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Abstract. In this paper sufficient (necessary) conditions are given under which a differential
equation of the nth order has a noncontinuable solution y : [T, 1) — R, T < oo fulfilling
lim—. [yP@®)|=00,j=0,1,...,n—1.
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1. Introduction

Consider the nth order differential equation

Y = flty, Yy, (1)

wheren > 2, R, = [0, 00), R = (—00, 00), f € C°(R+ X R").

Denote by [[x]] the entire part of a number x.

A solution y defined on [7, ) C R. is called noncontinuable if T < oo and y
cannot be defined for t = 7. Note that in this case limsup,_,, |y"~V(#)| = oo and
sometimes Yy is called singular. A noncontinuable solution is called nonoscillatory
if it is different from zero in a left neighbourhood of 7.

The first results for the nonexistence of noncontinuable solutions are given by
Wintner, see [8] or [11]; other results are obtained, e.g., in [4,5]. In particular,
noncontinuable solutions do not exist if # € C°(R) and

n
|ft.x1 x| Sh@)Y || on Ry x R
i=1

Our main goal is to investigate nonoscillatory noncontinuable solutions only. Re-
sults for the existence of such solutions of (1) and its special cases are obtained,
e.g., in [1-3,5,6,9—11] under the assumptions « € {—1,1}, k € {1,2,...,n},
LAt x1, ... x0)| = r(0)|xx|*, and

af(t, x1,...,x)xx >0 for large |x;],j=1,2,...,n 2)
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where r € C°(R) and r > 0 on R, ; noncontinuable solutions exist if « = 1
and A > 1 ([13], Th 11.3). If (2) holds with « = —1, results for the existence of
nonoscillatory noncontinuable solutions are obtained only under very restrictive
assumptions posed on f, see [3].

In the last period, the problem of the existence of noncontinuable solutions
with prescribed asymptotics on the right-hand side point t of the definition interval
is studied. More precisely, let T € (0, 00). Then sufficient (necessary) conditions
for the existence of a noncontinuable solution y fulfilling

lim y(f) = c, € R, lim y?(@),i=1,2,...,n—1 exist
=1 | S

are given in [7] (case n = 2) and in [1,3] (case n > 2).
The results are enlarged in [2] to the case
lim |y(H)| = oo, lim y?(n),i=1,2,...,n—1 exist;
1—>T1_ —>T1—
it is clear that in this case lim,_,,_ y®(f)sgny(f) = c0,i =1,2...,n — 1. So the

following problem was solved: to give sufficient (necessary) conditions assuring
that (1) has a solution y satisfying the boundary-value conditions

7€ (0,00), lim y?()sgny(r) =00, i=0,1,...,n—1 (3)
=T
and that is defined in a left neighbourhood of 7. Note that some proofs in [2] are
not correct, see Remark 4 below.

In the present paper we study problems (1) and (3); our approach is more broad
than in [2].

2. Lemmas

We need some lemmas. The first one is a special case of [12, Cor. 1.1.].
Lemma 1. Let [a,b] C Ry, f € C°([a, b] x R") and
f(t,xl,...,xn) >0 on [a, b]x R".

Then the problem u® = f(t,u,...,u(”_”), u V@) = 0fori =1,...,
n—1,u™ V(b)) = 0 has at least one solution.

Lemma 2. Let k be an integer, € {—1, 1}, T € (0, 00) and M € (0, 00) be such
that k > 2M and

Bft,x1,...,x,) >0 fortel0,t],px;>M,i=1,2,...,n. 4

Then there exist T* € [0, 1) such that T — T* < 1 and the boundary-value
problem (1), y(i)(T) = pM,i =0,1,....,n — 2, y(”’l)(r) = Pk has at least
one solution yy for every T € [T*, v). Moreover, T* does not depend on k and
Iy D@ > Mon T, v).
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Proof. We prove the statement for § = 1; for 8 = —1 the proof is similar. Let
T € [0, 7) be such that
t—T<M/B, t—T <1, (5)
where
B =max{f(t,x1,...,xy) :t€[0, 7], M <x; < Mn+1)

for i=1,2,....,.n—1,M <x, <2M}+1

and denote J = [T, t].
Consider an auxiliary problem k € {1,2,...,},k > 2M,

u™ = ftu, ..., u" D), u(T)=0,j=0,1,....,n —2; u" V() =0,

(6)
where
Sou, o u" V) = f(t, @+ PQ), ..., 2"V + PV (1)
x g(u™V + PV (),
f >M
B(v) = or v>
M for v<M,
n—2 i
(t—T) k 1
Pt)y=M t—1T)"
() Z i oD
j=0
1 for v>M
gw)y=12v/M—1 for M/2<v<M
0 for v< M/2.
From this and according to (4)f(t, u,...,u(”’l)) > 0 on [T,7) x R". If we

put [a, b] = [T, 7] all assumptions of Lemma 1 are fulfilled and hence (6) has
a solution .

