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1. Introduction

Consider a singularly perturbed system with forcing that is derived from an
electrical circuit, called a Cellonics element (see the Web site of Cellonics:
www.cellonics.com):

v̇ = f(t) − i,

εi̇ = v − φ(i), (1.1)

where v and i denote the voltage and current, respectively, ε > 0 is a small
parameter, f(t) is the time derivative of the input voltage, and φ is the current-
voltage characteristic of the circuit and is given by the following;

φ(i) =

⎧
⎪⎨

⎪⎩

K1i, if i > 0;

K2i, if i0 < i ≤ 0;

K2i0 + K1(i − i0), if i ≤ i0,

where i0 < 0 is a constant, K1 > 0, and K2 < 0. The graph of the function is
piecewise linear and of S-shape.

Figure 1 shows the components of the circuit and the graph, and Figure 2 shows
the characteristic function φ.

In Figure 3, we show a typical analog input and its output signal after going
through the Cellonics element.

We note that the input and output signals in Figure 1 are typical of bursting
and spiking outputs in neuron models (see, for example, [1]). In this paper, we will
present a detailed study of the spiking phenomena over a fixed, finite time interval,
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Fig. 1. A Cellonics circuit

Fig. 2. Characteristic curve

in particular, the number of spikes over a finite time interval and their bifurcation.
Note that we will not be concerned with asymptotic or chaotic behavior of the
system (see, for example, [5,4] and references therein). In what follows, we will
explain our motivation for the mathematical studies on the number of spikes over
a fixed time interval.

A vector field analysis indicates that the stable slow motions of equations (1.1)
consist of two sets Ŝ1 and Ŝ2 in the v-i plane with

Ŝ1 = {(v, i) : i = φ−1(v) = kv, v ≥ 0},
Ŝ2 = {(v, i) : i = φ−1(v) = −b + kv, v ≤ v∗},

where k = 1/K1, v∗ = K2i0, and b = −i0 + kv∗.
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It is clear that the attracting part of the slow motions are those points (v, i) with
0 ≤ v ≤ v∗, namely,

S1 = {(v, i) : i = kv, 0 ≤ v ≤ v∗},
S2 = {(v, i) : i = −b + kv, 0 ≤ v ≤ v∗}.

The fundamental property of equations (1.1) is the relaxation oscillation of its
solutions. For sufficiently small ε > 0, a solution starting at any point will converge
quickly to a small neighborhood of one piece of stable slow motion and stays there
for a relatively long time. Because of an external force f(t) the solution will
eventually be pushed out of this neighborhood and then quickly jump to a small
neighborhood of another piece of stable motion. When time varies, the solutions
repeat this pattern, which can create many interesting dynamical phenomena, such
as stable periodic solutions, period doubling, chaos, horseshoes, etc. [5,4]. We also
note that equations (1.1) is precisely the equation considered by Levinson in [6].
However, the reason Levinson considers the piecewise linear case is to show it
has the same singular behavior as the forced van der Pol equation and for which
the proof is considerably simpler. In [2,3], Levi studied in detail a forced system
similar to ours but with an extra ε as the coefficient of i in the first equation of
equations (1.1).

However, the purpose of our paper is not to further explore those properties
mentioned above but to consider them in a different direction that has important
applications to signal processing, analog-digital modulation, and wireless or wire
communication. The circuit in Figure 1 is part of a technology recently patented
by Cellonics. It is a new technology, based on nonlinear dynamical systems, of
converting analog signals to digital signals. In Figure 4, we illustrate how this
conversion is achieved by counting the number of spikes separated by silent periods.

One of the most important features of their demodulation technique is its carrier-
rate decoding, which enables one information symbol to be carried in one RF carrier
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Fig. 4.

cycle. Conventional systems, which are usually linear systems, require thousands
of cycles to capture one symbol. Thus, this unique carrier-rate decoding is offered
throughout at maximum rate. We refer the reader to www.cellonics.com for
more detail and its application in communication.

We will consider the mathematics behind this technology. In particular, we
are interested in the number of cycles a solution completes in one time period of
the periodic forced function f . Since any completion of one cycle will introduce
a spike in the solution, in other words, we want to study the number of spikes
for a solution in one time period. Another important issue, from the point view of
applications, is the stability property (which is required for the circuit to achieve
one information symbol in one RF cycle). There are two aspects regarding the
stability of spike solutions:

1. Stability of the number of spikes under perturbation of initial value uniformly
for all sufficiently small ε > 0.

2. Stability of the number of spikes as time goes to infinite. That is, the number of
spikes remains fixed when time runs in the first time period, second time period,
third time period, etc.

Since a solution reaches either a small neighborhood V1 of S1 or a small
neighborhood V2 of S2 in a very short time, we may only consider solutions
that start at a point in V1 or V2. Let P(z0) be a period 1 map corresponding to
equations (1.1). That is,

P(z0) = (v(T, 0, z0), i(T, 0, z0)),

where T is the period of the forced function f and (v(t, 0, z0), i(t, 0, z0)) is the
solution of equations (1.1) satisfying the initial condition (v(0), i(0)) = z0. Then,
for instance, in order to have the stability of (v(t, 0, z0), i(t, 0, z0)) with z0 ∈ V1

in the sense of the number of spikes, there must be a neighborhood Uz0 of z0 such
that

Pn(Uz0) ⊂ V1, n = 1, 2, . . . .
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However, the above inclusion is not easily verified unless P(V1) ⊂ V1, and it may
not be sufficient because it only indicates the completion of the number of cycles
in one time period but does not guarantee that the number of cycles is constant at
any one time period. This indeed could happen if P(V1) �⊂ V1. On the other hand,
if P(V1) ⊂ V1, then we certainly have Pn(V1) ⊂ V1. Moreover, by the continuity
of solution on the initial value we can conclude that any solution starting from
a point in V1 has a fixed number of spikes at any time interval [nT, (n + 1)T ]. To
this end, in this paper we look for those forced functions f in equations (1.1) that
ensure the existence of a small neighborhood V1 of S1 or V2 of S2 such that

P(V1) ⊂ V1 or P(V2) ⊂ V2.

To be specific, throughout this paper we choose the external force to be a commonly
used sine function

f(t) = a sin(νt)

with a the amplitude and ν the natural frequency. With the above choice of f ,
equations (1.1) become

v̇ = a sin(νt) − i,

εi̇ = v − φ(i). (1.2)

Let

a∗ = min

{
K2i0

K1
,−2i0

}

. (1.3)

Moreover, for each ν > 0 we let P(·, ν) be the time 2π
ν

map introduced by the flows
of equations (1.2). Then in this paper we shall establish the following result.

Theorem 1.1. There exist small neighborhoods V1 of S1 and V2 of S2 such that for
each a ∈ (0, a∗), there exist three sequences {νN}, {ν∗

N }, and {ν̃N } with

ν̃N+1 < νN < ν∗
N < ν̃N , N = 1, 2, . . .

such that the following hold:
For each positive integer M and σ > 0 with

σ <
1

2
min

{
ν∗

N − νN , ν̃N − ν∗
N , N = 1, 2, . . . , M

}
,

there is a ε∗ > 0 such that

A. P(V1, ν) ⊂ V1 for each ν ∈ ∪M
N=1[νN +σ, ν∗

N −σ] and ε ∈ (0, ε∗]. Furthermore,
ν ∈ [νN + σ, ν∗

N − σ] implies that any solution starting from a point in V1 has
exactly N spikes in one time period.

B. P(V2, ν) ⊂ V2 for each v ∈ ∪M
N=1[ν∗

N +σ, ν̃N −σ] and ε ∈ (0, ε∗]. In addition,
ν ∈ [νN + σ, ν∗

N − σ] implies that any solution starting from a point in V2 has
exactly N spikes in one time period.

This paper is organized as follows. In Section 2 we study the reduced system
of (1.2) at the slow motions S1 and S2 as ε trends to zero, which is essential
for establishing Theorem 1.1. Sections 3 and 4 are devoted to proving two key
propositions needed in Section 2. We give a complete proof for conclusion A of
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our Theorem 1.1 in Section 5. To limit the size of the paper we shall omit the proof
of conclusion B of Theorem 1.1, which is essentially the same as for the proof of
conclusion A.

2. Reduced systems in slow motion

Since the dynamics of the singularly perturbed system (1.2) has a close con-
nection with the dynamics of its reduced system as ε → 0, it is a natural way
to begin our study on reduced systems in slow motion. Let us first reduce the
number of parameters by introducing the following translation and time scal-
ing:

x(t) = 1

K1a
v

(
t

ν

)

, y(t) = 1

a
i

(
t

ν

)

.

Equation (1.2) is therefore transformed into the dimensionless form

ẋ = ω[sin t − y],
ẏ = 1

ρ
[x − g(y)], (2.1)

where

g(y) =

⎧
⎪⎨

⎪⎩

y, y ≥ 0

Ky, y∗ ≤ y ≤ 0

β + y, y ≤ y∗
(2.2)

and

ω = 1

K1ν
,

ρ = ε

νK1
,

K = K2

K1
, (2.3)

y∗ = i0

a
,

β = (K2 − K1)i0

a K1
.

Accordingly, the slow motions S1 and S2 are transformed into W1 and W2, respec-
tively, as

W1 = {(x, y) : y = x, 0 ≤ x ≤ x∗},
W2 = {(x, y) : y = −β + x, 0 ≤ x ≤ x∗}

with

x∗ = K2i0

aK1
. (2.4)
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From the first equation of system (2.1) we see that the reduced systems on W1 and
W2 are given respectively by the differential equations

ẋ = ω[sin t − x], 0 ≤ x ≤ x∗, (2.5)

ẋ = ω[sin t + β − x], 0 ≤ x ≤ x∗. (2.6)

To reflect the dynamics of original singularly perturbed system (2.1), a solution
of the reduced system (2.5)–(2.6) is described as follows: If a solution starts at
W1 with x(0) = x0 ∈ [0, x∗], then x(t) is subject to equation (2.5) before x(t)
reaches 0. If there is a first time t1 > 0 such that x(t1) = 0, then the solution is
considered as jumping to W2 immediately and so that x(t) is given by equation (2.6)
with the initial condition x(t1) = 0 (note: if x(0) = 0, then the solution x(t) of
(2.5) is increasing for small t > 0 and then decreasing to 0 in a late time. This late
time will be considered t1 instead of t1 = 0). If there is again a first time t2 > t1
such that x(t2) = x∗, then the solution returns to W1 and hence x(t) is governed
by equation (2.5) again with the initial condition x(t2) = x∗. In such a way the
solution is defined by equations (2.5)–(2.6) alternatively. That is,

ẋ = ω[sin t − x],
t ∈ [0, t1] with x(0) = x0 ∈ [0, x∗], x(t1) = 0, (2.7)

t ∈ [t2k, t2k+1] with x(t2k) = x∗, x(t2k+1) = 0, k ≥ 1,

ẋ = ω[sin t + β − x],
t ∈ [t2k+1, t2k+2] with x(t2k+1) = 0, x(t2k+2) = x∗, k ≥ 0, (2.8)

for some sequence

0 < t1 < t2 < · · · < tn < · · · ,

where the time sequence {tn = tn(x0, ω)} depends both on the initial value x0 and
ω > 0. Alternatively we can discuss solutions beginning W2 in the same way. To
reduce the length of the paper, we shall focus on the search for a solution starting
at W1 only. It is also easy to see that tn(x0, ω) are continuously differentiable on x0

and ω. Since system (2.5)–(2.6) is 2π period, the period 1 map P̃ : [0, x∗] → [0, x∗]
is defined as usual as

P̃(x0, ω) = x(2π, x0, ω).

