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Abstract. In a series of papers the question of uniqueness of radial ground states of the equa-
tion ∆u + f(u) = 0 and of various related equations has been studied. It is remarkable that
throughout this work (except in very special circumstances) nowhere is a spatially dependent
term taken into consideration. Here we shall make a first attempt to study the uniqueness of
ground states for such spatially dependent equations and to establish qualitative properties
of solutions for this purpose.
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1. Introduction

In a series of papers [2], [4], [6], [8], [13]–[16], [18]–[21], [23], the question of
uniqueness of radial ground states of the equation ∆u + f(u) = 0 and of various
related equations has been studied. It is remarkable that throughout this work
(except in very special circumstances, see [12] and [20]) nowhere is a spatially
dependent term taken into consideration. Similarly the existence of ground states
has not been as fully studied as one might wish for spatially dependent equations,
but see [3] and [9] for many interesting results. Here we shall make a first attempt to
study the uniqueness of ground states and various qualitative properties of solutions
of such spatially dependent equations. More precisely, we consider non–negative
solutions of the singular quasilinear elliptic equation

div(g(|x|)|Du|m−2Du) + h(|x|) f(u) = 0 in Rn \ {0},(1.1)

m > 1, n ≥ 1,

where g, h : R+ → R
+ and Du = (∂u/∂x1, · · · , ∂u/∂xn). Since the problem

is already quite difficult, involving as it does the m–Laplace operator, it seems
reasonable to consider only radial solutions, so that (1.1) then takes the form, see
Section 2,

[a(r)|u′|m−2u′]′ + b(r) f(u) = 0, m > 1, n ≥ 1,(1.2)

where a(r) = rn−1g(r), b(r) = rn−1h(r), and r = |x|. The simple Laplace–
Poisson equation arises when a(r) = b(r) = rn−1, where n is the underlying space
dimension.

A number of examples fall into the general category of (1.1). A first is the
generalized Matukuma equation

∆mu + f(u)

1 + rσ
= 0,

(1.3)
m > 1, n ≥ 1, σ > 0,

where ∆m denotes the m–Laplace operator, namely ∆mu = div(|Du|m−2 Du), and
where also g(|x|) ≡ 1, h(|x|) = 1/(1 + rσ ), r = |x|. A second example is the
equation

∆mu + rσ

(1 + rm′
)σ/m′ · f(u)

rm′ = 0,

(1.4)
m > 1, n ≥ 1, σ > 0,

where now g(|x|) ≡ 1, h(|x|) = rσ−m′
/(1+rm′

)σ/m′
, and m ′ is the Hőlder conjugate

of m. Equation (1.4) was first introduced in [1], equation (4.21), with m = 2,
as a model of stellar structure. That the terms rm′

in (1.4) are the appropriate
generalization of the term r2 appearing in the stellar model of [1] is justified by the
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observation that the special solution
√

3/(1 + r2) of (1.4) when n = 3, σ = m = 2,
found in [14] for the case f(u) = u3, is paralleled by the solution

u(r) =
(

n1/(m−1) n − m

m − 1
· 1

1 + rm′

)(n−m)/m

of (1.4) when one has σ = m ′, n > m, and f(u) = u p−1, with

p = m(n − 1)

n − m
.

Other generalizations of the Matukuma equation and of the stellar model of [1] can
be found in [3] and [9]. All these equations are discussed in detail in Section 4, as
special cases of the main example

div(rk|Du|m−2 Du) + r�

(
rs

1 + rs

)σ/s

f(u) = 0,

(1.5)
m > 1, n ≥ 1, k ∈ R, � ∈ R, s > 0, σ > 0.

In particular, we obtain conditions on the exponents, so that under appropriate
behavior of the nonlinearity f(u), radial ground states for equations (1.3)–(1.5) are
unique.

Motivated by the case a(r) = b(r) = rn−1, we shall suppose that the functions
a and b above are such that (1.2) can be transformed through a diffeomorphism
r = r(t) of R+

0 to the form

[
q(t)|vt |m−2vt

]
t + q(t) f(v) = 0,(1.6)

that is, again to an equation of type (1.2), but with the same weights. In the special
case when (1.6) arises with q(t) = tN−1 for some N ≥ 1, then of course earlier
theory can be applied, see e.g. [20]. Of course, the theory which follows must be
applicable when q is no longer a pure power. In particular, in order to carry out
the further arguments of the paper, and in order to study the uniqueness of ground
states of (1.2), we shall ask that the transformed equation (1.6) be compatible with
the following basic structure:

(Q1) q ∈ C1(R+), q > 0, qt > 0 in R+;

(Q2) qt/q is strictly decreasing on R+;

(Q3) lim
t→0+

tqt(t)

q(t)
= N − 1 ≥ 0.

Another facet of the ground state problem is the possibility that the function f
may be undefined at u = 0. This case has been previously studied in [20] and [23],
but without suitable attention to the difficulties attendant on this type of singularity.
Here it is minimally necessary to ask of the function f = f(u) that it be continuous
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for positive u and integrable down to u = 0, that is throughout the paper we assume
that

(F1) f ∈ C(R+) ∩ L1[0, 1].
In particular we can then define the primitive function F(u) = ∫ u

0 f(s)ds, and of
course F(0) = 0. More specialized conditions on f will be introduced later, as
needed.

The first goals of the paper, then, are

(i) to give a precise setting to the problem, including a definition for the meaning
of a non–negative solution of (1.1) when the function f is singular at u = 0,
and

(ii) to introduce an appropriate diffeomorphism r = r(t) on R+
0 which will trans-

form (1.2) into (1.6).

Naturally, the validity of such a transformation depends on the formulation of
appropriate properties of the original functions a and b.

The remaining parts of the paper are devoted to qualitative properties and
uniqueness of radial ground states in the spirit of the papers [8] and [20].

As in [8], our proofs rely in their essentials on a careful study of the global
behavior of ground states, especially their monotonicity properties and the sepa-
ration and intersection properties of pairs of solutions. While these considerations
are similar to those earlier developed in [8], [18] and [19], because of the greater
generality involved here, and for the sake of clarity and completeness, we shall
carry out the arguments in full rather than by reference to earlier work.

The paper is divided into two parts (Part I starting at Section 2 and Part II at
Section 5) with the following organization. In Section 2 we give a precise setting
to the problem, laying the foundations for the later uniqueness theory of Section 8.
In Section 3 we introduce the required transformation from equation (1.2) to (1.6),
and in Section 4 discuss in more detail the examples (1.3)–(1.5), (4.8), (4.9) as well
as other related equations.

In Sections 5 and 6 we study various qualitative properties of solutions, this be-
ing the basis for the separation and intersection theorems given in Section 7, and in
turn for the main uniqueness Theorems 8.3 and 8.4. Here it is worth adding that the
corresponding radial Dirichlet–Neumann problem can be treated simultaneously
with the ground state problem, in an essentially unified way (see Section 5).

Functions f = f(u), which are undefined at u = 0, but nevertheless can
be treated to get uniqueness for (1.1), and in particular for equations (1.3)–(1.5),
include for example

f(u) = −u p + us; m ≥ 2, −1 < p < s ≤ m − 1, p ≤ 1 + m − 3

m − 1
s,(1.7)

see Section 8. Note that (1.7) allows values p > 0 and s < 0, though not both at
the same time.

In the Appendix, Part 2, local existence and unique continuation results for the
initial value problem at t = 0 for the transformed equation (1.6) are established.
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Part I

2. Semi-classical solutions

Consider the quasilinear singular elliptic equation

div(g(|x|)|Du|m−2Du) + h(|x|) f(u) = 0

in Ω = {x ∈ Rn \ {0} : u(x) > 0}; m > 1, n ≥ 1,(2.1)

u ≥ 0, u �≡ 0 in Rn \ {0},
where g, h : R+ → R

+. Prototypes of (2.1), with non–trivial functions g, h,
are given, for example, by equations of Matukuma type and equations of Batt–
Faltenbacher–Horst type, see (1.3)–(1.4) and (4.8)–(4.9) below. In the last two
cases g is singular at the origin, and in general h also may be singular there; thus
it is necessary in (2.1) that Ω exclude the point x = 0 and also points where
u(x) = 0.

We shall be interested in the radial version of (2.1), namely

[a(r)|u′|m−2u′]′ + b(r) f(u) = 0

in J = {r ∈ R+ : u(r) > 0}, m > 1, r = |x|,(2.2)

u = u(r), u ≥ 0, u �≡ 0 in R+,

where, with obvious notation,

a(r) = rn−1g(r), b(r) = rn−1h(r).(2.3)

In order that the transformed equation (1.6) should satisfy the requirements (Q1)–
(Q3) we shall ask that the coefficients a, b have the following behavior (see
Section 3),

(A1) a, b > 0 in R+, a, b ∈ C1(R+),

(A2) (b/a)1/m ∈ L1[0, 1] \ L1[1,∞),

(A3) the function

ψ(r) =
[

1

m

a′

a
+ 1

m ′
b′

b

](a

b

)1/m

is positive and strictly decreasing in R+, where m ′ is the Hőlder conjugate of
m (> 1),

(A4) there is N ≥ 1 such that

lim
r→0+ ψ(r)

∫ r

0

(b

a

)1/m = N − 1.

In Section 4 we consider in particular the equations (1.3)–(1.5) and (4.8)–(4.9)
as examples satisfying the above conditions.

Remarks. (i) When g ≡ 1 in (2.1), namely a(r) = rn−1 and b(r) = rn−1h(r), then
conditions (A1)–(A4) reduce to a simpler form in terms of the function h = h(r),
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namely

(A1)′ h > 0 in R+, h ∈ C1(R+),

(A2)′ h1/m ∈ L1[0, 1] \ L1[1,∞),

(A3)′ the function

ψh(r) =
[

n − 1

r
+ 1

m ′
h′

h

]
h−1/m

is positive and strictly decreasing in R+,

(A4)′ there is N ≥ 1 such that

lim
r→0+ ψh(r)

∫ r

0
h1/m = N − 1.

Conditions (A1)′–(A4)′ are illuminated by the case h(r) = r�. Here these
conditions reduce to the exponent relations

� + m > 0, � + (n − 1)m ′ > 0,(2.4)

with

N = m
� + n

� + m
> 1.(2.5)

For this example it is worth remarking that the transformed equation (1.6) becomes
simply

[
tN−1|vt |m−2vt

]
t + tN−1 f(v) = 0,(2.6)

as follows from the formulas (3.1), (3.3) below, that is, N serves as the natural
dimension for this example; see also Section 4 below and [20].

Conditions (A1)′, (A2)′ also appear in the paper [12], though in somewhat
different circumstances.

(ii) Suppose that

a−1/(m−1) ∈ L1[1,∞) \ L1[0, 1],
and let M be a constant, with M > m. Using the diffeomorphic change of variable
s : R+

0 → R
+
0 , given by

s(r) =
(∫ ∞

r
[a(τ)]−1/(m−1)dτ

)−(m−1)/(M−m)

, z(s) = u(r(s)),

equation (2.2) can be rewritten in the form
(
sM−1|zs|m−2zs

)
s + sM−1h̃(s) f(z) = 0,(2.7)
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where

h̃(s) =
∣∣∣∣

M − m

m − 1

∣∣∣∣

m
(

a(r(s))1/mb(r(s))1/m′

sM−1

)m′

.(2.8)

The function h̃ satisfies (A1)′–(A4)′ in the s variable, with n replaced by M, if and
only if a, b satisfy (A1)–(A4).

Conversely, suppose that

a−1/(m−1) ∈ L1[0, 1] \ L1[1,∞),

and let M be a constant, with M < m. Then, as before, making the change of
variable s : R+

0 → R
+
0 , defined by

s(r) =
(∫ r

0
[a(τ)]−1/(m−1)dτ

)(m−1)/(m−M)

, z(s) = u(r(s)),

one obtains (2.7), with again h̃ given by (2.8).
It is not clear that equation (2.7) is any technical improvement over (2.2), what-

ever the choice of M, and accordingly we shall not further pursue this reduction.