As PO(T)y=Mforj=0,1,...,n—2and P~V (1) = k, the transformation
y = u + P transforms problem (6) into

Y =t @), ..., @)Y,
YT =M, j=0,1,....n =2, (7)
Y@ =k
and hence y = i + P is a solution of (7). Moreover, (4), (7), and the definition of g
yield y™(¢) > 0 on J and we prove that y"~D () > 0 on J. Assume there exists
to € [T, 7) such that y"~V(zy) < 0. Then, in view of y""~D (1) = k > 0, because
y"=D is increasing on J, there exists ¢; € (t;, 7) such that y""=D () < 0 on [to, t1)

and y"~D(#;) = 0. From this and from the definition of g we have y™ (f) = 0 on
[to0, t:1], which contradicts y"~D(ty) < 0 and y*~V(¢;) = 0. From this

y® (@) =0, y" D) >0 is nondecreasing on J, (8)



S96 M. Bartusek

and hence
M < y(j)(t) are nondecreasing on J for i =0,1,...,n —2. 9
We estimate y"*~ from below and prove that
M <y V@), e (10)

Suppose that (10) is not valid. As k > 2M and as (8) holds, there exist 77 and 7>
such that

T<Th<Th <t y" V(1) =M y" () =2M.
From this, using (5), (7), and (8) we have

n—i—2 i n—i—
YW= M@ —T)! "t =0

(n—1)
j! iy O

j=0
<Mn—-D+2M=Mn+1),i=0,1,....n—2,t € J,

which, together with (9) and (10), yields

M<y?0)<Mn—1),i=01,....n—2,teJ,
M <y D) <2M,t € [Ty, T). (11)

Hence

T
M =y (D) -y (1) = / y ™ (t)dt
T

I3
= fT f(t, 2®). ..., 2" V@) gy V@) dt

T
= fit,y®,....y" V®)dt < B(T, - T\) < Bz — T).
T

This contradicts the first inequality in (5) and so (10) holds. From this and from (11)
(1) =yP(0), i=0,1,...,n—1, g6y V@) =1,

and y is a solution of problem (1), y(i)(T) = M,i = 0,1,....,n — 1,
y(”’l)(t) = k, too.

Note that, according to (5), T does not depend on k. Moreover, if (5) holds for
T = T*, then (5)is valid for T € [T*, 1), too. O

Remark 1. Tt follows from (5) that for a fixed number M and for sufficiently small
positive T we have T* = 0.
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Lemma 3. Let[a,b) C Ry, f € C°(la,b) x R"), ® € Ca, b)ﬁeanondecreas-
ing function and letform € {1, 2, ...} fixed the equationu™ = f(t,u,...,u"")
have a solution u,,, defined on [a, b), such that

n—1
Z 0] < @) for telab).

i=0
Then there exists a subsequence {uy; };‘;1 of {um}or_, such that sequences {ui,’)l ;?Ozl ,
i=0,1,...,n—1convergelocally uniformly on [a, b) and u(t) = lim;_,oc tn ; ()

fort € [a, b) is a solution ofu(”) = f(t, u, ..., u®,

Proof. The assertion follows by applying the Arzela—Ascoli Theorem, seee.g., [11]
Lemma 10.2. O

Lemma4 ([11], Lemma 11.2). Let y € C™[a,b),s € {0,1,...,n — 2},
s€(0, ' )and

’ n—s

YOy >0 fori=0,1,....n—1, Y @)y@t) >0 on [a,b).