We frequently omit the parameter ω to reduce the notation. In conjunction with our
main Theorem 1.1, we are interested in the case in which a solution starting from
a point in W1 returns to W1 at time 2π. Hence we must distinguish between two
possible cases for a time sequence {tn = tn(x0, ω)}.
Case 1: There is an integer N ≥ 1 such that 2π ∈ [t2N , t2N+1].
Case 2: There is an integer N ≥ 1 such that 2π ∈ (t2N−1, t2N ).

We note that case 2 implies that a solution starting at a point in W1 arrives at
W2 at time 2π. A solution x(t, x0) returns to W1 if and only if

2π ∈ [t2N , t2N+1]
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Fig. 5.

for some N ≥ 1 (Figure 5). If this happens, we denote it by

P̃(x0) ∈ [0, x∗]W1 ;
here we use the lower index “W1 ” to denote that the interval corresponds to slow
motion W1. Moreover, in case 1 a solution completes in exactly N cycles around
W1 and W2 in one time period. Also in this case we have the expression for P̃(x0)

as

P̃(x0) = e−ω2π

(

x∗eωt2N (x0,ω) + ω

∫ 2π

t2N (x0,ω)

eωτ sin τdτ

)

. (2.9)

Throughout the paper we suppose that

a < a∗ = min
{

K2i0

K1
,−2i0

}

. (H1)

From (2.3) and (2.4) we see that (H1) is equivalent to the inequalities

x∗ > 1, β > x∗ + 2. (H2)
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It is easy to verify that assumption (H2) guarantees that a solution of equa-
tions (2.5)–(2.6) is bounded by 0 and x∗.

Our main goal of this section is to establish the following.

Theorem 2.1. There is a sequence of intervals {IN = (ω∗
N , ωN )}∞N=1 with

0 < ω∗
1 < ω1 < ω∗

2 < ω2 < · · · < ω∗
N < ωN · · · ,

such that for each ω > 0,

P̃([0, x∗], ω) ⊂ (0, x∗)W1

if and only if ω ∈ IN for some positive integer N. In addition, if ω ∈ IN , then for
each x0 ∈ [0, x∗], the solution x(t, x0) has exactly N spikes in 2π-time period.

Remark 1. If P̃([0.x∗], ω) ⊂ (0, x∗)W1 , then we know that the period one map P̃
has at least a fixed point x0 ∈ (0, x∗) and hence x(t, x0) is a periodic solution of
period 2π. In fact we can show that the fixed point is unique if P̃([0.x∗], ω) ⊂
(0, x∗)W1 . However, we should not provide a proof here because it is too tedious.
On the other hand, the monotonicity of P̃(x0) on x0 (see Property P1 in Lemma 2.1)
guarantees the convergence of any solution x(t, x0) to a periodic solution with the
number of spikes independent of the initial value x0. This is most important for the
application.

Before proceeding to the proof of Theorem 2.1 let us first provide two key
propositions that will be proved in Section 3 and Section 4 respectively due to the
length of their proof.

Proposition 2.1. For a fixed ω > 0, if there is an integer N ≥ 1 such that

t2N+1(0, ω) = 2π,

then t2N (x∗, ω) < 2π.

Proposition 2.2. The time sequence {tn(x0, ω)} is strictly monotone, decreasing
with respect to ω > 0 as long as t1(x0, ω) ∈ (π, 2π).

Remark 2. Since x0 + ω
∫ t1(x0,ω)

0 eωτ sin τdτ = 0, we must have t1(x0, ω) > π. On
the other hand, if t1(x0, ω) ≥ 2π, then the solution takes longer than 2π time to
return to W1. Hence only those values (x0, ω) for which t1(x0, ω) ∈ (π, 2π) will
be of interest to us.

In addition to Propositions 2.1 and 2.2, we need the following results.

Lemma 2.1. The sequence {tn(x0, ω)} has the following properties:

P1. For each ω > 0 and 0 ≤ x1 < x2 ≤ x∗,

tn(x1, ω) < tn(x2, ω) < tn+2(x1, ω), n = 1, 2, . . . .

An immediate consequence of the above inequalities is that P̃(x0, ω) increases
with respect to x0 whenever P̃(x0, ω) ∈ (0, x∗)W1 .
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P2. Let 0 ≤ x1 < x2 ≤ x∗ and ω > 0 be fixed. If P̃([x1, x2], ω) ⊂ [0, x∗]W1 , then
there is an N ≥ 1 such that

t2N (x0, ω) ≤ 2π ≤ t2N+1(x0, ω)

for all x0 ∈ [x1, x2]. Hence all solutions x(t, x0, ω) with x0 ∈ [x1, x2] have
the same number of spikes in 2π period.

Proof. Property P1 is obvious (Figure 6). Let us verify P2. First by assumption
there is an N ≥ 1 such that

t2N (x1, ω) ≤ 2π ≤ t2N+1(x1, ω).

We define

xM = sup{x : x ∈ [x1, x2], t2N (x, ω) ≤ 2π}.
We claim that xM = x2. Suppose, on the contrary, that xM < x2. Then by the conti-
nuity of t2N we deduce that t2N(xM, ω) = 2π. Hence t2N−1(xM, ω) < t2N (xM, ω) =
2π. So again by continuity there exists x̃ ∈ (xM, x2] such that t2N−1(x̃, ω) < 2π.
However, x̃ > xM implies that (by P1)

2π = t2N (xM, ω) < t2N (x̃, ω),

so that P̃(x̃, ω) /∈ [0, x∗]W1 , which leads to a contradiction.

Fig. 6.

Lemma 2.2. For each fixed integer N ≥ 1,

lim
ω→0

t2N+1(0, ω) = lim
ω→0

t2N (x∗, ω) = ∞,

lim
ω→∞ t2N+1(0, ω) = lim

ω→∞ t2N (x∗, ω) = π.

Proof. First equation (2.5) and sin t > 0 for t ∈ (0, π) imply that t1(x0, ω) > π.
Then the conclusion of Lemma 2.2 follows easily from the fact that increasing ω

will fasten the oscillation of the solution x(t, x0, ω) of equations (2.5) and (2.6),
while decreasing ω will reduce the oscillation of the solution.
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From Proposition 2.2 and Lemma 2.2 it follows that, for each integer N ≥ 1,
there are unique positive real numbers ω∗

N and ωN such that

t2N
(
x∗, ω∗

N

) = 2π, t2N+1(0, ωN ) = 2π.

Lemma 2.3. For each integer N ≥ 1, ω∗
N < ωN < ω∗

N+1 .

Proof. For each fixed N ≥ 1, Proposition 2.1 yields that t2N (x∗, ωN ) < 2π.
Note that t2N (x∗, ω) is increasing as ω decreases by Proposition 2.2. Hence,
t2N (x∗, ω∗

N ) = 2π implies that ω∗
N < ωN . Similarly, one can show that ωN < ω∗

N+1.

Proof of Theorem 2.1. For each fixed ω > 0, by P2 of Lemma 2.1,

P([0, x∗], ω) ⊂ (0, x∗)W1

if and only if there is an N ≥ 1 such that

t2N (x0, ω) < 2π < t2N+1(x0, ω), x0 ∈ [0, x∗]. (2.10)

Since tn(x0, ω) increases as x0 increases, (2.10) is equivalent to

t2N (x∗, ω) < 2π < t2N+1(0, ω). (2.11)

By Proposition 2.2, (2.11) is equivalent to

ω∗
N < ω < ωN ,

that is, if and only if ω ∈ (ω∗
N , ωN ) for some positive integer N. Moreover, ω ∈ IN

implies (2.10). Hence x(t, x0, ω) has exactly N spikes for all x0 ∈ [0, x∗].

3. Proof of Proposition 2.1

We shall give a complete proof of Proposition 2.1 in this section. First, for
x0 ∈ [0, x∗], it is easy to verify that the solution x(t) = x(t, x0) of reduced
equations (2.5)–(2.6) has the explicit formulas

x(t) = e−ωt
[
x0 + ω

∫ t

0
eωτ sin τdτ

]
, t ∈ [0, t1],

x(t) = ωe−ωt
∫ t

t2k−1

eωτ(sin τ + β)dτ, t ∈ [t2k−1, t2k],

x(t) = e−ω(t−t2k)x∗ + e−ωtω

∫ t

t2k

eωτ sin τdτ, t ∈ [t2k, t2k+1].

From the above expressions and the boundary conditions we have

x0 + ω

∫ t1

0
eωτ sin τdτ = 0, (3.1)

x∗eωt2k = ω

∫ t2k

t2k−1

eωτ(sin τ + β)dτ, (3.2)

eωt2k x∗ + ω

∫ t2k+1

t2k

eωτ sin τdτ = 0. (3.3)
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Lemma 3.1. There is a unique ω∗ > 0 such that
∫ 3π

2

0
eω∗τ sin τdτ = 0.

In addition, we have t3(0, ω∗) > 2π.

Proof. For ω > 0, we have
∫ 3π

2

0
eωτ sin τdτ = 1

1 + ω2
(eωτ [ω sin τ − cos τ])

∣
∣
∣

3π
2

0

= 1

1 + ω2

( − ωe
3πω

2 + 1
)
.

Hence
∫ 3π

2
0 eωwτ sin τdτ = 0 is equivalent to

h(ω) = e
3πω

2 − 1

ω
= 0.

