Miroslav Bartušek

## On the existence of unbounded noncontinuable solutions

Received: October 16, 2003; in final form: February 17, 2004
Published online: April 18, 2005 - © Springer-Verlag 2005

> Abstract. In this paper sufficient (necessary) conditions are given under which a differential equation of the $n$th order has a noncontinuable solution $y:[T, \tau) \rightarrow R, \tau<\infty$ fulfilling $\lim _{t \rightarrow \tau_{-}}\left|y^{(j)}(t)\right|=\infty, j=0,1, \ldots, n-1$

Mathematics Subject Classification (2000). 34C10, 34C15, 34D05
Key words. singular solutions - unbounded solutions

## 1. Introduction

Consider the $n$th order differential equation

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right), \tag{1}
\end{equation*}
$$

where $n \geq 2, \mathbb{R}_{+}=[0, \infty), \mathbb{R}=(-\infty, \infty), f \in C^{\circ}\left(R_{+} \times R^{n}\right)$.
Denote by $[[x]]$ the entire part of a number $x$.
A solution $y$ defined on $[T, \tau) \subset R_{+}$is called noncontinuable if $\tau<\infty$ and $y$ cannot be defined for $t=\tau$. Note that in this case $\lim \sup _{t \rightarrow \tau_{-}}\left|y^{(n-1)}(t)\right|=\infty$ and sometimes $y$ is called singular. A noncontinuable solution is called nonoscillatory if it is different from zero in a left neighbourhood of $\tau$.

The first results for the nonexistence of noncontinuable solutions are given by Wintner, see [8] or [11]; other results are obtained, e.g., in [4,5]. In particular, noncontinuable solutions do not exist if $h \in C^{\circ}\left(R_{+}\right)$and

$$
\left|f\left(t, x_{1}, \ldots, x_{n}\right)\right| \leq h(t) \sum_{i=1}^{n}\left|x_{i}\right| \quad \text { on } R_{+} \times R^{n}
$$

Our main goal is to investigate nonoscillatory noncontinuable solutions only. Results for the existence of such solutions of (1) and its special cases are obtained, e.g., in $[1-3,5,6,9-11]$ under the assumptions $\alpha \in\{-1,1\}, k \in\{1,2, \ldots, n\}$, $\left|f\left(t, x_{1}, \ldots x_{n}\right)\right| \geq r(t)\left|x_{k}\right|^{\lambda}$, and

$$
\begin{equation*}
\alpha f\left(t, x_{1}, \ldots, x_{n}\right) x_{k}>0 \quad \text { for large }\left|x_{j}\right|, j=1,2, \ldots, n \tag{2}
\end{equation*}
$$

[^0]where $r \in C^{\circ}\left(R_{+}\right)$and $r>0$ on $R_{+}$; noncontinuable solutions exist if $\alpha=1$ and $\lambda>1$ ([13], Th 11.3). If (2) holds with $\alpha=-1$, results for the existence of nonoscillatory noncontinuable solutions are obtained only under very restrictive assumptions posed on $f$, see [3].

In the last period, the problem of the existence of noncontinuable solutions with prescribed asymptotics on the right-hand side point $\tau$ of the definition interval is studied. More precisely, let $\tau \in(0, \infty)$. Then sufficient (necessary) conditions for the existence of a noncontinuable solution $y$ fulfilling

$$
\lim _{t \rightarrow \tau_{-}} y(t)=c_{\circ} \in R, \lim _{t \rightarrow \tau_{-}} y^{(i)}(t), i=1,2, \ldots, n-1 \quad \text { exist }
$$

are given in [7] (case $n=2$ ) and in [1,3] (case $n \geq 2$ ).
The results are enlarged in [2] to the case

$$
\lim _{t \rightarrow \tau_{-}}|y(t)|=\infty, \lim _{t \rightarrow \tau_{-}} y^{(i)}(t), i=1,2, \ldots, n-1 \quad \text { exist }
$$

it is clear that in this case $\lim _{t \rightarrow \tau_{-}} y^{(i)}(t) \operatorname{sgn} y(t)=\infty, i=1,2 \ldots, n-1$. So the following problem was solved: to give sufficient (necessary) conditions assuring that (1) has a solution $y$ satisfying the boundary-value conditions

$$
\begin{equation*}
\tau \in(0, \infty), \lim _{t \rightarrow \tau_{-}} y^{(i)}(t) \operatorname{sgn} y(t)=\infty, i=0,1, \ldots, n-1 \tag{3}
\end{equation*}
$$

and that is defined in a left neighbourhood of $\tau$. Note that some proofs in [2] are not correct, see Remark 4 below.

In the present paper we study problems (1) and (3); our approach is more broad than in [2].

## 2. Lemmas

We need some lemmas. The first one is a special case of [12, Cor. 1.1.].
Lemma 1. Let $[a, b] \subset R_{+}, \tilde{f} \in C^{\circ}\left([a, b] \times R^{n}\right)$ and

$$
\tilde{f}\left(t, x_{1}, \ldots, x_{n}\right) \geq 0 \quad \text { on } \quad[a, b] \times R^{n}
$$

Then the problem $u^{(n)}=\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right), u^{(i-1)}(a)=0$ for $i=1, \ldots$, $n-1, u^{(n-1)}(b)=0$ has at least one solution.

Lemma 2. Let $k$ be an integer, $\beta \in\{-1,1\}, \tau \in(0, \infty)$ and $M \in(0, \infty)$ be such that $k \geq 2 M$ and

$$
\begin{equation*}
\beta f\left(t, x_{1}, \ldots, x_{n}\right) \geq 0 \quad \text { for } t \in[0, \tau], \beta x_{i} \geq M, i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

Then there exist $T^{*} \in[0, \tau)$ such that $\tau-T^{*} \leq 1$ and the boundary-value problem (1), $y^{(i)}(T)=\beta M, i=0,1, \ldots, n-2, y^{(n-1)}(\tau)=\beta k$ has at least one solution $y_{k}$ for every $T \in\left[T^{*}, \tau\right)$. Moreover, $T^{*}$ does not depend on $k$ and $\left|y_{k}^{(n-1)}(t)\right|>M$ on $[T, \tau)$.

