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Abstract. In this article, we study the baroclinic flow in the primitive equations (PEs) of
the ocean, which are known to be the fundamental equations of the ocean, [4]–[8]. We prove
that the magnitude of the baroclinic flow in the L2-norm is of order O(δ), where δ is the
aspect ratio of the ocean. Some numerical simulations of the PEs of the ocean consistent
with these estimates are also presented.
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1. Introduction

Seawater is a slightly compressible fluid; its motion and state are governed by
the general hydrodynamical equations and the diffusion equations of temperature
and salinity. The general hydrodynamical equations can be approximated by the
Boussinesq equations (BEs) or the primitive equations (PEs), which are derived
from the BEs by replacing the vertical momentum equation by the hydrostatic
equation, thanks to the fact that the ratio H/L between the vertical and the horizontal
scales is very small, [4–8,13], and by assuming that the density ρ is constant except
in the buoyancy term. The BEs and the PEs of the ocean are the core equations of
the large-scale ocean; their mathematical analysis was conducted in [4]. However,
the phenomena of ocean dynamics are very complicated. To understand in detail the
structure of the ocean, scientists rely on simplified models both from the physical
and mathematical points of view.

There are two essential characteristics of the ocean that are used in simplifying
the PEs or the BEs of the ocean. The first one is that, for large-scale geostrophysical
flows, the ratio δ between the vertical and the horizontal scales (called the aspect
ratio) is very small. Another small parameter is the Rossby number ε, which is the
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ratio of the speed of (horizontal) wind to the speed of rotation of the earth around
the poles axis. For the ocean, these numbers are of order 10−3.

In numerical ocean modeling, it is very common in oceanography to treat dif-

ferently the dynamics of the depth average flow ū = 1
h

∫ 0

−h
u dz (called barotropic

flow) and that of the departure u� = u − ū (called baroclinic flow). In fact, the
barotropic and baroclinic adjustment processes in the ocean have quite different
characteristic time scales. Barotropic adjustment occurs on the order of days, while
it takes years for the adjustment of slow planetary waves in the midlatitude [2].
Motivated by this time scale split, oceanographers use the idea of differential
time stepping for the barotropic and the baroclinic equations when developing
algorithms for solving the PEs of the ocean. Additionally, interaction between
baroclinic and the barotropic waves are thought to be unimportant from a cli-
matic perspective, at least insofar as one needs to explicitly and accurately resolve
them [2].

In this article we study the baroclinic flow of the PEs of the ocean and prove
that its magnitude (in the L2-norm) is of order O(δ) for the PEs of the ocean with
both continuous density stratification and with double diffusions. Let us recall that
for the mesoscale or synoptic scale ocean, δ = O(10−3).

The article is organized as follows. In the next section, we recall from [9] and
[8] the PEs of the ocean with continuous density stratification and the geostrophic
scaling. Using some a priori estimates, we prove that the magnitude (in the L2-
norm) of the baroclinic flow is of order O(δ). The third section presents a similar
result for the baroclinic flow of the the PEs of the ocean with double diffusions.
Some numerical simulations of the PEs of the ocean consistent with these estimates
are presented in the fourth section.

2. The PEs of the ocean and the geostrophic scaling

It is well known that the ocean is made of a slightly compressible fluid subject to
the Coriolis force. It is also well accepted that the Boussinesq equations govern the
motion and state of seawater. Furthermore, if we take into account that the depth
of the ocean is small compared to the radius of the earth, the Boussinesq equations
are well approximated by the PEs. In this section, we recall the PEs of the ocean
and their geostrophic scaling following [8].

2.1. The PEs of the oceans. We first recall the primitive equations of the ocean
in the presence of a stratification. We write the total density ρtot and total pressure
ptot in the form

ρtot = ρs(z) + ρ̃, ptot = ps(z) + p̃,(2.1)

where the vertical mean pressure ps(z) and density ρs(z) satisfy the equation

∂ps(z)

∂z
= −ρs(z)g(2.2)
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and p̃ and ρ̃ are spatially and temporally varying departures from the standard
values ps and ρs, respectively.

Then assuming the β-plane approximation, the PEs of the ocean in dimensional
form read (see [8])



∂v
∂t − µ∆v − ν

∂2v
∂z2 + f̃ k × v + 1

ρ0
grad p̃ + (v · ∇)v + w

∂v
∂z = 0,

∂ p̃
∂z = −gρ̃,

div v + ∂w
∂z = 0,

∂ρ̃
∂t −µT ∆ρ̃−νT

∂2ρ̃

∂z2 + (v · ∇)ρ̃+w
∂ρ̃
∂z +w

∂ρs
∂z = νT

∂2ρs

∂z2 + αρ0
Cp

Q̃.

(2.3)

The boundary conditions are given by


ρ0ν
∂v
∂z = τ̃v, w = 0, Cpρ0νT

∂ρ̃
∂z = α̃T (ρ̃∗ − ρ̃), on Γ̃ i ,

∂v
∂z = 0, w = 0,

∂ρ̃
∂z = 0 on Γ̃ b,

v = 0,
∂ρ̃
∂n = 0 on Γ̃ l.

(2.4)

The initial conditions are given by

(v, ρ̃) = (v0, ρ̃0) at t = 0.(2.5)

Here ρ̃∗ is a given function representing the apparent density distribution on the
upper surface of the ocean; τ̃v is the (given) wind stress, which drives the motion
of the ocean; n is the unit outward normal on Γ̃ l; and k is the vertical unit vector.
Let us recall that the boundary of the domain M̃ consists of the following three
parts:

Γ̃ i(z = 0) = upper boundary of the ocean (interface with air),

Γ̃ l = lateral boundary,(2.6)

Γ̃ b(z = −h̃) = bottom of the ocean.