Then

n—1 ) b

l_[ |y(z)(t)|—s > a)f |y(n)(o_)|6|y(s)(o_)|1’dg’t € (a, b),

i=s !
where

21— (n — 53] (n—s+1)§-2
= >0, y=
n—s)(n—s—1) n—s-—1

and

W= 81_[[8 +(n—s—i)e] P sT0e

i=l1

Lemmas. LetA < 1+ nll , T < ooand My > 0. Let y be a solution of (1) defined
on [T, t) C Ry such that lim,_,_ |y("’1)(t)| = oo and

"0 = Mily* P @1", 1t € [T 0.
Then lim;—._ |y(t)| = oo.
Proof. Let lim,_,._ y*~V(t) = oo. The case lim,_,,_ y"~ V() = —oc can be
studied similarly. Then y has a limit for r — t_ and suppose that lim,_, ,_ y(¢) =

¢ < o0. Moreover, T € [T, T) exists such that y("’l)(t) > 0 on [T, 7) and the
assumptions of the lemma yield

Y@ < M"Y o), telT, ). (12)
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Let & > 1. Then the integration of (12) on [#, 7) yields
YO @ = M =)™, 1€ [T, 9,00 =1/G.— D,

From this and fromn — 1 < A; we have

n=2 (7 T n—2
y(T) SNi f (t—9) (n—1)
¢=y(-) ZO DT e

n—2 D
YOD o GaMpT [T vy
z—g | (t—T) + (n— ! /T(f—s) ds = 0.

The contradiction proves the statement of the lemma.
Let & < 1. Then the integration of (12) yields

(=) T =y < Mir = T)(1 =) for A <1
and

Lim log(y" ™V (0)/y" V() = Mi(t = T) for A=1;

the contradiction to lim,_,,_ y"~V(¢) = oo shows that this case is impossible. O

3. Main results

We begin our consideration with two nonexistence results.

Theorem 1. Let t and M be positive constants and I C R be a left neighborhood
of T such that Bf(t, x1,...,x,) < O0for Bx; > M,i = 1,2,...,n,8 € {—1,1},
t € 1. Then there exists no solution y of (1) fulfilling (3).

Proof. The theorem is a mild generalization of Theorem 1(i) in [2], and its proof
is similar. O

The following theorem solves the case in which f has the opposite sign.

Theorem 2. Let v, M, and M, be positive constants and I C Ry a left neighbor-
hood of t. Suppose that one of the following assumptions holds.

(i) Letaj € Rfor j=1,2,...,n—1,a =max(0,ay,...,a,_1) be such that
a+ A <1 and
n—1
0 < BAUEx1, .o X0) < My Y [xi| x| (13)
i=1

forteLBx; > M, j=1,2,...,nand B € {—1,1};
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(ii) Leta € R,s € {0, 1,...,n — 2} and L > 0 be such that
My |xgi|*|xal* < BfG X1, Xn) (14)
fortel,Bx; > M, j=1,2,...,nand B € {—1, 1}. Further, let either

1
min(e, 0) + A > 1 + ! (15)
n—
or
1
A > 1 and s > (16)
a+A—1
or
1 2 -1 A—1
a+A>1+4 and s> H@mDetri=h oo
n—1 3a+r—1)4+2

Then there exists no solution y of (1) such that (3) holds.

Proof. Let, contrarily, y : [t], T) — R be a solution of (1) such that [7),7) C [
and

Jim yO(t) =00, i=0,1,....,n—1. (18)
—>T_
The opposite case lim, .,y (f) = —oco fori = 0,1,...,n — 1 can be studied

similarly. B
Suppose without loss of generality that M > 1. Then there exists T € [11, T)
such that

Yy >M=>1 on [T,0),i=0,1,....,.n—1 (19)
and
r—]_"f; t—T)1—a—)M@mn-1) <1, (20)
where @ = 1 — A in case (i). Note that, due to (13) and (14), we have y™ (1) > 0
on [T, 7), and hence (19) yields
y? i=0,1,...,n—1 areincreasingon [T, 7). (21)

From this, from (20), and from Taylor series theorem we have

t

. N . 1 ..
200 =300+ [ @ < K+ 50,

T
n—2
tell,0,i=0,1,....,n—2 where K= Zy(ﬂ(f);
j=0
hence, by virtue of (18), there exists 7' € [T, 7) such that
YO0 <y @, teJ=[T,1,i=0,1,....,n—2. (22)

Suppose that (i) is valid. At first, consider the case & + A < 1.
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Ifo; <0,i €{l,...,n—1},then (19) and & > 0 yield

(@) <1< (Y@ el

similarly in the case o; > 0,7 € {1, ..., n — 1} we obtain from (19) and (22)

1< (P0)" < (0" 0)" < (") e .