Proof. We prove the statement for $\beta=1$; for $\beta=-1$ the proof is similar. Let $T \in[0, \tau)$ be such that

$$
\begin{equation*}
\tau-T<M / B, \tau-T \leq 1 \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
B= & \max \left\{f\left(t, x_{1}, \ldots, x_{n}\right): t \in[0, \tau], M \leq x_{i} \leq M(n+1)\right. \\
& \text { for } \left.\quad i=1,2, \ldots, n-1, M \leq x_{n} \leq 2 M\right\}+1
\end{aligned}
$$

and denote $J=[T, \tau]$.
Consider an auxiliary problem $k \in\{1,2, \ldots\},, k \geq 2 M$,

$$
\begin{equation*}
u^{(n)}=\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right), u^{(j)}(T)=0, j=0,1, \ldots, n-2 ; u^{(n-1)}(\tau)=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right)= & f\left(t, \Phi(u+P(t)), \ldots, \Phi\left(u^{(n-1)}+P^{(n-1)}(t)\right)\right) \\
& \times g\left(u^{(n-1)}+P^{(n-1)}(t)\right), \\
\Phi(v)= & \left\{\begin{array}{lll}
v & \text { for } \quad v \geq M \\
M & \text { for } \quad v<M,
\end{array}\right. \\
P(t)= & M \sum_{j=0}^{n-2} \frac{(t-T)^{j}}{j!}+\frac{k}{(n-1)!}(t-T)^{n-1}, \\
g(v)= & \begin{cases}1 & \text { for } \quad v \geq M \\
2 v / M-1 & \text { for } \quad M / 2 \leq v<M \\
0 & \text { for } \quad v<M / 2 .\end{cases}
\end{aligned}
$$

From this and according to (4) $\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right) \geq 0$ on $[T, \tau) \times R^{n}$. If we put $[a, b]=[T, \tau]$ all assumptions of Lemma 1 are fulfilled and hence (6) has a solution $\bar{u}$.

As $P^{(j)}(T)=M$ for $j=0,1, \ldots, n-2$ and $P^{(n-1)}(\tau)=k$, the transformation $y=u+P$ transforms problem (6) into

$$
\begin{align*}
y^{(n)} & =f\left(t, \Phi(y), \ldots, \Phi\left(y^{(n-1)}\right)\right) g\left(y^{(n-1)}\right), \\
y^{(j)}(T) & =M, j=0,1, \ldots, n-2,  \tag{7}\\
y^{(n-1)}(\tau) & =k
\end{align*}
$$

and hence $y=\bar{u}+P$ is a solution of (7). Moreover, (4), (7), and the definition of $g$ yield $y^{(n)}(t) \geq 0$ on $J$ and we prove that $y^{(n-1)}(t) \geq 0$ on $J$. Assume there exists $t_{0} \in[T, \tau)$ such that $y^{(n-1)}\left(t_{0}\right)<0$. Then, in view of $y^{(n-1)}(\tau)=k>0$, because $y^{(n-1)}$ is increasing on $J$, there exists $t_{1} \in\left(t_{1}, \tau\right)$ such that $y^{(n-1)}(t)<0$ on $\left[t_{0}, t_{1}\right)$ and $y^{(n-1)}\left(t_{1}\right)=0$. From this and from the definition of $g$ we have $y^{(n)}(t) \equiv 0$ on $\left[t_{0}, t_{1}\right]$, which contradicts $y^{(n-1)}\left(t_{0}\right)<0$ and $y^{(n-1)}\left(t_{1}\right)=0$. From this

$$
\begin{equation*}
y^{(n)}(t) \geq 0, y^{(n-1)}(t) \geq 0 \quad \text { is nondecreasing on } J, \tag{8}
\end{equation*}
$$

and hence

$$
\begin{equation*}
M \leq y^{(j)}(t) \quad \text { are nondecreasing on } J \text { for } i=0,1, \ldots, n-2 \tag{9}
\end{equation*}
$$

We estimate $y^{(n-1)}$ from below and prove that

$$
\begin{equation*}
M<y^{(n-1)}(t), t \in J \tag{10}
\end{equation*}
$$

Suppose that (10) is not valid. As $k \geq 2 M$ and as (8) holds, there exist $T_{1}$ and $T_{2}$ such that

$$
T \leq T_{1}<T_{2} \leq \tau, y^{(n-1)}\left(T_{1}\right)=M, y^{(n-1)}\left(T_{2}\right)=2 M .
$$

From this, using (5), (7), and (8) we have

$$
\begin{aligned}
y^{(i)}(t) & =\sum_{j=0}^{n-i-2} \frac{M(t-T)^{j}}{j!}+\int_{T}^{t} \frac{(t-\sigma)^{n-i-2}}{(n-i-2)!} y^{(n-1)}(\sigma) d \sigma \\
& \leq M(n-1)+2 M=M(n+1), i=0,1, \ldots, n-2, t \in J
\end{aligned}
$$

which, together with (9) and (10), yields

$$
\begin{align*}
& M \leq y^{(i)}(t) \leq M(n-1), i=0,1, \ldots, n-2, t \in J \\
& M \leq y^{(n-1)}(t) \leq 2 M, t \in\left[T_{1}, T_{2}\right] \tag{11}
\end{align*}
$$

Hence

$$
\begin{aligned}
M & =y^{(n-1)}\left(T_{2}\right)-y^{(n-1)}\left(T_{1}\right)=\int_{T_{1}}^{T_{2}} y^{(n)}(t) d t \\
& =\int_{T_{1}}^{T_{2}} f\left(t, \Phi(y(t)), \ldots, \Phi\left(y^{(n-1)}(t)\right)\right) g\left(y^{(n-1)}(t)\right) d t \\
& =\int_{T_{1}}^{T_{2}} f\left(t, y(t), \ldots, y^{(n-1)}(t)\right) d t \leq B\left(T_{2}-T_{1}\right) \leq B(\tau-T) .
\end{aligned}
$$

This contradicts the first inequality in (5) and so (10) holds. From this and from (11)

$$
\Phi\left(y^{(i)}(t)\right) \equiv y^{(i)}(t), i=0,1, \ldots, n-1, g\left(y^{(n-1)}(t)\right) \equiv 1
$$

and $y$ is a solution of problem (1), $y^{(i)}(T)=M, i=0,1, \ldots, n-1$, $y^{(n-1)}(\tau)=k$, too.

Note that, according to (5), $T$ does not depend on $k$. Moreover, if (5) holds for $T=T^{*}$, then (5) is valid for $T \in\left[T^{*}, \tau\right)$, too.

Remark 1. It follows from (5) that for a fixed number $M$ and for sufficiently small positive $\tau$ we have $T^{*}=0$.