In (2.3)–(2.5), the unknown functions are the horizontal velocity v = (u, v),
the vertical velocity w, the density ρ̃, and the pressure p̃. The positive constant
Cp is the heat capacity of the ocean, ρ0 is the reference value of the density, g is
the gravitational constant, f̃ is the Coriolis parameter, and Q̃ is the (given) rate of
internal heating that vanishes in the ocean and is introduced here for mathematical
generality. For more details on the PEs of the ocean, the reader is referred to [3,
9,10,14] for the physical aspect and to [4], in which the existence results for the
system (2.3)–(2.5) is studied; see also [12].

Here the differential operators ∇, ∆, and div are all (2D) horizontal operators
acting on the variables x and y. The positive constants ν and µ are the viscosity
coefficients, and νT > 0 and µT > 0 are the thermal diffusivity.

The PEs (2.3)–(2.5) are derived from the Boussinesq equation using the fact
that the aspect ratio δ (ratio between the horizontal and the vertical length scales)
is small [4,8,9].
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2.2. Geostrophic scaling. Here we first recall from [8] a standard scaling for the
PEs of the ocean. We set

(x, y, z, t) =
(

Lx ′, L y′, Hz′,
L

U
t ′
)

,(2.7)

where U is the reference value of the horizontal velocity.
We also set

v = Uv′, w = H

L
Uw′, h̃ = Hh,(2.8)

ptot = ps(z) + Lρ0 f̃0Up′, ρtot = ρs(z) + εFρ0ρ
′, f̃0 = 2Ω cos θ0,

f̃ = f̃0(1 + ε f1), f1 = 1
ε

cos θ − cos θ0
cos θ0

= O(1)1, f = 1 + ε f1,

(2.9)

where F = f̃ 2
0 L2/gH is the Froude number, δ = H/L is the aspect ratio, ε =

U/ f̃0 L is the Rossby number, and Ω is the angular velocity of the earth.
Other nondimensional parameters are given by



1
Re1

= µ
LU , 1

Re2
= ν

LU ,

1
Rt1

= µT
LU , 1

Rt2
= νT

LU ,

ρ∗ = ρ̃∗
εFρ0

, αT = Lα̃T
Cp HUρ0

, τv = L
ρ0U2 H

τ̃v.

(2.10)

We introduce the nondimensional function

F2 = νT g

H f̃0U2ρ0

∂2ρs

∂z2 + gHα

f̃0U2Cp
Q̃.(2.11)

Hereafter we assume that

F2 = O(1).(2.12)

The nondimensional space domain M has the form

M = {(x, y, z); (x, y) ∈ Ms, −h < z < 0} ,

Ms ⊂
{
(x, y); |x| < 1

2 , |y| < 1
2

}
.

(2.13)

We denote by Γi , Γb, and Γl the boundaries of M given by

Γi(z = 0) = upper boundary of the ocean (interface with air),

Γl = lateral boundary,(2.14)

Γb(z = −h) = bottom of the ocean.

Substituting these expressions of dimensional functions, variables, and parameters
in the PEs (2.3), and suppressing the primes in the nondimensional variables, we

1 That is |θ − θ0| is small, O(ε).
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obtain the following nondimensional form of the PEs of the ocean (see [8] for more
details):




ε
[
∂v
∂t + (v · ∇)v +w

∂v
∂z

]
− ε

Re1
∆v − ε

δ2 Re2

∂2v
∂z2 + fk × v +grad p = 0,

∂p
∂z = −ρ,

div v + ∂w
∂z = 0,

ε
[
∂ρ
∂t + (v · ∇)ρ + w

∂ρ
∂z

]
− ε

Rt1
∆ρ − ε

δ2 Rt2

∂2ρ

∂z2 − σw = εF2,

(2.15)

with

σ = σ(z) ≡ − 1

ρ0 F

∂ρs

∂z
> 0 (assuming stable stratification, [8]).(2.16)

The boundary conditions (2.4) become




1
δ2 Re2

∂v
∂z = τv, w = 0, 1

δ2 Rt2

∂ρ
∂z = αT (ρ∗ − ρ) on Γi,

∂v
∂z = 0, w = 0,

∂ρ
∂z = 0 on Γb,

v = 0,
∂ρ
∂n = 0 on Γl.

(2.17)

The initial conditions are

(v, ρ) = (v0, ρ0) at t = 0.(2.18)

From (2.15)2, (2.15)3, and (2.17) we derive

p = ps +
∫ 0

z
ρdz,

w =
∫ 0

z
div vdz ≡ W(v),

∫ 0

−h
div vdz = 0.

(2.19)

Then equations (2.15) become



ε
[
∂v
∂t + (v · ∇)v + W(v)

∂v
∂z

]
− ε

Re1
∆v − ε

δ2 Re2

∂2v
∂z2 + fk × v

+ grad ps + grad
∫ 0

z
ρdz = 0,

∫ 0

−h
div vdz = 0,

ε
[
∂ρ
∂t +(v · ∇)ρ+W(v)

∂ρ
∂z

]
− ε

Rt1
∆ρ− ε

δ2 Rt2

∂2ρ

∂z2 −σW(v)=εF2.