Since (2.1) is possibly singular when x = 0 and when u = 0, it is necessary
to carefully define the meaning to be assigned to solutions of (2.1), and in turn
of (2.2). One can consider weak distribution solutions of (2.1), or alternatively
distribution solutions with suitable further regularity conditions and well defined
values at x = 0. We shall thus consider the class of semi-classical radial solutions
u = u(r), as defined below, and show that these can be transformed to be semi-
classical radial solutions v = v(t) of a related equation with t = 0 corresponding
to r = |x| = 0. This being done, the remaining arguments in the paper can then be
directed exactly to the semi-classical case.

As an appropriate structure to carry out this aim, and in particular to avoid the
undefined nature of f(u) at u = 0, we introduce the following

Definition. A semi-classical solution of (2.1) is a non-negative function u of class
C1(Rn \ {0}), which is a distribution solution of (2.1) in the open (support) set

Ω = {x ∈ Rn \ {0} : u(x) > 0}.
[To be precise, u is a C1(Rn \ {0}) distribution solution of (2.1) in Ω when

∫

Ω

g(|x|)|Du|m−2Du · Dϕ dx =
∫

Ω

h(|x|) f(u)ϕdx(2.9)

for all C1 functions ϕ = ϕ(x) with compact support in Ω.]

Radial case. When expressed directly for radial functions u, this definition is
equivalent to the condition that u = u(r) is a non–negative function of class
C1(R+) which is a distribution solution of (2.2) in J . That is, by substituting
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Diu = u′xi/r, Diϕ = ϕ′xi/r into (2.9), where ϕ = ϕ(r) has compact support in J ,
and using the volume element d x = rn−1d r d ω, one finds

∫

J
rn−1g(r)|u′|m−2u′ ϕ′ dr =

∫

J
rn−1h(r) f(u)ϕdr,

as required.
In fact, this is not all one can say. That is, by standard distribution arguments it

is easy to show that if the interval [r, t] ⊂ J , then

a(r)|u′(r)|m−2u′(r) − a(t)|u′(t)|m−2u′(t) =
∫ t

r
b(s) f(u(s))ds.(2.10)

Since the right hand side is continuously differentiable in r, it follows that
a(r)|u′|m−2u′ is of class C1(J ), in which case equation (2.2), exactly as written, is
satisfied in the sense of ordinary differentiation (classical solution) in J .

It is important to show that the definition of semi-classical solution is compatible
with that of classical solution on R+ when f is continuous in R+

0 with f(0) = 0.
This is the content of the following result.

Proposition 2.1. Let u = u(|x|) be a semi-classical radial solution of (2.1), where
f ∈ C(R+

0 ) with f(0) = 0. Then u is a C1 classical solution of (2.2) in all of R+.

Proof. If J = R+ there is nothing to prove. Otherwise let J ′ be any component
of J = {r > 0 : u(r) > 0}, let r, t ∈ J ′ and 0 ≤ r0 < r1 the endpoints of J ′.
Clearly (2.10) applies; let t → r1 and observe that necessarily u(r1) = u′(r1) = 0
by definition of a semi-classical solution. This gives

a(r)|u′(r)|m−2u′(r) =
∫ r1

r
b(s) f(u(s))ds.(2.11)

Moreover, when r0 > 0 we may also let r → r0 in (2.11) and thus obtain
∫

J ′
b(s) f(u(s))ds ≡

∫ r1

r0

b(s) f(u(s))ds = 0.(2.12)

Let s̄, t̄ be a pair of points of R+ \ J , with s̄ < t̄. Since f(0) = 0 it is easy to
see that

∫ t̄

s̄
b(s) f(u(s))ds =

∑

J ′⊂I(s̄,t̄)

∫

J ′
b(s) f(u(s))ds = 0,(2.13)

where I(s̄, t̄) is the interval with endpoints s̄, t̄; the sum is taken over all components
J ′ of J contained in I(s̄, t̄); and (2.12) is used at the second step.

Next let r̄ be a fixed point in R \ J , and r any point in J (thus in some J ′ with
endpoints r0, r1). From (2.11) and (2.13) one gets

a(r)|u′(r)|m−2u′(r) =
∫ r1

r
b(s) f(u(s))ds =

∫ r̄

r
b(s) f(u(s))ds(2.14)
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(in (2.13) take s̄ = r1, t̄ = r̄ when r < r̄ and s̄ = r̄, t̄ = r1 when r > r̄). But also
by (2.13) it is clear that (2.14) holds equally for r ∈ R+ \ J since then u′(r) = 0.
That is, (2.14) holds for all r ∈ R+. On the other hand, the right side of (2.14) is
continuously differentiable on R+, so as in the discussion just above, u satisfies
(2.2) as a classical solution in all R+, which was to be proved. ��

To guarantee non–singular behavior of solutions of (2.2) at r = 0, we consider
the conditions

lim inf
r→0+ u(r) > 0, lim sup

r→0+
u(r) < ∞,(2.15)

and

u′(r) = o([a(r)]−1/(m−1)).(2.16)

Condition (2.16) in particular precludes strongly singular behavior of solutions
at r = 0, and is the underlying basis for the principal Proposition 3.1 below and
for the main conclusions in Sections 5–8.

It is also worth mention that, with some additional proof (see Proposition 2.3),
condition (2.16) can be shown to be automatic in case a−1/(m−1) �∈ L1[0, 1] (pro-
vided that (2.15) holds), while conversely if a−1/(m−1) ∈ L1[0, 1] then the second
part of (2.15) is automatic (provided that (2.16) holds). In particular, for the stan-
dard case n ≥ m, g(|x|) ≡ 1, condition (2.16) can be deleted.

We begin with a simple result.

Proposition 2.2. Let u = u(|x|) be a semi-classical (radial) solution of (2.2).
Then |u′|m−2u′ ∈ C1(J ), and u is a classical solution of (2.2) in J.

Moreover b ∈ L1[0, 1]; and if (2.15) and (2.16) hold, then as r → 0+ we have

u′(r) = O
([

B(r)
/

a(r)
]1/(m−1)

)
, where B(r) =

∫ r

0
b(s)ds.(2.17)

Proof. The first conclusion has already been shown in the discussion of the radial
case, following the definition of semi-classical solutions.

We assert that the quantity q̄(r) = a(r)1/mb(r)1/m′
is bounded as r → 0+. In

fact,

q̄′ = q̄

[
1

m

a′

a
+ 1

m ′
b′

b

]
= b ψ,

so that by (A1) and (A3) both q̄ and q̄′ are positive on R+. The assertion now
follows immediately. Therefore

b = (b/a)1/mq̄ = O((b/a)1/m),

and so b ∈ L1[0, 1] by virtue of (A2).
Now choose ε > 0 so small that f ◦ u ∈ L∞[0, ε]; this can be done since u is

uniformly positive and bounded near 0 by (2.15), and also by the first condition of
(F1).
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Then letting r → 0+ in (2.10), and using (2.16) together with the fact that
b ∈ L1[0, 1], we obtain

a(t)|u′(t)|m−2u′(t) = −
∫ t

0
b(s) f(u(s))ds, 0 < t < ε,

that is,
u′(r) = O

([
B(r)

/
a(r)

]1/(m−1)
)

as r → 0+

by (A1) and the condition f ◦ u ∈ L∞[0, ε]. ��
Remark. To obtain similar results when condition (2.15) is not assumed apparently
requires further conditions on the behavior of f = f(u) near u = 0.

We conclude the section with an asymptotic behavior result for strongly singular
solutions of (2.2), that is, semi-classical solutions of (2.2) which obey (2.15) but
for which (2.16) fails.

Proposition 2.3. Let u = u(r) be a strongly singular solution of (2.2). Then as
r → 0+ we have

u(r) → α, a(r)|u′(r)|m−1 → η,(2.18)

where α and η are appropriate positive constants. Moreover, in this case necessarily
a−1/(m−1) ∈ L1[0, 1].
Proof. Putting t = 1 and letting r → 0+ in (2.10), we find (without using (2.16))

a(r)|u′(r)|m−1 → η as r → 0+,

where η is a constant. But since the left hand quantity here is non-negative for
r > 0 and because (2.16) is assumed to fail, in fact η > 0, proving the second part
of (2.18).

It follows in turn that

|u′(r)| = [η/a(r)]1/(m−1)(1 + o(1)) as r → 0+.

Now if a−1/(m−1) �∈ L1[0, 1] then u(r) → ∞ as r → 0+, which violates (2.15).
Hence a−1/(m−1) ∈ L1[0, 1] and by integration u(r) → limit as r → 0+, the limit
necessarily being α in view of (2.15). This completes the proof. ��

3. Transformation of (1.2)

We now introduce the main change of variable

t(r) =
∫ r

0
[b(s)/a(s)]1/m ds, r ≥ 0.(3.1)

Of course t : R+
0 → R

+
0 , t(0) = 0, t(∞) = ∞, by (A2), and t is a diffeomorphism

of R+
0 into R+

0 by (A1), with inverse r = r(t), t ≥ 0.
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If u = u(|x|) is a semi-classical radial solution of (2.1), then u = u(r) satisfies
(2.2) in J and v = v(t) = u(r(t)) is a semi-classical solution of the correspond-
ing equation in the t variable, that is v ∈ C1(R+) and satisfies the transformed
differential equation

[
q(t)|vt |m−2vt

]
t + q(t) f(v) = 0 in I = {t > 0 : v(t) > 0},(3.2)

where

q(t) = [a(r(t))]1/m[b(r(t))]1/m′
, t > 0.(3.3)

Assumptions (A1)–(A4) imply the main properties (Q1)–(Q3) for q = q(t) given
in the introduction. That q is continuous at the origin, and so q ∈ C(R+

0 ), now
follows immediately from the condition (Q1).

The following result is the main relation between semi-classical solutions of
(2.2) and solutions of (3.2).

Proposition 3.1. Let u = u(r) be a semi-classical solution of (2.2). Then v =
v(t) = u(r(t)), t > 0, where r = r(t) is the inverse function of t = t(r) given in
(3.1), satisfies (3.2) in I in the classical sense with v ≥ 0 and

v ∈ C1(
R

+
0

)
, |vt |m−2vt ∈ C1(I ).(3.4)

Moreover if (2.15) and (2.16) hold, then there exists a positive constant α such
that

v(t) − α = O(tm/(m−1)), vt(t) = O(t1/(m−1)) as t → 0+.(3.5)

Proof. By (3.1) and the fact that, by definition, u ∈ C1(R+) it is clear that
v ∈ C1(R+). Then, as in the earlier discussion of the solution u of (2.2), it follows
that |vt |m−2vt ∈ C1(I ) and that v ≥ 0 and satisfies (3.2) in I in the classical sense.

It remains to establish (3.5). First, by (2.15), (2.16) and (3.1) it is easy to check
that also

lim inf
t→0+ v(t) > 0, lim sup

t→0+
v(t) < ∞,(3.6)

and

vt(t) = o([q(t)]−1/(m−1)) as t → 0+.(3.7)

We can now apply Proposition 2.2 directly to the equation (3.2), of course
replacing r by t, u(r) by v(t), and both a(r), b(r) by q(t). Recalling that q is
continuous at t = 0, it then follows from (2.17) that as t → 0+,

vt(t) = O

⎛

⎝
[∫ t

0 q(s) ds

q(t)

]1/(m−1
⎞

⎠ .(3.8)
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We claim that in fact vt(t) = O(t1/(m−1)), the second part of (3.5). This is obvious
from (3.8) when q(0) > 0. Otherwise by l’Hôpital’s rule we get

lim
t→0+

∫ t
0 q(s) ds

tq(t)
= lim

t→0+
q(t)

tqt(t) + q(t)
= 1

N

by (Q3), and the conclusion again follows.
Since now vt is bounded near t = 0, then v must have a finite limit at t = 0,

call it α. But then also u has the same finite limit at r = 0, that is u(0) = v(0) = α,
where α is necessarily positive in view of (2.15). Integrating the second part of
(3.5) over [0, t] ⊂ I , we then get the first part of (3.5). ��

As noted above, u(0) = α so that u ∈ C(R+
0 ). The corresponding conditions

u′(0) = 0 and u′ ∈ C(R+
0 ) are in general false, as follows from the next result.