Lemma 3. Let $[a, b) \subset R_{+}, \tilde{f} \in C^{\circ}\left([a, b) \times R^{n}\right), \Phi \in C^{\circ}[a, b)$ be a nondecreasing function and let for $m \in\{1,2, \ldots\}$ fixed the equation $u^{(n)}=\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right)$ have a solution $u_{m}$, defined on $[a, b)$, such that

$$
\sum_{i=0}^{n-1}\left|u_{m}^{(i)}(t)\right| \leq \Phi(t) \quad \text { for } \quad t \in[a, b)
$$

Then there exists a subsequence $\left\{u_{m_{j}}\right\}_{j=1}^{\infty}$ of $\left\{u_{m}\right\}_{m=1}^{\infty}$ such that sequences $\left\{u_{m_{j}}^{(i)}\right\}_{j=1}^{\infty}$, $i=0,1, \ldots, n-1$ converge locally uniformly on $[a, b)$ and $u(t)=\lim _{j \rightarrow \infty} u_{m_{j}}(t)$ for $t \in[a, b)$ is a solution of $u^{(n)}=\tilde{f}\left(t, u, \ldots, u^{(n-1)}\right)$.

Proof. The assertion follows by applying the Arzelà-Ascoli Theorem, see e.g., [11] Lemma 10.2.

Lemma 4 ([11], Lemma 11.2). Let $y \in C^{(n)}[a, b), s \in\{0,1, \ldots, n-2\}$, $\delta \in\left(0, \frac{1}{n-s}\right)$ and

$$
y^{(i)}(t) y(t)>0 \quad \text { for } i=0,1, \ldots, n-1, y^{(n)}(t) y(t) \geq 0 \quad \text { on }[a, b) .
$$

Then

$$
\prod_{i=s}^{n-1}\left|y^{(i)}(t)\right|^{-\varepsilon} \geq \omega \int_{t}^{b}\left|y^{(n)}(\sigma)\right|^{\delta}\left|y^{(s)}(\sigma)\right|^{\gamma} d \sigma, t \in(a, b)
$$

where

$$
\varepsilon=\frac{2[1-(n-s) \delta]}{(n-s)(n-s-1)}>0, \gamma=\frac{(n-s+1) \delta-2}{n-s-1}
$$

and

$$
\omega=\varepsilon \prod_{i=1}^{n-s}[\delta+(n-s-i) \varepsilon]^{-\delta-(n-s-i) \varepsilon} .
$$

Lemma 5. Let $\lambda \leq 1+\frac{1}{n-1}, \tau<\infty$ and $M_{1}>0$. Let y be a solution of (1) defined on $[T, \tau) \subset R_{+}$such that $\lim _{t \rightarrow \tau_{-}}\left|y^{(n-1)}(t)\right|=\infty$ and

$$
\left|y^{(n)}(t)\right| \leq M_{1}\left|y^{(n-1)}(t)\right|^{\lambda}, t \in[T, \tau)
$$

Then $\lim _{t \rightarrow \tau_{-}}|y(t)|=\infty$.
Proof. Let $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. The case $\lim _{t \rightarrow \tau-} y^{(n-1)}(t)=-\infty$ can be studied similarly. Then $y$ has a limit for $t \rightarrow \tau_{-}$and suppose that $\lim _{t \rightarrow \tau-} y(t)=$ $c<\infty$. Moreover, $\bar{T} \in[T, \tau)$ exists such that $y^{(n-1)}(t)>0$ on $[\bar{T}, \tau)$ and the assumptions of the lemma yield

$$
\begin{equation*}
y^{(n)}(t) \leq M\left(y^{(n-1)}(t)\right)^{\lambda}, t \in[\bar{T}, \tau) \tag{12}
\end{equation*}
$$

Let $\lambda>1$. Then the integration of (12) on $[t, \tau)$ yields

$$
y^{(n-1)}(t) \geq\left[\lambda_{1} M_{1}(\tau-t)\right]^{-\lambda_{1}}, t \in[\bar{T}, \tau), \lambda_{1}=1 /(\lambda-1) .
$$

From this and from $n-1 \leq \lambda_{1}$ we have

$$
\begin{aligned}
c & =y(\tau-)=\sum_{i=0}^{n-2} \frac{y^{(i)}(\bar{T})}{i!}(\tau-\bar{T})^{i}+\int_{\bar{T}}^{\tau} \frac{(\tau-s)^{n-2}}{(n-2)!} y^{(n-1)}(s) d s \\
& \geq-\sum_{i=0}^{n-2} \frac{\left|y^{(i)}(\bar{T})\right|}{i!}(\tau-\bar{T})^{i}+\frac{\left(\lambda_{1} M_{1}\right)^{-\lambda_{1}}}{(n-2)!} \int_{\bar{T}}^{\tau}(\tau-s)^{n-2-\lambda_{1}} d s=\infty .
\end{aligned}
$$

The contradiction proves the statement of the lemma.
Let $\lambda \leq 1$. Then the integration of (12) yields

$$
\left(y^{(n-1)}(\tau-)\right)^{1-\lambda}-y^{(n-1)}(\bar{T})^{1-\lambda} \leq M_{1}(\tau-\bar{T})(1-\lambda) \quad \text { for } \quad \lambda<1
$$

and

$$
\lim _{t \rightarrow \tau-} \log \left(y^{(n-1)}(t) / y^{(n-1)}(\bar{T})\right) \leq M_{1}(\tau-\bar{T}) \quad \text { for } \quad \lambda=1
$$

the contradiction to $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$ shows that this case is impossible.

## 3. Main results

We begin our consideration with two nonexistence results.
Theorem 1. Let $\tau$ and $M$ be positive constants and $I \subset R_{+}$be a left neighborhood of $\tau$ such that $\beta f\left(t, x_{1}, \ldots, x_{n}\right) \leq 0$ for $\beta x_{i} \geq M, i=1,2, \ldots, n, \beta \in\{-1,1\}$, $t \in I$. Then there exists no solution $y$ of (1) fulfilling (3).

Proof. The theorem is a mild generalization of Theorem 1(i) in [2], and its proof is similar.