(2.20)
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Remark 2.1. Hereafter, for simplicity we will consider only homogeneous bound-
ary conditions and we will assume that the functions ρ∗ and τv in (2.17) are
identically zero, that is, ρ∗ = τv = 0; see Remark 3.2 for the nonhomogeneous
case at the end of Section 3. Let us mention that with the boundary data of the
form τv = (c cos 2πy, 0), which is commonly used in oceanography to simulate the
double-gyre phenomenon, the boundary conditions (2.17) present a discontinuity
on ∂Γi; since ∂v/∂z = 0 on ∂Γi by (2.17)2, and ∂v/∂z = δ2 Re2τv �= 0 by (2.17)1.
This discontinuity may affect the accuracy/stability of the numerical schemes if
special care is not taken. To overcome this problem, it is common in oceanography
to take τv = 0 and to compensate it with a body force F1 = g(z)Γv in the momen-
tum equations. We will also consider the general case where the zero forcing term
on the right-hand side of (2.20)1 is replaced by a given function εF1. To simplify
the analysis, we also assume that σ given by (2.16) is constant. Some specific
empirical formulations for ps and ρs can be obtained from physical and numerical
considerations. A typical density profile is given in [9], and a linear approximation
ρs(z) = ρ0 − bz (b > 0) for the density profile was used in [1].

2.3. Function spaces. We first introduce the following function spaces based on
the space L2(M) and the Sobolev space H1(M) :

V1 =
{

v ∈ (H1(M))2,

∫ 0

−h
div vdz = 0, v = 0 on Γl

}
.(2.21)

Let V2 = H1(M), V = V1 × V2 and let H be the closure of V in (L2(M))3.

Hereafter we denote by 〈·, ·〉 the inner product in L2(M) or in (L2(M))n . The
associated norm will be denoted by | · |L2, and ‖ · ‖ will denote the norm in H1(M)

or (H1(M))n for any positive integer n.

Now we define the following forms:

a1(v, ṽ) =
∫

M

{
1

Re1

∇v∇ṽ + 1

δ2 Re2

∂v
∂z

∂ṽ
∂z

}
dM,(2.22)

a2(ρ, ρ̃) =
∫

M
σ

{
1

Rt1

∇ρ∇ρ̃ + 1

δ2 Rt2

∂ρ

∂z

∂ρ̃

∂z

}
dM +

∫
Γi

αT σρρ̃dΓi,(2.23)

e1(v, ṽ) =
∫

M
( fk × v) · vdM,(2.24)

b1(v, ṽ, v̂) =
∫

M

[
(v · ∇)ṽ + W(v)

∂ṽ
∂z

]
· v̂dM,(2.25)

b2(v, ρ̃, ρ̂) =
∫

M
σ

[
(v · ∇)ρ̃ + W(v)

∂ρ̃

∂z

]
· ρ̂dM,(2.26)

r1(ρ, ṽ) =
∫

M

(
∇

∫ 0

z
ρ dz

)
· ṽdM, r2(v, ρ̃) =

∫
M

W(v)ρ̃dM,(2.27)
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a(u, ũ) = a1(v, ṽ) + a2(ρ, ρ̃), r(u, ũ) = r1(ρ, ṽ) + r2(v, ρ̃),

b(u, ũ, û) = b1(v, ṽ, v̂) + b2(v, ρ̃, ρ̂), e(u, ũ) = e1(v, ṽ),
(2.28)

for u = (v, ρ), ũ = (ṽ, ρ̃), and û = (v̂, ρ̂).
We also define the following operator A0 by

A0 : H �−→ H
A0(v, ρ) = (v, σρ).

(2.29)

Proposition 2.1. The forms a and ai(i = 1, 2) are coercive, continuous on V × V
and Vi × Vi, respectively. Moreover, we have

a1(v, v) ≥ c1‖v‖2, ∀v ∈ V1, a2(ρ, ρ) ≥ c2‖ρ‖2,∀ρ ∈ V2,

a(u, u) ≥ c0‖u‖2, ∀u ∈ V,
(2.30)

where c1 = 1/c′
1, c′

1 = cMax(Re1 , Re2), c2 = 1/c′
2, c′

2 = cMax(Rt1 , Rt2),

c0 = 1/c′
0, c′

0 = Max(c′
1, c′

2), and c is an absolute constant independent of δ and
of physically relevant constants such as αT , Rei , Rti .

Furthermore, we have

α1|u|2L2 ≤ 〈A0u, u〉 ≤ α2|u|2L2, ∀u ∈ H,(2.31)

where α1 = Min(1, σ), α2 = Max(1, σ).

Proof. The coercivity of a follows from the Poincaré inequality, while that of a2

follows from the term ρρ̃ that appears in (2.23).
To prove (2.30)1, we note that

a1(v, v) ≥ cMin
(

1
Re1

, 1
δ2 Re2

)(
|∇v|2

L2 +
∣∣∣∂v
∂z

∣∣∣2

L2

)

≥ cMin
(

1
Re1

, 1
Re2

)(
|∇v|2

L2 +
∣∣∣∂v
∂z

∣∣∣2

L2

)
(since δ < 1),

≥ c1‖v‖2,

(2.32)

and (2.30)1 follows. The proof of (2.30)2, (2.30)3, or (2.31) is similar. The conti-
nuity of the forms a and ai is obvious.

Hereafter we denote by c a generic constant that is independent of physically
relevant constants such as αT , Rei , Rti and c4 will denote a generic constant inde-
pendent of the aspect ratio δ.

Proposition 2.2. For (u, ũ) ∈ V × V, we have

b(u, ũ, ũ) = 0, e(u, u) = 0, r(u, u) = 0.(2.33)

Moreover, the forms r, ri , e, ei are continuous on V × V, Vi × Vi, V × V, and
Vi × Vi, respectively.
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Proof. The complete proof is given in [8]; therefore, we omit the details. It is clear
that (2.33)1 and (2.33)2 are satisfied. To prove (2.33)3, we replace ṽ by v in (2.27)1

and integrate as follows:

r1(ρ, v) =
〈
∇

∫ 0

z
ρ dz, v

〉

=
〈
−

∫ 0

z
ρ dz, divv

〉

=
〈
ρ,

∫ 0

z
div v

〉
= −r2(v, ρ),

(2.34)

and (2.33)3 follows. The continuity of the forms r, ri , e, ei is obvious. ��
Now we consider the following variational formulation of the PEs (2.20),

(2.17)–(2.18), with a source term εF1, F1 = O(1), added to the right-hand side of
(2.20)1:

Problem 1. For u0 = (v0, ρ0) ∈ H, find u = (v, ρ) such that

ε d
dt 〈A0u, ũ〉 + εa(u, ũ) + εb(u, u, ũ) + e(u, ũ) + r(u, ũ)

= ε〈A0(F1, F2), ũ〉, ∀ũ ∈ V, u = u0 at t = 0.
(2.35)

The existence of weak solutions to Problem 1 was studied in [8], in which the
following result was proved.