Hence

n—1

Y (O = =D)L e

i=1
and (1), (13), and (19) yield
(@) <M12 O@0) (@) = M (P 0)
i=l

where M = (n — 1)M,. From this the integration yields
@) T = (@) T A= =@M =T, te ;. (23)

this inequality contradicts & + A < I and lim,,, y" V() =co. Ifa+ A =1,
the proof is similar. It is sufficient to replace (23) with

0

S <Mi(t—T),tel

log

Suppose that (ii) is valid. Then (1), (14), and (19) yield
YO0 = M (O0) () e (24)
Let (15) hold. Put 0 = min(e, 0). If « < 0, then 0 = « and, (19) and (22) yield
OP0) = (") = (") e s

similarly, if « > 0, then 0 = 0 and

OY0) =1=(""®)", tel
From this and from (15), (19), and (24) we obtain

1+nll+8

YO = M (" V@) = My (YD) e,

where ¢ = ;[o +A—1- nll] > 0. Hence, the integration on [7, 7) and (18) yield
Yo U@ < [MiaT @ =]t e L = (,), +¢) . From this and from
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Taylor series theorem

oo=y(r—)—Z l( )<r—T>’ /(’ _2): =D (0)do

i=0

y<’><> T B ;
_Z =D 2)'( )/(r 0)" > Mdo < 00

asn — 2 — Ay > —1. The contradiction proves the statement in this case.

Let (16) hold. Then the second inequality in (16) yieldsa + 4 > 1+ | 1 and,
taking into account the argument used when (15) holds, it is enough to suppose
a > 0. The integration of (24) on [z, 7), (18), and (21) yields

(y(nfl)(t))lf)» > (O — DM, fr (y(S)(O,))adG
> (=DM —(yVm)",1eJ
hence, using (22), we have

(V@) = (VO) @) 1

h ()» — DM (t —1)

or y® () < t € Jwhere A, = and M, = ((A— 1)M1)_A2~ Then

1
Aa—1

)AZ’
s—1 (T s—1
oo=)’(f—)=zy Dy f - ”i), ¥ (0)do
i=0 :
(t)
S; l( )(r—T)—i— 1)'/(z—o)“*2da<oo (25)

as s — 1 — Ay > —1. The contradiction proves the statement in this case.
Let (17) hold. With respect to the proved conclusion for (15), it is enough to
supposethatoc >0.Putéd=2/[(c+1)mn—s—D+n—s+1]l. Asa+ A > 1,

thend € (0, ,_ S) and Lemma 4 can be applied to
o 2+a—1) n—s+1)35-2 <0
T =)@+ —s—D4n—s+11'7 T n—s—1 :

note that (A + «)d +y = 0.
Hence Lemma 4 (with [a, b) = [T, 1)), (14), and (22) yield

OV =y .y < [w f OO (o))yda]
< (wa / 60 (y“”(o))”da) S (26)

T £
< (wM‘f / " (o»(““””da) = Mi(r—1) ¢, 1€,
t
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where M3 = (wM?)™"/¢. Let Ay = S(nLS).Then(N) yields
(a+A)n—-—s—1)+n—s+1
S—Ay=s85—
2 +a—=1)
_sBta-D+2] @+ -1)—n—1
N 2h+a—1)
n+m—Da+ri—-1D—(a+r)n—-1)—n—1 0
> = U.
24+ a—1)

From this and from (26) we have that (25) holds and the contradiction gives the
assertion. O

Remark 2. (i) A special case of Theorem 2(ii) with (15) and & = 0 is published
in [2] Th. 1. (ii).
(i1) Note that if (16) holds, then @ + A > 1 + nil and s # 0.

Let us turn our attention to existence results.

Theorem3. Let 0 < T < 7 < 00,0 < A < A, 8 € {-1,1},M > 0,
My >0,M,>0,0ae R se{0,1,....n-2},a; e Rfor j=1,2,...,n—1
and & = max(0, ay, ..., a,_1) be such that

1
l<oa+4+XA a+Ar <1+
n—1
and

n—1

Mg " * < BAE X1, x) < Mo L
i=1
for teltr,t],Bx;>=M,i=1,2,...,n. 27

Then there exists a solution y of (1), defined in a left neighborhood of t, such
that (3) holds.