The following theorem solves the case in which $f$ has the opposite sign.
Theorem 2. Let $\tau, M$, and $M_{1}$ be positive constants and $I \subset R_{+}$a left neighborhood of $\tau$. Suppose that one of the following assumptions holds.
(i) Let $\alpha_{j} \in R$ for $j=1,2, \ldots, n-1, \bar{\alpha}=\max \left(0, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be such that $\bar{\alpha}+\lambda \leq 1$ and

$$
\begin{equation*}
0 \leq \beta f\left(t, x_{1}, \ldots, x_{n}\right) \leq M_{1} \sum_{i=1}^{n-1}\left|x_{i}\right|^{\alpha_{i}}\left|x_{n}\right|^{\lambda} \tag{13}
\end{equation*}
$$

for $t \in I, \beta x_{j} \geq M, j=1,2, \ldots, n$ and $\beta \in\{-1,1\}$;
(ii) Let $\alpha \in R, s \in\{0,1, \ldots, n-2\}$ and $\lambda \geq 0$ be such that

$$
\begin{equation*}
M_{1}\left|x_{s+1}\right|^{\alpha}\left|x_{n}\right|^{\lambda} \leq \beta f\left(t, x_{1}, \ldots, x_{n}\right) \tag{14}
\end{equation*}
$$

for $t \in I, \beta x_{j} \geq M, j=1,2, \ldots, n$ and $\beta \in\{-1,1\}$. Further, let either

$$
\begin{equation*}
\min (\alpha, 0)+\lambda>1+\frac{1}{n-1} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda>1 \quad \text { and } \quad s>\frac{1}{\alpha+\lambda-1} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha+\lambda>1+\frac{1}{n-1} \quad \text { and } \quad s>\frac{2 n+(n-1)(\alpha+\lambda-1)}{3(\alpha+\lambda-1)+2} . \tag{17}
\end{equation*}
$$

Then there exists no solution y of (1) such that (3) holds.
Proof. Let, contrarily, $y:\left[\tau_{1}, \tau\right) \rightarrow R$ be a solution of (1) such that $\left[\tau_{1}, \tau\right) \subset I$ and

$$
\begin{equation*}
\lim _{t \rightarrow \tau_{-}} y^{(i)}(t)=\infty, i=0,1, \ldots, n-1 \tag{18}
\end{equation*}
$$

The opposite case $\lim _{t \rightarrow \tau_{-}} y^{(i)}(t)=-\infty$ for $i=0,1, \ldots, n-1$ can be studied similarly.

Suppose without loss of generality that $M \geq 1$. Then there exists $\bar{T} \in\left[\tau_{1}, \tau\right)$ such that

$$
\begin{equation*}
y^{(i)}(t) \geq M \geq 1 \quad \text { on }[\bar{T}, \tau), i=0,1, \ldots, n-1 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau-\bar{T} \leq \frac{1}{2},(\tau-\bar{T})(1-\alpha-\lambda) M_{1}(n-1)<1 \tag{20}
\end{equation*}
$$

where $\alpha=1-\lambda$ in case (i). Note that, due to (13) and (14), we have $y^{(n)}(t)>0$ on $[\bar{T}, \tau)$, and hence (19) yields

$$
\begin{equation*}
y^{(i)}, i=0,1, \ldots, n-1 \quad \text { are increasing on } \quad[\bar{T}, \tau) \tag{21}
\end{equation*}
$$

From this, from (20), and from Taylor series theorem we have

$$
\begin{gathered}
y^{(i)}(t)=y^{(i)}(\bar{T})+\int_{\bar{T}}^{t} y^{(i+1)}(\sigma) d \sigma \leq K+\frac{1}{2} y^{(i+1)}(t) \\
t \in[\bar{T}, \tau), i=0,1, \ldots, n-2 \quad \text { where } \quad K=\sum_{j=0}^{n-2} y^{(j)}(\bar{T})
\end{gathered}
$$

hence, by virtue of (18), there exists $T \in[\bar{T}, \tau)$ such that

$$
\begin{equation*}
y^{(i)}(t) \leq y^{(i+1)}(t), t \in J=[T, \tau), i=0,1, \ldots, n-2 . \tag{22}
\end{equation*}
$$

Suppose that (i) is valid. At first, consider the case $\bar{\alpha}+\lambda<1$.

If $\alpha_{i} \leq 0, i \in\{1, \ldots, n-1\}$, then (19) and $\bar{\alpha} \geq 0$ yield

$$
\left(y^{(i-1)}(t)\right)^{\alpha_{i}} \leq 1 \leq\left(y^{(n-1)}(t)\right)^{\bar{\alpha}}, t \in J ;
$$

similarly in the case $\alpha_{i}>0, i \in\{1, \ldots, n-1\}$ we obtain from (19) and (22)

$$
1 \leq\left(y^{(i-1)}(t)\right)^{\alpha_{i}} \leq\left(y^{(n-1)}(t)\right)^{\alpha_{i}} \leq\left(y^{(n-1)}(t)\right)^{\bar{\alpha}}, t \in J .
$$

Hence

$$
\sum_{i=1}^{n-1}\left(y^{(i-1)}(t)\right)^{\alpha_{i}} \leq(n-1)\left(y^{(n-1)}(t)\right)^{\bar{\alpha}}, t \in J
$$

and (1), (13), and (19) yield

$$
y^{(n)}(t) \leq M_{1} \sum_{i=1}^{n-1}\left(y^{(i-1)}(t)\right)^{\alpha_{i}}\left(y^{(n-1)}(t)\right)^{\lambda} \leq \bar{M}_{1}\left(y^{(n-1)}(t)\right)^{\bar{\alpha}+\lambda},
$$

where $\bar{M}=(n-1) M_{1}$. From this the integration yields

$$
\begin{equation*}
\left(y^{(n-1)}(t)\right)^{1-\bar{\alpha}-\lambda}-\left(y^{(n-1)}(T)\right)^{1-\bar{\alpha}-\lambda} \leq(1-\lambda-\bar{\alpha}) \bar{M}_{1}(\tau-T), t \in J \tag{23}
\end{equation*}
$$

this inequality contradicts $\bar{\alpha}+\lambda<1$ and $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. If $\bar{\alpha}+\lambda=1$, the proof is similar. It is sufficient to replace (23) with

$$
\log \frac{y^{(n-1)}(t)}{y^{(n-1)}(T)} \leq \bar{M}_{1}(\tau-T), t \in J .
$$

Suppose that (ii) is valid. Then (1), (14), and (19) yield

$$
\begin{equation*}
y^{(n)}(t) \geq M_{1}\left(y^{(s)}(t)\right)^{\alpha}\left(y^{(n-1)}(t)\right)^{\lambda}, t \in J . \tag{24}
\end{equation*}
$$

