T ≤ τ ≤ 2T . We will show that for ε and δ small, and for T ≤ τ ≤ 2T , the
following hold:

1. One has ‖Aβ f̄τ (v)‖ ≤ 3
4ε. (Lemma 6.5.)

2. The function f̄τ = f̄τ (v) is Lipschitz continuous in v, for v in the disk Dρ(θ, v0),
for any (θ, v0) ∈ K, and f̄τ ∈ F . (Lemma 6.6.)

3. The mapping ( f, g) → f̄τ is contracting on F . (Lemma 6.7.)
4. The function ḡτ satisfies the same three properties. (Lemmas 6.8–6.10).
5. Let ( f, g) denote the fixed point of the mapping Aτ : ( f, g) → ( f̄τ , ḡτ), and set

h(v) = v+ f(v)+g(v), for (θ, v) ∈ K. Then Kn = h(K) is an invariant set for
the perturbed equation in (1.1), and the other properties of Theorems 5.1–5.4
are valid, see Theorem 6.11 and Section 6.5.

For each pair ( f, g) ∈ F (ε, �)×G(ε, �), where � ≤ 1, we define a new function
f̄τ = f̄τ (v(τ, y0)) = f̄τ (θ · τ, v(τ, y0)) by

f̄τ (v(τ, y0)) = Ps(v(τ, y0))(S2(θ, t)y0 − v(τ, y0)), for T ≤ τ ≤ 2T,(6.42)

where y0 = v0 + f(v0) + g(v0). Note that for each (θ, v0) ∈ K, it follows from
(6.21) that

f̄τ (v(τ, y0)) = Ps(v(τ, y0))n(τ, y0) = s(τ, y0) ∈ Us(v(τ, y0)),
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for T ≤ τ ≤ 2T , since Us(u) is the range of the projection Ps(u). Equation
(6.42) gives the value of f̄τ at the point (θ · τ, v(τ, y0)) ∈ K. Due to Lemma 6.3
and (6.41), we see that f̄τ is well defined everywhere on K , and the mapping
(θ, v0, τ) → f̄τ (θ, v0) is a continuous mapping of K × [T, 2T ] into V 2β .

Lemma 6.5. Let the hypotheses of Theorem 5.1 be satisfied, and let ε0 and δ0 be
given by Lemma 6.4. Then there is an ε4, with 0 < ε4 ≤ ε0, such that for all ε with
0 < ε ≤ ε4, there is a δ4 = δ4(ε), with 0 < δ4 ≤ δ0, such that if G satisfies (5.5)
with δ = δ4, and if f ∈ F (ε, �) and g ∈ G(ε, �), where 0 < � ≤ 1, then one has

‖Aβ f̄τ (v)‖ ≤ 3

4
ε, for all (θ, v) ∈ K and T ≤ τ ≤ 2T.(6.43)

Since the proof of this lemma is essentially the same as the argument used in
[24, pp. 459–460] and [33, pp. 514–515], we do not present the details here.

In the following result, we argue that f̄τ (v) = f̄τ (θ, v) is (locally) Lipschitz
continuous in v, on each disk Dρ1(θ, v0) in K, provided that T ≤ τ ≤ 2T .

Lemma 6.6. Let the hypotheses of Theorem 5.1 be satisfied. Then there is an ε5

with 0 < ε5 ≤ ε4 such that for all ε with 0 < ε ≤ ε5, there exist δ5 = δ5(ε)

with 0 < δ5 ≤ δ4, where ε4 and δ4 are given in Lemma 6.5, and for all ρ with
0 < ρ ≤ ρ1, there is an �5 = �5(ρ, ε) such that if G satisfies (5.5) with δ = δ5

and if f ∈ F = F (ε, �) and g ∈ G = G(ε, �) with � ≤ 1 and ε ≤ ε5, then the
restriction of f̄τ to the disk Dρ(θ, v0), for 0 < ρ ≤ ρ1, is Lipschitz continuous with
Lipschitz coefficient �5, for every v0 ∈ K and for T ≤ τ ≤ 2T. Moreover, one has
f̄τ ∈ F , and �5(ρ, ε) ∈ Σ.

Proof. The main idea here is to show that there is a suitable �5 = �5(ρ, ε) in Σ

such that

‖Aβ( f̄τ (v1(τ)) − f̄τ (v2(τ)))‖
‖Aβ(v1(τ) − v2(τ))‖ ≤ �5, for T ≤ τ ≤ 2T.(6.44)

Since the proof of this lemma is essentially the same as the argument used in [24,
pp. 461–463] and [33, pp. 515–517], we present only an outline here. In the course
of doing this proof, one uses ‖Aβ�y(0)‖ ≤ 3‖Aβ�v(0)‖ and shows that there
exist functions β4, β5, and β6 in Σ such that C2β4 + 3β5 ≤ β6 and

‖Aβ Es‖ ≤ (C4ρ + β4(ε, δ))‖Aβ�v(0)‖(
bF

4 (ρ, 2ε) + β5(ε, δ)
)‖Aβ�y(0)‖

≤ (
C4ρ + 3bF

4 (ρ, 2ε) + β6(ε, δ)
)‖Aβ�v(0)‖,

(6.45)

for 0 ≤ t ≤ 2T , with

‖AβΦ(B, t)Ps(v20)�n(0)‖ ≤
{

Keλ1t‖Aβ Ps(v20)�n(0)‖,
Keλ1t‖Aβ�n(0)‖,(6.46)

for t ≥ 0, where B = Z(θ, v20), see (3.22). ��
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Next we consider the two inequalities:

8KC2 �5(ρ1, σ1) ≤ 1,

48Kβ6(ε5, ε5) ≤ 1.
(6.47)

Since �5 ∈ Σ, the first inequality can be achieved by choosing smaller values of
ρ1 and σ1, if necessary. The second inequality is merely an added restriction on ε5,
see Lemma 6.6.