Proposition 2.3. For any T > 0, there exists at least one solution u = (v, ρ)

defined on (0, T ) for the system (2.35), such that

u ∈ C([0, T ], Hw),(2.36)

where Hw is the space H endowed with the weak topology.

Some a priori estimates

Replacing ũ by u in (2.35) yields

ε

〈
d

dt
A0u, u

〉
+ ε〈Au, u〉 = ε〈A0(F1, F2), u〉,(2.37)

from which we derive

〈
d
dt A0u, u

〉
+ 1

Re1
|∇v|2

L2 + 1
δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2
+ 1

Rt1
|∇ρ|2

L2

+ 1
δ2 Rt2

∣∣∣∂ρ∂z

∣∣∣2

L2
+ αT

∫
Γi

ρ2dΓi ≤ |F1|L2 |v|L2 + |σF2|L2 |ρ|L2,

(2.38)
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and
〈

d
dt A0u, u

〉
+ 1

Re1
|∇v|2

L2 + 1
δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2
+ c2

2
‖ρ‖2

+ 1
2Rt1

|∇ρ|2
L2 + 1

2δ2 Rt2

∣∣∣∂ρ∂z

∣∣∣2

L2
≤ |F1|L2 |v|L2 + |σF2|L2 |ρ|L2

≤ 1
2Re1

|∇v|2
L2 + c|F1|2L2 + c2

2 ‖ρ‖2 + c
c2

|σF2|2L2 .

(2.39)

Then
〈

d
dt A0u, u

〉
+ 1

2Re1
|∇v|2

L2 + 1
2δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2

+ 1
2Rt1

|∇ρ|2
L2 + 1

2δ2 Rt2

∣∣∣∂ρ∂z

∣∣∣2

L2
≤ c|F1|2L2 + c

c2
|σF2|2L2 .

(2.40)

Finally, using (2.31) we derive

|u(t)|2L2 ≤ c

(
|u0|2L2 +

∫ T

0
|F1|2L2dt + 1

c2

∫ T

0
|F2|2L2dt

)
≡ K1(2.41)

and

1

δ2 Re2

∫ T

0

∣∣∣∣∂v
∂z

∣∣∣∣
2

L2
dt ≤ K1,

1

δ2 Rt2

∫ T

0

∣∣∣∣∂ρ∂z

∣∣∣∣
2

L2
dt ≤ K1.(2.42)

2.4. Barotropic-baroclinic splitting. Hereafter, for a given function u we set:

ū = 1

h

∫ 0

−h
u dz, u� = u − ū.(2.43)

In oceanography, the vertical average ū is referred to as the barotropic flow and u�

is called the baroclinic flow [3,14]. The following properties hold.

Proposition 2.4. The following properties hold true:

〈ū, v�〉 = 0, ∀u, v ∈ L2(M),

|u�|L2 ≤ 2h
∣∣∣∂u
∂z

∣∣∣
L2

, ∀u ∈ H1(M),

〈∆ū, v�〉 = 0, ∀u ∈ H2(M),∀v ∈ L2(M),

〈
ū,∆v� + ∂2v�

∂z2

〉
= 0, ∀u ∈ L2(M),∀v ∈ H2(M)

satisfying ∂v
∂z = 0 on Γi ∪ Γb,

〈
∆ū,∆v� + ∂2v�

∂z2

〉
= 0, ∀u ∈ H2(M),∀v ∈ H2(M)

satisfying ∂v
∂z = 0 on Γi ∪Γb.

(2.44)
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Proof. (2.44)1, (2.44)3, and (2.44)4 are clear by definition of ū and v�. For (2.44)2,
we notice that

∫ 0

−h
|u�|2L2dz ≤ 4h2

∫ 0

−h

(
∂u�

∂z

)2

dz = 4h2
∫ 0

−h

(
∂u

∂z

)2

dz(2.45)

since
∫ 0

−h
u� dz = 0.(2.46)

Therefore, (2.43)2 follows from (2.45).

For (2.44)4, we notice that

∫
M

(
−∆ū− ∂2ū

∂z2

)(
−∆v�− ∂2v�

∂z2

)
=

∫
M

−∆ū

(
−∆v�− ∂2v�

∂z2

)
=0(2.47)

since
∫ 0

−h
v� dz = 0,

∫ 0

−h

∂2v�

∂z2 dz = 0 if
∂v

∂z
= 0 on Γi ∪ Γb.(2.48)

Therefore, (2.44)4 follows from (2.48).

Proposition 2.5. Let u = ū + u� be a solution of (2.35) given by Proposition 2.3.
Then there exists a constant c4 = c4(F1, F2, Re1 , Re2 , Rt1 , Rt2 ,M, T ) independent
of δ such that

∫ T

0
|u�|2L2dt ≤ c4δ

2.(2.49)

Proof. Using (2.42) and (2.44)2 we derive

∫ T

0
|u�|2L2dt ≤ 4h2

∫ T

0

∣∣∣∣∂u
∂z

∣∣∣∣
2

L2
dt

≤ cK1δ
2,

(2.50)

which proves (3.42), and we conclude that

(∫ T

0
|u�|2L2dt

) 1
2

= O(δ).(2.51)

3. The PEs with double diffusions

In this section, we prove that the magnitude (in the L2-norm) of the baroclinic flow
of the PEs of the ocean with double diffusion is of order O(δ). The steps we follow
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are similar to those of the previous section; therefore, we will omit the details. We
first recall from [8] the PEs of the ocean with double diffusions.