Since the function h(ω) increases as ω increases, and

h(0) = −∞, h(∞) = ∞,

there is a unique ω∗ > 0 such that

h(ω∗) = e
3πω∗

2 − 1

ω∗ = 0. (3.4)

To claim t3(0, ω∗) > 2π, let us suppose its opposite, i.e., that t3 = t3(0, ω∗) ≤
2π. Then t1(0, ω∗) = 3π/2 implies t2(0, ω∗) ∈ (3π/2, 2π.). By (3.3) we have

x∗eω∗t2 = −ω∗
∫ t3

t2

eω∗τ sin τdτ.

Note that (3.4) implies ω∗e
3πω∗

2 = 1. It follows that

x∗ = −ω∗
∫ t3

t2

eω∗(τ−t2) sin τdτ

< −ω∗
∫ 2π

3π/2
eω∗(τ−3π/2) sin τdτ

= −ω∗
∫ π/2

0
eω∗τ sin

(
3π

2
+ τ

)

dτ

= − ω∗

1 + (ω∗)2
eω∗τ

[

ω∗ sin
(

3π

2
+ τ

)

− cos
(

3π

2
+ τ

)] ∣
∣
∣
π/2

0

= ω∗

1 + (ω∗)2
[eπω∗/2 − ω∗]

< ω∗e
3πω∗

2

= 1.

This contradicts the assumption x∗ > 1.
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Lemma 3.2. For all ω ∈ [ω∗,∞)

−eωt1(0,ω) sin(t1(0, ω)) > 2.

Proof. Let t(ω) = t1(0, ω). By Lemma 3.1 we have t(ω∗) = 3π/2. Proposition 2.2
implies that

π < t(ω) < 3π/2, ω ∈ (ω∗,∞). (3.5)

First suppose ω ∈ (
ω∗, 1

π

]
(it is true that ω∗ < 1/π). By definition of t(ω) we have

0 =
∫ t(ω)

0
eωτ sin τdτ

= 1

1 + ω2

(
eωt(ω)[ω sin t(ω) − cos t(ω)] + 1

)
. (3.6)

Equation (3.6) yields

eωt(ω)[ω sin t(ω) − cos t(ω)] + 1 = 0

or, equivalently,

−eωt(ω) sin t(ω) = 1 − eωt(ω) cos t(ω)

ω
. (3.7)

Now t(ω) ∈ (π, 3π/2) implies that −eωt(ω) cos t(ω) > 0. Hence ω ≤ 1/π and (3.7)
give that

−eωt(ω) sin t(ω) ≥ π > 2.

Next suppose ω > 1/π. Again by the definition of t(ω) we have

−
∫ t(ω)

π

eωτ sin τdτ =
∫ π

0
eωτ sin τdτ ≥

∫ π

0
eτ/π sin τdτ

= 1 + e

1 + ( 1
π

)2 ≥ 3.7

1 + 1
9

≥ π. (3.8)

Noting that

−eωt(ω) sin(t(ω)) ≥ −eωτ sin τ, τ ∈ [π, t(ω)],
together with (3.8) we obtain

−eωt(ω) sin(t(ω))(t(ω) − π) = −
∫ t(ω)

π

eωt(ω) sin(t(ω))dτ

≥ −
∫ t(ω)

π

eωτ sin τdτ ≥ π. (3.9)

Recall that t(ω) − π < π/2. Equation (3.7) therefore yields

−eωt(ω) sin(t(ω)) ≥ π

t(ω) − π
> 2.


�
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Lemma 3.3. For ω ≥ w∗, if t1(x∗, ω) < 2π and | sin t1(0, ω)| ≤ | sin t1(x∗, ω)|,
then

ω[t1(x∗, ω) − t1(0, ω)] < ln

(
x∗

2
+ 1

)

.

Proof. Let t1 = t1(0, ω) and t̃1 = t1(x∗, ω). From (3.1) and (3.2) we have

x∗ + ω

∫ t̃1

0
eωτ sin τdτ = ω

∫ t1

0
eωτ sin τdτ = 0.

It follows that

x∗ = −ω

∫ t̃1

t1

eωτ sin τdτ > − sin(t1)ω
∫ t̃1

t1

eωτdτ

= −eωt1 sin(t1)(e
ω(t̃1−t1) − 1).

The above inequality and Lemma 3.2 yield

eω(t̃1−t1) ≤ x∗

−eωt1 sin(t1)
+ 1 ≤ x∗

2
+ 1.

That is,

ω(t̃1 − t1) < ln
(

x∗

2
+ 1

)

.


�
Definition 1. Let ω > 0 be fixed. For a ∈ (π, 2π), we define

D1. ∆(a) > 0 to be the first positive number such that

x∗eωa + ω

∫ a+∆(a)

a
eωτ sin τdτ = 0;

D2. Γ(a) > 0 such that

ω

∫ a+Γ(a)

a
e−ω(a+Γ(a)−τ)[sin τ + β]dτ = x∗.

From the above definitions we see that a + ∆(a) is the first time at which the
solution to the initial value problem

ẋ = ω[sin t − x], x(a) = x∗

vanishes, while the number a + Γ(a) is the first time at which the solution to the
initial value problem

ẋ = ω[ζ(t) + β − x], x(a) = 0

arrives at x∗. It should be clear that both ∆(a) and Γ(a) are differentiable, and
a + ∆(a) and a + Γ(a) are strictly monotone increasing functions of a.
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Proposition 3.1. Suppose that there is a ã ∈ (π, 2π) such that a + ∆(a) < 2π for
a ∈ [π, ã] ∈ [π, 2π]. Let ∆̇ be the derivative of ∆. Then

(a) There is at most one value a1 ∈ [π, ã] at which ∆̇(a) changes its sign from
negative to positive;

(b) ∆̇(a) < 0 if a + ∆(a) ≤ 3π
2 ;

∆̇(a) > 0 if a + ∆(a) − 3π
2 ≥ 3π

2 − a, in particular, ∆̇(a) > 0 if a ≥ 3π
2 ;

(c) ω∆(a) > ln(x∗ + 1) for a ∈ [π, ã].
Proof. Let us first prove (a). It is easy to check that

x∗eωa + ω

∫ a+∆(a)

a
eωτ sin τdτ = 0

is equivalent to

x∗ + ω

∫ ∆(a)

0
eωτ sin(a + τ)dτ = 0.

Differentiating the above equality with respect to a we obtain

ωeω∆(a) sin(a + ∆(a))∆̇(a) + ω

∫ ∆(a)

0
eωτ cos(a + τ)dτ = 0.

This yields

∆̇(a) = − e−ω∆(a)

sin(a + ∆(a))

∫ ∆(a)

0
eωτ cos(a + τ)dτ. (3.10)

Note that sin(a + ∆(a)) < 0 since π < a + ∆(a) < 2π. Equation (3.10) implies
that the sign of ∆̇(a) is determined by the integral

∫ ∆(a)

0 eωτ cos(a + τ)dτ. Now we
write

∫ ∆(a)

0
eωτ cos(a + τ)dτ = e−ωa

∫ a+∆(a)

a
eωτ cos(τ)dτ

= e−ωa

[∫ 3π/2

a
eωτ cos(τ)dτ +

∫ a+∆(a)

3π/2
eωτ cos(τ)dτ

]

. (3.11)

It is clear that both the integrals
∫ 3π/2

a
eωτ cos(τ)dτ and

∫ a+∆(a)

3π/2
eωτ cos(τ)dτ (3.12)

increase as a increases. Hence by (3.11) we deduce that there is at most one number
a1 at which the integral

∫ ∆(a)

0 eωτ cos(a + τ)dτ changes its sign from negative to
positive. The same holds for ∆̇(a). This completes the proof of Part (a).

For part (b), if a + ∆(a) ≤ 3π/2, then both integrals in (3.12) are negative, so
that ∆̇(a) < 0. Next suppose that a + ∆(a) > 3π/2 and

a + ∆(a) − 3π

2
≥ 3π

2
− a, equivalently, a + ∆(a) ≥ 3π − a.
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Then, since
∫ 3π/2

a
eωτ cos(τ)dτ = −

∫ 3π−a

3π/2
eω(3π−τ) cos(τ)dτ,

we obtain
∫ 3π/2

a
eωτ cos(τ)dτ +

∫ a+∆(a)

3π/2
eωτ cos(τ)dτ

=
∫ a+∆(a)

3π/2
eωτ cos(τ)dτ −

∫ 3π−a

3π/2
eω(3π−τ) cos(τ)dτ

>

∫ a+∆(a)

3π/2
eωτ cos(τ)dτ −

∫ a+∆(a)

3π/2
eωτ cos(τ)dτ = 0. (3.13)

Equations (3.11) and (3.13) therefore imply that ∆̇(a) > 0. Also it is trivial that
∆̇(a) > 0 for a ≥ 3π/2.

Finally, for part (c), by the definition of ∆(a) we have

x∗eωa = ω

∫ a+∆(a)

a
eωτ | sin τ|dτ < eω(a+∆(a)) − eωa.

It follows that

x∗ < eω∆(a) − 1

or

x∗ + 1 < eω∆(a),

so that

w∆(a) > ln(x∗ + 1). 
�
Arguing in the same way as above one is able to obtain the following proposi-

tion.

Proposition 3.2. Suppose that there is a ã ∈ (π, 2π] such that a + Γ(a) < 2π for
all a ∈ (π, ã]. Then the following hold:

(a′) There is at most one value a1 ∈ [π, ã] at which Γ̇ (a1) changes its sign from
positive to negative;

(b′) Γ̇ (a) > 0 if a + Γ(a) ≤ 3π
2 , Γ̇ (a) < 0 if a ≥ 3π

2 ;

(c′) ln β

β−x∗ < ωΓ(a) < ln β−1
β−1−x∗ .

Now we give the proof of Proposition 2.1.

Proof of Proposition 2.1. For any positive integer N, let ωN > 0 such that

t2N+1(0, ωN ) = 2π.
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We shall prove t2N (x∗, ωN ) < 2π. Let us introduce the following simplified nota-
tions:

tn = tn(0, ωN ), n = 0, 1, · · · , 2N + 1

and

t̃n = tn(x∗, ωN ), n = 0, 1, · · · , 2N.