Theorem 3.2. Suppose that there is a number ν, with m + ν > 0, such that

r−νb/a → c as r → 0+,(3.9)

where c is a non-negative constant. Then if u is a semi-classical solution of (2.2)
such that (2.15) and (2.16) are satisfied, we have

lim
r→0+ r−(1+ν)/(m−1)u′(r) = −[sgn f(α)]

(
c m

m + ν
· | f(α)|

N

)1/(m−1)

.(3.10)

If (3.9) is replaced by either lim supr→0+ r−νb/a ≤ c or lim infr→0+ r−νb/a ≥ c,
then (3.10) is replaced by an analogous inequality.

Proof. Let
w(t) = |vt(t)|m−2vt(t).

Clearly w(0) = 0 by (3.5). Now observe that

|u′(r)|m−2u′(r) = w(t(r)) ·
(

b

a

)(m−1)/m

= w(t(r))

t(r)

(
b

a

)1/m′ ∫ r

0

(
b

a

)1/m

ds

≡ w(t(r))

t(r)
· I(r)(3.11)

by (3.1). But as t = t(r) → 0+

w(t)

t
−→ w′(0),(3.12)

since by Lemma 5.1 we have w′ ∈ C1 in a closed neighborhood of 0+. (The
application of Lemma 5.1 is legitimate here since Theorem 3.2 is not used in the
proof of that result.)

Now let ε be an arbitrary small positive number. Then for r sufficiently small,
we have from (3.9),

(c − ε)rν ≤ b/a ≤ (c + ε)rν.
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It then follows by direct integration, and use of the relation 1/m + 1/m ′ = 1, that,
for sufficiently small r,

(c − ε)m

m + ν
r1+ν ≤ I(r) ≤ (c + ε)m

m + ν
r1+ν.(3.13)

From (3.11)–(3.13), therefore,

(1 − ε)w′(0)
(c − ε)m

m + ν
≤ |u′(r)|m−2u′(r)

r1+ν
≤ (1 + ε)w′(0)

(c + ε)m

m + ν

for sufficiently small r. Since ε can be taken arbitrarily small, we then obtain

lim
r→0+ r−(1+ν)|u′(r)|m−2u′(r) = − c m

m + ν
· f(α)

N
,

where (5.9) below has been used to eliminate w′(0). The conclusion (3.10) is now
an immediate consequence of this inequality.

The final parts of the theorem follow directly from the same calculation. ��
Corollary 3.3. Assume that (2.15) and (2.16) are satisfied, and suppose that

b/a = O(rν) as r → 0+

for some exponent ν > −m. Then as r → 0+

u(r) − α = O(r(m+ν)/(m−1)), u′(r) = O(r(1+ν)/(m−1)).

This shows in particular that Proposition 2.2 is essentially best possible; in
fact u ∈ C1(Rn) when ν > −1, while u is Hőlder continuous at the origin when
ν ∈ (−m,−1].

4. The natural dimension N and examples

When the number N ≥ 1, given in assumption (A4), is an integer, it can be seen
as the underlying dimension of the radial equation (2.2).

To explain this observation, we first note that in [9] the radial Dirichlet problem
for equation (2.1)–(2.2), with f(u) = us, s > 0, was studied in the ball BR. The
existence of positive radial solutions of this problem was shown when the exponent
s is less then ρ∗ given in (1.7) of [9], that is

1

ρ∗ = 1

m ′ lim sup
r→0+

log
∫ R

r [a(s)]−1/(m−1)ds
∣∣log

∫ r
0 b(s)ds

∣∣ ,

under the main assumption that a−1/(m−1) �∈ L1[0, 1]. Clearly here a−1/(m−1) �∈
L1[0, 1] if and only if q−1/(m−1) �∈ L1[0, 1] by (3.1) and (3.3). Moreover, if N > m
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then

1

ρ∗ = 1

m ′ lim
t→0+

log
∫ 1

t [q(τ)]−1/(m−1)dτ
∣∣∣log

∫ t
0 q(τ)dτ

∣∣∣
= 1

m
− 1

N
:= 1

m∗
N

(4.1)

by (Q3) and l’Hôpital’s rule.1

That is, if N is an integer greater than m, the exponent m∗
N can be identified

as the Sobolev exponent for W1,m(RN ). We are then tempted to call N the natural
dimension of the problem (2.1), and similarly to call m∗

N the natural Sobolev
exponent of the problem.

The special case of (2.1) when

g(r) ≡ 1, h(r) = r�,(4.2)

which was discussed earlier, exhibits the above situation in a clear way. Indeed,
when (2.4) holds, then all the assumptions (A1)–(A4) (equally (A1)′–(A4)′) are
satisfied, while at the same time using the main change of variable (3.1) we see
that (3.2) takes the canonical form (2.6) with

N = m
� + n

� + m
> 1.

Clearly N appears directly as the natural dimension for the problem.
For this case we have n > m if and only if N > m, this condition also implying

a−1/(m−1) = r−(n−1)/(m−1) �∈ L1[0, 1]. Thus the natural Sobolev exponent for the
case (4.2) is

1

m∗
N

= 1

m
− 1

N
= n − m

� + n
,

see [20].

1 Indeed, with three applications of l’Hôpital’s rule, we have

1

m′ lim
t→0+

log
∫ 1

t q−1/(m−1)dτ
∣∣∣log

∫ t
0 qdτ

∣∣∣
= 1

m′ lim
t→0+

[q(t)]−m′/m

∫ 1
t q−m′/mdτ

·
∫ t

0 qdτ

q(t)

= 1

m′ lim
t→0+

t[q(t)]−m′/m

∫ 1
t q−m′/mdτ

· lim
t→0+

∫ t
0 qdτ

tq(t)

= lim
t→0+

(
− 1

m′ + 1

m
· tqt(t)

q(t)

)
· lim

t→0+
q(t)

q(t) + tqt(t)

= 1

m
− 1

N

(for the second application of l’Hôpital’s rule, note that tq−m′/m → ∞; e.g. by differentiation
and use of (Q3) with N > m one computes that

[tq(t)−m′/m]′ < − N − m

2(m − 1)
q(t)−m′/m,

but q−m′/m �∈ L1[0, 1] which gives the asserted conclusion; it is exactly here that the
condition N > m is crucially used).
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The number m∗
N is also critical for the uniqueness problem in the case (4.2),

in the sense that uniqueness of ground states can be proved for functions
f(u) = −u + us under the condition 1 < s < m∗

N − 1, see [20] and in [23].
We can therefore conjecture that this would be equally true in more general cases,
though so far no general results seem available.

Examples. (i) As a main example, we consider the following equation (partially
motivated by the ideas in [3]) which includes as special cases both (1.3) and (1.4):

div(rk|Du|m−2 Du) + r�

(
rs

1 + rs

)σ/s

f(u) = 0,

(4.3)
m > 1, n ≥ 1, k ∈ R, � ∈ R, s > 0, σ > 0.

Here

a(r) = rn+k−1, b(r) = rn+�−1

(
rs

1 + rs

)σ/s

.

We claim that (A1)–(A4) are satisfied if

� ≥ k − m,
k

m
+ �

m ′ ≥ 1 − n.(4.4)

In fact, (A1) is obvious, while (A2) is a consequence of the first condition of (4.4)
– note here that (A2) restricts b/a not only for r near 0 but also for r near ∞. To
get (A3) we find, after a short calculation,

ψ(r) =
(

n − 1 + k

m
+ �

m ′ + σ

m ′ · 1

1 + rs

)
·
(

1 + rs

rs

)σ/ms

· r(k−�)/m−1.

Each of the three terms comprising ψ is positive and strictly decreasing, as follows
from (4.4) together with the fact that s > 0, σ > 0. Hence (A3) holds.

Next, the limit N − 1 in (A4) is given by
(

n − 1 + k

m
+ �

m ′ + σ

m ′

)
· lim

r→0+ r(k−�−σ)/m−1
∫ r

0
t(σ−k+�)/m dt,(4.5)

which immediately gives

N = m
n + � + σ

m + � + σ − k
> 1,(4.6)

by (4.4).
Finally 1 < m < N if and only if k > m − n, the latter condition implying

a−1/(m−1) �∈ L1[0, 1]. In this case, the natural Sobolev exponent of equation (4.3)
and its transformed equation (3.2) is given by

1

m∗
N

= 1

m
− 1

N
= 1

m
· n + k − m

n + � + σ
.

Here m∗
N > m because N > 1.
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To obtain the asymptotic behavior of u′(r) for r near 0 one can apply Theo-
rem 3.2. In particular, here ν = � + σ − k and c = 1 in (3.9), and in turn from
(4.6)

N = m
n + k + ν

m + ν
.

Thus from (3.10) we find as r → 0+

r−(1+ν)/(m−1)u′(r) → −[sgn f(α)]
( | f(α|

n + k + ν

)1/(m−1)

.(4.7)

It is finally interesting in this example that the parameter s in (4.3) does not
appear in any of the exponent relations (4.4)–(4.6). This is a reflection of the fact
that the term rs/(1 + rs) in (4.3) can be replaced by more general functions having
the same asymptotic behavior. We shall, however, not pursue this point further.

(ii) Conditions (4.4) have the first consequence that � ≥ −n. Moreover, either
a can be discontinuous (k < 1 − n) or b discontinuous (−n ≤ � < 1 − n), but
not both in view of the second condition of (4.4). One can show that necessarily
N < m when a is discontinuous, while it is possible to have N > m when b is
discontinuous (if k > m − n).

An example where a is discontinuous is n = 3, m = 2, k = −5/2, � = −1/2,
while b is discontinuous and N > m when n = 3, m = 2, k = −1/2, � = −9/4,
and 0 < σ < 1/4.

(iii) Equation (1.3) in the introduction is associated with the well–known
Matukuma model. Here we have k = 0, −� = σ = s, and the exponent condi-
tions for (A1)–(A4), or equally for (A1)′–(A4)′, reduce simply to m ≥ σ and
n ≥ 1 + σ/m, with N = n.

From Theorem 3.2, since ν = � + σ − k = 0, we get u′(r) = O(r1/(m−1)) and
in turn u(r) − α = O(rm/(m−1)). In particular u ∈ C1(Rn), as in fact is clear from
equation (1.3) itself.

For the standard Matukuma equation, namely when k = 0, m = 2, −� = σ =
s = 2 and n = 3, the transformed equation (3.2) arises with q(t) = sinh2 t/ cosh t.
In this case we have N = n = 3, and so the critical Sobolev exponent is 2∗

3 = 6,
the usual critical exponent for the Matukuma equation in R3, as is well known in
the literature.2

2 It may be worth mention here that the Matukuma–type equation

∆u + u p−1

(1 + r2)σ/2
= 0 in Rn, n > 2, σ > 0, p �= 2,

has a solution of the form
u(r) = c(1 + r2)−(n−2)/2,

when

p = 2n

n − 2
− σ

n − 2
, c = [n(n − 2)]1/(p−2).

For example, when n = 3, σ = 1, and p = 5 the solution is 31/3(1 + r2)−1/2, and when
n = 4, σ = 2, and p = 3 the solution is 8/(1 + r2).