In order to obtain a proper geostrophic scaling of the PEs, we need to con-
sider the standard temperature and salinity profiles, i.e., the mean temperature
and salinity distributions. For the mesoscale ocean, it is legitimate to consider
the vertical profile of these functions. Let Ts(z) and Ss(z) be the vertical strati-
fication profiles of the temperature Ttot and the salinity Stot , respectively, which
can be considered as the mean values of Ttot and Stot at level z. We refer the
reader to [1,9] for some typical profiles of the temperature and salinity func-
tions.

We write the temperature and salinity functions as follows:

Ttot = Ts(z) + T̃ , Stot = Ss(z) + S̃,(3.1)

T̃ and S̃ being the deviations of Ttot and Stot from Ts and Ss , respectively.
We also assume that the density profile ρs is such that the following equation

of state is satisfied:

ρs(z) = ρ0(1 − βT (Ts − Tref) + βS(Ss − Sref)),(3.2)

where βT and βS are expansion coefficients and Tref and Sref are the reference values
of Ttot and Stot , respectively [8].

We assume that the hydrostatic equation is satisfied. Therefore, we assume the
existence of a vertical mean pressure ps(z) satisfying

∂ps(z)

∂z
= −ρs(z)g,(3.3)

where g is the gravitational constant. We also write the total density ρtot and total
pressure ptot in the form (2.1).

Then, assuming the β-plane approximation, the PEs of the ocean in dimensional
form read




∂v
∂t − µ∆v − ν

∂2v
∂z2 + f̃ k × v + 1

ρ0
grad p̃ + (v · ∇)v + w

∂v
∂z = 0,

∂ p̃
∂z = −gρ̃,

div v + ∂w
∂z = 0,

∂T̃
∂t − µT ∆T̃ − νT

∂2T̃
∂z2 + (v · ∇)T̃ + w∂T̃

∂z + w
∂Ts
∂z = νT

∂2Ts

∂z2 ,

∂ S̃
∂t − µS∆S̃ − νS

∂2 S̃
∂z2 + (v · ∇)S̃ + w∂ S̃

∂z + w
∂Ss
∂z = νS

∂2Ss

∂z2 ,

ρ̃ = ρ0(−βT T̃ + βS S̃).

(3.4)
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The boundary conditions are given by



ρ0ν
∂v
∂z = τ̃v, w = 0, Cpρ0νT

∂T̃
∂z = α̃T (T̃ ∗ − T̃ ),

Cpρ0νS
∂ S̃
∂z = α̃S(S̃∗ − S̃) on Γ̃ i,

∂v
∂z = 0, w = 0, ∂T̃

∂z = 0, ∂ S̃
∂z = 0 on Γ̃ b,

v = 0, ∂T̃
∂n = 0, ∂ S̃

∂n = 0 on Γ̃ l.

(3.5)

Here T̃ ∗ and S̃∗ are given functions representing the apparent temperature and
salinity distribution on the upper surface of the ocean, while τ̃v is the (given) wind
stress, which drives the motion of the ocean; n is the outward normal on Γ̃ l , and k
is the vertical unit vector.

The initial conditions are given by

(v, T̃ , S̃) = (v0, T̃0, S̃0) at t = 0.(3.6)

In (3.4)–(3.6), the unknown functions are the horizontal velocity v = (u, v),

the vertical velocity w, the temperature T̃ , the salinity S̃, and the pressure p̃. The
positive constant Cp is the heat capacity of the ocean, ρ0 is the reference value
of the density, g is the gravitational constant, and f̃ is the Coriolis parameter. For
more details on the PEs of the ocean, the reader is referred to [3,9,10,14] for the
physical aspect and to [4], in which the existence and uniqueness results of the
system (3.4)–(3.6) is studied; see also [12].

Here the positive constants ν and µ are the viscosity coefficients, νT > 0 and
µT > 0 are the thermal diffusivity, and νS > 0 and µS > 0 are the diffusivity
coefficients of the salinity.

The PEs (3.4)–(3.6) is derived from the Boussinesq equation using the fact that
the aspect ratio δ (ratio between the horizontal and the vertical length scales) is
small [4,8,9]. For the nondimensional form of the PEs (2.3)–(3.6), we consider the
geostrophic scaling (2.7)–(2.9) and we scale Ts and Ss by

(Ts, Ss) = (TrefT
′

s , Sref S
′
s).(3.7)

For the temperature and salinity deviations, we set

T̃ = εFTrefT
′, T̃ = εFSrefS

′.(3.8)

Other nondimensional parameters are given by




1
Re1

= µ
LU , 1

Re2
= ν

LU , 1
Rt1

= µT
LU , 1

Rt2
= νT

LU , 1
Rs1

= µS
LU , 1

Rs2
= νS

LU ,

βT = β̃T Tref, βS = β̃SSref, T ∗ = T̃ ∗
εFTref

, S∗ = S̃∗
εFSref

, αT = Lα̃T
Cp HUρ0

,

αS = Lα̃S
Cp HUρ0

, τv = L
ρ0U2 H

τ̃v.