Then, by the definitions of ∆(a) and Γ(a), we have

∆(t2k) = t2k+1 − t2k, ∆(t̃2k) = t̃2k+1 − t̃2k, (3.14)

Γ(t2k−1) = t2k − t2k−1, Γ(t̃2k−1) = t̃2k − t̃2k−1. (3.15)

In addition, by property P1 of Lemma 2.1 we have

tn < t̃n < tn+2, n = 1, 2, . . . , 2N − 1. (3.16)

From Proposition 2.2 and Lemma 3.1 it follows that, for all ω ∈ (0, ω∗),

t3(0, ω) > t3(0, ω∗) > 2π.

Hence N ≥ 1 and t2N+1(0, ωN ) = 2π imply that

ωN > ω∗ and t1(0, ωN ) < t1(0, ω∗) = 3π

2
.

Therefore, there must be an integer n∗ with 0 ≤ n∗ ≤ N − 1 such that

t2n∗+1 <
3π

2
≤ t2(n∗+1)+1. (3.17)

Also we have

t1 < t̃1 < t2N+1 = 2π.

We will break the proof down into two parts. The first part handles the case

| sin t1| ≤ | sin t̃1|, (C1)

and the second part handles the case

| sin t1| > | sin t̃1|. (C2)

Proof under condition (C1). Let us first suppose 2 ≤ n∗ < N − 2. We will give
a remark at the end of the proof of the proposition under condition (C1) to explain
how the case of n∗ < 2 or n∗ ≥ N − 2 can be treated analogously. By (3.16) and
(3.17) we have

3π

2
≤ t2k+1 < t̃2k, k = n∗ + 1, . . . , N − 1, (3.18)
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and
3π

2
< t̃2k < t2(k+1), k = n∗ + 2, . . . , N − 1. (3.19)

Part (b′) of Proposition 3.2 implies that Γ(a) is decreasing for a ≥ 3π/2. Hence
by (3.15) and (3.18) we obtain

t̃2k+2 − t̃2k+1 = Γ
(
t̃2k+1

)
< Γ(t2k+1) = t2k+2 − t2k+1, (3.20)

k = n∗ + 1, . . . , N − 1.

Similarly, by applying part (b) of Proposition 3.1 to (3.19) and with the use of
(3.14) we have

t̃2k+1 − t̃2k = ∆
(
t̃2k

)
< ∆(t2(k+1)) = t2(k+1)+1 − t2(k+1), (3.21)

k = n∗ + 2, . . . , N − 1

(see Figure 7, to the right of point 3π/2).

Fig. 7.

Equations (3.20) and (3.21) yield

t̃2N − t̃2n∗+3 =
N−1∑

k=n∗+1

(
t̃2k+2 − t̃k2k+1

) +
N−1∑

k=n∗+2

(
t̃2k+1 − t̃2k

)

<

N−1∑

k=n∗+1

(
t2k+2 − t2k+1

) +
N−1∑

k=n∗+2

(
t2(k+1)+1 − t2(k+1)

)

=
N−1∑

k=n∗+1

(
t2k+2 − t2k+1

) +
N∑

k=n∗+3

(
t2k+1 − t2k

)

= t2N+1 − t2n∗+5 + (t2n∗+4 − t2n∗+3). (3.22)
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Next, again by (3.17) we have

t2k+1 < t̃2k+1 < t2n∗+1 <
3π

2
, k = 1, 2, . . . , n∗ − 1 (3.23)

and

t̃2k < t2k+2 < t2n∗+1 <
3π

2
, k = 1, 2, . . . , n∗ − 1. (3.24)

Hence (3.23) and part (b) of Proposition 3.1 imply that

t̃2k+1 − t̃2k = ∆(t̃2k) < ∆(t2k) = t2k+1 − t2k, (3.25)

k = 1, 2, . . . , n∗ − 1.

Similarly, (3.24) and part (b′) of Proposition 3.2 yield that

t̃2k − t̃2k−1 = Γ(t̃2k−1) < Γ(t2k+1) = t2k+2 − t2k+1, (3.26)

k = 1, 2, . . . , n∗ − 1

(see Figure 8, to the left of point 3π/2).

Fig. 8.

From (3.25) and (3.26) we obtain

t̃2n∗−1 − t̃1 =
n∗−1∑

k=1

(
t̃2k+1 − t̃2k

) +
n∗−1∑

k=1

(
t̃2k − t̃2k−1

)

<

n∗−1∑

k=1

(
t2k+1 − t2k

) +
n∗−1∑

k=1

(
t2k+2 − t2k+1

)
(3.27)

= t2n∗ − t2.
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Now we have either t̃2n∗+1 < 3π/2 or t̃2n∗+1 ≥ 3π/2. If t̃2n∗+1 < 3π/2, then
t2n∗+1 < t̃2n∗+1 and part (b) of Proposition 3.1 imply

t̃2n∗+1 − t̃2n∗ < t2n∗+1 − t2n∗ . (D1)

If t̃2n∗+1 ≥ 3π/2, then 3π/2 < t̃2n∗+2 < t2n∗+4. Again by part (b) of Proposition 3.1
we have

t̃2n∗+3 − t̃2n∗+2 < t2n∗+5 − t2n∗+4. (D2)

Let us suppose that we have case (D1). One will be convinced that the same
approach is applicable to case (D2). We observe that

t2n∗+2 < t̃2n∗+2 < t2n∗+4.

Hence part (a) of Proposition 3.1 guarantees that the following must be true:

∆(t2n∗+2) > ∆
(
t̃2n∗+2

)
or ∆

(
t̃2n∗+2

)
< ∆(t2n∗+4).

Without loss of generality we suppose the second inequality occurs. That is,

t̃2n∗+3 − t̃2n∗+2 = ∆(t2n∗+2) < ∆
(
t̃2n∗+4

) = t2n∗+5 − t2n∗+4. (3.28)

(Indeed one will see from the following proof that the choice of the first inequality
does not affect the final result.) Similarly by applying part (a′) of Proposition 3.2
to the inequality

t̃2n∗−1 < t2n∗+1 < t̃2n∗+1

we conclude that

Γ
(
t̃2n∗−1

)
< Γ(t2n∗+1) or Γ(t2n∗+1) > Γ

(
t̃2n∗+1

)

must hold. Specifically, suppose we have the first inequality, so that

t̃2n∗ − t̃2n∗−1 = Γ
(
t̃2n∗−1

)
< Γ(t2n∗+1) = t2n∗+2 − t2n∗+1. (3.29)

By adding through, respectively, the left-hand and right-hand sides of inequalities
(3.22), (3.27), (3.28), (3.29), and (D1) we thereby obtain

t̃2N − t̃2n∗+2 + t̃2n∗+1 − t̃1 < t2N+1 − t2n∗+3 + t2n∗+2 − t2. (3.30)

Recall that | sin t1| ≤ | sin t̃1|. Hence from Lemma 3.3 it follows that

ωN
(
t̃1 − t1

)
< ln

(
x∗

2
+ 1

)

. (3.31)

By part (c) of Proposition 3.1 we have

ωN (t2n∗+3 − t2n∗+2) > ln(x∗ + 1). (3.32)
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Similarly, part (c′) of Proposition 3.2 yields

ωN
(
t̃2n∗+2 − t̃2n∗+1

)
< ln

(
β − 1

β − 1 − x∗

)

ωN (t2 − t1) > ln

(
β

β − x∗

)

. (3.33)

A straightforward computation shows that the assumption β ≥ x∗ + 2 implies

β − 1

β − 1 − x∗

(
x∗

2
+ 1

)

≤ (x∗ + 1)
β

β − x∗ . (3.34)

We therefore deduce from (3.31)–(3.34) that

ωN
(
t̃2n∗+2 − t̃2n∗+1

) + ωN t̃1

= ωN
(
t̃2n∗+2 − t̃2n∗+1

) + ωN
(
t̃1 − t1

) + ωN t1

< ln
β − 1

β − 1 − x∗ + ln
(

x∗

2
+ 1

)

+ ωN t1

= ln
β − 1

β − 1 − x∗

(
x∗

2
+ 1

)

+ ωN t1 (3.35)

≤ ln(x∗ + 1) + ln
β

β − x∗ + ωN t1

≤ ωN (t2n∗+3 − t2n∗+2) + ωN (t2 − t1) + ωN t1
= ωN(t2n∗+3 − t2n∗+2) + ωN t2.

Equation (3.35) gives

t̃2n∗+2 − t̃2n∗+1 + t̃1 < t2n∗+3 − t2n∗+2 + t2. (3.36)

As a consequence of (3.30) and (3.36) we arrive at

t̃2N < t2N+1 = 2π.

Hence we complete the proof of Proposition 2.1 for the case | sin t1| ≤ | sin t̃1|.
Remark 3. In our proof we suppose 2 ≤ n∗ < N − 2. We shall show that the proof
works for the case 2 > n∗ or n∗ ≥ N − 2 as well. For instance, if n∗ = N − 2,
then we do not have the equality (3.20) and (3.22) becomes

t̃2N − t̃2N−1 < t2N − t2N−1.

However, inequalities (3.30)–(3.36) are still valid, so that t̃2N < 2π still holds. For
all other cases we can carry out a similar argument.

Proof under condition (C2). First, it is easy to see that | sin t1| > | sin t̃1|,
π < t1 < t̃1 < 2π, and t1 < 3π/2 imply that

t̃1 − 3π/2 > 3π/2 − t1. (3.37)

Let us begin by showing the following claim.



S150 S.-N. Chow, W. Huang

Claim. t̃2 < t3.

Proof. Let x1(t, t0, x0) be the solution to the initial value problem

ẋ1 = ωN [sin t − x1], x1(t0, t0, x0) = x0.

Then

0 < x1(t1, 0, x∗) < x∗ (3.38)

since t̃1 > t1 is the first time the solution vanishes. Therefore (3.38) implies that

x1(t, t1, x∗) > x1(t, 0, x∗) ≥ 0, t ∈ [t1, t̃1] (3.39)

Fig. 9.

(Figure 9). It follows from the definition of ∆(t1) and (3.39) that

t1 + ∆(t1) > t̃1. (3.40)

Thus we have

t1 + ∆(t1) − 3π

2
> t̃1 − 3π

2
>

3π

2
− t1.

Note that t + ∆(t) is monotone increasing, and the above inequality yields that

t + ∆(t) − 3π

2
>

3π

2
− t, t ≥ t1. (3.41)

Hence part (a) of Proposition 3.1 and (3.41) imply that ∆̇(t) > 0 for t ≥ t1.
Together with (3.40) we obtain

t3 − t2 = ∆(t2) > ∆(t1) > t̃1 − t1. (3.42)
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We therefore deduce from (3.42) that

t3 − t̃1 = t3 − t2 + t2 − t̃1 > t2 − t1. (3.43)

Let x2(t, t0) be the solution to the initial value problem

ẋ2 = ωN [sin t + β − x2], x2(t0, t0) = 0.