Corresponding solutions can also be obtained for values m �= 2, but we shall not follow
on this here.
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(iv) For the model (1.4) in the introduction, generalizing equation (4.21) of [1],
we have k = 0, and s = m ′ = −�, so that the conditions (4.4) reduce simply to
n ≥ 2, m ≥ 2, with now

N = m
n + σ − m ′

m + σ − m ′ > 1.

In the original equation (4.21) of [1], that is in the further subcase m = 2,
n = 3, we have N = 2(1 + σ)/σ > 2. When σ = 2 one finds again the standard
Matukuma equation, with N = 3 and with the solution u(r) = √

3/(1 + r2) when
f(u) = u3, noted in the introduction, while the case σ = 1 produces a new elliptic
equation with N = 4.

From Theorem 3.2, since ν = � + σ − k = σ − m ′, we get u′(r) =
O(r[(m−1)σ−1]/(m−1)2

) and u ∈ C1(Rn) when σ > 1/(m − 1); while |u′(r)| → ∞
when σ < 1/(m − 1). In both cases u(r) − α = O(rσ/(m−1)). Note that even in the
canonical case m = 2, n = 3, from (4.7) one can have the anomalous asymptotic
behavior u′(r) → − f(α)/2 when σ = 1 (and so N = 4), while |u′(r)| → ∞ when
σ < 1.

(v) The model

div(r2−m |Du|m−2 Du) + f(u)

1 + rσ
= 0,

(4.8)
m > 1, n ≥ 1, σ > 0,

studied in [3] and [9], is the special case k = 2 − m, � = −σ , σ = s of (4.3). From
(4.4) this gives the following condition on the exponents in (4.8) for the satisfaction
of (A1)–(A4):

σ ≤ 2(m − 1), n ≥ σ + 2

m ′ .

Moreover, the critical dimension becomes N = mn/2(m − 1) > 1. Finally we
have 1 < m < N if and only if n > 2(m − 1), namely a−1/(m−1) �∈ L1[0, 1]. In
this case the natural Sobolev exponent for (4.8), as defined above, is

1

m∗
N

= 1

m
− 1

N
= n − 2(m − 1)

nm
,

as shown already in [9]. Again m∗
N > m, since m > 1.

From Theorem 3.2, since ν = m − 2, we get u′(r) = O(r), u(r) − α = O(r2)

as r → 0+, and specifically u ∈ C1(Rn).
(vi) For the model

div(r2−m |Du|m−2 Du) + rσ−m

(1 + rm)σ/m
f(u) = 0,

(4.9)
m > 1, n ≥ 1, σ > 0,

introduced in [3] and [9], we have k = 2 − m, � = −m, s = m, so that the required
exponent conditions for (A1)–(A4) now found to be

m ≥ 2, n ≥ m + 1 − 2

m
,
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with

N = m
n + σ − m

m + σ − 2
> 1.(4.10)

Again 1 < m < N if and only if n > 2(m −1), that is a−1/(m−1) �∈ L1[0, 1]. In this
case the natural Sobolev exponent of equation (4.9) and its transformed equation
(3.2) is

1

m∗
N

= 1

m
− 1

N
= 1

m
· n − 2(m − 1)

n + σ − m
,

as found in [9]. Of course m∗
N > m because m ≥ 2 and σ > 0.

From Theorem 3.2, since ν = σ −2 we get u′(r) = O(r(σ−1)/(m−1)) as r → 0+;
hence u ∈ C1(Rn) when σ > 1, while |u′(r)| → ∞ when σ < 1. In both cases
u(r) − α = O(r(m+σ−2)/(m−1)).

(vii) Tso [24], p. 99, has noticed that the m–Hessian operator Hm−1, where
m ∈ Z, 2 ≤ m ≤ n + 1, when written for a radially symmetric argument u = u(r)
takes the form Const. r−n+1(rn−m+1|u′|m−2u′)′. Thus taking k = 2 − m the results
of the remaining sections of the paper can be applied to this case.

(viii) The case σ = 0 in (4.3) is not allowed. If, nevertheless, we do set σ = 0
then conditions (A1)–(A4) will be satisfied if the relations of (4.4) hold as strict
inequalities, with

N = m
n + �

m + � − k
> 1.

All this of course corresponds directly to the previous example (4.2), confirming
again the role of N as the natural dimension of the problem.

Part II

5. Qualitative behavior of ground states

The further purpose of the paper is to investigate qualitative properties, compact
support principles and uniqueness for semi-classical radial ground states of the
main problem (2.1), that is,

div(g(|x|)|Du|m−2Du) + h(|x|) f(u) = 0 in Ω;
m > 1, n ≥ 1,(5.1)

u ≥ 0, u �≡ 0, lim|x|→∞ u(x) = 0,

through properties possessed by semi-classical ground states of the corresponding
transformed problem

[
q(t)|vt |m−2vt

]
t + q(t) f(v) = 0 in I = {t > 0 : v(t) > 0},

(5.2)
v ≥ 0, v �≡ 0, lim

t→∞ v(t) = 0,

again with m > 1, see (3.2) and Proposition 3.1.
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We are also able to treat the corresponding homogeneous Dirichlet–Neumann
free boundary problem

div(g(|x|)|Du|m−2Du) + h(|x|) f(u) = 0

in ΩR = {x ∈ B(0, R) \ {0} : u(x) > 0} ⊂ Rn, R > 0,(5.3)

u ≥ 0, u �≡ 0; u = ∂u

∂ν
= 0 on ∂B(0, R),

with m > 1, n ≥ 1, through the transformed problem, with T = t(R),
[
q(t)|vt |m−2vt

]
t + q(t) f(v) = 0 in IT = {t ∈ (0, T ) : v(t) > 0},

(5.4)
v ≥ 0, v �≡ 0, v(T ) = vt(T ) = 0.

In (5.2) and (5.4) the function q is given by (3.3) and satisfies (Q1)–(Q3).
With the respective end conditions at T = ∞ in (5.2) and at T = t(R) in (5.4),

the problems (5.2) and (5.4) can be unified into the single statement
[
q(t)|vt|m−2vt

]
t + q(t) f(v) = 0 in I = {t ∈ (0, T ) : v(t) > 0},(5.5)

where v = v(t) obeys (3.5).
In order that the solution v = v(t) be suitably well-behaved at the origin, we

also impose on the original function u = u(r) the initial conditions (2.15), (2.16).
Then by Proposition 3.1 there holds, specifically, for some positive constant α,

v(0) = α > 0, v′(0) = 0,(5.6)

where, for simplicity, from this point on we write ′ = d/dt if there is no confusion
in the notation. In the sequel it is the initial condition (5.6) which we shall use
without further discussion.3

Moreover we shall follow the paper [8], as well as [20], [23], [10] and [17], in
all of which, however, q(t) is the special function tN−1, N > 1.

Now let v be a classical solution of (5.5)–(5.6), and with the natural end
conditions given in (5.2) or (5.4). Of course (Q1)–(Q3) and (F1) are assumed to
hold without further mention. As in Section 3, we consider the function

w(t) = |v′(t)|m−2v′(t)

and put I0 = I ∪ {0}.
3 If condition (2.16) is not assumed, then by Proposition 2.3 applied to the solution v, we

get
q(t)|v′(t)|m−1 → η > 0.

Therefore, since q is continuous at t = 0,

|v′(t)| → either ∞ or a positive constant

as t → 0+. In particular the second condition of (5.6) fails, and the further considerations
in the paper cannot be carried through.



S224 P. Pucci et al.

Lemma 5.1. The function w is of class C1(I0) and is a solution of

(qw)′ + q f(v) = 0 on I0 = {0 ≤ t < T : v(t) > 0}.(5.7)

Moreover, denoting by t0 the first zero of v in (0, T ), if any, or otherwise t0 = T,
we have

w(t) = − 1

q(t)

∫ t

0
q(s) f(v(s))ds, 0 < t < t0,(5.8)

w(0) = 0, w′(0) = − f(α)

N
,(5.9)

where N ≥ 1 is the number given in (Q3).
Finally, putting ρ(t) = |v′(t)|, there holds

lim
t→0+

q′(t)
q(t)

ρm(t) = 0 and
q′

q
ρm ∈ C[0, T ).(5.10)

Proof. Of course w(0) = |v′(0)|m−2v′(0) = 0, since v′(0) = 0 by (3.5). By
Proposition 3.1 it is evident that w is of class C[0, T ) ∩ C1(I ) and satisfies (5.7).
It is still to be shown that w ∈ C1(I0).

Integrating (5.7) over [0, t] for t < t0, we get, since w(0) = 0 and q is bounded
near t = 0,

q(t)w(t) = −
∫ t

0
q(s) f(v(s))ds, 0 < t < t0,

so (5.7) and (5.8) are proved. Differentiating (5.8) now gives

w′(t) = − f(v(t)) + tq′(t)
q(t)

· 1

tq(t)

∫ t

0
q(s) f(v(s))ds,

and the second part of (5.9) now follows at once by (Q3) and L’Hôpital’s rule.
Thus in particular w is of class C1(I0).

Finally,
q′(t)
q(t)

ρm(t) = tq′(t)
q(t)

· v′(t) · w(t)

t
,

and (5.10) is then a consequence of (Q3), (5.9) and (3.5). ��
Corollary 5.2. If v′(t) �= 0 at some t, with 0 < t < t0, then v′′ exists at this point
and satisfies (5.5) in the form

(m − 1)ρm−2v′′ − q′

q
ρm−1 + f(v) = 0, ρ = |v′|.(5.11)

Proof. By (5.8) of Lemma 5.1 and the fact that v′(t) �= 0 we have

|v′(t)| =
∣∣∣∣

∫ t

0

q(s)

q(t)
f(v(s))ds

∣∣∣∣

1/(m−1)

.

Since the integral is not zero, the function on the right hand side is differentiable at t.
Hence v′′ exists at t and from (5.5) we get exactly (5.11), since |v′(t)| = ρ(t) > 0.

��
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A natural energy function associated to solutions v of (5.5) is given by

E(t) = ρm(t)

m ′ + F(v(t)), ρ = |v′|.(5.12)

Lemma 5.3. The energy function E is of class C1(I0), with E ′(0) = 0 and

E ′(t) = −q′(t)
q(t)

ρm(t) in I.(5.13)

Proof. Obviously by (F1) and the fact that v ∈ C1[0, T )

dF(v(t))

dt
= f(v(t))v′(t),

this formula being valid only when v(t) > 0, namely in I . Moreover, from

m − 1

m
ρm =

∫ ρ

0
pdpm−1 =

∫ ρm−1

0
s1/(m−1)ds,

and ρm−1(t) = [sgn v′(t)]w(t), we get

d

dt

[m − 1

m
ρm

]
(t) = ρ(t)[sgn v′(t)]w′(t) = v′(t)w′(t).

Therefore on I ,

E ′(t) = v′(t)
[
w′(t) + f(v(t))

]
= −v′(t)

q′(t)
q(t)

w(t)

by (5.7), and (5.13) follows at once. Finally by (5.10) we see that E ∈ C1(I0), with
E ′(0) = 0. ��
Theorem 5.4. If v(τ0) = 0 for some τ0 > 0, then v ≡ 0 on [τ0, T ).

Proof. Since v ≥ 0, clearly v′(τ0) = 0. Hence E(τ0) = 0 by (5.12). Assume for
contradiction (without loss of generality) that there is t1, with τ0 < t1 ≤ T such
that again v(t1) = 0 and v(t) > 0 in (τ0, t1). Then (τ0, t1) ⊂ I and E ′ ≤ 0 in
(τ0, t1) by (5.13) and (Q1). There are now two cases:

Case 1. t1 ≤ T < ∞. Then with the help of the given end conditions in (5.4) we
get v(t1) = v′(t1) = 0, and in turn E(t1) = 0. Thus since E ′ ≤ 0 in (τ0, t1) there
follows E ≡ E ′ ≡ 0 in (τ0, t1), and so ρm ≡ 0 on [τ0, t1) by (5.13) and (Q1),
namely v′ ≡ 0, a contradiction, and the theorem is proved.