(3.9)
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We introduce the nondimensional functions

F2 = νT gH

f̃0U2Tref

∂2Ts

∂z2 , F3 = νSgH

f̃0U2Sref

∂2Ss

∂z2 .(3.10)

Hereafter we assume that

F2 = O(1), F3 = O(1).(3.11)

Substituting these expressions of dimensional functions, variables, and param-
eters in the PEs (3.4), and dropping the primes in the nondimensional variables,
we obtain the following nondimensional form of the PEs of the ocean with double
diffusion (see [8] and above for more details):




ε
[
∂v
∂t + (v · ∇)v + w

∂v
∂z

]
− ε

Re1
∆v − ε

δ2 Re2

∂2v
∂z2 + fk × v + grad p = 0,

∂p
∂z = −ρ,

div v + ∂w
∂z = 0,

ε
[
∂T
∂t + (v · ∇)T + w∂T

∂z

]
− ε

Rt1
∆T − ε

δ2 Rt2

∂2T
∂z2 + σ1w = εF2,

ε
[
∂S
∂t + (v · ∇)S + w∂S

∂z

]
− ε

Rs1
∆S − ε

δ2 Rt2

∂2S
∂z2 + σ2w = εF3,

ρ = −βT T + βSS,

(3.12)

where

σ1 = 1

FTref

∂Ts

∂z
, σ2 = 1

FSref

∂Ss

∂z
.(3.13)

Using (2.19), the PEs (3.12) can be written in the form




ε
[
∂v
∂t + (v · ∇)v + W(v)

∂v
∂z

]
− ε

Re1
∆v − ε

δ2 Re2

∂2v
∂z2 + fk × v + grad ps

+ grad
∫ 0

z
ρ dz = 0,

∫ 0

−h
div v dz = 0,

ε
[
∂T
∂t + (v · ∇)T + W(v)∂T

∂z

]
− ε

Rt1
∆T − ε

δ2 Rt2

∂2T
∂z2 + σ1W(v) = εF2,

ε
[
∂S
∂t + (v · ∇)S + W(v)∂S

∂z

]
− ε

Rs1
∆S − ε

δ2 Rt2

∂2S
∂z2 + σ2W(v) = εF3,

ρ = −βT T + βSS.

(3.14)
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The boundary conditions (3.5) become




1
δ2 Re2

∂v
∂z = τv,w = 0, 1

δ2 Rt2

∂T
∂z = αT (T ∗ − T ), 1

δ2 Rs2

∂S
∂z = αS(S∗ − S) on Γi,

∂v
∂z = 0, w = 0, ∂T

∂z = 0, ∂S
∂z = 0 on Γb,

v = 0, ∂T
∂n = 0, ∂S

∂n = 0 on Γl.

(3.15)

The initial conditions are

(v, T, S) = (v0, T0, S0) at t = 0.(3.16)

The mathematical study of the PEs of the ocean is given in [4,8], in which the
existence of weak solutions was proved.

Remark 3.1. Hereafter, for simplicity we will consider only homogeneous bound-
ary conditions and we will assume that the functions T ∗, S∗, and τv in (3.15)
are identically zero. We will also consider the more general case where the zero
forcing term in (3.14)1 is replaced by a given function εF1; see Remark 3.2 for
the nonhomogeneous case (T ∗, S∗, τv �= 0). We also assume for simplicity that the
temperature and the salinity profiles are given such that

k1 ≡ βT σ−1
1 > 0, k2 ≡ −βSσ

−1
2 > 0(3.17)

are constants.

Hereafter we set

V = V1 × V2 × V2,(3.18)

and we define H as the closure of V in (L2(M))4.

We also define the following forms:

a1(v, ṽ) =
∫

M

{
1

Re1

∇v∇ṽ + 1

δ2 Re2

∂v
∂z

∂ṽ
∂z

}
dM,(3.19)

a2(T, T̃ ) =
∫

M
k1

{
1

Rt1

∇T∇ T̃ + 1

δ2 Rt2

∂T

∂z

∂T̃

∂z

}
dM +

∫
Γi

αT k1T T̃dΓi,(3.20)

a3(S, S̃) =
∫

M
k2

{
1

Rs1

∇S∇ S̃ + 1

δ2 Rs2

∂S

∂z

∂ S̃

∂z

}
dM +

∫
Γi

αSk2SS̃dΓi,(3.21)

e1(v, ṽ) =
∫

M
( fk × v) · vdM,(3.22)

b1(v, ṽ, v̂) =
∫

M

[
(v · ∇)ṽ + W(v)

∂ṽ
∂z

]
· v̂dM,(3.23)
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b2(v, T̃ , T̂ ) =
∫

M
k1

[
(v · ∇)T̃ + W(v)

∂T̃

∂z

]
· T̂dM,(3.24)

b3(v, S̃, Ŝ) =
∫

M
k2

[
(v · ∇)S̃ + W(v)

∂ S̃

∂z

]
· ŜdM,(3.25)

r1(v, T̃ , S̃) =
∫

M

(
∇

∫ 0

z
ρ̃ dz

)
· vdM, ρ̃ = −βT T̃ + βS S̃,(3.26)

r2(v, T̃ ) =
∫

M
W(v)T̃dM, r3(v, S̃) =

∫
M

W(v)S̃dM,(3.27)

a(u, ũ) = a1(v, ṽ) + a2(T, T̃ ) + a3(S, S̃),

r(u, ũ) = r1(v, T̃ , S̃) + r2(v, T̃ ) + r3(v, S̃),

b(u, ũ, û) = b1(v, ṽ, v̂) + b2(v, T̃ , T̂ ) + b3(v, S̃, Ŝ), e(u, ũ) = e1(v, ṽ),

(3.28)

for u = (v, T, S), ũ = (ṽ, T̃ , S̃) and û = (v̂, T̂ , Ŝ).