Lemma 6.7. Let the hypotheses of Theorem 5.1 be satisfied. Then for every ε

with 0 < ε ≤ ε5 and δ ≤ δ5(ε), if G satisfies (5.5) with δ = δ5, then for all
( fi , gi) ∈ F (ε, �) × G(ε, �), where � = 1, one has

‖Aβ( f̄τ,1(u) − f̄τ,2(u))‖ ≤ 5

8
‖( f1, g1) − ( f2, g2)‖∞,(6.48)

for all (θ, u) ∈ K , where f̄τ,i are given by (6.42), for i = 1, 2.

Proof. Because of the importance of this lemma in proving the main theorems, we
include an outline of the argument here. We note that this follows the methodology
of [24, pp. 463–464]. Also see [33, p. 518].

Let τ be fixed, where T ≤ τ ≤ 2T . Once again we will use the special notation,
where, for (θ, v0) ∈ K, one now has

v10 = v20 = v0 = v0 and yi0 = v0 + fi(v0) + gi(v0), for i = 1, 2.

Recall that f̄i(vi(τ)) = si(τ) = Ps(vi(τ))ni(τ), where f̄i = f̄τ,i , for i = 1, 2.
By Lemma 6.4, the functions yi(t), vi(t) and ni(t), si(t), and ui(t) are Lipschitz

continuous functions of the initial data yi0. Since �v(0) = 0, and �y(0) = �n(0),
one has

‖Aβ�y(0)‖ ≤ ‖Aβ� f(v0)‖ + ‖Aβ�g(v0)‖ ≤ ‖( f1, g1) − ( f2, g2)‖∞,(6.49)

where � f(v0) = f1(v0) − f2(v0) and �g(v0) = g1(v0) − g2(v0). Also note that

Ps(v2)�s = � f̄ (v2) + Ps(v2)[ f̄1(v1) − f̄1(v2)], at t = τ,(6.50)

where � f̄ (v0) = f̄1(v0) − f̄2(v0). From the first inequality in (6.45) and (6.34),
one finds that

‖Aβ Es(t)‖ ≤ (
C2C4ρ + bF

4 (ρ, 2ε) + β5(ε, ε)
) ‖Aβ�y(0)‖,(6.51)

for 0 ≤ t ≤ 2T . Since Ps(v0)�n(0) = � f(v0), inequality (6.46) becomes

‖AβΦ(B, t)Ps(v20)�n(0)‖ ≤ Keλ1t‖Aβ� f(v0)‖, for t ≥ 0,

where B = Z(θ, v20), see (3.22). Therefore, from (6.51) one obtains

‖Aβ�s(t)‖ ≤ Keλ1t‖Aβ� f(v0)‖
+ (

C2C4ρ + bF
4 (ρ, 2ε) + β5(ε, δ)

) ‖Aβ�y(0)‖,(6.52)

for 0 ≤ t ≤ 2T .
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Since K ≥ 1, λ2 ≤ 0, and β5 ≤ β6, it then follows from inequalities (6.50),
(6.44), (6.34), (6.52), and (6.49) – in that order – that, for t = τ , one has:

‖Aβ� f̄ (v2)‖ ≤ ‖Aβ Ps(v2)�s‖ + ‖Aβ Ps(v2)[ f̄1(v1) − f̄1(v2)]‖
≤ K‖Aβ�s|| + KC2 �5(ρ, ε)‖Aβ�y(0)‖
≤ K2eλ1τ‖Aβ� f(v0)‖

+ (
KC2�5(ρ, ε) + KC2C4ρ + KbF

4 (ρ, 2ε) + Kβ5(ε, ε)
) ‖Aβ�y(0)‖

≤ (
K2eλ1τ + KC2 �5(ρ, ε) + KC2C4ρ + KbF

4 (ρ, 2ε) + Kβ5(ε, δ)
)

× ‖( f1, g1) − ( f2, g2)‖∞.

From inequalities (6.3), (6.9), (6.29), and (6.47), we see that each of the terms
K2eλ1τ , KC2C4ρ1, KC2 �5(ρ, ε), KbF

4 (ρ, 2ε), and Kβ5(ε, δ) on the right-side of
the last inequality is ≤ 1

8 , when 0 < ρ ≤ ρ1, 2ε ≤ σ1, and δ ≤ ε, which implies
(6.48). ��

Let ( f, g) ∈ F × G. We now seek to define a new function ḡτ , which is
a companion to the function f̄τ given by (6.42). Among other things, we want
ḡτ(v0) to be in Uu(θ, v0), for every (θ, v0) ∈ K. Let (θ, v0) ∈ K be given, and
define y0 = y0(V ) = v0 + f(v0) + V , where V ∈ Uu(θ, v0) will be treated as
a parameter. Consider the equation

g(θ · τ, v(τ, y0(V ))) = Pu(v(τ, y0(V )))(S2(θ, τ)y0(V ) − v(τ, y0(V ))),(6.53)

where T ≤ τ ≤ 2T . Our objective is to show that if ε and δ are sufficiently small,
then (6.53) has a unique solution V ∈ Uu(θ, v0). In this case we will denote this
solution by V = ḡτ(θ, v0), thereby defining ḡτ . Before proving this property, it is
convenient to write (6.53) in the abbreviated form

g(v) = Pu(v)(y − v) = Pu(v)n,

where y = S2(θ, τ)y0(V ), v = v(τ, y0(V )), n = y − v, Pu(v) = Pu (̂θ, v), and
θ̂ = θ · τ . Note that (6.53) holds in the subspace R(Pu(v)) = Uu (̂θ, v). By adding
and subtracting the three terms Pu(S)y, Pu(S)S, and Pu(S)v in (6.53), where
S = S1(θ, τ)v0, we see that (6.53) takes on the equivalent form

g(v) = Pu(S)(y − S) − Pu(S)(v − S) + [Pu(v) − Pu(S)](y − v),(6.54)

where Pu(S) = Pu (̂θ, S). Notice that each of the terms y, v, g, and Pu(v) are
Lipschitz continuous functions of the parameter V , while the term S does not
depend on V .