Case 2. t1 = T = ∞. Here we assert that

v′(t), E(t) → 0 as t → t1 = ∞.(5.14)

Indeed, since v(t) → 0 as t → ∞, then F(v(t)) → 0 by (F1), and so E(t) decreases
to a finite non–negative limit as t → ∞ by (5.12). Consequently, v′(t) → limit as
t → ∞, the limit necessarily being 0 again since v(t) → 0 as t → ∞. Therefore
(5.14) holds as claimed. With (5.14) proved, the remaining argument is the same
as in Case 1. ��
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By Theorem 5.4 it follows that any solution of (5.5), with the given end
conditions, has as its (open) support set I exactly an initial interval (0, t0), with
t0 ≤ T . In turn, recalling that v ∈ C1[0, T ), see (5.6), one deduces from (5.13) that
actually E ∈ C1[0, T ), and that (5.13) holds in the entire maximal interval [0, T ).
Therefore for any 0 ≤ s0 < t < T we have

E(t) − E(s0) = −
∫ t

s0

q′(s)
q(s)

ρm(s)ds.(5.15)

Clearly E(0) = F(α) by (5.12) and (3.5). Thus, letting s0 → 0+ in (5.15), we
obtain

E(t) = F(α) −
∫ t

0

q′(s)
q(s)

ρm(s)ds, 0 ≤ t < T.(5.16)

Finally, as in the proof of Theorem 5.4 there holds E(T ) = 0 when T < ∞, while
in the other case, when t0 = T = ∞, we see from (5.14) that v′(t), E(t) → 0
as t → ∞. Thus in both cases the non–negative function q′ρm/q is integrable on
[0, T ), T ≤ ∞, with

∫ T

0

q′(s)
q(s)

ρm(s)ds = F(α).(5.17)

In summary, a semi-classical radial ground state of (5.2), (5.6), or a semi-
classical radial solution of (5.4), (5.6), has the property that

v(0) = α > 0, v′(0) = 0, v(T ) = v′(T ) = 0,(5.18)

where respectively T = ∞ or T = t(R) < ∞. Furthermore, by (5.16) and (5.17),

E(t) =
∫ T

t

q′(s)
q(s)

ρm(s)ds ≥ 0,(5.19)

and clearly also, by (5.6), (5.12) and (5.17),

E(0) = F(α) =
∫ T

0

q′(s)
q(s)

ρm(s)ds > 0.(5.20)

Lemma 5.5. If s0 ≥ 0 is a critical point of v, with v(s0) > 0, then v(t) ≤ v(s0) for
t > s0 and f(v(s0)) ≥ 0.

Proof. Let s0 ≥ 0 be a critical point of v. Assume for contradiction that there are
two points t1, t2 > s0 such that v(t1) > v(s0) and v(t2) < v(s0). Then, there is
s ∈ (t1, t2) such that v(s) = v(s0) and v is not constant on [s0, s]. It then follows
from (5.15) that

ρm(s)

m ′ +
∫ s

s0

q′

q
ρmdτ = 0

and both terms are non-negative by (Q1). Thus in particular ρm ≡ 0 on [s0, s], so
v′(t) ≡ 0 on [s0, s], which is impossible. Hence either v(t) ≥ v(s0) for t > s0, or
v(t) ≤ v(s0) for t > s0. The first case cannot occur since v(T ) = 0.
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In the second case, since v′(s0) = 0, then w(s0) = 0, and by (5.7), at t = s0,
we have

f(v(s0)) = −w′(s0) ≥ 0.

Indeed, otherwise w′(s0) > 0, and so there is t3 > s0 such that w′(t) > 0 on [s0, t3];
in turn w(t) > w(s0) = 0 and v′(t) > 0 on [s0, t3], which gives v(t) > v(s0) on
[s0, t3], a contradiction. ��

It is convenient to introduce the following further condition on f :

(F2) there are constants β, γ , with 0 < β < γ ≤ ∞, such that

F(s) ≤ 0 for 0 ≤ s ≤ β,

and

f(s), F(s) > 0 for β < s < γ.

Clearly if (F2) holds for some γ > β, then it continues to hold for all γ ′ ∈ (β, γ).
Consequently there exists a maximal γ , possibly infinite, for which (F2) is valid.
Without loss of generality we can assume that γ in (F2) is maximal.

Proposition 5.6. Let v be a semi-classical ground state of (5.2), or a semi-classical
solution of (5.4). Suppose that (5.6) is satisfied, so that (5.18) also holds. Then
t = 0 is a maximum of v, and v′ ≤ 0 on [0, T ); furthermore f(α) ≥ 0 and
F(α) > 0.

Moreover, if (F2) holds and 0 < α < γ , then
(i) α > β and f(α) > 0,
(ii) v′(t) < 0 when t > 0 and v(t) > 0.

Proof. By Lemma 5.5 and the condition v′(0) = 0 one sees that v(t) ≤ v(0) = α

for t > 0. The fact that f(α) ≥ 0 similarly follows from Lemma 5.5, while F(α) > 0
is just (5.20).

Next assume for contradiction that v′(s1) > 0 for some s1 > 0. Since v(s1) ≤
v(0), there is a minimum s in (0, s1), with v(s) < v(s1). Hence v(t) ≥ v(s) for t > s
by Lemma 5.5. If v(s) > 0, then v(t) cannot approach 0 as t → T , contradicting
the last condition of (5.18). Therefore v(s) = 0 with s > 0, and by Lemma 5.4
we get v ≡ 0 on [s, T ): thus v′(s1) = 0, which is again a contradiction. Hence
v′(t) ≤ 0 on [0, T ).

To show (i) it is enough to observe that if f(α) = 0 and 0 < α < γ , then
F(α) ≤ 0 by assumption (F2). This is impossible by (5.20), proving (i).

To obtain (ii), assume for contradiction that there is a point s0 > 0 such that
v′(s0) = 0 and 0 < v(s0) < γ . Since v′(t) ≤ 0 for t ≥ 0, then both v(t) ≥ v(s0) for
0 ≤ t < s0 and v(t) ≤ v(s0) for s0 < t < T . Of course, w(s0) = 0. We claim that
also w′(s0) = 0. Indeed, if w′(s0) > 0, then w would be strictly increasing at s0,
namely v′ would change sign at s0, which is impossible since v′(t) ≤ 0 on [0, T ).
Analogously, the case w′(s0) < 0 also cannot occur.

Since w is a solution of (5.7), we get f(v(s0)) = 0. Also 0 < v(s0) < γ , so
that F(v(s0)) ≤ 0 by (F2). Hence by (5.19), with t = s0,

0 ≤
∫ T

s0

q′(s)
q(s)

ρm(s)ds = E(s0) = F(v(s0)) ≤ 0,(5.21)
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which implies v′ ≡ 0 on [s0, T ) by (Q1). Thus v(t) ≡ v(s0) > 0 for s0 ≤ t < T ,
again contradicting the last condition of (5.18). This completes the proof of (ii). ��

The next result gives a necessary and a sufficient condition for a semi-classical
radial ground state to have compact support (for this result the full strength of
condition (F2) is not needed).

Theorem 5.5. Let v be a semi-classical ground state of (5.2), with v(0) = α > 0.
(i) If F(u) ≤ 0 for all values 0 < u < β, for some β > 0, and

∫

0+
du

|F(u)|1/m
< ∞,(5.22)

then v has compact support in R+.
(ii) Conversely, assume there exists δ > 0 and a non–decreasing function

Φ : [0, δ) → R, with Φ(0) = 0, such that |F(u)| ≤ Φ(u) for all u ∈ [0, δ). If v

has compact support in R+, then
∫

0+
du

Φ(u)1/m
< ∞.(5.23)

Proof. Let v be a semi-classical radial ground state as in the theorem, so T = ∞.
(i) Suppose (5.22) holds. We denote by tβ > 0 any point such that 0 ≤ v(t) < β

on (tβ,∞). We assert that v′(t) < 0 for all t ∈ (tβ,∞) for which v(t) > 0.
Otherwise, if 0 < v(s0) < β, v′(s0) = 0 for some s0 ∈ (β,∞), then since F(s) ≤ 0
on (0, β), it follows that (5.21) holds. This gives a contradiction exactly as in last
lines of the proof of Proposition 5.6 (ii). Hence the assertion is proved.

Thus by Theorem 5.4 either v ≡ 0 for all t sufficiently large, or v > 0 and
v′ < 0 on (tβ,∞). In the first case we are done. Otherwise, denoting by t = t(v)
the inverse function of v(t) on (tβ,∞), then from the fact that m ′ > 1, together
with (5.12) and (5.19), we get

ρm(t) ≥ ρm(t)

m ′ = −F(v(t)) +
∫ ∞

t

q′(s)
q(s)

ρm(s)ds > −F(v(t)),

or v′(t) < −|F(v(t)|1/m on (tβ,∞) by the assumption that F(u) ≤ 0 on [0, β). That
is, writing t = t(v) and putting ε = v(tβ), we have

1

t ′(v)
< −|F(v)|1/m for v ∈ v((tβ,∞)) = (0, ε),

since v(t) → 0 as t → ∞. By integration over (v, ε),
∫ ε

v(t)

du

|F(u)|1/m
> −

∫ v(tβ)

v(t)
t ′(u)du = t − tβ.

Hence, letting t → ∞, there results
∫ ε

0

du

|F(u)|1/m
= ∞.

This contradicts (5.22) and completes the proof of part (i) of the theorem.
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(ii) Let v have compact support. Then by Theorem 5.4 and the first part of
Proposition 5.6 there is t0 > 0 such that v′(t) ≤ 0 and 0 < v(t) ≤ v(0) = α

on (0, t0), while v ≡ 0 on [t0,∞). Let tδ ∈ (0, t0) be some fixed point such that
0 < v(t) < δ on (tδ, t0). By (5.15), with s0 = t0, for 0 < tδ < t < t0 we have

ρm(t)

m ′ = −F(v(t)) +
∫ t0

t

q′(s)
q(s)

ρm(s)ds ≤ Φ(v(t)) + c1

∫ t0

t

ρm(s)

m ′ ds,

by (Q2), with c1 = m ′q′(tδ)/q(tδ). Applying Gronwall’s inequality yields

ρm(t)

m ′ ≤ Φ(v(t)) + c1

∫ t0

t
Φ(v(s))ec1(s−t)ds.

Now Φ(v(t)) is non–increasing on (tδ, t0), since Φ is non–decreasing by assumption
and v is non–increasing on (tδ, t0). Hence

ρm(t) ≤ CΦ(v(t)), with C = m ′ec1(t0−tδ) > 1.

Therefore,
−v′(t)

Φ(v(t))1/m
≤ C1/m on (tδ, t0).

Integrating on [s0, t], with tδ < s0 < t < t0, we get

∫ v(s0)

v(t)

du

Φ(u)1/m
= −

∫ t

s0

v′(s)
Φ(v(s))1/m

ds ≤ C1/m(t − s0).

Letting t → t−0 , this gives

∫ v(s0)

0

du

Φ(u)1/m
≤ C1/m(t0 − s0),

that is (5.23) holds. This completes the proof of part (ii) of the theorem. ��
As an immediate consequence of Theorem 5.5 we obtain

Corollary 5.8. Let v be a semi-classical ground state of (5.2), with α > 0, and
assume f ≤ 0 on (0, β′) for some β′ > 0 (see condition (F3) below). Then v(t) > 0
for every t ∈ R+ if and only if

∫

0+

du

|F(u)|1/m
= ∞.(5.24)

If | f(u)| ∼ u p as u → 0+, with p > −1 by (F1), then by Corollary 5.8 and
Proposition 5.6 the conditions v(t) > 0, v′(t) < 0 hold for all t ∈ R+ if and only
if p ≥ m − 1. In this case, since m > 1, this means that f is regular at u = 0, with
f(0) = 0.