Here the operator A0 is defined by:

A0 : H �−→ H

A0(v, T, S) = (v, k1T, k2S).
(3.29)

Proposition 3.1. The forms a, ai(i = 1, 2) are coercive, continuous on V × V,

Vi × Vi, respectively. Moreover, we have

a1(v, v) ≥ c1‖v‖2, ∀v ∈ V1, a2(T, T ) ≥ c2‖T‖2, ∀T ∈ V2,
(3.30)

a3(S, S) ≥ c3‖S‖2, ∀S ∈ V2,

a(u, u) ≥ c0‖u‖2, ∀u ∈ V,(3.31)

where c1 = c1(Re1 , Re2 ,M) > 0, c2 = c2(Rt1 , Rt2 ,M) > 0, c3 = c3(Rs1, Rs2 ,M)

> 0, c0 = c0(Re1 , Re2 ,Rt1 , Rt2 , Rs1 , Rs2,M) > 0 are constants independent of δ.

Furthermore, we have

α1|u|2L2 ≤ 〈A0u, u〉 ≤ α2|u|2L2, ∀u ∈ H,(3.32)

where α1 = Min(1, k1, k2), α2 = Max(1, k1, k2).

Proof. The proof is similar to that of Proposition 2.1.

Proposition 3.2. For (u, ũ) ∈ V × V, we have

b(u, ũ, ũ) = 0, e(u, u) = 0, r(u, u) = 0.(3.33)

Moreover, the operators r, ri(i = 1, 2), e, ei(i = 1, 2) are continuous in H.

Proof. The proof is similar to that of Proposition 2.2 and is given in [8].
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We now consider the following variational formulation of the PEs (3.12)–(3.15).

Problem 2. For u0 = (v0, T0, S0) ∈ H, find u = (v, T, S) such that

ε d
dt 〈A0u, ũ〉+εa(u, ũ)+b(u, u, ũ)+e(u, ũ)+r(u, ũ) = ε〈A0(F1, F2, F3), ũ〉,

∀ũ ∈ V, u = u0 at t = 0.

(3.34)

The existence of weak solutions to Problem 2 was studied in [8], in which the
following result was proved.

Proposition 3.3. For any T > 0 there exists a least one solution u = (v, ρ) for the
system (3.34) defined on (0, T ) such that

u ∈ C([0, T ], Hw),(3.35)

where Hw is the space H endowed with weak topology.

Some a priori estimates

Replacing ũ by u in (3.34) yields

ε
〈 d

dt
A0u, u

〉
+ ε〈Au, u〉 = ε〈A0(F1, F2, F3), u〉,(3.36)

from which we derive

〈
d
dt A0u, u

〉
+ 1

Re1
|∇v|2

L2 + 1
δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2
+ k1

Rt1
|∇T |2

L2

+ k1
δ2 Rt2

∣∣∣∂T
∂z

∣∣∣2

L2
+ αT

∫
T 2dΓi + k2

Rs1

|∇S|2L2 + k2

δ2 Rs2

∣∣∣∣∂S

∂z

∣∣∣∣
2

L2

+ αS

∫
S2dΓi ≤ |F1|L2 |v|L2 + |k2 F2|L2 |T |L2 + |k2 F3|L2 |S|L2,

(3.37)

and (3.30) gives

〈
d
dt A0u, u

〉
+ 1

Re1
|∇v|2

L2 + 1
δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2
+ c2

2 ‖T‖2 + k1
2Rt1

|∇T |2
L2

+ k1
2δ2 Rt2

∣∣∣∂T
∂z

∣∣∣2

L2
+ c3

2 ‖S‖2 + k2
2Rs1

|∇S|2
L2 + k2

2δ2 Rs2

∣∣∣∂S
∂z

∣∣∣2

L2

≤ |F1|L2 |v|L2 + |k2 F2|L2 |T |L2 + |k2 F3|L2|S|L2

≤ 1
2Re1

|∇v|2
L2 + c|F1|2L2 + c2

2 ‖T‖2 + c
c2

|k1F2|2L2 + c3
2 ‖S‖2 + c

c3
|k2F3|2L2 .

(3.38)
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Therefore,

〈
d
dt A0u, u

〉
+ 1

2Re1
|∇v|2

L2 + 1
2δ2 Re2

∣∣∣∂v
∂z

∣∣∣2

L2
+ k1

2Rt1
|∇T |2

L2 + k1
2δ2 Rt2

∣∣∣∂T
∂z

∣∣∣2

L2

+ k2
2Rs1

|∇S|2
L2 + k2

2δ2 Rs2

∣∣∣∂S
∂z

∣∣∣2

L2
≤ c|F1|2L2 + c

c2
|k1F2|2L2 + c

c3
|k2 F3|2L2 .

(3.39)

Finally, using (3.32) and (3.39) we derive

|u(t)|2L2 ≤ c

(
|u0|2L2 +

∫ T

0
|F1|2L2dt + 1

c2

∫ T

0
|F2|2L2dt + 1

c3

∫ T

0
|F3|2L2dt

)
≡ K2

(3.40)

and

1

δ2 Re2

∫ T

0

∣∣∣∣∂v
∂z

∣∣∣∣
2

L2
dt ≤ K2,

1

δ2 Rt2

∫ T

0

∣∣∣∣∂T

∂z

∣∣∣∣
2

L2
dt ≤ K2,

1

δ2 Rs2

∫ T

0

∣∣∣∣∂S

∂z

∣∣∣∣
2

L2
dt ≤ K2.

(3.41)

Proposition 3.4. Let u = ū + u� be a solution of (3.34) given by Proposition 3.3.
Then there exists a constant c5=c5(F1, F2, F3, Re1 , Re2 , Rt1 , Rt2 , Rs1 , Rs2,M, T )

independent of δ such that

∫ T

0
|u�|2L2dt ≤ c5δ

2.(3.42)

Proof. The proof is similar to that of Proposition 2.5.