Let (15) hold. Put $\sigma=\min (\alpha, 0)$. If $\alpha \leq 0$, then $\sigma=\alpha$ and, (19) and (22) yield

$$
\left(y^{(s)}(t)\right)^{\alpha} \geq\left(y^{(n-1)}(t)\right)^{\alpha}=\left(y^{(n-1)}(t)\right)^{\sigma}, t \in J
$$

similarly, if $\alpha>0$, then $\sigma=0$ and

$$
\left(y^{(s)}(t)\right)^{\alpha} \geq 1=\left(y^{(n-1)}(t)\right)^{\sigma}, t \in J .
$$

From this and from (15), (19), and (24) we obtain

$$
y^{(n)}(t) \geq M_{1}\left(y^{(n-1)}(t)\right)^{\sigma+\lambda} \geq M_{1}\left(y^{(n-1)}(t)\right)^{1+\frac{1}{n-1}+\varepsilon}, t \in J
$$

where $\varepsilon=\frac{1}{2}\left[\sigma+\lambda-1-\frac{1}{n-1}\right]>0$. Hence, the integration on $[t, \tau)$ and (18) yield $y^{(n-1)}(t) \leq\left[M_{1} \lambda_{1}^{-1}(\tau-t)\right]^{-\lambda_{1}}, t \in J, \lambda_{1}=\left(\frac{1}{n-1}+\varepsilon\right)^{-1}$. From this and from

Taylor series theorem

$$
\begin{aligned}
\infty & =y(\tau-)=\sum_{i=0}^{n-2} \frac{y^{(i)}(T)}{i!}(\tau-T)^{i}+\int_{T}^{\tau} \frac{(\tau-\sigma)^{n-2}}{(n-2)!} y^{(n-1)}(\sigma) d \sigma \\
& \leq \sum_{i=0}^{n-2} \frac{y^{(i)}(T)}{i!}(\tau-T)^{i}+\frac{1}{(n-2)!}\left(\frac{\lambda_{1}}{M_{1}}\right)^{\lambda_{1}} \int_{T}^{\tau}(\tau-\sigma)^{n-2-\lambda_{1}} d \sigma<\infty
\end{aligned}
$$

as $n-2-\lambda_{1}>-1$. The contradiction proves the statement in this case.
Let (16) hold. Then the second inequality in (16) yields $\alpha+\lambda>1+\frac{1}{n-1}$ and, taking into account the argument used when (15) holds, it is enough to suppose $\alpha>0$. The integration of (24) on $[t, \tau),(18)$, and (21) yields

$$
\begin{aligned}
\left(y^{(n-1)}(t)\right)^{1-\lambda} & \geq(\lambda-1) M_{1} \int_{t}^{\tau}\left(y^{(s)}(\sigma)\right)^{\alpha} d \sigma \\
& \geq(\lambda-1) M_{1}(\tau-t)\left(y^{(s)}(t)\right)^{\alpha}, t \in J
\end{aligned}
$$

hence, using (22), we have

$$
\left(y^{(s)}(t)\right)^{\alpha+\lambda-1} \leq\left(y^{(s)}(t)\right)^{\alpha}\left(y^{(n-1)}(t)\right)^{\lambda-1} \leq \frac{1}{(\lambda-1) M_{1}(\tau-t)}
$$

or $y^{(s)}(t) \leq \frac{M_{2}}{(\tau-t)^{\lambda_{2}}}, t \in J$ where $\lambda_{2}=\frac{1}{\lambda+\alpha-1} \quad$ and $\quad M_{2}=\left((\lambda-1) M_{1}\right)^{-\lambda_{2}}$. Then

$$
\begin{align*}
\infty & =y(\tau-)=\sum_{i=0}^{s-1} \frac{y^{(i)}(T)}{i!}(\tau-T)^{i}+\int_{T}^{\tau} \frac{(\tau-\sigma)^{s-1}}{(s-1)!} y^{(s)}(\sigma) d \sigma \\
& \leq \sum_{i=0}^{s-1} \frac{y^{(i)}(T)}{i!}(\tau-T)^{i}+\frac{M_{2}}{(s-1)!} \int_{T}^{\tau}(\tau-\sigma)^{s-1-\lambda_{2}} d \sigma<\infty \tag{25}
\end{align*}
$$

as $s-1-\lambda_{2}>-1$. The contradiction proves the statement in this case.
Let (17) hold. With respect to the proved conclusion for (15), it is enough to suppose that $\alpha>0$. Put $\delta=2 /[(\alpha+\lambda)(n-s-1)+n-s+1]$. As $\alpha+\lambda>1$, then $\delta \in\left(0, \frac{1}{n-s}\right)$ and Lemma 4 can be applied to

$$
\varepsilon=\frac{2(\lambda+\alpha-1)}{(n-s)[(\alpha+\lambda)(n-s-1)+n-s+1]}, \gamma=\frac{(n-s+1) \delta-2}{n-s-1}<0 ;
$$

note that $(\lambda+\alpha) \delta+\gamma=0$.
Hence Lemma 4 (with $[a, b)=[T, \tau)$ ), (14), and (22) yield

$$
\begin{align*}
\left(y^{(s)}(t)\right)^{n-s} & \leq y^{(s)}(t) \ldots y^{(n-1)}(t) \leq\left[\omega \int_{t}^{\tau}\left(y^{(n)}(\sigma)\right)^{\delta}\left(y^{(s)}(\sigma)\right)^{\gamma} d \sigma\right]^{-\frac{1}{\varepsilon}} \\
& \leq\left(\omega M_{1}^{\delta} \int_{t}^{\tau}\left(y^{(s)}(\sigma)\right)^{\alpha \delta+\gamma}\left(y^{(n-1)}(\sigma)\right)^{\lambda \delta} d \sigma\right)^{-\frac{1}{\varepsilon}}  \tag{26}\\
& \leq\left(\omega M_{1}^{\delta} \int_{t}^{\tau}\left(y^{(s)}(\sigma)\right)^{(\alpha+\lambda) \delta+\gamma} d \sigma\right)^{-\frac{1}{\varepsilon}}=M_{3}(\tau-t)^{-\frac{1}{\varepsilon}}, t \in J,
\end{align*}
$$

where $M_{3}=\left(\omega M_{1}^{\delta}\right)^{-1 / \varepsilon}$. Let $\lambda_{2}=\frac{1}{\varepsilon(n-s)}$. Then (17) yields

$$
\begin{aligned}
s-\lambda_{2} & =s-\frac{(\alpha+\lambda)(n-s-1)+n-s+1}{2(\lambda+\alpha-1)} \\
& =\frac{s[3(\lambda+\alpha-1)+2]-(\alpha+\lambda)(n-1)-n-1}{2(\lambda+\alpha-1)} \\
& >\frac{2 n+(n-1)(\alpha+\lambda-1)-(\alpha+\lambda)(n-1)-n-1}{2(\lambda+\alpha-1)}=0 .
\end{aligned}
$$

From this and from (26) we have that (25) holds and the contradiction gives the assertion.