Conversely, if −1 < p < 0, as in the example (1.7), then any radial ground
state necessarily has compact support, and in turn (1.2) can be considered as valid
only at points where u > 0.
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For a more general discussion of the validity of the strong maximum and
compact support principles for solutions, radial or not, of quasilinear elliptic in-
equalities, as well as on applications of these principles to variational problems on
manifolds and to existence of radial dead cores, we refer to [22].

6. Asymptotic behavior of ground states

We assume from now on that the nonlinearity f obeys (F1), (F2) and

(F3) there exists a maximal number β′ ∈ (0, β] such that f(u) ≤ 0 for u ∈ (0, β′].
Example (1.7) satisfies conditions (F1)–(F3) since −1 < p < s, with β =
[(s + 1)/(p + 1)]1/(s−p), β′ = 1 and γ = ∞.

Let v be a fixed solution of (5.5), satisfying (5.18).

Proposition 6.1. There is a number λ ≥ 0 such that

lim
t→T

q(t)ρm−1(t) = λ,(6.1)

with λ = 0 when T is finite, or when T = ∞ and q−1/(m−1) �∈ L1[1,∞).
Furthermore,

lim inf
t→T

tq(t)E(t) = lim inf
t→T

Q(t)E(t) = 0,(6.2)

where Q(t) = ∫ t
0 q(s)ds, and also

lim
t→T

q(t)
∫ T

t

q′(s)
q(s)

ρm(s)ds = lim
t→T

q(t)E(t) = 0.(6.3)

Proof. The only non–trivial case of the asymptotic behavior is when T = ∞ and
v(t) > 0 for all t ∈ R+.

Since v′ < 0 by Proposition 5.6 (ii), then qρm−1 is non-increasing in [tβ′ ,∞)

by (5.7) and (F3), where tβ′ is the unique point with v(tβ′ ) = β′. Thus, (6.1) holds
and λ ≥ 0 is finite.

If q−1/(m−1) �∈ L1[1,∞), and if for contradiction we assume λ > 0 in (6.1), then
from [q(t)]1/(m−1)ρ(t) → λ1/(m−1) as t → ∞, it follows that ρ(t) ≥ c[q(t)]−1/(m−1),
for some constant c > 0 and for all large t. This inequality is impossible since
−v′ = ρ ∈ L1[0,∞). Hence λ = 0.

By (5.19) the energy function E(t) ≥ 0 for all t, hence

0 ≤ Q(t)E(t) ≤ Q(t)
ρm(t)

m ′ and 0 ≤ tq(t)E(t) ≤ tq(t)
ρm(t)

m ′ ,

on [tβ′ ,∞), since F(u) ≤ 0 on (0, β′] by (F3). Now, by (6.1), for all t sufficiently
large

0 ≤ Q(t)
ρm(t)

m ′ = Q(t)

q(t)
ρ(t) · q(t)

ρm−1(t)

m ′ ≤ (λ + 1)
Q(t)

q(t)
ρ(t),
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and analogously,

0 ≤ tq(t)
ρm(t)

m ′ ≤ (λ + 1)tρ(t).

We claim that

0 ≤ lim inf
t→∞

Q(t)

q(t)
ρ(t) ≤ lim inf

t→∞ tρ(t) = 0,

so that (6.2) follows at once from the previous inequalities. In fact the second
inequality is a consquence of the relation Q(t)/q(t) ≤ t, which holds by (Q1).
Next, if the final limit is not zero, there would be a constant C > 0 such that
ρ(t) ≥ C/t for all sufficiently large t. This gives a contradiction since obviously
ρ ∈ L1[0,∞).

The first equality of (6.3) is an immediate consequence of (5.19). Next, by
(5.12),

0 ≤ q(t)E(t) ≤ q(t)ρm−1(t) · ρ(t)/m ′,

since as already noted F(u) ≤ 0 on [0, β′] by (F3). The second equality of (6.3)
now follows from (6.1), and (5.18). ��

7. Monotone separation properties

We assume conditions (F1)–(F3) throughout this section, as well as (Q1)–(Q3).
Let v1 and v2 be two semi-classical ground states of (5.2), or two semi-classical
solutions of (5.4), (5.6) whose initial values α1, α2 verify the principal condition

β < α < γ ;(7.1)

see Proposition 5.6 (i). Of course both v1 and v2 have the regularity properties
described in Lemma 5.1.

Denote by I1 = (0, t01) and I2 = (0, t02) the open maximal intervals of (0, T )

such that

v1 > 0 (and so v′
1 < 0) in I1,

v2 > 0 (and so v′
2 < 0) in I2,

where Proposition 5.6 (ii) has been used in a crucial way.
Both v1 and v2 possess inverses t1 and t2 in I1 and I2, respectively, with

t1 : (0, α1] → [0, t01) and t2 : (0, α2] → [0, t02),

t1(α1) = t2(α2) = 0, and α1 = v1(0), α2 = v2(0) ∈ (β, γ). From now on (with
slight abuse of notation) we set

α = min{α1, α2},
so that both t1 and t2 are well defined on (0, α].
Lemma 7.1. If t2 − t1 > 0 on some open interval I ′ of (0, α), then t2 − t1 can have
at most one critical point in I ′. Moreover, if such a critical point exists, it must be
a strict maximum.
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Proof. Since t2 > t1 > 0 on I ′, then both v1, v2 satisfy (5.5), or (5.11), in the
corresponding open interval, and in turn t1 and t2 satisfy the equation

(m − 1)ti,vv(v) = q′

q
(ti(v))t

2
i,v − |ti,v|m+1 f(v) on I ′,(7.2)

since v′
i = 1/ti,v and v′′

i = −ti,vv/t3
i,v, and also ti > 0 and ti,v < 0, i = 1, 2,

on I ′. Suppose t2 − t1 has a critical point vc in I ′, then t2,v(vc) = t1,v(vc) and
t2(vc) > t1(vc) > 0, by assumption. Consequently,

(m − 1)[t2 − t1]vv(vc) = |t1,v(vc)|2
[

q′

q
(t2(vc)) − q′

q
(t1(vc))

]
< 0,

since by (Q2) the function q′/q is strictly decreasing on R+. ��
Lemma 7.1 is the maximum principle of Peletier and Serrin [18]–[19], proved

originally for the Laplace operator. For more general operators it is due to Franchi,
Lanconelli and Serrin (see [8]); of course in all these papers q(t) = tN−1 and f is
regular at u = 0, with f(0) = 0.

Restated in other terms, the principle says, independently of the sign and the
growth of f , that t2−t1 cannot assume a positive local minimum value or a negative
local maximum value in the open interval (0, α).

Lemma 7.2. If t2−t1 > 0 on some open interval (0, τ) of (0, α], then (t2−t1)v < 0
on (0, τ).

Proof. By Lemma 7.1 either t2−t1 is decreasing on all (0, τ), or t2−t1 is increasing
for v near 0. In the first case we are done, again by Lemma 7.1, so let us assume for
contradiction that (t2 − t1)v > 0 on (0, v0), for some v0 ≤ τ . By (5.12) and (5.19)

1

m ′|ti,v(v)|m + F(v) =
∫ v

0

q′

q
(ti(u))

du

|ti,v(u)|m−1
, 0 < v < v0, i = 1, 2,

so that on (0, v0) by subtraction

1

m ′

[
1

|t2,v(v)|m − 1

|t1,v(v)|m
]

=
∫ v

0

[
q′

q
(t2(u))

1

|t2,v(u)|m−1
− q′

q
(t1(u))

1

|t1,v(u)|m−1

]
du ≡ ϕ(v).

By assumption (Q2) and since |t1,v| > |t2,v| on (0, v0), we get ϕ(v) > 0. Again by
(Q2), since t2 > t1 on (0, v0), we also find (after some calculation) that, on (0, v0),

q

q′ (t1)
1

|t1,v|ϕv <
1

|t1,v|
[

1

|t2,v|m−1
− 1

|t1,v|m−1

]
= 1

|t1,v|
∫ 1/|t2,v |

1/|t1,v |
dρm−1

≤ (m − 1)

∫ 1/|t2,v |

1/|t1,v |
ρm−1dρ = 1

m ′

[
1

|t2,v|m − 1

|t1,v|m
]

= ϕ,
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that is
ϕv

ϕ
<

q′

q
(t1)|t1,v| on (0, v0).

By integration over [v, u0], with 0 < v < u0 < v0, we get

log
ϕ(u0)

ϕ(v)
<

∫ u0

v

q′

q
(t1(u))|t1,v(u)|du =

∫ t1(v)

t1(u0)

q′(s)
q(s)

ds = log
q(t1(v))

q(t1(u0))
.

Hence

0 < q(t1(u0))ϕ(u0) < q(t1(v))ϕ(v).(7.3)

On the other hand, since t2 > t1 and ϕ > 0, from (Q1) we obtain, for t = t2(v),

q(t1(v))ϕ(v) < q(t2(v))ϕ(v) < q(t2(v))
∫ v

0

q′

q
(t2(u))

du

|t2,v(u)|m−1

= q(t)
∫ t02

t

q′(s)
q(s)

ρm
2 (s)ds.

By (6.3) the right hand term tends to zero as t → t02 (that is, as v → 0+).
Consequently q(t1(v))ϕ(v) → 0 as v → 0+, contradicting (7.3). This completes
the proof of the lemma. ��
Theorem 7.3. There is a value t ≥ 0 such that v1(t) = v2(t) > 0.

Proof. Assume for contradiction that v1(t) �= v2(t) in the maximal interval where
v1 and v2 are both positive. Without loss of generality, we may then assume that
t2 − t1 > 0 on (0, α]. Hence α = min{α1, α2} = α1, and t2,v(α) is finite, while
t1,v(α) = −∞. By Lemma 7.2 we obtain

t2,v(α) = lim
v→α− t2,v(v) ≤ lim

v→α− t1,v(v) = −∞,

which is impossible. ��
Lemma 7.4. If v1 ≥ v2 for all t sufficiently near T , then λ1 ≥ λ2, where λ1 and
λ2 are the corresponding limit values given in (6.1).

Proof. If T < ∞, then λ1 = λ2 = 0, and the result follows at once. If T = ∞,
assume for contradiction that λ1 < λ2. Then λ2 > 0 and for large t we have
−v′

2(t) = ρ2(t) > 0, while by Proposition 6.1

lim
t→∞

ρ1(t)

ρ2(t)
= lim

t→∞
v′

1(t)

v′
2(t)

=
(

λ1

λ2

)1/(m−1)

< 1.

Hence ρ1 < ρ2 for large t, and so

v1(t) =
∫ ∞

t
ρ1(s)ds <

∫ ∞

t
ρ2(s)ds = v2(t),

which contradicts the assumption. ��
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Lemma 7.5. If t2 − t1 has two zeros in (0, β′], say at u0, v0, with u0 < v0, then
t2 − t1 ≡ 0 on [u0, v0].
Proof. Suppose the conclusion is false. Then without loss of generality we can
assume that t2 − t1 > 0 on (u0, v0). By Lemma 7.1 it follows that t2 − t1 can
have at most one critical maximum point, and at the same time at least one,
since t2 − t1 vanishes at the endpoints u0, v0. Hence there is vc ∈ (u0, v0) such
that (t2 − t1)v(vc) = 0 and (t2 − t1)v < 0 on (vc, v0) by Lemma 7.2. Since
t1(v0) = t2(v0) = t0, then v1(t0) = v2(t0) = v0. There are also unique points σ

and τ such that v1(σ) = v2(τ) = vc. Clearly t0 < σ < τ , since t2,v < t1,v < 0 on
(vc, v0). Integrating equation (5.5) on the interval [t0, σ] and along the solution v1,
and similarly on [t0, τ] along the solution v2, we obtain

q(σ)ρm−1
1 (σ) − q(t0)ρ

m−1
1 (t0) =

∫ v0

vc

q(t1(u))|t1,v(u)| f(u)du

and

q(τ)ρm−1
2 (τ) − q(t0)ρ

m−1
2 (t0) =

∫ v0

vc

q(t2(u))|t2,v(u)| f(u)du.