Lemma 6.8. Let the hypotheses of Theorem 5.1 be satisfied. Then there is an
ε7 > 0 such that ε7 ≤ ε5, and for all ε with 0 < ε ≤ ε7, there is a δ7 = δ7(ε) ∈ Σ

with 0 < δ7 ≤ δ5, where ε5 and δ5 are given in Lemma 6.6 such that if G satisfies
(5.5) with δ = δ7, and if f ∈ F (ε, �) and g ∈ G(ε, �) for any � with 0 < � ≤ 1,
then for each (θ, v0) ∈ K and τ ∈ [T, 2T ], there is a unique solution

V = ḡτ(θ, v0)
def= V(v0) ∈ Uu(θ, v0)
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of (6.53), and ‖AβV‖ ≤ 3
4ε. Moreover, ḡτ(θ, v0) is continuous, for (θ, v0) ∈ K

and T ≤ τ ≤ 2T.

Proof. We begin by rewriting (6.54) in the form

V = Γ(V ) = Γ(V, v0) = Γ(V, θ, v0),(6.55)

where (θ, v0) ∈ K, V ∈ Uu(v0), ( f, g) ∈ F × G, and

Γ(V, v0) = Γ(V, v0; f, g)

def= Φ(Bτ ,−τ)Pu(S)
[−ê(V, τ) + (v − S) + (

Pu(S) − Pu(v)
)

n + g(v)
]
,

(6.56)

where B = Z(θ, v0) and Φ(B, t) are given by (3.21)–(3.22). Also, it follows from
an application of (2.36) that

ê(V, t) =
∫ t

0
Φ(Bs, t − s)H(S1(θ, s)v0, w(s), s) ds.

We note that the function Γ(V, θ, v0) defined by (6.56) is well defined on the
domain

D(Γ )
def= {(V, θ, v0) ∈ V 2β × K : V ∈ Uu(θ, v0) and ‖AβV‖ ≤ ε}.

Also note that the range of Γ lies in Uu(θ, v0), for each (θ, v0) ∈ K . Indeed, one
obtains Pu(θ, v0)Φ(Bτ ,−τ) = Φ(Bτ ,−τ)Pu (̂θ, S) from the invariance property
(4.7), which in turn implies that Pu(θ, v0)Γ(V, v0) = Γ(V, v0), for all (V, v0) ∈
D(Γ ). Note that one has V = Γ(V, v0) if and only if g(v) = Pu(v)n.

Since the proof of this lemma is essentially the same as the argument used in
[24, pp. 465–468] and [33, pp. 520–523], we omit some of the intermediate steps
leading to the following conclusion: The mapping V → Γ(V ) is a contraction. In
particular, there is a β5 ∈ Σ such that

‖Aβ(Γ(V1, v0) − Γ(V2, v0))‖ ≤ (
bF

4 (ρ, 2ε) + β5(ε, δ)
)‖Aβ(V1 − V2)‖.

Next we let ε7 be chosen so that 0 < ε7 ≤ ε̄ and β5(ε7, ε7) ≤ 3
8 . Then set

δ7(ε) = δ̄(ε)), for 0 < ε ≤ ε7. Since K ≥ 1, inequality (6.29) implies that
bF

4 (ρ, 2ε) ≤ 1
144 . Hence

‖Aβ(Γ(V1, v0) − Γ(V2, v0))‖ ≤ 1

2
‖Aβ(V1 − V2)‖,

for all (Vi, v0) ∈ D(Γ ), for i = 1, 2.
Finally, the function ḡτ(θ, v0) is a continuous function of (θ, v0) ∈ K, because:

(1) the mapping (V, θ, v0) → Γ(V, θ, v0) given by equation (6.56) is continuous
on D(Γ ); and (2) the value ḡτ(θ, v0) is the unique fixed point of a contraction
mapping, and ḡτ(θ, v0) is jointly continuous in (θ, v0) and τ . ��

In the next two lemmas, we show that ḡτ(θ, v) is locally Lipschitz continuous
in v on disks Dρ1(θ, v0) in K and that the mapping ( f, g) → ḡτ is contracting.
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Lemma 6.9. Let the hypotheses of Theorem 5.1 be satisfied. Then there is an ε8

with 0 < ε8 ≤ ε7 such that for all ε with 0 < ε ≤ ε8, there exists a δ8 = δ8(ε) ∈ Σ,
with 0 < δ8 ≤ δ7, where ε7 and δ7 are given in Lemma 6.8, and, for 0 < ρ ≤ ρ1,
there exists an �8 = �8(ρ, ε) > 0 such that if G satisfies (5.5) with δ = δ8, and if
f ∈ F = F (ε, �) and g ∈ G = G(ε, �) with � ≤ 1 and ε ≤ ε8, then the restriction
of ḡτ = ḡτ (v) to the disk Dρ(θ, v0) is Lipschitz continuous in v with Lipschitz
coefficient �8, for every (θ, v0) ∈ K. Moreover, one has ḡτ ∈ G and �8(ρ, ε) ∈ Σ.

Since the proof of this lemma is essentially the same as the argument used in
[24, pp. 469–472] and [33, pp. 523–527], we do not present the details here. By
choosing smaller values for ρ1 and σ1, if necessary, we may assume that

16KC2�8(ρ1, σ1) ≤ 1.(6.57)

Lemma 6.10. Let the hypotheses of Theorem 5.1 be satisfied. Then there is an ε9

with 0 < ε9 ≤ ε8, and for every ε with 0 < ε ≤ ε9, there is a δ9 = δ9(ε) ≤ δ8(ε),
where ε8 and δ8 are given in Lemma 6.9 such that if G satisfies (5.5) with δ = δ9,
then for all ( fi, gi) ∈ F (ε, �) × G(ε, �), where � ≤ 1, and ḡτ,i is given by (6.53),
for i = 1, 2. One then has

‖Aβ(ḡτ,1(u) − ḡτ,2(u))‖ ≤ 1

2
‖( f1, g1) − ( f2, g2)‖∞ for all (θ, u) ∈ K.