Proof. We prove the statement for 8 = 1; for 8 = —1 the proof'is similar. Suppose,
without loss of generality, that M > 1. As according to (27) all assumptions of
Lemma 2 are fulfilled, there exists T € [T, t) such that

t—T<1 (28)
and for k € {ko, ko + 1, ...}, ko > 2M the boundary-value problem
Y= fity, .y e T T,
Yy (T)y=M,i=0,1,....,.n =2, y" D)=k (29)

has a solution y; at the same time, 7 does not depend on k. Let J = [T, t].
Lemma 2 implies

y,Ei) > M and y,ii) are increasing on J for i=0,1,...,n—1. (30)
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Now, we estimate the derivatives of y; independently on k. By virtue of (28)—(30)

YO0 =M+ / YW (o)ydo < M+ yIV 0 —T) < 290 (0),
T

W =2y o (31)
teJ,i=0,1,...,n=2, k=ko,ko+1,....

We apply Lemma4to§d =2/[(n—s— 1)(e+X)+n—s+1]and [a, b] = J. Due
toa+ A > 1,wehaved € (0 ! ). If y, ®, and

> n—s

2@+r—1)
&= >0
(n—s)[(n—s—1)(oe+)»)+n—s+l]

are given by Lemma 4, then (o + 1)é + y = 0 and

—1/¢

n—1 T
[0 < [w f (y£”>(a))‘3(y£”(o))yda} : (32)

As (30) yields M" =1y V(1) < [T'=) (1), t € J andas (31) yields y." " (1) >
217y0 (1), 1 € J, it follows from & > 0,48 > 0, (1), (32), and from the first
inequality in (27) that

T —1/e
o < fo f Mf(y;i“)w))“a”(yi"”(o))”da}
t

T —1/e
a)M‘f/ 2(1—n)x<s(y£s)(0))<a+M6+VdO}
L t

_ - —1/e
— 2(1—n))~5wM<13/ do‘} =C(t — t)_l' ,te
t

IA

where C = (wM?2(1="*8)=1/¢ Hence, from this and from (30) and (31)

M < (@) n—1pgsl4+s—n _ 1 . _
<y <2 M C(r =t e Ji=0,1,... n—1,

and Lemma 3 yields the existence of a subsequence of {y;} (we denote it by {y} for
simplicity) that converges locally uniformly (together with the derivatives up to the
order n — 1) to a solution y of (1) on J. Note that (30) yields y?,i =0, 1,...,n—1
are increasing on J.

We prove that

lim y(1) = oo.
—>1—

Thus, suppose that (see (30))

M <yt <Qi<oo on [T,1). (33)
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Then according to (30) and M > 1, inequalities y?(r) > 1,i =0,1,...,n — 1
hold on J. Let ; > 0. Then (31) and & > 0 yield

@) = (o) =2 ) e .
Similarly, if o; < 0, (31) and @ > 0 yield
OO = 1= () =2 (@) e

Hence, (1) and (27) yield

(o) <MzZ CVO) M < M ()

< My (50" @) e Tk > ko, (34)

where M3 = (n — 1)20=Da g,
We prove that lim,_,,_ y"~D(f) = oco. Hence, suppose, contrarily, that

lim y" V(@) = 0, < .
t—>T1_

1
Let 7T} € [T, t) be suchthat t — T7 < 2’ M; ( Q; +1 ) »=1_The uniform convergence

of {y,i”_l)} to y("’l) on [T, T}] yields the existence of k > ko such that k >
4"=1(0, 4+ 1) and

WP —y" V0| <1 for k>k and te(T, Tyl
Because y"~V is increasing, we obtain
W) = 14 00, k= kK,

and the integration of (34) on [T}, t] yields

1—n
(=1 1 M;
I+ Q0x>y (1) = k”—‘+n_](T—Tl)

> (ot 1 1 . l_n>2"*1 1
(gl ) e

The contradiction proves that lim,_, ;_ y("’l) (f) = oo. Hence from this and from
(34) it follows that the assumptions of Lemma 5 are fulfilled and, thus, (32) con-
tradicts its conclusion. Hence y is unbounded on J and, as it is increasing on J,
lim;—,._ y(tf) = oo and (3) holds. O

Remark 3. Tt follows from the proof of Theorem 3 and from Remark 1 that for
sufficiently small positive 7, the solution y is defined on [0, 7).
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We illustrate the situation on special cases of (1). Consider the differential
equations

Y = rh(y)g(y" "), (35)
Y =r@hi(y, ...,y ), (36)
Y =r@h(y gy ), s € {0, 1,...,n -2}, (37

where r € C°(Ry),h € C°(R),g € C°(R),h; € C°(R"™1),M e (0,00),
T € (0,00),h(x)x > 0 for |x|] > M,r(r) # 0,g(x) > O for |[x|] > M,
Bhi(x1,...,x,—2) >0forBx; >M,i=1,...,n—2,and g € {—1, 1} .