Subtracting the first equality from the second, and recalling that ρ1(σ) = ρ2(τ),
since vc is a critical point of t2 − t1, we find

[q(τ) − q(σ)]ρm−1
1 (σ) + q(t0)

[
ρm−1

1 (t0) − ρm−1
2 (t0)

]

=
∫ v0

vc

{q(t2(u))|t2,v(u)| − q(t1(u))|t1,v(u)|} f(u)du.

The left hand side is positive by (Q1), since σ < τ and ρ2(t0) ≤ ρ1(t0), while
the right hand side is non-positive since t2 > t1, |t2,v| > |t1,v|, and f ≤ 0 on
[vc, v0] ⊂ (0, β′]. This contradiction completes the proof of the lemma. ��
Theorem 7.6. Assume

(Q4) q′ ∈ Liploc(R
+).

If v1(τ0) = v2(τ0) ∈ (0, β′] for some τ0 > 0, then v1 ≡ v2 in R+
0 .

Remark. Condition (Q4) is obviously satisfied for the principal problems (5.1)
and (5.3) when the functions g and h are of class C2(R+); see the transformation
formula (3.3) above with a, b given by (2.3). In particular, (Q4) trivially holds for
the examples of Section 4.

Proof. Assume first, for ultimate contradiction, that there is t̄ > τ0 such that, say,
β′ ≥ v2(t̄) > v1(t̄). Put

τ1 = inf{t > τ0 : (v2 − v1)(t) > 0} and
(7.4)

τ2 = sup{t > τ0 : (v2 − v1)(t) > 0}.
Of course, 0 < τ0 ≤ τ1 < t̄ < τ2 ≤ ∞. We claim that τ2 = ∞. Otherwise, by
continuity, v1(τ2) = v2(τ2) = u0, and so

0 < u0 ≤ v1(t̄) < v2(t̄) ≤ v2(τ0) = v1(τ0) = v0 ≤ β′,
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by assumption. Namely the points u0, v0 ∈ (0, β′] are two zeros of t2 − t1, and
t2 − t1 > 0 on (u0, v0). This is impossible by Lemma 7.5 and the claim is proved.

Since τ0 ≤ τ1 as noted above, we have either τ0 < τ1 or τ0 = τ1, In the first of
these cases there are again, exactly as before, two zeros of the non-negativefunction
t2 − t1 on the interval [u0, v0], where now u0 = v1(τ1) = v2(τ1). Consequently
t2 ≡ t1 on [u0, u1] by Lemma 7.5, and so clearly the conditions

t1(v0) = t2(v0) = τ0, t ′1(v0) = t ′2(v0) = τ ′
0,(7.5)

hold.
In the remaining case we have τ0 = τ1 and v2 − v1 > 0 on (τ0,∞), that is

t2 − t1 > 0 on (0, v0) by virtue of (7.4). In particular t2(v0) = t1(v0) = τ0, and
(t2 − t1)v < 0 on (0, v0) by Lemma 7.2. Of course also t2,v, t1,v < 0 on (0, v0).
Now by (6.1), integrating (5.7) along v1 and v2 on [τ0,∞), we obtain

q(τ0)ρ
m−1
i (τ0) − λi = −

∫ v0

0
q(ti(u))|ti,v(u)| f(u)du, i = 1, 2,

and so

q(τ0)
[
ρm−1

1 (τ0) − ρm−1
2 (τ0)

] + λ2 − λ1 =
(7.6) ∫ v0

0
[q(t2(u))|t2,v(u)| − q(t1(u))|t1,v(u)|] f(u)du.

The left hand side is non–negative, since q(τ0) > 0 by (Q1), ρ2(τ0) ≤ ρ1(τ0), and
λ2 ≥ λ1 by Lemma 7.4 and the fact that v2 > v1 on (τ0,∞); while the right hand
side is non–positive, since t2 > t1, |t2,v| > |t1,v| and f(u) ≤ 0 on (0, v0) ⊂ (0, β′).
Thus the only possibility for maintaining (7.6) valid is that

ρ2(τ0) = ρ1(τ0), λ2 = λ1 and f(u) ≡ 0 on [0, v0].
In particular, (7.5) again holds.

Now rewrite (5.7) as a first order system (in the t variable)
⎧
⎨

⎩
−w′ = q′

q
w + f(v)

v′ = −|w|1/(m−1),

where of course we have v′(t) < 0 and w(t) < 0 for the solutions v1, v2 in
question. In turn, the inverse functions t1 and t2 satisfy the corresponding system
in the independent variable v on (0, α)

⎧
⎪⎪⎨

⎪⎪⎩

tv = − 1

|w|1/(m−1)

wv =
[

q′

q
(t)w + f(v)

]
1

|w|1/(m−1)
,

(7.7)

where w = wi(v) = w(ti(v)), i = 1, 2, and wi < 0 on (0, α). The initial value
problem (7.5) for the system (7.7) possesses local uniqueness, since q′/q is in
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Liploc(R
+) by (Q1) and (Q4), and f ∈ C(R+) by (F1). Hence t1 ≡ t2 on (0, α],

namely v1 ≡ v2 on R+
0 .

This contradicts the original assumption of the proof, and shows therefore that
v1 ≡ v2 on [τ0,∞). But then (7.5) is again valid, and repeating the last part of
the previous argument we then get v1 ≡ v2 on R+

0 as required. This completes the
proof of the theorem. ��
Remark. The proof of Theorem 7.6 can be carried out equally by replacing condi-
tion (Q4) with the requirement f ∈ Liploc(0, γ).

8. Uniqueness theorems

Let v1 and v2 be as in Section 7. For the purposes of this section we assume the
following geometric condition on f .

(F4) u �→ f(u)

[u − β′]m−1
is positive and non–increasing on (β′, γ).

We recall from condition (F3) that β′ ≤ β. If 1 < m < 2, then f �∈ Liploc(O), for
any open set O containing β′.

It is worth adding that the function (1.7) satisfies conditions (F1)–(F4) if

m ≥ 2, −1 < p < s ≤ m − 1, p ≤ 1 + m − 3

m − 1
s,

see the Appendix, Part 1.
At the same time, the restrictive nature of the assumption (F4) is compen-

sated by the quite weak general conditions (Q1)–(Q3) which are imposed on the
coefficient q.

As shown in Section 7, by (Q1)–(Q4) and (F1)–(F3), the graphs of v1 and
v2 cannot intersect in the strip R+ × (0, β′]. In this section we shall consider the
remaining region R+ × (β′, α], using also (F4).

Theorem 8.1. If α1 �= α2, then the graphs of v1 and v2 do not intersect in the set
R

+ × (β′, α].
Proof. Assume for contradiction that there is τ0>0 such that v1(τ0)=v2(τ0) > β′.
Without loss of generality, we assume α1 < α2, v1 < v2 on [0, τ0). As in [8], put
ṽ1 = v1 − β′, ṽ2 = v2 − β′, and

θ = sup
[0,τ0]

ṽ2(t)

ṽ1(t)
;(8.1)

clearly θ > 1 since α1 < α2. In particular,

ṽ1(t) ≤ ṽ2(t) ≤ θṽ1(t) on [0, τ0].(8.2)

We put, as usual, −v′
1 = ρ1 ≥ 0 and −v′

2 = ρ2 ≥ 0, and

ω = (θρ1)
m−1 − ρm−1

2 .
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By equation (5.5) on (0, τ0], since ω = w2 − θm−1w1,

(qω)′ = q
[
θm−1 f(v1)− f(v2)

] = q

[
(θṽ1)

m−1 f(v1)

[v1 − β′]m−1
− ṽm−1

2

f(v2)

[v2 − β′]m−1

]

≥ q f(v2)

[v2 − β′]m−1

[
(θṽ1)

m−1 − ṽm−1
2

] ≥ 0,

from (F4) and (8.2). Since ω(0) = 0 by (5.9) of Lemma 5.1, or simply since
v′

1(0) = v′
2(0) = 0, from (qω)′ ≥ 0 on (0, τ0], we get ω(t) ≥ 0 on [0, τ0], since

q > 0 by (Q1). By the definition of ω this implies that

θv′
1 ≤ v′

2 on [0, τ0].(8.3)

Now let the supremum of θ in (8.1) occur at τ1, where necessarily 0 ≤ τ1 < τ0

since ṽ1(τ0) = ṽ2(τ0) > 0. Then, integrating (8.3) over [τ1, τ0], we obtain

θṽ1(τ0) ≤ ṽ2(τ0)(8.4)

since θṽ1(τ1)=ṽ2(τ1). But this is impossible because θ>1 and ṽ1(τ0)=ṽ2(τ0)>0,
and the theorem is proved.4 ��
Theorem 8.2. If α1 = α2 (> β) and there is τ0 > 0 such that v1(τ0) = v2(τ0) > β′,
then v1 ≡ v2.

Proof. First assume for contradiction that v1 �≡ v2 on the interval [0, τ0]. Then
there would be two points 0 ≤ t1 < t2 ≤ τ0 such that, say, v1 < v2 on (t1, t2),
v1(t1) = v2(t1) and v1(t2) = v2(t2) > β′. Then as in the proof of Theorem 8.1,
putting

θ = sup
[t1,t2]

ṽ2(t)

ṽ1(t)
> 1,

we obtain, corresponding to (8.4),

θṽ1(t2) ≤ ṽ2(t2),

which is again impossible since v1(t2) = v2(t2) > β′. Hence v1 ≡ v2 on [0, τ0].
This being shown, the argument in the final paragraph of the proof of Theo-

rem 7.6 then gives v1 ≡ v2 on R+
0 , as required. ��

The next two theorems give our main uniqueness results. They are expressed
in terms of the transformed solutions v1 and v2, but obviously hold equally for
ground states u1 and u2 of (5.1), provided of course that (A1)–(A4) are valid and
(Q4) holds. Note that the latter condition follows if a′, b′ ∈ Liploc(R

+).

Theorem 8.3. Necessarily α1 = α2, and if v1 �≡ v2, then v1(t) �= v2(t) for all
t > 0 such that v1(t) > 0.

4 The corresponding result in [8], namely Theorem 3.5.1 in that reference, is inaccurate,
since its hypotheses do not take into account that v1(τ0) = v2(τ0) > β′. This inaccuracy has
the consequence that the proof becomes incorrect after the inequality (3.5.3) corresponding
to (8.4).
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Proof. Suppose α1 �= α2. By Theorem 8.1 and Theorem 7.6 we get v1 �= v2 onR+
0 .

But this contradicts Theorem 7.3. Hence α1 = α2.
The second part of the theorem is an immediate consequence of Theorem 8.2.

��
Theorem 8.3 is particularly interesting in that, without any smoothness assump-

tions on the function f , though of course always assuming conditions (Q1)–(Q4)

and (F1)–(F4), the initial values α1 and α2 of two different ground states must
be equal. To give a full uniqueness theorem we introduce a final smoothness
assumption on f .

(F5) f ∈ Liploc(β, γ).

Theorem 8.4. Problems (5.2) and (5.4) admit at most one semi-classical solution,
under the condition (5.6) with 0 < α < γ .