Condition (3.43) and the assumption | sin t1| > | sin t̃1| give that

sin(t1 + s) < sin
(
t̃1 + s

)
, s ∈ [0, t2 − t1] ⊂ [

0, t3 − t̃1
]
. (3.44)

By (3.44) and the comparison principle one easily sees that

x2(t1 + s, t1) ≤ x2
(
t̃1 + s, t̃1

)
, s ∈ [0, t2 − t1]. (3.45)

Note that, by the definitions tn and t̃n , n = 1, 2, we have

x2(t2, t1) = x2
(
t̃2, t̃1

) = x∗.

The last equality and (3.45) therefore yield

t̃2 − t̃1 < t2 − t1. (3.46)

As a consequence of (3.43) and (3.46) we have

t̃2 = t̃1 + t̃2 − t̃1 < t̃1 + t2 − t1 < t̃1 + t3 − t̃1 = t3. (3.47)

This completes the proof of our claim.
Next we have

3π

2
< t̃2k < t2k+2, k = 1, . . . , N − 1,

3π

2
< t2k+1 < t̃2k+1, k = 1, . . . , N − 1.

So part (b) of Proposition 3.1 and part (b′) of Proposition 3.2 imply

t̃2k − t̃2k < t2k+3 − t2k+2, k = 1, . . . , N − 1,

t̃2k+2 − t̃2k+1 < t2k+2 − t2k+1, k = 1, . . . , N − 1. (3.48)

Equation (3.48) yields that

t̃2N − t̃2 < t2N+1 − t3. (3.49)

Combining (3.48) and (3.49) we get

t̃2N < t2N+1 = 2π. 
�
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Remark 4. In our proof we cannot suppose t̃2N = t2N (x∗, ωN ) ≤ 2π at the be-
ginning, so we cannot directly apply part (b′) of Proposition 3.2 to Γ(t̃2N−1) =
t̃2N − t̃2N−1 if t̃2N > 2π. However, if we replace (2.6)′ by

ẋ = ω[ζ(t) + β − x] (2.6)′

with

ζ(t) =
{

sin t, if t ≤ 2π

t − 2π, if t > 2π

and replace sin τ in definition D2 by ζ(τ), then Proposition 3.2 is valid for all
a > π. Thus Proposition 2.1 is true for the time sequence generated by equations
(2.5)′ and (2.6)′. Therefore Proposition 2.1 is also true for systems (2.5)′ and (2.6)′
because ζ(t) = sin t for t ∈ [0, 2π].

4. Proof of Proposition 2.2

We define the function Ti : [0,∞), 2π) × (0,∞) → (0,∞), i = 1, 2, such that

Ti(a, ω) > a, i = 1, 2

and

x∗eωa + ω

∫ T1(a,ω)

a
eωτ sin τdτ = 0, (4.1)

ω

∫ T2(a,ω)

a
eωτ [sin τ + β]dτ = x∗eωT2(a,ω); (4.2)

here T1(a, ω) is restricted to be the first value satisfying the above equation.

Lemma 4.1. Both functions T1 and T2 have the property that if a1 < a2 and
ω1 > ω2, then

Ti(a1, ω1) < Ti(a2, ω2), i = 1, 2.

Proof. We shall prove the above inequality for function T1. The proof for function
T2 is the same. First it is trivial if T1(a1, ω1) ≤ a2. Now suppose T1(a1, ω1) > a2.
By (4.1) we have

x∗

ω
eωa +

∫ T1(a,ω)

a
eωτ sin τdτ = 0.

For i = 1, 2, let yi(t) be the solution of the equation

ẏ = sin t − ωi y, t > ai

with initial condition yi(ai) = x∗/ωi . Then from the definition of T1 and the
assumption x∗ > 1 (see (H2)) one sees that

0 < yi(t) < x∗/ωi, t ∈ (ai, T1(ai, ωi)), i = 1, 2, (4.3)
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and

y1(T1(a1, ω1)) = y2(T1(a2, ω2)) = 0. (4.4)

Equation (4.3) and ω1 > ω2 imply that

y1(a2) ≤ x∗

ω1
<

x∗

ω2
= y2(a2). (4.5)

If T1(a1, ω1) ≥ T1(a2, ω2), then (4.3)–(4.5) yield that there is a time t∗ ∈
(a2, T1(a2, ω2)] such that

y1(t
∗) = y2(t

∗) and y1(t) < y2(t), t ∈ (a2, t∗].
It follows that

ẏ2(t
∗) ≤ ẏ1(t

∗) = sin(t∗) − ω1 y1(t
∗) < sin(t∗) − ω2 y2(t

∗) = ẏ2(t
∗).

This leads to a contradiction.

Lemma 4.2. For x0 ∈ [0, x∗] and ω > 0, if t1(x0, ω) ∈ (π, 2π), then

∂t1(x0, ω)

∂ω
< 0.

Proof. Recall that t1(x0, ω) satisfies the equation

x0 + ω

∫ t1(x0 ,ω)

0
eωτ sin τdτ = 0.

Or equivalently
∫ t1(x0 ,ω)

0
eωτ sin τdτ = − x0

ω
. (4.6)

Let t1 = t1(x0, ω). Differentiating equality (4.6) with respect to ω gives

eωt1 sin(t1)
∂t1
∂ω

= x0

ω2
−

∫ t1

0
eωττ sin τdτ. (4.7)

Note that t1 ∈ (π, 2π) implies that
∫ t1

0
eωττ sin τdτ =

∫ π

0
eωττ sin τdτ +

∫ t1

π

eωττ sin τdτ

< π

∫ π

0
eωτ sin τdτ + π

∫ t1

π

eωτ sin τdτ (4.8)

= π

∫ t1

0
eωττ sin τ = − x0π

ω
≤ 0.

It follows from (4.7), (4.8), and the inequality sin(t1) < 0 that

∂t1(x0, ω)

ω
= 1

eωt1 sin(t1)

[
x0

ω2
−

∫ t1

0
eωττ sin τdτ

]

< 0.


�
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We are now in a position to prove Proposition 2.2.

Proof of Proposition 2.2. For each fixed x0 ∈ [0, x∗] and ω > 0, let {tk(ω) =
tk(x0, ω)} be the corresponding time sequence. Suppose that ω1 > ω2 and ti(ωi) ∈
(π, 2π). i = 1, 2. First Lemma 4.2 gives that t1(ω1) < t1(ω2). Moreover, by the
definition of functions Ti we have

T2(t2k−1(ωi), ωi) = t2k(ωi), k = 1, . . . , i = 1, 2, (4.9)

and

T1(t2k(ωi), ωi) = t2k+1(ωi), k = 1, . . . , i = 1, 2. (4.10)

Beginning with the inequality t1(ω1) < t1(ω2) and with the repeat use of Lemma 4.1
we are therefore able to inductively obtain

tn(ω1) < tn(ω2), n = 1, · · · . 
�

5. Singularly perturbed systems

Now we return to the singularly perturbed system (1.1). Let us begin with the
transformed singularly perturbed system (2.1), which we write here again for
convenience:

ẋ = ω[sin t − y],
ẏ = 1

ρ
[x − g(y)], (5.1)

with

g(y) =

⎧
⎪⎨

⎪⎩

y, y ≥ 0

Ky, y∗ ≤ y ≤ 0

β + y, y ≤ y∗
(5.2)

where K < 0, y∗ < 0, and β > 0.
Let Ωi , i = 1, 2 be the regions given in Figure 10. Moreover, for γ > 0 let Σ

γ

i
and lγi , i = 1, 2 be the region and line segment as shown in Figure 11.

A solution (x(t, t0, x0, y0, ω, ρ), y(t, t0, x0, y0, ω, ρ)) of system (5.1) depends
on the initial time t0, initial date z0 = (x0, y0), and the parameters ω and ρ. For
notational simplicity we often omit the parameters ω and ρ and simply write them
as z(t, t0, z0) = (x(t, t0, x0, y0), y(t, t0, x0, y0)) if no confusion arises from this.

In the sequel we always let I = [ωm, ωM] denote a closed interval with 0 <

ωm < ωM .

Lemma 5.1. Given an interval I, the following hold:

(1) There is a ρ̄1 > 0 such that for all ρ ∈ (0, ρ̄1] and ω ∈ I, if (x0, y0) ∈ Ω1 and
x0 > 0, then x0 − √

1 − 4ωρy0 > 0.
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Fig. 10.

(2) For each δ > 0 there is a ρδ > 0 such that for i = 1, 2, ω ∈ I, and ρ ∈ (0, ρδ],
if z0 ∈ ∂Σδ

i \ lδi , then the solution z(t, t0, z0) enters the interior of Σδ
i and can

leave Σδ
i only from lδi .

(3) For each δ > 0, if z0 ∈ lδ1 and t0 ∈ (π, 2π), then z(t, t0, ω) leaves Σδ
1 . If z0 ∈ lδ2,

then for any t0, z(t, t0, ω) leaves Σδ
2.

Proof. (1) can be verified algebraically. (2) and (3) follow the analysis of the vector
field defined by the right-hand side of functions of (5.1). �

Before proceeding to the proof of our main theorem, let us first give an explicit
formula for the solution to the following second order equation:

ÿ = − 1

ρ
(r ẏ + ωy) + ω

ρ
sin t, (5.3)

with initial condition

y(t0) = y0, ẏ(t0) = y1

ρ
, (5.4)

where r �= 0. The corresponding linear homogeneous equation of (5.3) has the
characteristic equation

λ2 + r

ρ
λ + ω

ρ
= 0,
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Fig. 11.

which has two roots

λ1(ρ) = − r

2ρ

[
1 +

√
1 − 4ωρ/r2

]
,

λ2(ρ) = − r

2ρ

[
1 −

√
1 − 4ωρ/r2

]
. (5.5)

By using the variation-of-constant formula one is able to verify that the solution to
the initial value problem (5.3)–(5.4) can be expressed as

y(t) = − 1

2r
√

1 − 4ωρ/r2

[
r
(
1 −

√
1 − 4ωρ/r2

)
y0 + 2y1

]
eλ1(ρ)(t−t0)

+ 1

2r
√

1 − 4ωρ/r2

[
r
(
1 +

√
1 − 4ωρ/r2

)
y0 + 2y1

]
eλ2(ρ)(t−t0) (5.6)

− ω
√

1 − 4ωρ/r2

∫ t

t0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
sin τdτ.