(6.58)

Proof. We will use the special notation (6.30)–(6.31). Let ( fi, gi) ∈ F × G be
given, for i = 1, 2, and fix τ so that T ≤ τ ≤ 2T . Let (θ̂, v̂0) ∈ K be fixed,
and set v̂10 = v̂20 = v̂0. Define ŷi0 = v̂i0 + fi(θ̂, v̂0) + Vi , for i = 1, 2, where
Vi = gτ,i(θ̂, v̂0) is the solution of equation (6.55) given by Lemma 6.8, with ( f, g)

being replaced by ( fi , gi), for i = 1, 2. Let f̄i = f̄τ,i be given by Lemma 6.5, for
i = 1, 2.

Define yi0 by yi0 = S2(θ̂, τ)ŷi0, for i = 1, 2, and set θ = θ̂ · τ so that
θ̂ = θ · (−τ). Note that the solution S2(θ, t)yi0 of equation (5.4) has a partial
negative continuation

yi(t) = S2(θ, t)yi0
def= S2(θ̂, τ + t)ŷi0, for − τ ≤ t ≤ 0,

for i = 1, 2. When ε ≤ ε0 and δ ≤ δ0, Lemma 6.4 implies that
∥∥Aβ

(
S2(θ̂, s)ŷi0 − S1(θ̂, s)v̂0

)∥∥ ≤ C0(ε + δ) ≤ σ1, for 0 ≤ s ≤ τ.

Therefore, Lemma 6.3 implies that, for i = 1, 2, the functions yi(t) have the local
coordinate representation

yi(t) = vi(t) + ni(t), for − τ ≤ t ≤ 0,(6.59)

see (6.21)–(6.22), and ni(t) = si(t) + ui(t), for −τ ≤ t ≤ 0.
Next we invoke the standard notation (6.30) to define �y(t), �v(t), �n(t),

�s(t), and �u(t), for −τ ≤ t ≤ 0. We set vi0 = vi(0), for i = 1, 2. Note that one
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has �n(t) = �s(t) + �u(t), and
⎧⎪⎪⎨
⎪⎪⎩

�y(−τ) = ŷ10 − ŷ20, �y(0) = y10 − y20,

�v(−τ) = 0, �v(0) = v10 − v20,

�s(−τ) = � f(v̂0), �s(0) = f̄1(v10) − f̄2(v20),

�u(−τ) = V1 − V2, �u(0) = g1(v10) − g2(v20),

(6.60)

where � f(v̂0) = f1(v̂0) − f2(v̂0). Let Pu(v20) = Pu(θ, v20). It follows from the
definitions of f̄i and gi that Pu(v20) f̄i(v20) = 0 and Pu(v20)gi(v20) = gi(v20).
Hence, one obtains

Pu(v20)�n(0) = Pu(v20)
[

f̄1(v10) − f̄2(v20) + g1(v10) − g2(v20)
]

= [
Pu(v20) − Pu(v10)

] [
f̄ (v10) + g1(v10)

]
+ [g1(v10) − g1(v20)] + �g(v20),

where �g(v20) = g1(v20) − g2(v20). It then follows from (4.25), (6.43), and
Lemma 6.9 that

‖Aβ Pu(v20)�n(0)‖ ≤ ‖Aβ�g(v20)‖ + (�8 + 2L0ε)‖Aβ�v(0)‖.(6.61)

Let B = Z(θ, v20), see (3.22). Since −τ ≤ 0, inequality (4.11) implies that

‖AβΦ(B,−τ)Pu(v20)�n(0)‖ ≤ Ke−λ4τ‖Aβ Pu(v20)�n(0)‖.(6.62)

Next we will use Lemma 6.4 to estimate the value ‖Aβ�v(0)‖. For this purpose,
we use the change of variables s = τ − t, for 0 ≤ s ≤ τ , and let ŷi(s) = S2(θ̂, s)ŷi0.
Let v̂i and n̂i satisfy ŷ(s) = v̂i(s) + n̂i(s), for 0 ≤ s ≤ τ , see (6.59). Then
ŷi(τ) = yi0, for i = 1, 2, and �v̂(τ) = �v(0). Also, one has �v̂(0) = �v(−τ) = 0.
Next let Ev̂ = Ev̂(s) be given by (6.31). Since �v̂(0) = 0, one has �v̂(s) = Ev̂(s),
for 0 ≤ s ≤ τ . Since �v(0) = �v̂(τ) = Ev̂(τ), it follows from Lemma 6.4, item 4,
that there is a β2 ∈ Σ such that

‖Aβ�v(0)‖ ≤ (
bF

4 (ρ, 2ε) + β2(ε, δ)
) ‖Aβ�ŷ(−τ)‖.(6.63)

Next we examine the behavior of �u(t), for −τ ≤ t ≤ 0. We define Eu(t), for
−τ ≤ t ≤ 0, by the equation

�u(t) = Φ(B, t)Pu(v20)�n(0) + Eu(t), −τ ≤ t ≤ 0.

By using the argument of [24, pp. 470–471] or [33, pp. 524–525], one finds that
there is a β3 ∈ Σ such that

‖Aβ Eu(−τ)‖ ≤ K3 L0ρe−λ4τ‖Aβ�v(0)‖
+ (

bF
4 (ρ, 2ε) + β3(ε, δ)

)‖Aβ�y(−τ)‖.(6.64)

By combining the four inequalities (6.61)–(6.64), we find that

‖Aβ�u(−τ)‖ ≤ Ke−λ4τ‖Aβ�g(v20)‖ + (
bF

4 (ρ, 2ε) + β3(ε, δ)
)‖Aβ�y(−τ)‖

+ Ke−λ4τ (2L0ε + �8 + KL0ρ)‖Aβ�v(0)‖.
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Since K ≥ 1 and C2 ≥ 1, it follows from (6.3), (6.9), (6.32), and (6.57) that
Ke−λ4τ ≤ 1

16 , 2L0ε ≤ 1, �8 ≤ 1
16 , and KL0ρ ≤ 1, and hence

Ke−λ4τ (2L0ε + �8 + KL0ρ) ≤ 1.