Remark 2. (i) A special case of Theorem 2(ii) with (15) and $\alpha=0$ is published in [2] Th. 1. (ii).
(ii) Note that if (16) holds, then $\alpha+\lambda>1+\frac{1}{n-1}$ and $s \neq 0$.

Let us turn our attention to existence results.
Theorem 3. Let $0 \leq \bar{\tau}<\tau<\infty, 0 \leq \lambda \leq \lambda_{1}, \beta \in\{-1,1\}, M>0$, $M_{1}>0, M_{2}>0, \alpha \in R, s \in\{0,1, \ldots, n-2\}, \alpha_{j} \in R$ for $j=1,2, \ldots, n-1$ and $\bar{\alpha}=\max \left(0, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be such that

$$
1<\alpha+\lambda, \bar{\alpha}+\lambda_{1} \leq 1+\frac{1}{n-1}
$$

and

$$
\begin{gather*}
M_{1}\left|x_{s+1}\right|^{\alpha}\left|x_{n}\right|^{\lambda} \leq \beta f\left(t, x_{1}, \ldots, x_{n}\right) \leq M_{2} \sum_{i=1}^{n-1}\left|x_{i}\right|^{\alpha_{i}}\left|x_{n}\right|^{\lambda_{1}} \\
\text { for } t \in[\bar{\tau}, \tau], \beta x_{i} \geq M, i=1,2, \ldots, n . \tag{27}
\end{gather*}
$$

Then there exists a solution $y$ of (1), defined in a left neighborhood of $\tau$, such that (3) holds.

Proof. We prove the statement for $\beta=1$; for $\beta=-1$ the proof is similar. Suppose, without loss of generality, that $M \geq 1$. As according to (27) all assumptions of Lemma 2 are fulfilled, there exists $T \in[\bar{\tau}, \tau)$ such that

$$
\begin{equation*}
\tau-T \leq 1 \tag{28}
\end{equation*}
$$

and for $k \in\left\{k_{0}, k_{0}+1, \ldots\right\}, k_{0} \geq 2 M$ the boundary-value problem

$$
\begin{align*}
y^{(n)} & =f\left(t, y, \ldots, y^{(n-1)}\right), t \in[T, \tau], \\
y^{(i)}(T) & =M, i=0,1, \ldots, n-2, \quad y^{(n-1)}(\tau)=k \tag{29}
\end{align*}
$$

has a solution $y_{k}$; at the same time, $T$ does not depend on $k$. Let $J=[T, \tau]$. Lemma 2 implies

$$
\begin{equation*}
y_{k}^{(i)} \geq M \quad \text { and } y_{k}^{(i)} \quad \text { are increasing on } \quad J \quad \text { for } \quad i=0,1, \ldots, n-1 \tag{30}
\end{equation*}
$$

Now, we estimate the derivatives of $y_{k}$ independently on $k$. By virtue of (28)-(30)

$$
\begin{gather*}
y_{k}^{(i)}(t)=M+\int_{T}^{t} y_{k}^{(i+1)}(\sigma) d \sigma \leq M+y_{k}^{(i+1)}(t)(t-T) \leq 2 y_{k}^{(i+1)}(t), \\
y_{k}^{(i)}(t) \leq 2^{n-1} y_{k}^{(n-1)}(t)  \tag{31}\\
t \in J, i=0,1, \ldots, n-2, k=k_{0}, k_{0}+1, \ldots
\end{gather*}
$$

We apply Lemma 4 to $\delta=2 /[(n-s-1)(\alpha+\lambda)+n-s+1]$ and $[a, b]=J$. Due to $\alpha+\lambda>1$, we have $\delta \in\left(0, \frac{1}{n-s}\right)$. If $\gamma, \omega$, and

$$
\varepsilon=\frac{2(\alpha+\lambda-1)}{(n-s)[(n-s-1)(\alpha+\lambda)+n-s+1]}>0
$$

are given by Lemma 4 , then $(\alpha+\lambda) \delta+\gamma=0$ and

$$
\begin{equation*}
\prod_{i=s}^{n-1} y_{k}^{(i)}(t) \leq\left[\omega \int_{t}^{\tau}\left(y_{k}^{(n)}(\sigma)\right)^{\delta}\left(y_{k}^{(s)}(\sigma)\right)^{\gamma} d \sigma\right]^{-1 / \varepsilon} \tag{32}
\end{equation*}
$$

As (30) yields $M^{n-s-1} y_{k}^{(n-1)}(t) \leq \prod_{i=s}^{n-1} y_{k}^{(i)}(t), t \in J$ and as (31) yields $y_{k}^{(n-1)}(t) \geq$ $2^{1-n} y_{k}^{(s)}(t), t \in J$, it follows from $\varepsilon>0, \lambda \delta \geq 0$, (1), (32), and from the first inequality in (27) that

$$
\begin{aligned}
M^{n-s-1} y_{k}^{(n-1)}(t) & \leq\left[\omega \int_{t}^{\tau} M_{1}^{\delta}\left(y_{k}^{(s)}(\sigma)\right)^{\alpha \delta+\gamma}\left(y_{k}^{(n-1)}(\sigma)\right)^{\lambda \delta} d \sigma\right]^{-1 / \varepsilon} \\
& \leq\left[\omega M_{1}^{\delta} \int_{t}^{\tau} 2^{(1-n) \lambda \delta}\left(y_{k}^{(s)}(\sigma)\right)^{(\alpha+\lambda) \delta+\gamma} d \sigma\right]^{-1 / \varepsilon} \\
& =\left[2^{(1-n) \lambda \delta} \omega M_{1}^{\delta} \int_{t}^{\tau} d \sigma\right]^{-1 / \varepsilon}=C(\tau-t)^{-\frac{1}{\varepsilon}}, t \in J,
\end{aligned}
$$

where $C=\left(\omega M_{1}^{\delta} 2^{(1-n) \lambda \delta}\right)^{-1 / \varepsilon}$. Hence, from this and from (30) and (31)

$$
M \leq y_{k}^{(i)}(t) \leq 2^{n-1} M^{1+s-n} C(\tau-t)^{-\frac{1}{\varepsilon}}, t \in J, i=0,1, \ldots, n-1,
$$

and Lemma 3 yields the existence of a subsequence of $\left\{y_{k}\right\}$ (we denote it by $\left\{y_{k}\right\}$ for simplicity) that converges locally uniformly (together with the derivatives up to the order $n-1$ ) to a solution $y$ of (1) on $J$. Note that (30) yields $y^{(i)}, i=0,1, \ldots, n-1$ are increasing on $J$.