From the expressions in (5.5) one easily sees that, as ρ → 0,

λ1(ρ) → −sign(r)∞, λ2(ρ) → −ω

r

uniformly for ω in any bounded set of R.
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Let t1(x0, ω) be the function defined in Section 2.

Lemma 5.2. Suppose that there is a d > 0 with π + d ≤ t1(x0, ω) ≤ 2π − d for
all (x0, ω) ∈ [0, x∗] × I. Then for each γ > 0, there is a ργ > 0 such that for each
z0 = (x0, y0) ∈ Ω1, ω ∈ I, and ρ ∈ (0, ργ ], the solution z(t, 0, z0) has a first time
s1(z0, ω, ρ) ∈ (π, 2π) with

|s1(z0, ω, ρ) − t1(x0, ω)| ≤ γ, z(s1(z0, ω, ρ), 0, z0) ∈ lγ1 .

Proof. Let (x(t), y(t)) = z(t, 0, z0). It is sufficient to show that (x(t), y(t)) has
a time s1 = s1(z0, ω, ρ) ∈ (π, 2π) such y(t) > 0 for t ∈ (0, s1) and y(s1) = 0,
and in addition, s1(z0, ω, ρ) → t1(x0, ω) and x(s1) → 0 as ρ → 0 uniformly for
ω ∈ I and z0 = (x0, y0) ∈ Ω1. Let us first suppose that z0 = (x0, y0) ∈ Ω1 \ (0, 0).
Then by part (2) of Lemma 5.1, y(t) > 0 for small t > 0, so that g(y(t)) = y(t). It
follows that

ÿ = 1

ρ
(ẋ − ẏ) = − 1

ρ
(ẏ + ωy) + ω

ρ
sin t.

with

y(0) = y0, ẏ(0) = x0 − y0

ρ
.

Using (5.6) for r = 1 and t0 = 0 we obtain

y(t) = − 1

2
√

1 − 4ωρ

[
2x0 − (

1 + √
1 − 4ωρ

)
y0

]
eλ1(ρ)t

+ 1

2
√

1 − 4ωρ

[
2x0 − (

1 − √
1 − 4ωρ

)
y0

]
eλ2(ρ)t (5.7)

− ω√
1 − 4ωρ

∫ t

0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
sin τdτ.

Note that λ2(ρ) > λ1(ρ) and for (x0, y0) ∈ Ω1, ω ∈ I , and ρ ≤ ρ̄1 we have, by
part (1) of Lemma 5.1,

2x0 −
(

1 − √
1 − 4ωρ

)
y0 ≥ 0.

With the above inequality one is able to verify that the sum of the first two terms
of the right-hand side of (5.7) is positive. Also, it is trivial that the integral in (5.7)
is positive for all t ∈ (0, π]. It follows that

y(t) > 0, t ∈ (0, π]. (5.8)

By the continuity of the solution to the initial value we see that (5.7) is valid for
(x0, y0) = (0, 0) as well. Since

λ1(ρ) → −∞, λ2(ρ) → −ω
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as ρ → 0 uniformly for ω ∈ I , we deduce from (5.7) that

y(t) → y∗(t, x0, ω) = x0e−ωt + ω

∫ t

0
e−ω(t−τ) sin τdτ (5.9)

as ρ → 0 uniformly for (x0, y0) ∈ Ω1, ω ∈ I , and t ∈ [ε, 2π] with y(t) ≥ 0,

where ε is any positive number. By the definition of t1(x0, ω) and (5.9) we have
y∗(t1(x0, ω), x0, ω) = 0. Hence the assumption of t0(x0, ω) ≤ 2π − d for x0 ∈
[0, x∗] and ω ∈ I implies that there is a d1 > 0 such that

y∗(2π, x0, ω) = e−ω2π
[
x0 + ω

∫ 2π

0
eω(τ) sin τdτ

]

= e−ω2πω

∫ 2π

t1(x0 ,ω)

eω(τ) sin τdτ

≤ e−ω2πω

∫ 2π

2π−d
eω(τ) sin τdτ

=< −d1 (5.10)

for all (x0, ω) ∈ [0, x∗] × I . It therefore follows from from (5.8)–(5.10) that there
is a first time s1 = s1(z0, ω, ρ) ∈ (π, 2π) such that y(s1) = 0. In addition, since
t1(x0, ω) is the only zero of y∗(t, x0, ω) for t ∈ [π, 2π] and 0 = y(s1(z0, ω, ρ)

converges to y∗(s1(z0, ω, ρ), x0, ω) as ρ → 0 uniformly for (z0, ω) ∈ Ω1 × I , we
conclude that

s1(z0, ω, ρ) → t1(x0, ω)

as ρ → 0 uniformly for (z0, ω) ∈ Ω1 × I . Next, let

h∗(t) = h∗(t, z0, ω, ρ) = y(t) − y∗(t, x0, ω), t ∈ [0, s1]. (5.11)

Then h∗(t) → 0 as ρ → 0 uniformly for (z0, ω) ∈ Ω1 × I and t ∈ [ε, s1] for any
ε > 0. This implies that

∫ s1

0
h∗(s)ds → 0

as ρ → 0 uniformly for (z0, ω) ∈ Ω1 × I . Recall that ẋ(t) = ω[sin t − y(t)]. Hence
(5.9) and (5.11) yield that

x(s1) = x0 +
∫ s1

0
[sin s − y(s)]ds

= x0 +
∫ s1

0
[sin s − h∗(s) − y∗(s, x0, ω)]ds

= x0 +
∫ s1

0

[

sin sds −
∫ s1

0
h∗(s)

]

ds

−
∫ s1

0
x0e−ωsds − ω

∫ s1

0

∫ s

0
e−ω(s−τ) sin τdτds

= x0e−ωs1 + ω

∫ s1

0
e−ω(s1−τ) sin τdτ − ω

∫ s1

0
e−ω(s1−τ)h∗(s)ds. (5.12)
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Fig. 12.

Since s1 → t1(x0, ω) and
∫ s1

0 h∗(s)ds → 0 as ρ → 0 uniformly for (z0, ω) ∈
Ω1 × I , from (5.12) it follows that

x(s1) → x0e−ωt1(x0 ,ω) + ω

∫ t1(x0 ,ω)

0
e−ω(t1(x0,ω)−τ) sin τdτ = 0

as ρ → 0 uniformly for (z0, ω) ∈ Ω1 × I . �

For any point (x0, y0) in the x-y plane and any γ > 0 we let Bγ (x0, y0) denote
a disk of center (x0, y0) and radius γ .

Lemma 5.3. Let π < T1 < T2 < 2π be fixed. Then, for each γ > 0, there are
ργ > 0 and δγ > 0 such that for each ω ∈ I, ρ ∈ (0, ργ ), t0 ∈ [T1, T2], and z0 ∈ l

δγ
1

(respectively if z0 ∈ l
δγ
2 and t0 ≥ 0), there is a tγ = tγ (t0, z0, ω, ρ) ∈ (0, γ ] such

that

z(t0 + tγ , t0, z0) ∈ Bγ (0,−β).
(
respectively z(t0 + tγ , t0, z0) ∈ Bγ (x∗, x∗).

)

Proof. We give the proof only for the case z0 ∈ l
δγ
1 . The proof of the second case is

similar. Let Γγ be the line segment connecting points (0, 0) and (
√

γ,−β + √
γ)
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(see Figure 12, where we suppose that Γγ is on the left-hand side of the line
y = 1/K . This can be done if γ is small,) and let

δγ =
√

γ

3
.

Then a straightforward computation shows that there is a ρ1 > 0 such that for
all ω ∈ I , ρ ∈ (0, ρ1], t ∈ (π, 2π), and (x, y) ∈ Γγ , the vector field

−−−−−−−−−−−−−−−−−−−→
(ω[sin t − y), (x − g(y))/ρ)

defined by the right hand side of the system (5.1) points to the left side of Γγ .
Hence the solution z(t, t0, z0) cannot leave region Uγ (Figure 12) from Γγ if
π < t0 ≤ t < 2π. When the solution (x(t), y(t)) = z(t, t0, z0) enters Uγ and stays
in the region Uγ ∩ {y∗ ≤ y ≤ 0}, g(y(t)) = Ky(t). Hence y(t) satisfies the second
order equation

ÿ = − 1

ρ
(K ẏ + ωy) + ω

ρ
sin t (5.13)

with initial condition

y(t0) = 0, ẏ(t0) = x(t0)

ρ
= x0

ρ
, x0 ∈ [−δγ , 0]. (5.14)

Applying (5.6) to (5.13) and (5.14) we obtain

y(t) = − x0

K
√

1 − 4ωρ/K2

(
eλ1(ρ)(t−t0) + eλ2(ρ)(t−t0)

)

− ω

K
√

1 − 4ωρ/K2

∫ t

t0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
sin τdτ, (5.15)

where

λ1(ρ) = − K

2ρ

[
1 +

√
1 − 4ωρ/K2

]
,

λ2(ρ) = − K

2ρ

[
1 −

√
1 − 4ωρ/K2

]
. (5.16)

Since K < 0, λ1(ρ) → +∞ and λ2(ρ) → −ω/K uniformly for ω ∈ I . Let
T2 < T ∗

2 < 2π and

s∗ = max
{

sin t : t ∈ [
T1, T ∗

2

]}
.

Then s∗ < 0. Thus (5.15) yields that (recall I = [ωm, ωM])

y(t) ≤ ω

|K |√1 − 4ωρ/k2

∫ t

t0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
sin τdτ

≤ s∗ωm

|K |
∫ t

t0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
dτ (5.17)

= φ∗(t0, t, ρ),
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whenever 0 ≤ y(t) ≤ y∗ and t ∈ [T1, T ∗
2 ]. Let

σ = min
{

δγ

ωM(1 + β)
, T ∗

2 − T2,
γ

2

}

.