Proof. Let v1 and v2 be two semi-classical solutions of either (5.2) or (5.4), satis-
fying (5.6) with 0 < α < γ . If v1 �≡ v2, then Theorem 8.3 implies that α1 = α2

and v1(t) �= v2(t) for all t > 0 But, if α1 = α2 = α, then α > β by Proposition 5.6.
Hence from the unique continuation Proposition 9.2 of the Appendix it follows that
v1 ≡ v2 as long as v1 ≥ β, v2 ≥ β, namely, on [0, tβ], where tβ is the unique point
such that v1(tβ) = v2(tβ) = β. This is an immediate contradiction and proves the
theorem. ��
Remark. By recalling the remark at the end of Section 7 it can be seen that
condition (Q4) can be omitted from the hypotheses of Theorem 8.4 provided (F5)

is strengthened to f ∈ Liploc(0, γ).

9. Appendix

1. The function (1.7). We present conditions so that (F1)–(F4) are satisfied. First,
(F1) requires that p > −1, and (F2)–(F3) that

s > p, with β′ = 1, β =
(

s + 1

p + 1

)1/(s−p)

, γ = ∞.(9.1)

Note that here β > β′. Condition (F4) is more delicate.
Define

Φ(u) = f(u)

(u − 1)m−1
.

It must be shown that Φ′(u) ≤ 0 for u ≥ 1. By direct calculation

Φ′(u) = (u − 1)−mu p−1[(s − m + 1)us−p+1 − sus−p − (p − m + 1)u + p].
Thus we must prove that for all u ≥ 1

Ψ(u) ≡ (m − 1 − s)us−p+1 + sus−p + (p − m + 1)u − p ≥ 0.(9.2)
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We assume the conditions

m ≥ 2, −1 < p < s ≤ m − 1, p ≤ 1 + m − 3

m − 1
s.(9.3)

Again by direct calculation,

Ψ ′(u) = (m − 1 − s)(s − p + 1)us−p + s(s − p)us−p−1 + (p − m + 1),

Ψ ′′(u) = (s− p)us−p−2[(m−1−s)(s− p+1)(u−1)+(m−3)s+(m−1)(1− p)].
Thus from (9.3)

Ψ(1) = 0; Ψ ′(1) = (m − 2)(s − p); Ψ ′′(u) ≥ 0 for all u ≥ 1.

Integrating the third inequality twice from u = 1 and using (9.3) again, then gives

Ψ(u) ≥ (m − 2)(s − p)(u − 1) ≥ 0 for all u ≥ 1,

as required. (Actually Ψ(u) > 0 for all u > 1 except in the special case m = 2,
s = 1, p = 0, when Φ(u) ≡ 1, Φ(u) ≡ 0.)

Condition (F5) is obviously satisfied, so, in conclusion, all the conditions
(F1)–(F5) hold for the function f(u) = −u p + us in (1.7), provided that (9.3) is
satisfied.

Several remarks can be added.
(a) The conditions (9.3) admit the possibility that p > 0 and s < 0, though

obviously not at the same time.
(b) The function

f(u) = −cu p + dus,(9.4)

where c, d are positive constants, can be transformed by the change of variable
u = ηv, η = (c/d)1/(s−p), to the form

f(v) = c̃(−vp + vs), c̃ = cηp = dηs > 0.

Hence conditions (F1)–(F5) are also satisfied by (9.4) when (9.3) holds.
(c) When m > 2 it is not hard to see that the second condition of (9.3), namely

−1 < p < s ≤ m − 1, is necessary for (9.2) to hold. On the other hand, when
m = 2 we have Ψ ′(1) = 0. It then follows that the full conditions (9.3), that is, in
this case,

−1 < p < s ≤ 1, p ≤ 1 − s,

are both necessary and sufficient for the validity of (F1)–(F5).
(d) When m > 2 we have Ψ ′(1) > 0. This means that the third condition of

(9.3) is not obviously necessary for (F4) to be verified. In fact it can be shown that
(F4) is obeyed not only when (9.3) holds, but also in the further parameter set

m > 2, p < s,
m − 1

2
< s < m − 1, 1 + m − 3

m − 1
s < p < 1 + m − 3

m − 1
s + ε,

provided that ε > 0 is sufficiently small, depending only on m and s.



S240 P. Pucci et al.

2. The initial value problem (5.5)–(5.6), with β < α < γ , is degenerate at
t = 0 for values m �= 2 (since v′(0) = 0) and is also singular in case q(0) = 0.
Accordingly, local existence and uniqueness of solutions of this initial value prob-
lem requires demonstration. We make the assumptions (Q1), (Q3) and (F1), (F2)

and (F5). Actually we do not use the full strength of either (F2) or (F5).
We first show local existence of solutions of this initial value problem, that is,

more explicitly,

[q(t)|v′|m−2v′]′ + q(t) f(v) = 0 in R+,
(9.5)

v(0) = α ∈ (β, γ), v′(0) = 0.

Any eventual local semi-classical solution of (9.5), for small t > 0, must be a fixed
point of the operator

T [v](t) = α −
∫ t

0

(∫ s

0

q(τ)

q(s)
f(v(τ))dτ

)1/(m−1)

ds.(9.6)

We denote by C[0, t0], t0 > 0, the usual Banach space of continuous real functions
on [0, t0], endowed with the uniform norm ‖ · ‖∞.

Fix ε > 0 so small that [α − ε, α + ε] ⊂ (β, γ), and put

C = {v ∈ C[0, t0] : ‖v − α‖∞ ≤ ε}.
By (F2),

0 < min[α−ε,α+ε] f(u) ≤ max
[α−ε,α+ε]

f(u) = M < ∞.

If v ∈ C then v([0, t0]) ⊂ [α − ε, α + ε], and in turn 0 < f(v(t)) ≤ M. Therefore
from (Q1),

0 ≤
∫ s

0

q(τ)

q(s)
f(v(τ))dτ ≤

∫ s

0
f(v(τ))dτ, 0 < s ≤ t0,

where the last integral approaches 0 as s → 0 by (F1). Thus the operator T in
(9.6) is well defined.

We shall show that T : C → C and is compact provided t0 is sufficiently small,
namely

tm′
0 M1/(m−1) ≤ ε.

Indeed for v ∈ C we have

‖T [v] − α‖∞ ≤
∫ t0

0

(∫ s

0

q(τ)

q(s)
f(v(τ))dτ

)1/(m−1)

ds ≤ 1

m ′ t
m′
0 M1/(m−1) ≤ ε

and in turn T [v] ∈ C. Hence T (C) ⊂ C. Let (vk)k be a sequence in C and let s, t
be two points in [0, t0]. Then

|T [vk](t) − T [vk](s)| ≤ 2

m ′ t̄
m′

M1/(m−1)|t − s|.
By the Ascoli-Arzelà theorem this means that T maps bounded sequences into
relatively compact sequences with limit points in C, since C is closed.
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Finally T is continuous, because if v ∈ C and (vk)k ⊂ C are such that
‖vk − v‖∞ tends to 0 as k → ∞, then by Lebesgue’s dominated convergence
theorem, we can pass under the sign of integrals twice in (9.6), and so T [vk] tends
to T [v] pointwise in [0, t0] as k → ∞. By the above argument, it is obvious that
‖T [vk] − T [v]‖∞ → 0 as k → ∞ as claimed.

By the Schauder Fixed Point theorem, T possesses a fixed point v in C. Clearly,
v ∈ C[0, t0] ∩ C1[0, t0) by the representation formula (9.6), that is

v(t) = α −
∫ t

0

(∫ s

0

q(τ)

q(s)
f(v(τ))dτ

)1/(m−1)

ds.(9.7)

Using only (Q1), (F1) and (F2), we have thus proved the following

Proposition 9.1. Problem (9.5) has a semi–classical solution on [0, τ) for τ > 0
sufficiently small.

Note by (5.8), once it is known that a solution exists, then it necessarily obeys
(9.7).

Proposition 9.2. Each semi-classical solution of (9.5) is unique as long as it exists
and remains in (β, γ).

Proof. Suppose for contradiction that v1 and v2 are two different solutions of (9.5),
with v1(0) = v2(0) = α ∈ (β, γ), whose values lie in (β, γ). Then, as along as they
remain in (β, γ), we have v′

1 < 0 and v′
2 < 0 by (9.7). Put ω(t) = ρm−1

1 (t)−ρm−1
2 (t).

Hence ω(0) = 0 and (qω)′ = q(t)[ f(v1(t)) − f(v2(t))] by (5.7), so that

ω(t) = 1

q(t)

∫ t

0
q(s)[ f(v1(s)) − f(v2(s))]ds, 0 ≤ t < T,

where [0, T ) is the maximal interval in which both v1 and v2 exist and remain in
(β, γ). By (Q1),

|ω(t)| ≤ t max
[0,t]

| f(v1(s)) − f(v2(s))|.(9.8)

By (Q1) and (Q3), the limit of tq(t)/Q(t) is N as t → 0+. Consequently, for any
0 < t0 < T ,

0 ≤ tq(t)

Q(t)
≤ C1 on [0, t0],(9.9)

for some constant C1 > 0. We take t0, with 0 < t0 < T so small that

min
i=1,2

min
[0,t0]

f(vi(s)) ≥ 1

2
f(α) > 0(9.10)

and also that maxi=1,2 max[0,t0] ρi(s) ≤ 1. By (F5), denoting by L the Lipschitz
constant of f on

[min
i=1,2

vi(t0), α] ⊂ (β, γ),



S242 P. Pucci et al.

we have

| f(v1(s)) − f(v2(s))| ≤ L|v1(s) − v2(s)| ≤ L
∫ s

0
|ρ1(τ) − ρ2(τ)|dτ,

where −v′
1 = ρ1 > 0 and −v′

2 = ρ2 > 0. By the mean value theorem,

|ω(s)| =
∣∣∣∣

∫ ρ2(s)

ρ1(s)
(m − 1)ρm−2dρ

∣∣∣∣ = (m − 1)ρm−2
s |ρ1(s) − ρ2(s)|,

where ρs is a proper number between min{ρ1(s), ρ2(s)} and max{ρ1(s), ρ2(s)}.
Hence, by (9.8) and the above inequalities,

|ω(t)| ≤ Kt
∫ t

0

|ω(s)|
ρm−2

s
ds, 0 ≤ t ≤ t0,(9.11)

where K = (m − 1)L > 0.
Let m ≥ 2. If at some s ∈ (0, t0] there holds ρ2(s) ≤ ρ1(s), then by (9.10)

ρm−2
s ≥ ρm−2

2 (s) ≥ ρm−1
2 (s) = 1

q(s)

∫ s

0
q(τ) f(v2(τ))dτ ≥ 1

2
f(α)

Q(s)

q(s)
,

and of course, if ρ2(s) ≥ ρ1(s) at some s ∈ (0, t0], again

ρm−2
s ≥ 1

2
f(α)

Q(s)

q(s)
.

The same argument applies if 1 < m < 2 by interchanging ρ1 and ρ2, so that
always by (9.11) and (9.9) we get

|ω(t)|
t

≤ C
∫ t

0

|ω(s)|
s

ds, 0 < t ≤ t0,

where C = 2KC1/ f(α) > 0. By Gronwall’s lemma, for all 0 < s0 < t < t0 we get

0 ≤ |ω(t)|
t

≤ CeC(t−s0)

∫ s0

0

|ω(s)|
s

ds,

hence, letting s0 → 0+ and recalling that |ω(s)|/s is bounded on (0, t0) by (9.8),
we immediately derive that

|ω(t)| = ∣∣ρm−1
1 (t) − ρm−1

2 (t)
∣∣ ≡ 0 on (0, t0),

namely ρ1 ≡ ρ2 on (0, t0). Since v1(0) = v2(0) = α, there results that v1 ≡ v2 on
[0, t0].

We now repeat the previous argument at the starting point t = t0 > 0, with
the appropriate value of v′(t0) < 0. The same proof can be reapplied as often as
necessary, proving that v1 ≡ v2 as long as v1 ∈ (β, γ). This completes the proof of
the proposition. ��
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