We prove that

$$
\lim _{t \rightarrow \tau_{-}} y(t)=\infty
$$

Thus, suppose that (see (30))

$$
\begin{equation*}
M \leq y(t) \leq Q_{1}<\infty \quad \text { on } \quad[T, \tau) \tag{33}
\end{equation*}
$$

Then according to (30) and $M \geq 1$, inequalities $y^{(i)}(t) \geq 1, i=0,1, \ldots, n-1$ hold on $J$. Let $\alpha_{i}>0$. Then (31) and $\bar{\alpha}>0$ yield

$$
\left(y_{k}^{(i-1)}(t)\right)^{\alpha_{i}} \leq\left(y_{k}^{(i-1)}(t)\right)^{\bar{\alpha}} \leq 2^{(n-1) \bar{\alpha}}\left(y_{k}^{(n-1)}(t)\right)^{\bar{\alpha}}, t \in J .
$$

Similarly, if $\alpha_{i} \leq 0$, (31) and $\bar{\alpha} \geq 0$ yield

$$
\left(y_{k}^{(i-1)}(t)\right)^{\alpha_{i}} \leq 1 \leq\left(y_{k}^{(n-1)}(t)\right)^{\bar{\alpha}} \leq 2^{(n-1) \bar{\alpha}}\left(y_{k}^{(n-1)}(t)\right)^{\bar{\alpha}}, t \in J .
$$

Hence, (1) and (27) yield

$$
\begin{align*}
y_{k}^{(n)}(t) & \leq M_{2} \sum_{i=1}^{n-1}\left(y_{k}^{(i-1)}(t)\right)^{\alpha_{i}} y_{k}^{(n-1)}(t)^{\lambda_{1}} \leq M_{3}\left(y_{k}^{(n-1)}(t)\right)^{\bar{\alpha}+\lambda_{1}} \\
& \leq M_{3}\left(y_{k}^{(n-1)}(t)\right)^{1+\frac{1}{n-1}}, t \in J, k \geq k_{0} \tag{34}
\end{align*}
$$

where $M_{3}=(n-1) 2^{(n-1) \bar{\alpha}} M_{2}$.
We prove that $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. Hence, suppose, contrarily, that

$$
\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=Q_{2}<\infty
$$

Let $T_{1} \in[T, \tau)$ be such that $\tau-T_{1} \leq \frac{n-1}{4 M_{3}}\left(\frac{1}{Q_{2}+1}\right)^{\frac{1}{n-1}}$. The uniform convergence of $\left\{y_{k}^{(n-1)}\right\}$ to $y^{(n-1)}$ on [ $\left.T, T_{1}\right]$ yields the existence of $\bar{k} \geq k_{0}$ such that $\bar{k} \geq$ $4^{n-1}\left(Q_{2}+1\right)$ and

$$
\left|y_{k}^{(n-1)}(t)-y^{(n-1)}(t)\right|<1 \quad \text { for } \quad k \geq \bar{k} \quad \text { and } \quad t \in\left[T, T_{1}\right] .
$$

Because $y^{(n-1)}$ is increasing, we obtain

$$
y_{k}^{(n-1)}\left(T_{1}\right) \leq 1+Q_{2}, k \geq \bar{k},
$$

and the integration of (34) on $\left[T_{1}, \tau\right]$ yields

$$
\begin{aligned}
1+Q_{2} & \geq y_{k}^{(n-1)}\left(T_{1}\right) \geq\left(k^{-\frac{1}{n-1}}+\frac{M_{3}}{n-1}\left(\tau-T_{1}\right)\right)^{1-n} \\
& \geq\left(\bar{k}^{-\frac{1}{n-1}}+\frac{1}{4}\left(\frac{1}{Q_{2}+1}\right)^{\frac{1}{n-1}}\right)^{1-n} \geq 2^{n-1}\left(Q_{2}+1\right) .
\end{aligned}
$$

The contradiction proves that $\lim _{t \rightarrow \tau_{-}} y^{(n-1)}(t)=\infty$. Hence from this and from (34) it follows that the assumptions of Lemma 5 are fulfilled and, thus, (32) contradicts its conclusion. Hence $y$ is unbounded on $J$ and, as it is increasing on $J$, $\lim _{t \rightarrow \tau_{-}} y(t)=\infty$ and (3) holds.

Remark 3. It follows from the proof of Theorem 3 and from Remark 1 that for sufficiently small positive $\tau$, the solution $y$ is defined on $[0, \tau)$.

We illustrate the situation on special cases of (1). Consider the differential equations

$$
\begin{align*}
& y^{(n)}=r(t) h(y) g\left(y^{(n-1)}\right),  \tag{35}\\
& y^{(n)}=r(t) h_{1}\left(y, \ldots, y^{n-2}\right)  \tag{36}\\
& y^{(n)}=r(t) h\left(y^{(s)}\right) g\left(y^{(n-1)}\right), s \in\{0,1, \ldots, n-2\} \tag{37}
\end{align*}
$$

where $r \in C^{\circ}\left(R_{+}\right), h \in C^{\circ}(R), g \in C^{\circ}(R), h_{1} \in C^{\circ}\left(R^{n-1}\right), M \in(0, \infty)$, $\tau \in(0, \infty), h(x) x>0$ for $|x| \geq M, r(\tau) \neq 0, g(x)>0$ for $|x| \geq M$, $\beta h_{1}\left(x_{1}, \ldots, x_{n-2}\right)>0$ for $\beta x_{i} \geq M, i=1, \ldots, n-2$, and $\beta \in\{-1,1\}$.