Then σ > 0 and t0 + σ ∈ [T1, T ∗
2 ] for t0 ∈ [T1, T2]. Hence

φ∗(t0, t0 + σ, ρ) = s∗ωm

|K |
∫ t0+σ

t0

[
eλ1(ρ)(t−τ) − eλ2(ρ)(t−τ)

]
dτ → −∞

as ρ → 0 uniformly for all ω ∈ I . Consequently there is a 0 < ρ2 ≤ ρ1 such that

φ∗(t0, t0 + σ, ρ) < y∗

for all ρ ∈ (0, ρ2], t0 ∈ [T1, T2], and ω ∈ I . It follows from (5.17) that for each
ρ ∈ (0, ρ2] and each ω ∈ I , there is a t ′ = t ′(x0, ω, ρ) ∈ (0, σ] such that

0 ≤ y(t) < y∗, t ∈ [t0, t0 + t ′), y(t0 + t ′) = y∗.

It is obvious that the solution (x(t), y(t)) enters the region

U∗
γ = Uγ ∩ {y∗ ≤ y ≤ −β + √

γ }
when the time t passes t0 + t ′ and when there is a positive number d such that

x(t) − g(y(t)) < −d, (x(0, y(t)) ∈ U∗
γ .

Hence

ẏ(t) = 1

ρ
(x − g(y(t)) ≤ −d

ρ
,

so that

y(t) ≤ y∗ − d(t − t0 − t ′)
ρ

(5.18)

whenever (x(t), y(t)) ∈ U∗
γ . Let

ργ = min
{

ρ2,
σd

β + y∗

}

. (5.19)

Then (5.19) implies that, for all ρ ∈ (0, ργ ),

y∗ − dσ

ρ
≤ y∗ − dσ

ργ

≤ y∗ − (β + y∗) = −β < −b + √
γ .

It therefore follows from (5.18) and the last inequality that, for all ρ ∈ (0, ργ ],
there is a t ′′ ∈ (0, σ) such that

y(t0 + t ′ + t ′′) = −β + √
γ . (5.20)
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Now for t ∈ [t0, t0 + tγ ] with tγ = t ′ + t ′′ and ω ∈ I = [ωm, ωM ], we have

|ẋ(t)| = ω| sin t − y(t)| ≤ ωM(1 + β).

This yields that

|x(t0 + tγ )| ≤ |x0| + tγωM(1 + β) ≤ δγ + 2σωM(1 + β) ≤ δγ + 2δγ ≤ √
γ .

(5.21)

Equations (5.20) and (5.21) imply that

z(t0 + tγ , t0, z0) ∈ Bγ (0,−β)

with tγ = t ′ + t ′′ ≤ 2σ ≤ γ . �

Definition 2. For θ ≥ 0 and ω > 0 we define ξi = ξi(θ, ω) > θ , i = 1, 2 such that

D3. x∗e−ω(ξ1−θ) + ω
∫ ξ1
θ

e−ω(ξ1−τ) sin τdτ = 0,

D4. ω
∫ ξ2
θ

e−ω(ξ2−τ)[sin τ + β]dτ = x∗.

Note that ξ1 > θ the first time at which the solution x1(t, θ, x∗) to the initial
value problem

ẋ1 = ω[sin t − x1], x1(θ) = x∗

vanishes. The number ξ2 > θ is the first time at which the solution x2(t, θ, 0) to the
initial value problem

ẋ2 = ω[sin t + β − x2], x2(θ) = 0

reaches x∗. The assumption of β −1 > x∗ implies that ξ2(θ, ω) is uniquely defined
for all θ ≥ 0 and ω > 0.

Lemma 5.4. Let I = [ωm, ωM] with ωm > ω∗
m and let D ⊂ R+ × I be a closed

set. Then the following are true.

(a) Suppose that there is a ζ > 0 and an integer M = 1 or M = 2 such that
ξ1(θ, ω) ∈ [(2M −1)π + ζ, 2Mπ − ζ] for all (θ, ω) ∈ D. Then for each γ > 0,
there are δγ > 0 and ργ > 0 such that for each (θ, ω) ∈ D, |t0 − θ| ≤ δγ , and
z0 ∈ Bδγ (x∗, x∗), the solution z(t, t0, z0, ω, ρ) with ρ ∈ (0, ργ ] has a first time
η1 = η1(t0, z0, ω, ρ) such that

z(η0, t0, z0) ∈ lγ1 , and |η1(t0, z0, ω, ρ) − ξ1(θ, ω)| ≤ γ.

(b) For each γ > 0, there is a δγ > 0 and ργ > 0 such that for each (θ, ω) ∈ D,
|t0 − θ| ≤ δγ , and z0 ∈ Bδγ (0,−β), the solution z(t, t0, z0, ω, ρ) with ρ ∈
(0, ργ ] has a first time η2 = η2(t0, z0, ω, ρ) such that

z(η0, t0, z0) ∈ lγ2 , and |η2(t0, z0, ω, ρ) − ξ2(θ, ω)| ≤ γ.

Remark 5. In part (a) of Lemma 5.4 we require that ξ1(θ, ω) /∈ {(2M −1)π, 2Mπ}
because if ξ1(θ0, ω0) = (2M − 1)π or ξ1(θ0, ω0) = 2Mπ, then ξ1(θ, ω) may not
be continuous at (θ0, ω0), while the function ξ2(θ, ω) is always continuous under
the condition β > x∗ + 1.
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Proof. We shall prove part (b) of Lemma 5.4 only. The proof for part (a) is similar
to the proof of Lemma 5.2. Let δγ > 0 be small enough such that Bδγ (0,−β) ⊂
Σ

γ

2 \ lγ2 . By part (2) of Lemma 5.1 there is a ργ > 0 such that for ρ ∈ (0, ργ ],
ω ∈ I , and z0 = (x0, y0) ∈ Bδγ (0,−β), the solution z(t, t0, z0) = (x(t), y(t)) stays
in the interior of Σ

γ

2 before it reaches lγ2 . Let

h(t) = y(t) − (−β + x(t)).

Then (x(t), y(t)) ∈ Σ
γ

2 implies that |h(t)| ≤ γ and

ẋ(t) = ω[sin t − y(t)] = ω[sin t + β − h(t) − x(t)].
It follows that

x(t) = x0e−ω(t−t0) + ω

∫ t

t0

e−ω(t−τ)[sin τ + β − h(τ)]dτ

≥ x0e−ω(t−t0) + ω

∫ t

t0

e−ω(t−τ)[β − 1 − γ ]dτ (5.22)

= x0e−ω(t−t0) + [β − 1 − γ ](1 − e−ω(t−t0))

whenever (x(t), y(t)) ∈ Σ
γ

2 . Note that, by our assumption (see (H2) in Section 2),
β − 1 > x∗ + 1. Without loss of generality we can suppose γ is small such that

β − 1 − γ > x∗ + γ.

It therefore follows that, for sufficiently small δγ > 0, there is a sufficiently large
T such that

x0e−ωT + [β − 1 − γ ](1 − e−ωT ) > x∗ + γ (5.23)

for all |x0| ≤ δγ and ω ∈ I. Since z(t, t0, z0) can leave Σ
γ

2 at lγ2 and x(t) > x∗ + γ

implies (x(t), y(t)) /∈ Σ
γ

2 , (5.22) and (5.23) therefore yield that there is a first time
η2 = η2(t0, z0, ω, ρ) ≤ t0 + T such that

z(η2, t0, z0) ∈ lγ2 .

Next we claim that, if δγ and ργ are small enough, then |t0 − θ| ≤ δγ , z0 ∈
Bδ(0,−β), ω ∈ I , and ρ ∈ (0, ργ ] imply that

|η2(t0, z0, ω, ρ) − ξ2(θ, ω)| ≤ γ

for all (θ, ω) ∈ D. Suppose, on the contrary, that the above statement is false. For
n = 1, 2, 3, . . . , let δn > 0 such that Bδn (0,−β) ⊂ Σ

1/n
2 \l1/n

2 and let ρn > 0 (with
ρn+1 ≤ ρn) be the corresponding number defined in part (2) of Lemma 5.1. Then
for each n, there are (θn, ωn) ∈ D, tn

0 with |tn
0 − θn| ≤ δn , zn

0 = (xn
0 , yn

0 ) ∈
Bδn (0,−β), and ρn ∈ (0, ρ1/n] such that

∣
∣η2

(
tn
0 , zn

0, ω
n, ρn

) − ξ2(θ
n, ωn)

∣
∣ > γ. (5.24)
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Note that both the sequences {(tn
0 , zn

0, ω
n, ρn)} and {ηn

2 = η2(tn
0 , zn

0, ω
n, ρn)} are

bounded. Without loss of generality we can suppose that
(
tn
0 , zn

0, ωn, ρ
n
)} → (t∗, z∗, ω∗, ρ∗) ηn

2 → η∗ (5.25)

as n → ∞. It is obvious that z∗ = (0,−β), θn → θ∗ = t∗0 , and (θ∗, ω∗) ∈ D.
Moreover, let (xn(t), yn(t)) = z(t, tn

0 , zn
0, ω

n, ρn) for t ∈ [tn
0 , ηn

2]. Then we have

xn
(
ηn

2

) = xn
0 e−ωn

(
ηn

2−tn
0

)

+ ωn

∫ ηn
2

tn
o

e−ωn

(
ηn

2−τ

)

[sin τ + β − hn(τ)]dτ (5.26)

with hn(t) = yn(t) − (−β + xn(t)). Since (xn(t), yn(t)) ∈ Σ
1/n
2 for t ∈ [tn

0 , ηn
2] and

(xn(η
n
2), yn(η

n
2)) ∈ l1/n

2 imply that

|hn(t)| ≤ 1

n
,

[
tn
0 , ηn

2

]
(5.27)

and

xn
(
ηn

2

) → 0 as n → ∞. (5.28)

by letting n → ∞ in (5.26) and with the use of (5.27)–(5.28), we therefore obtain

0 = ω∗
∫ η∗

θ∗
e−ω∗(η∗−τ)[sin τ + β]dτ.

It follows from the definition of ξ2(θ, ω) that η∗ = ξ2(θ
∗, ω∗). This leads to

a contradiction to (5.24) since ξ2(θ, ω) is continuous on (θ, ω). �

With all the results obtained above we are ready to prove conclusion A of
Theorem 1.1. Since (1.1) is equivalent to (5.1), it is sufficient to prove the following
theorem for (5.1).

Theorem 5.1. Let the sequences {ωN} and {ω∗
N } be given as in Theorem 2.1. Then

for each positive integer M and µ > 0 with

µ <
1

2
min

{
ω∗

N − ωN , N = 1, 2, . . . , M
}
,

there is a ρ∗ > 0 such that P(5.1)(Ω1, ω) ⊂ Ω1 for each ω ∈ ∪M
N=1[ωN +µ,ω∗

N −µ]
and ρ ∈ (0, ρ∗]. Furthermore, ω ∈ [ωN + µ,ω∗

N − µ] implies that any solution
starting from a point in Ω1 has exactly N spikes in 2π time period. Here P(5.1)(·, ω)

is the time 2π map introduced by the flows of (5.1).