Remark 3.2. If the wind stress τv in the boundary conditions (2.17) or (3.15) is
not zero, we can “homogenize” the boundary condition as in [4] (assuming some
regularity on τv) and write v into the form

v = v1 + ṽ,(3.43)

where ṽ is known and depends on τv, and v1 satisfies a homogeneous boundary
condition. Assuming enough regularity on ṽ we can use the idea presented above
to show that the magnitude (in the L2-norm) of the baroclinic component v�

1 of v1

is of order δ, provided we make a consistent assumption on the magnitude of τv.

The same remark holds for T and S in this section if T ∗, S∗ �= 0.

4. Numerical results

In this section, we present some numerical simulations of the PEs of the ocean with
continuous density stratification. First, we numerically check the order of magni-
tude of the baroclinic flow, and in the second part we present some simulations of
a wind-driven flow in an idealized ocean model.
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4.1. Numerical accuracy check. The focus of this numerical experiment is to
numerically check the order of magnitude of the baroclinic flow and compare it
to the estimates (3.42). In our experiments, the basin configuration is the (non-
dimensional) cube [0, 1] × [0, 1] × [−1, 0]. Let us simply recall that this is a two-
gyre, wind-driven ocean problem with a steady sinusoidal wind stress (maximum
τ0 = 1 dyne cm−4 ) in a basin that is L × L × H km (east-west × north-south
× bottom-surface extent). The Coriolis parameter is given by f = f0 + βy,
f0 = 9.3 × 10−5s−1, β = 2. × 10−11 m−1s−1. The model does not include
bottom topography. The ocean is forced by a steady wind stress τ0 = (τ x

0 , τ
y
0 ) =

(−10−4 cos(2πy/L), 0) and a density variation. Other dimensional quantities are
given by U = 10−1 ms−1, g = 9.8 ms−2, and L = 2.106 m. The initial condition is
given by v = ρ = 0 at t = 0.

The details on the numerical method are given in [11]. Let us simply recall that
all the operators in (2.20), (2.17), (2.18) are discretized using a second order central
differencing scheme. The Jacobian operator appearing in (2.20) is approximated
using Arakawa’s method [14]. For the time integration of the model, we use a fourth
order Adams–Bashforth method. In all the computations presented in this article,
the (nondimensional) time step is �t = 10−4. For the space discretization, we take
100 × 100 points in the x-y plane and 10 points in the vertical direction. For the
boundary condition (2.17), we take τv = ρ∗ = 0 and compensate with a forcing
term F1 in (2.20)1 defined by

F1 = c(g(z)τ0, 0),(4.1)

where g(z) is defined by

g(z) = 0.5(1 + tanh ((z/H + z1)/ε1)),(4.2)

where z1 and ε1 are very small constants chosen such that the forcing F1 is nonzero
only on the first couple layers from the surface of the ocean.

The forcing term F2 in (2.20)2 has the form

F2(z) = c
∂2ρs

∂z2 /ρs,(4.3)

where ρs is given by

ρs(z) = 1028 − 3 exp (10z/H )(4.4)

and c is a constant.
The following table shows the order of magnitude (in the L2-norm) of the

baroclinic flow defined by

order =
(∫ T

0
|v�|2L2dt

) 1
2

/

(∫ T

0
|F1|2L2dt

) 1
2

(4.5)

for different values of H and for the (nondimensional) integration time T = 20.
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H (meters) 1000 2000 2500 3000 3500 4000 5000

δ=H/L 5.10−4 10−3 1.25.10−3 1.5.10−3 1.75.10−3 2.10−3 2.5.10−3

order 9.28.10−4 1.86.10−3 2.28.10−3 2.66.10−3 3.10−3 3.3.10−3 3.84.10−3

The table above clearly shows that the order of magnitude (4.5) decreases with δ.

Moreover, for H = 1000 m, the order of magnitude is almost half its value when
H = 2000 m. Comparing the order of magnitude for H = 2000 m and H = 4000 m
as well as for H = 2500 m and H = 5000 m, the table seems to indicate that
as δ decreases, the order of magnitude (4.5) of the baroclinic flow is (at most) of
order O(δ).
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Fig. 1. Snapshot at the (nondimensional) time t = 32.99 of the barotropic streamfunction,
the surface density deviation, the total density at x = 0.25, and the total density at (x, y) =
(0.5, 0.5).

4.2. Double-gyre simulations. In this subsection, we present some simulations
of the wind-driven flow in an idealized ocean model. In our experiments, the basin
configuration is as described above with H = 4000 m. The following figures show
a time sequence of the surface density deviation (that is ρ(x, y, 0)), the barotropic
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Fig. 2. Kinetic enegy and norm of the barotropic streamfunction with respect to time (in
years)

streamfunction , the total density at x = 0.25 (that is, (ρs + ρ)(0.25, y, z)) and the
total density at (x, y) = (0.5, 0.5) (that is, (ρs + ρ)(0.5, 0.5, z)) for the Reynolds
numbers Re1 = Re2 = Rt1 = Rt2 = 103. For these values of the Reynolds
number, the flow remains time dependent. This is confirmed by Figure 2, which

represents the energy
(∫

Ω

|v|2dxdy

)1/2

of the flow and the norm of the barotropic

steamfunction

(∫
Ω

|ψ̄|2dxdy

)1/2

with respect to time (in years), where ψ̄ is the

barotropic streamfunction. A thorough analysis of the double-gyre circulation with
the PEs of the ocean will appear elsewhere.

5. Conclusion

In this article, we have studied the baroclinic flow of the PEs of the ocean, and we
have derived some estimates of its order of magnitude in the L2-norm. We have
presented some numerical tests that agree with the estimates. The article ends with
some simulations of the wind-driven flow using the PE model.
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