Consequently, we obtain

‖Aβ�u(−τ)‖ ≤ Ke−λ4τ‖Aβ�g(v20)‖ + (
2bF

4 (ρ, 2ε) + β6(ε, δ)
)‖Aβ�y(−τ)‖,

where β6 = β2 + β3. Since �u(−τ) = V1 − V2 and �y(−τ) = � f(v̂0) + V1 − V2,
we obtain

‖Aβ(V1 − V2)‖ ≤ 1

4
‖Aβ�g(v20)‖
+ (

2bF
4 + β6

) (‖Aβ� f(v̂0)‖ + ‖Aβ(V1 − V2)‖
)
.

(6.65)

If (2bF
4 + β6) ≤ 1

4 , then inequality (6.65) implies (6.58).
Finally, since 2ε ≤ σ1, see (6.32), (6.29) implies that 2bF

4 ≤ 1
8 . Fix ε9 so that

0 < ε9 ≤ ε8 and β6(ε9, ε9) ≤ 1
8 , and we set δ9(ε) = min(ε, δ8(ε)), for 0 < ε ≤ ε9.

One then has β6(ε, δ) ≤ 1
8 , for 0 < δ ≤ δ9(ε), and the lemma now follows from

inequality (6.65). ��
In the next result, we give a more precise formulation of Theorem 5.1.

Theorem 6.11. Let the hypotheses of Theorem 5.1 be satisfied. Then for each ε > 0
there exists a δ = δ(ε) > 0, and, for 0 < ρ ≤ ρ1, there is an � = �(ρ, ε) ≤ 1

8 ,
where δ(ε), �(ρ, ε) ∈ Σ such that if G satisfies (5.5) with δ = δ(ε), then there is
a continuous mapping h : K → T k × V 2β such that the following properties hold:

1. The image Kn = h(K) is a compact, connected, invariant set for the perturbed
equation (5.4);

2. For each (θ, v) ∈ K, one has φ(θ, v) ∈ Us(θ, v) ⊕ Uu(θ, v), where h(θ, v) =
v + φ(θ, v);

3. The restriction of h to any disk Dρ(θ, v0), where (θ, v0) ∈ K and 0 < ρ ≤ ρ1,
is Lipschitz continuous in v, that is,

‖Aβ(φ(θ, v1) − φ(θ, v2))‖ ≤ 2�‖Aβ(v1 − v2)‖,(6.66)

for all v1, v2 ∈ Dρ1(θ, v0), and this restriction is a one-to-one mapping of
Dρ(θ, v0) into V 2β;

4. And one has ‖Aβφ(θ, v)‖ = ‖Aβ(h(θ, v) − v)‖ ≤ 2ε, for all (θ, v) ∈ K.
5. The perturbed set Kn satisfies the conditions FB1, FB2, FB3, and FB4, see

Section 4.2.

Proof of Theorem 6.11 and the Shadow Theorem 5.2. Let T be given by (6.9), and
for T ≤ τ ≤ 2T , let Aτ be the mapping on F × G = F (ε, �1) × G(ε, �1) defined
by

Aτ : ( f, g) → ( f̄τ , ḡτ),
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where �1 = 1, f̄τ is given by equation (6.42), and V = ḡτ(v0) is given by
Lemma 6.8, see equations (6.53) and (6.55). Let ε9 and δ9 be given by Lemma 6.10,
and let �5 and �8 be given by Lemmas 6.6 and 6.9. Define � = �9(ρ, ε) by

� = �9(ρ, ε) = max(�5(ρ, ε), �8(ρ, ε)), for 0 < ε ≤ ε9 and 0 < ρ ≤ ρ1.

Since 8KC2�5 ≤ 1 and 16KC2�8 ≤ 1, see (6.47) and (6.57), and since K ≥ 1 and
C2 ≥ 1, we see that �5 ≤ 1

8 and �8 ≤ 1
16 . Hence, �9(ρ, ε) ≤ 1

8 and �9(ρ, ε) ∈ Σ.
Let ε be fixed with 0 < ε ≤ ε9, and set δ = δ9(ε).

Assume that G satisfies (5.5) with δ = δ9. From Lemmas 6.6 and 6.10 we see
that Aτ maps F × G into itself, for each τ with T ≤ τ ≤ 2T . Also, Lemmas 6.7
and 6.10 imply that Aτ is a strict contraction on F ×G. Since F ×G is a complete
metric space, the mapping Aτ has a unique fixed point.

It is at this point we raise the curtain and invite the θ-variable to join the dance.
In order to appreciate the significance that ( f, g) is a fixed point of Aτ , we let h
be defined by (6.23), for the fixed point ( f, g). Note that f(θ, v) ∈ Us(θ, v) and
g(θ, v) ∈ Uu(θ, v). Also, one has Aτ( f, g) = ( f, g) if and only if

S2(θ, τ)y0 = vτ + f(θ · τ, vτ ) + g(θ · τ, vτ ), for all (θ, v0) ∈ K,(6.67)

where y0 = h(θ, v0) and vτ = v(τ, h(v0)) = ψ(θ · τ, S2(θ, τ)y0), see (6.40). (Note
that (θ · τ, vτ ) ∈ K.) Observe that (6.67) can be written in the form

S2(θ, τ)h(θ, v0) = h(θ · τ, vτ ), for (θ, v0) ∈ K.(6.68)

Next we define Kn = h(K) by

Kn def= {(θ, y0) ∈ T k × V 2β : y0 = h(θ, v0), for some (θ, v0) ∈ K}.(6.69)

We claim that, since Aτ ( f, g) = ( f, g), for T ≤ τ ≤ 2T , the semiflow π2 satisfies

π2(τ)K
n = Kn .(6.70)

Indeed, with y0 = h(θ, v0), θ̂ = θ · τ , ŷ = S2(θ, τ)y0, and v̂ = ψe(ŷ), one has

π2(τ)K
n = {(θ · τ, S2(θ, τ)y0)} for some (θ, v0) ∈ K,

= {(θ · τ, h(θ · τ, vτ )} by (6.68),

= {(θ̂, h(θ̂, v̂)} = Kn by (6.69).