Proof. Let Iµ
N = [ω∗

N + µ,ωN − µ], N = 1, 2, . . . , M. It is sufficient to show that
for each Iµ

N there is a ρ∗ > 0 such that

z(2π, 0,Ω1, ω, ρ) ⊂ Ω1, ρ ∈ (0, ρN ], ω ∈ Iµ
N

and z(t, z0) has N spikes in 2π time period. To this end, we define

Dn = {
(tn(x0, ω), ω) : x0 ∈ [0, x∗], ω ∈ Iµ

N

}
, n = 1, 2, . . .2N,



Singularly perturbed differential equation S165

where tn(x0, ω) is the time sequence defined in Section 2. Then by the definitions
of ξ1(θ, ω) and ξ2(θ, ω) we see that the following equalities hold:

ξ1(t2k(x0, ω), ω) = t2k+1(x0, ω), k = 1, . . . , N − 1,

ξ2(t2k−1(x0, ω), ω) = t2k(x0, ω), k = 1, . . . , N. (5.29)

Moreover, ω ∈ Iµ
N implies that for all x0 ∈ [0, x∗],

π < t1(x0, ω) < t2N (x0, ω) < 2π < t2N+1(x0, ω). (5.30)

Recall that P̃(x0, ω), the time 2π map for the reduced system (2.5)–(2.6) is defined
as

P̃(x0, ω) = e−ω2π

[

x∗eωt2N (x0 ,ω) +
∫ 2π

t2N (x0,ω)

eωτ sin τdτ

]

. (5.31)

Hence (5.30) implies

0 < P̃(x0, ω) < x∗, (x0, ω) ∈ [0, x∗] × Iµ
N . (5.32)

Since [x0, x∗] × Iµ
N is a compact set, (5.30) and (5.32) yield that there is a ζ > 0

such that for all (x0, ω) ∈ [0, x∗] × I

P1. tn(x0, ω) ∈ [π + ζ, 2π − ζ], 1 ≤ n ≤ 2N;
P2. 3π + ζ ≤ t2N+1(x0, ω) ≥ 4π − ζ . (Note: We have t2N+1(x0, ω) = 2π +

t1(P̃(x0, ω), ω) by definition. Hence P1 implies P2.)
P3. ζ ≤ P̃(x0, ω) ≤ x∗ − ζ .

By Lemma 5.2, for each δ1 > 0, there is a ρ1 > 0 such that for all ρ ∈ (0, ρ1]
and ω ∈ Iµ

N , if z0 = (x0, y0) ∈ Ω1, then there is a s1(z0, ω, ρ) with

z(s1, z0, ω, ρ) ∈ lδ1
1 , |s1(z0, ω, ρ) − t1(x0, ω)| ≤ δ1. (5.33)

Let d′
1 = s1(z0, ω, ρ) and z′

1 = z(s1, z0, ω, ρ). Then by Lemma 5.3, for any given
γ1 > 0, if the above ρ1 and δ1 are small enough, then (5.33) implies there is
0 < tγ1(d

′
1, z′

0) ≤ γ1 such that

z1 = z
(
d′

1 + tγ1

(
d′

1, z′
1

)
, z′

1

) ∈ Bγ1(0,−β). (5.34)

Moreover, for d1 = d′
1 + tγ1(d

′
1, z′

1), we have

|d1 − t1(x0, ω)| ≤ ∣
∣d′

1 − t1(x0, ω)
∣
∣ + tγ1

(
d′

1, z′
1

)

= |s1(z0, ω, ρ) − t1(x0, ω)| + tγ1

(
d′

1, z′
1

)
(5.35)

≤ δ1 + γ1.

It follows from (5.34), (5.35), and Lemma 5.4 that for any small number γ2 > 0,

z′
2 = z(η2(d1, z1, ω), d1, z1) ∈ lγ2

2

and

|η2(d1, z1, ω) − ξ2(t1(x0, ω), ω)| ≤ γ2
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as long as ρ ∈ (0, ρ1] and ρ1, δ1, γ1 are sufficiently small, where η2(d1, z1, ω) and
ξ2(t1(x0, ω), ω) are defined as in Lemma 5.4. Let d′

2 = η2(d1, z1, ω). Notice that
t2(x0, ω) = ξ2(t1(x0, ω), and we thus have

∣
∣d′

2 − t2(x0, ω)
∣
∣ ≤ γ2 and z′

2 ∈ lγ2
2 .

Thus, with the repeat use of Lemmas 5.3–5.4 we can inductively show that for any
given γ > 0 there is a ρ∗ > 0 such that for any ρ ∈ (0, ρ∗], ω ∈ Iµ

N and z0 ∈ Ω1,
there are d1 < d2 < · · · < d2N+1, where di depends on (z0, ω, ρ) such that

z(d2k−1, z0) ∈ Bγ (0,−β), |d2k−1 − t2k−1(x0, ω)| ≤ γ, k = 1, . . . , N + 1,

(5.36)

z(d2k, z0) ∈ Bγ (x∗, x∗), |d2k − t2k(x0, ω)| ≤ γ, k = 1, . . . , N. (5.37)

In addition,

(x(t), y(t)) = z(t, z0) ∈ Σ
γ

1 , t ∈ [d2N , d2N+1]. (5.38)

Define

R(k1, k2, k3, t) = ∣
∣(x∗ − k1)e

−ω(2π−t+k2) − x∗e−ω(2π−t)
∣
∣

+ ω

∣
∣
∣
∣

∫ t

t−k2

e−ω(2π−τ)dτ

∣
∣
∣
∣ + ω|k3|

∣
∣
∣
∣

∫ 2π

t−k2

e−ω(2π−τ)dτ

∣
∣
∣
∣ . (5.39)

It is apparent that

R(k1, k2, k3, t, ω) → 0 as (k1, k2, k3) → (0, 0, 0)

uniformly for (t, ω) ∈ [π, 2π] × Iµ
N , so that there exists a k∗ > 0 such that

R(k1, k2, k3, t) <
ζ

2
if |ki| ≤ k∗, i = 1, 2, 3, (t, ω) ∈ [π, 2π] × Iµ

N .

(5.40)

Now we choose γ > 0 small enough such that

γ = min

{

k∗,
ζ

2

}

(5.41)

{

z1 = (x1, y1) ∈ σ
γ

1 : ζ

2
≤ x1 ≤ x∗ − ζ

2

}

⊂ Ω1. (5.42)

Then (5.36), (5.37), and (5.42) yield that

d2N ≤ t2N (x0, ω) + γ ≤ 2π − ζ

2

and

d2N+1 ≥ t2N+1 − γ ≥ 2π + ζ

2
.
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Hence one has 2π ∈ [d2N , d2N+1]. Now for t ∈ [d2N , 2π] we have

ẋ(t) = ω[sin t − y(t)] = ω[sin t − x(t) − h(t)] (5.43)

with h(t) = y(t) − x(t). Equation (5.38) implies that

|h(t)| ≤ γ, t ∈ [d2N , 2π]. (5.44)

Let t2N = t2N (x0, ω). Then, using (5.43) and (5.31), and upon a straightforward
calculation, we obtain

x(2π) = x(d2N)e−ω(2π−d2N ) + ω

∫ 2π

d2N

e−ω(2π−τ)[sin τ − h(τ)]dτ

= x∗e−ω(2π−t2N ) + +ω

∫ 2π

t2N

e−ω(2π−τ) sin τdτ + R∗ (5.45)

= P̃(x0, ω) + R∗,

where

R∗ = [[x∗ − (x∗ − x(d2N)])e−ω(2π−t2N +(t2N −d2N )) − x∗e−ω(2π−t2N )
]

+ ω

∫ t2N

t2N −(t2N −d2N )

e−ω(2π−τ) sin τdτ (5.46)

− ω

∫ 2π

t2N −(t2N −d2N )

e−ω(2π−τ)h(τ)dτ. (5.47)

Using (5.39)–(5.42), (5.44), and (5.46) we therefore deduce that

|R∗| ≤ R
(
x∗ − x(d2N), t2N − d2N , γ

) ≤ ζ

2
. (5.48)

Hence (5.45) and (5.48) yield that

ζ

2
≤ x(2π) ≤ x∗ − ζ

2
.

Together with (5.42) and the fact of z(2π, z0) ∈ Σ
γ

1 we conclude that

z(2π, z0) ⊂
{

z1 = (x1, y1) ∈ σ
γ

1 : ζ

2
≤ x1 ≤ x∗ − ζ

2

}

⊂ Ω1

all z0 ∈ Ω1, ω ∈ Iµ
N , and ρ ∈ (0, ρ1]. Moreover, it is clear that the solution z(t, z0)

completes exactly N cycles for a 2π time period. �

Final remarks

1. We notice that, unlike the region Ω2, we have cut a small corner near the origin
in the region Ω1. The reason we do so is that there is a discontinuity of solutions
of (5.1) on the initial value at (0, 0) as ρ → 0. That is, the solution starting
at (0, 0) at t = 0 will stay in the y ≥ 0 half plane for at least π time before
it goes to the lower half plane. However, if a solution starts at a point (0, y0)

with y0 > 0 at time t = 0, then, if ρ is sufficiently small, the solution will jump
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to Ω2 in a short time. Hence this type of solution cannot be approximated by
a solution of the reduced system.

2. Recall that (see (2.3)) ω = 1
K1ν

. Thus we have

νN = 1

K1ωN
, ν∗

N = 1

K1ω
∗
N

and

ν∗
N+1 < νN < ν∗

N , N = 1, 2, . . . .

Moreover, ωN and ω∗
N depend on x∗ and β. It can be shown that ωN and ω∗

N
increase as x∗ and β increase. A visible reason is that an increase in x∗ and β

will slow the oscillation. Hence, in order to complete N cycles in a 2π period
we must increase the value of ω. Note that, by (2.3) and (2.4),

x∗ = K2i0

aK1
, β = (K2 − K1)i0

aK1
.

This means that ωN and ω∗
N increase when the amplitude a decreases. That

is, νN and ν∗
N decrease as a decreases. Figure 13 gives the diagram about the

relation between νN , ν∗
N , and a.

Fig. 13.
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