Corollary 1. Let o; € R,i = 1,2,...,n — 1,& = max(«y,...,%—1),& € R,
M>0 M >0,My,>0,ands €{0,1,...,n—2}.

(i) Letl <a<a<1+ '  r(x)>0,

n—1’
Mylxsa|® < Thi(ers oo X)) il = Mi=0,1,...,n =1, (38)

and
n—1

i, < Moy Ixl bl = M, i=0,1,...,n— 1. (39)

i=l1

Then (36) has a solution y fulfilling (3).
(ii) If r(v) <0

or
r(ty >0, a <1 and(39) holds

or

1 —1 1
r(t)y>0,a>1+ a(n )+nt
n

_1,s> 0 — 1 , and (38)

holds, then (36) has no solution y fulfilling (3).

Proof. (i) Itis a consequence of Theorem 3, with A = A = O and [7, 7] C R+
being such that 7 > O on [T, T].

(i1) Itis an application of Theorem 1, Theorem 2(i), and Theorem 2(ii) with (17).

O

A simple application of Corollary 1 yields the following result.

Corollary 2. Consider the equation y™ = r(t)|y"® |* sgny", where s €

{1,...,n =2}, 7€(0,00),r(1) #0 and s > “("g;)fl”*l. Then this equation

has a solution y fulfilling (3) if and only if ¢ € (1,1 + nll] and r(t) > 0.
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Corollary 3. (i) LetO <A <A, M >0, M, >0, and 0 < o < & be such that

My x| < [ f), x* < g(0), [x| = M, (40)
|fQOl < 1x1%, g(x) < [xI*, |x] = M. (41)

Ifl<a4+r<a+xr<l1+
fulfilling (3).

(it) If r(r) <0
orr(t) > 0, (41) holds with @ € R and max(a,0) + A < 1
orr(t) > 0,0 <0,A > 1+ ', and (40) holds
orr(t) >0,a>0,A>1,s>0,0a+A>1+ ; and (40) holds

11 and r(t) > 0, then (37) has a solution y

n

or
1 2 —1 A—1
r() >0,a+A>1+ 8> ntn et ) (42)
n—1 3a+Ar—1)+2
and (40) holds, then (37) does not have solutions y fulfilling (3).
Proof. The argument is similar to the one in Corollary 1. O

Corollary 4. Consider the equation y™ = r(t)|y®|%|y"*=D|* sgn y® with T €
(0,00), (D) #0,s € {1,...,n =2}, @ > 0, = Oand s > > VD Then
this equation has a solution y fulfilling (3) if and only ifa + A € (1,1 + nil ] and

r(t) > 0.

Corollary 5. Let & > 0, M > 0, M| > 0 be such that |x|* < g(x) < M;|x*
for |x| = M and let |h| be bounded from below and from above by positive
constants for |x| > M. Then (35) has a singular solution fulfilling (3) if and only
ifl <a<1+4 ' andr(v)> 0.

Proof. Itis a special case of Corollary 3 withA = A and @ = o = 0. O

Remark 4. The results of Theorem 2 are valid also for @ = 0 and A = A. This
case was studied in Theorem 2 in [2]. But the proof of this theorem has a gap and
the upper estimation in (27) is missing. So the precise formulation is given by our
Theorem 3 and, similarly, the precise formulation of Corollary 2 in [2] is given by
Corollary 5.; Corollary 1 in [2] is not valid.

Remark 5. Condition (17) is not valid for s = 0 and for n = 2. There exists
s € {l,...,n — 2} for which (17) is valid (or the two last inequalities in (42) are
valid)ifo +4 > 1+ ,% andn > 3.If 1+ ' <a+r<1+,% andn >3,
then there exists no s € {1, ..., n — 2} for which (17) holds.

The problem of the existence of solution y of (1) fulfilling (3) is not solved
fully. The following example shows that solutions for which (3) is valid may exist
inthecasea + X1 > 1+ nil.

Example 1. The equation y™ = 3i(n— §)Iy’|‘3* ly"=D|sgny’, n > 3hasasolution

y() = ! , of the form (3). At the same time o + A = Z > 1+ nil .
(t—03
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