It follows from (6.70) that π2(2τ)Kn = Kn and π2(mτ)Kn = Kn , for every
integer m ≥ 0. Consequently, for each (θ, y0) ∈ Kn , there is a global solution
S2(θ, t)y0 of equation (5.4) with

S2(θ, mτ)y0 ∈ Kn, for all m ∈ Z and for T ≤ τ ≤ 2T.

It needs to be noted that the fixed points of Aτ , ( f, g), may depend on τ ∈
[T, 2T ]. We have not included this dependence in the notation because we will
now show that these fixed points do not depend on τ . For this purpose, we now fix
τ = T and let ( f, g) be the fixed point of AT . Set ( f0, g0) = ( f, g), and let h0 = h
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be given by (6.23), using ( f0, g0). For 0 ≤ t ≤ T , we define ( ft , gt) and ht by
ft(θ · t, vt) = st and gt(θ · t, vt) = ut , where

yt
def= S2(θ, t)h0(θ, v0) = vt + st +ut = ht(θ · t, vt), for (θ, v0) ∈ K,(6.71)

where vt = ψe(θ · t, S2(θ, t)h0(θ, v0)) and yt = vt + st + ut is the representation
of yt given by (6.21). (Recall that ψe is the extension of ψ, see Lemma 6.3.) Let t
be fixed with 0 ≤ t < T and redefine ŷ = yt , v̂ = vt , and θ̂ = θ · t. Then (6.71)
becomes

ŷ = v̂ + ft(θ̂, v̂) + gt(θ̂, v̂) = ht(θ̂, v̂).

Let y0 = h0(θ, v0), where (θ, v0) ∈ K, and set ŷT = S2(θ̂, T )ŷ and v̂T = ψe(ŷT ).
Then the cocycle identity (3.20) implies that

S2(θ, T + t)y0 = S2(θ · t, T )S2(θ, t)y0 = S2(θ̂, T )ŷ

= ŷT = v̂T + ht(θ̂ · T, v̂T ).

This implies that ( ft, gt) is a fixed point of AT , see (6.67).
The question that now arises is: which space does ( ft , gt) reside in? Is it in

the space F × G? If so, then the uniqueness of the fixed point for AT implies that
h = hT = ht and ( ft , gt) = ( fT , gT ). We show next that ( ft , gt) does indeed lie
in F × G.

We claim that there is an ε10, with 0 < ε10 ≤ ε9, such that, for 0 < ε ≤ ε10,
there is a t0 > 0 where ( ft , gt) ∈ F ×G, for 0 ≤ t ≤ t0. Indeed, from Lemmas 6.5,
6.6, 6.8, and 6.9, and since the fixed point ( f0, g0) is in the range of AT , one has
‖Aβ f0(θ, u)‖ ≤ 3

4ε and ‖Aβg0(θ, u)‖ ≤ 3
4ε, for all (θ, u) ∈ K. By continuity,

there is a t1 > 0 such that ‖Aβ ft(θ, u)‖ ≤ ε and ‖Aβgt(θ, u)‖ ≤ ε, for all
(θ, u) ∈ K and 0 ≤ t ≤ t1. Since 0 ≤ � < 1, it follows from Lemmas 6.6 and 6.9
that there is a t2 > 0 such that both ft and gt are Lipschitz continuous on each disk
Dρ(v0), for 0 < ρ ≤ ρ1, with Lipschitz coefficient 1, for 0 ≤ t ≤ t2. By setting
t0 = min(t1, t2), we conclude that ( ft , gt) ∈ F × G, for 0 ≤ t ≤ t0.

Since the fixed point of AT is unique, we have ht = h, for all t, with 0 ≤ t ≤ t0.
By iteration of this argument, we conclude that ht = h, for all t ≥ 0. Since
( ft, gt) = ( f, g), for all t ≥ 0, one has

S2(θ, t)h(θ, v0) = h(θ · t, vt) = vt + f(θ · t, vt) + g(θ · t, vt), for all t ≥ 0,

(6.72)

where vt = ψe(S2(θ, t)h(θ, v0)). Thus, ψe is a (local) inverse of h. This completes
the proof of item 1 in Theorem 6.11. Thus, Kn satisfies the property FB1.

Items 2, 3, and 4 of Theorem 6.11 follow from the properties of ( f, g) proved
above, with the observation that φ(θ, v) = f(θ, v) + g(θ, v). For example, since
h(u) = u + φ(u), it follows from (6.66) and � ≤ 1

8 that

‖Aβ(h(v1)−h(v2))‖ ≥ ‖Aβ(v1 −v2)‖−‖Aβ(φ(v1)−φ(v2))‖ ≥ 3

4
‖Aβ(v1 −v2)‖,

which implies that the restriction of h to any disk Dρ1(θ, v0) is one-to-one.
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Next we will prove the Shadow Theorem 5.2. In terms of the identity (6.72),
we now define Ŝ by

Ŝ(θ, t)v0 = vt, for t ≥ 0.

Then equation (6.72) becomes

S2(θ, t)h(θ, v0) = h(θ · t, Ŝ(θ, t)v0), for t ≥ 0,

which is the shadow property (5.6). Let us now show that Ŝ satisfies the cocycle
identity. By using the cocycle property (3.20) for S2 with (5.6), we get

h(θ·(τ + t), Ŝ(θ, τ + t)v0) = S2(θ, τ + t)h(θ, v0) = S2(θ · t, τ)S2(θ, t)h(θ, v0)

= S2(θ · t, τ)h(θ · t, Ŝ(θ, t)v0) = h(θ · (τ + t), Ŝ(θ · t, τ)Ŝ(θ · t)v0).

By applying ψe to the last identity, we obtain

Ŝ(θ, τ + t)v0 = Ŝ(θ · t, τ)Ŝ(θ · t)v0,(6.73)

which is the cocycle identity. This completes the proof of the shadow property
Theorem 5.2.

Next we turn to items 5 and 6 in Theorem 6.11. Property FB3 follows from
the fact that the composition R = M ◦ N of two Lipschitz continuous functions M
and N is itself Lipschitz continuous and the Lipschitz constant satisfies Lip R ≤
Lip M × Lip N. In our case, we apply this with M = h and N = ν, see (6.23)
and (4.2). Since h(u) = u + φ(u), one has Lip h ≤ 1 + 2� ≤ 5

4 , by (6.66). It then
follows from (4.3) that R = h ◦ ν maps D(u, ρ1) into Kn with Lip R ≤ 5

4 L0. Note
that D(u, ρ1) is the k-dimensional disk in X(u) = Uo(θ, u), where (θ, u) ∈ K.
Thus Kn has property FB3. Property FB2 now follows from FB1 and FB3.

This completes the proof of items 1–5 in Theorem 6.11 and the proof of the
shadow property Theorem 5.2, and we have also shown that Kn satisfies properties
FB1, FB2, and FB3. Let us turn next to property FB4.

In order to show that the linearized semiflow Π2 has an exponential trichotomy
on Kn when δ is sufficiently small, we will use the RET Theorem, i.e., the ro-
bustness of exponential trichotomies (RET) theorem from [22]. For all practical
purposes, the argument used here is identical to that used in [24]. Even though in
this earlier work we considered only the autonomous problem, where the foliated
bundle K is reduced to a compact manifold M, it does not matter. The RET theo-
rem, which is based on the Henry characterization of an exponential dichotomy in
terms of time-discrete dynamics, see [12], is applicable in widely diverse settings.
Two general features need to be established for an application of the RET theorem:

• There is a linear skew product semiflow Π over a compact invariant set K , and
Π has an exponential trichotomy.

• The perturbed linear skew product semiflow Πλ varies continuously in a param-
eter λ, where λ is in a metric space Λ, and Πλ → Πλ0 , as λ → λ0 in Λ, where
Πλ0 = Π.
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The convergence Πλ → Πλ0 needs special commentary. Let Πλ satisfy

Πλ(θ, u0, w0; t) = (θ · t, Sλ(θ, t)u0,Φ(Bλ, t)w0), for t ≥ 0,

see (3.21). It is required that Sλ(θ, t)u0 and Φ(Bλ, t)w0 vary continuously in λ in
the sense that

Sλ(θ, t)u0 → Sλ0 (θ, t)u0

Φ(Bλ, t)w0 → Φ(Bλ0 , t)w0

as λ → λ0, uniformly for (u0, w0, t) in bounded sets.

(6.74)

When the two features described above are satisfied, and when dist(λ, λ0) is small,
then Πλ has an exponential trichotomy with characteristics which are close to the
characteristics of Π, see [22].

For the application at hand, we let λ = Ĝ and λ0 = 0, with Λ = C1
F with either

the topology T 1
bo or T 1

A , see Section 2.2. (Recall that C1
F is a Fréchet space under

either of these topologies and that T 1
bo ⊂ T 1

A .) In our application, the semiflow
Sλ(θ, t) is the shadow semiflow Ŝ(θ, t) on K. The convergence required in (6.74) is
satisfied, since h converges to the identity, in the C1,1-norm, as ε → 0 and δ → 0,
see (5.5), and items 3 and 4 of Theorem 6.11.

As a direct application of the RET theorem, we obtain an exponential trichotomy
for the linear skew product semiflow Π2 over (K, Ŝ), the foliated bundle K with the
shadow semiflow Ŝ, when ε > 0 is small enough. Due to the shadow property (5.6),
the latter exponential trichotomy lifts to an exponential trichotomy on (Kn, S2),
with the same characteristics. This completes the proof of FB4 and item 6. ��
Remarks. 1. The question of whether or not the perturbed dynamics on Kn sat-
isfies property FB5, the tangency condition (4.33), remains an open matter. If the
semiflow π2 has a proper negative continuation on Kn , then the tangency property
follows from Theorem 5.7. Except for the remarks given in Section 5.2, this issue
remains open. It would be desirable to find conditions on the unperturbed semi-
flow that would guarantee that the perturbed dynamics on Kn satisfy the tangency
property.

2. One can readily verify that v(t) = Ŝ(θ, t)v0 is the unique mild solution of
the evolutionary equation

∂tv + Av = Po(θ, v)[F(θ, v + φ(θ, v)) + G(θ, v + φ(θ, v))]
= Po(θ, v)[F(θ, h(θ, v)) + G(θ, h(θ, v))]

∂tθ = ω,

with v(0) = v0 and (θ, v0) ∈ K. Furthermore, v(t) is a strong solution of this
equation, see Lemma 3.2.

Proof of Theorem 5.3. Let h : K → Kn be given as in Theorem 6.11. Assume
that h is a homeomorphism, that K has a fiber bundle structure, and that (4.30)
holds. Let H : U × K(θ0) → K(U) be the associate homeomorphism, where U
is a neighborhood of θ0 in K. Define h0 : U × K(θ0) → U × Kn(θ0) by

h0(θ, v) = (θ, h(θ0, v)), for (θ, v) ∈ U × K(θ0).
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Next define Hn : U × Kn(θ0) → Kn(U) by Hn = h H h−1
0 , as in

U × Kn(θ0)
h−1

0−→ U × K(θ0)
H−→ K(U)

h−→ Kn(U).

Since the factors h, H , and h−1
0 are each homeomorphisms, we see that Hn is

a homeomorphism. Also, with a direct computation one verifies that (Hn)−1 =
h0 H−1 h−1 satisfies

(Hn)−1(Kn(θ)) = {θ} × Kn(θ0).

Thus, Kn has a fiber bundle structure. ��

6.5. Homeomorphism property

A proof of the following homeomorphism property, for the autonomous problem in
the finite-dimensional setting, appears in [20,21]. The argument we present here,
for the full nonautonomous infinite-dimensional problem, uses Lemma 5.6, and it
is much shorter. Because of inequalities (6.66) and �9 ≤ 1

8 , see Theorem 6.11, we
see that the restriction of the mapping h to any disk Dρ(θ, x0) in K is one-to-one.
We will now show that, for small ε, the mapping h is globally one-to-one.

Proof of Theorem 5.4. We assume that the conclusions of Theorem 6.11 are in
place, and we will use the notation derived above. In particular, we fix ε10 and δ10

as given above. Let L0 be fixed so that the four inequalities (4.25)–(4.28) hold. We
restrict ε and δ = δ(ε) so that 0 < ε ≤ ε10 and 0 < δ ≤ δ10. We also ask that ε

satisfy 4L0ε ≤ 1. Since the semiflow π1 has a proper negative continuation on K ,
there is a ρ > 0 and a τ ∈ R so that item 2 of Lemma 5.6 holds. We require further
that ε satisfy 4ε ≤ ρ.

Assume by contradiction that the mapping h is not globally one-to-one. Then
there exist (θ, v1), (θ, v0) ∈ K such that v1 �= v0 and h(v0) = h(v1). Set y0 =
h(v1) = h(v0). From Item 4 of Theorem 6.11 we have ‖Aβ(y0 − v0)‖ ≤ 2ε and
‖Aβ(y0 − v1)‖ ≤ 2ε. Hence one has ‖Aβ(v1 − v0)‖ ≤ 4ε ≤ ρ.

Next we show that inequality (5.21) is satisfied. From (6.71) we have

h(v0) − v0 = y0 − v0 ∈ Us(v0) ⊕ Uu(v0) and

h(v1) − v1 = y0 − v1 ∈ Us(v1) ⊕ Uu(v1).

Therefore, one has Po(v0)(y0 − v0) = Po(v1)(y0 − v1) = 0. Consequently,

Po(v0)(v1 − v0) = Po(v0)(y0 − v0) + (
Po(v1) − Po(v0)

)
(y0 − v1)

= (
Po(v1) − Po(v0)

)
(y0 − v1).

It then follows from (4.26) that

‖Aβ Po(v0)(v1 − v0)‖ ≤ L0‖Aβ(v1 − v0)‖ ‖Aβ(y0 − v1)‖.
Since ‖Aβ(y0 − v1)‖ ≤ 2ε and 2L0ε ≤ 1

2 , we obtain inequality (5.21).
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It then follows from Lemma 5.6, Item 2 that there exist (θ1, v1
1), (θ1, v1

0) ∈ K
such that θ1 = θ · τ , for some τ ∈ R, and

∥∥Aβ
(
v1

1 − v1
0

)∥∥ ≥ 2‖Aβ(v1 − v0)‖.

Since v1
i = Ŝ(θ, τ)vi , for i = 0, 1, it follows from (5.6) that h(v1

1) = h(v1
0). Thus,

‖Aβ(v1
1 − v1

0)‖ ≤ 4ε. By applying Lemma 5.6 repeatedly, we obtain sequences
(θm, vm

1 ), (θm, vm
0 ) ∈ K such that h(vm

1 ) = h(vm
0 ) and

∥∥Aβ
(
vm

1 − vm
0

)∥∥ ≥ 2m‖Aβ(v1 − v0)‖.(6.75)

Since ‖Aβ(vm
1 − vm

0 )‖ ≤ 4ε, inequality (6.75) implies that ‖Aβ(v1 − v0)‖ = 0,
which contradicts the assumption that v1 �= v0. Hence the mapping h : K → Kn

is one-to-one. ��

7. Concluding remarks

1. General nonautonomous equations: It should be noted that the assumption of
quasiperiodicity used in Section 3, and in the sequel, can be relaxed significantly.
The toroidal arithmetic was used to derive the formula (3.14). This formula in turn
was used to prove Lemma 3.3 and the connection with the crucial Lemma 3.2.
The latter lemma is important, for example, in applications to the Navier–Stokes
equations. In order to obtain a good linearization theory for these equations, one
needs to show that the inertial term – that is, the nonlinear term – is Fréchet
differentiable. This requires that the mild solutions u(t) = S(F, t)u0 be strong
solutions. One does not have a good linearization theory for the weak solutions of
the Leray-Hopf class, see [33, Chapter 6, esp. (61.32)].

On the other hand, if one is willing to accept the added assumption that F ∈
CLip;φ, for some φ > 0, into the theory, then the torus T k, with the twist flow θ · t,
can be replaced by any compact, invariant set M with a flow σ(m, t). In this case,
one then replaces θ · t with σ(m, t), for m ∈ M and t ∈ R, and proceeds with no
other changes.

2. Open issues: We note that the C1,1-property for the perturbed foliated bundle
is an open issue, as is the Lipschitz property for the exponential trichotomy on the
perturbed foliated bundle. Also, it should be noted that the Lipschitz property for
the perturbed foliated bundle need not always hold. See [2,27,25], for example.

3. The Gronwall–Henry inequality: We let r and c be positive real numbers and
define

Er,c(z) =
∞∑

n=0

Γ(c)

Γ(nr + c)
znr, E ′

r,c(z) = d

dz
Er,c(z) =

∞∑
n=1

nr Γ(c)

Γ(nr + c)
znr−1,

where Γ is the Gamma function. The proof of the following result can be found in
[12, p. 188] and [33, p. 625].
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Lemma 7.1 (Gronwall–Henry inequality). Let v(t) be a nonnegative function
in L∞

loc[0, τ; R) and h(·) ∈ L1
loc[0, τ; R) satisfy

v(t) ≤ h(t) + M
∫ t

0
(t − s)r−1v(s) ds, t ∈ (0, τ),

where 0 < τ ≤ ∞ and r > 0. Then one has

v(t) ≤ h(t) + µ

∫ t

0
E ′

r,1(µ(t − s))h(s) ds, t ∈ (0, τ),(7.1)

where µr = MΓ(r). If, in addition, one has h(t) ≡ atc−1, where a and c are positive
constants, then

v(t) ≤ atc−1 Er,c(µt), t ∈ (0, τ).(7.2)

Moreover, if h(t) = aeλt , where λ > µ, then

v(t) ≤ a(1 − θ)−1eλt, for t ∈ (0, τ),(7.3)

where θ = µrλ−r . Finally, one has

lim
t→∞ = 1

t
log(Er,c(µt)) = µ, whenever r > 0 and c > 0.(7.4)
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