Corollary 1. Let $\alpha_{i} \in R, i=1,2, \ldots, n-1, \bar{\alpha}=\max \left(\alpha_{1}, \ldots, \alpha_{n-1}\right), \alpha \in R$, $M>0, M_{1}>0, M_{2}>0$, and $s \in\{0,1, \ldots, n-2\}$.
(i) Let $1<\alpha \leq \bar{\alpha} \leq 1+\frac{1}{n-1}, r(\tau)>0$,

$$
\begin{equation*}
M_{1}\left|x_{s+1}\right|^{\alpha} \leq\left|h_{1}\left(x_{1}, \ldots, x_{n-1}\right)\right|,\left|x_{i}\right| \geq M, i=0,1, \ldots, n-1, \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{1}\left(x_{1}, \ldots, x_{n-1}\right)\right| \leq M_{2} \sum_{i=1}^{n-1}\left|x_{i}\right|^{\alpha_{i}},\left|x_{i}\right| \geq M, i=0,1, \ldots, n-1 \tag{39}
\end{equation*}
$$

Then (36) has a solution y fulfilling (3).
(ii) If $r(\tau)<0$
or

$$
r(\tau)>0, \bar{\alpha} \leq 1 \quad \text { and }(39) \text { holds }
$$

or

$$
r(\tau)>0, \alpha>1+\frac{1}{n-1}, s>\frac{\alpha(n-1)+n+1}{3 \alpha-1}, \quad \text { and }(38)
$$

holds, then (36) has no solution y fulfilling (3).
Proof. (i) It is a consequence of Theorem 3, with $\lambda=\lambda_{1}=0$ and $[\bar{\tau}, \tau] \subset R_{+}$ being such that $r>0$ on $[\bar{\tau}, \tau]$.
(ii) It is an application of Theorem 1, Theorem 2(i), and Theorem 2(ii) with (17).

A simple application of Corollary 1 yields the following result.
Corollary 2. Consider the equation $y^{(n)}=r(t)\left|y^{(s)}\right|^{\alpha}$ sgn $y^{(s)}$, where $s \in$ $\{1, \ldots, n-2\}, \tau \in(0, \infty), r(\tau) \neq 0$ and $s>\frac{\alpha(n-1)+n+1}{3 \alpha-1}$. Then this equation has a solution y fulfilling (3) if and only if $\alpha \in\left(1,1+\frac{1}{n-1}\right]$ and $r(\tau)>0$.

Corollary 3. (i) Let $0 \leq \lambda \leq \bar{\lambda}, M>0, M_{1}>0$, and $0 \leq \alpha \leq \bar{\alpha}$ be such that

$$
\begin{array}{r}
M_{1}|x|^{\alpha} \leq|f(x)|,|x|^{\lambda} \leq g(x),|x| \geq M, \\
|f(x)| \leq|x|^{\bar{\alpha}}, g(x) \leq|x|^{\bar{\lambda}},|x| \geq M . \tag{41}
\end{array}
$$

If $1<\alpha+\lambda \leq \bar{\alpha}+\bar{\lambda} \leq 1+\frac{1}{n-1}$ and $r(\tau)>0$, then (37) has a solution $y$ fulfilling (3).
(ii) If $r(\tau)<0$
or $r(\tau)>0$, (41) holds with $\bar{\alpha} \in R$ and $\max (\bar{\alpha}, 0)+\lambda \leq 1$
or $r(\tau)>0, \alpha \leq 0, \lambda>1+\frac{1}{n-1}$ and (40) holds
or $r(\tau)>0, \alpha>0, \lambda>1, s>0, \alpha+\lambda>1+\frac{1}{s}$ and (40) holds
or

$$
\begin{equation*}
r(\tau)>0, \alpha+\lambda>1+\frac{1}{n-1}, s>\frac{2 n+(n-1)(\alpha+\lambda-1)}{3(\alpha+\lambda-1)+2} \tag{42}
\end{equation*}
$$

and (40) holds, then (37) does not have solutions y fulfilling (3).
Proof. The argument is similar to the one in Corollary 1.
Corollary 4. Consider the equation $y^{(n)}=r(t)\left|y^{(s)}\right|^{\alpha}\left|y^{(n-1)}\right|^{\lambda} \operatorname{sgn} y^{(s)}$ with $\tau \in$ $(0, \infty), r(\tau) \neq 0, s \in\{1, \ldots, n-2\}, \alpha \geq 0, \lambda \geq 0$ and $s>\frac{2 n+(n-1)(\alpha+\lambda-1)}{3(\alpha+\lambda-1)+2}$. Then this equation has a solution y fulfilling (3) if and only if $\alpha+\lambda \in\left(1,1+\frac{1}{n-1}\right]$ and $r(\tau)>0$.

Corollary 5. Let $\lambda \geq 0, M>0, M_{1}>0$ be such that $|x|^{\lambda} \leq g(x) \leq M_{1}|x|^{\lambda}$ for $|x| \geq M$ and let $|h|$ be bounded from below and from above by positive constants for $|x| \geq M$. Then (35) has a singular solution fulfilling (3) if and only if $1<\lambda \leq 1+\frac{1}{n-1}$ and $r(\tau)>0$.

Proof. It is a special case of Corollary 3 with $\lambda=\lambda_{1}$ and $\bar{\alpha}=\alpha=0$.
Remark 4. The results of Theorem 2 are valid also for $\alpha=0$ and $\lambda=\bar{\lambda}$. This case was studied in Theorem 2 in [2]. But the proof of this theorem has a gap and the upper estimation in (27) is missing. So the precise formulation is given by our Theorem 3 and, similarly, the precise formulation of Corollary 2 in [2] is given by Corollary 5.; Corollary 1 in [2] is not valid.

Remark 5. Condition (17) is not valid for $s=0$ and for $n=2$. There exists $s \in\{1, \ldots, n-2\}$ for which (17) is valid (or the two last inequalities in (42) are valid) if $\alpha+\lambda>1+\frac{4}{2 n-5}$ and $n \geq 3$. If $1+\frac{1}{n-1}<\alpha+\lambda \leq 1+\frac{4}{2 n-5}$ and $n \geq 3$, then there exists no $s \in\{1, \ldots, n-2\}$ for which (17) holds.

The problem of the existence of solution $y$ of (1) fulfilling (3) is not solved fully. The following example shows that solutions for which (3) is valid may exist in the case $\alpha+\lambda>1+\frac{1}{n-1}$.

Example 1. The equation $y^{(n)}=3^{\frac{3}{4}}\left(n-\frac{2}{3}\right)\left|y^{\prime}\right|^{\frac{3}{4}}\left|y^{(n-1)}\right| \operatorname{sgn} y^{\prime}, n \geq 3$ has a solution $y(t)=\frac{1}{(\tau-t)^{\frac{1}{3}}}$ of the form (3). At the same time $\alpha+\lambda=\frac{7}{4}>1+\frac{1}{n-1}$.

## References

1. Bartušek, M.: On existence of singular solutions of $n$-th order differential equations. Arch. Math., Brno 36, 395-404 (2000)
2. Bartušek, M.: On existence of singular solutions. J. Math. Anal. Appl. 280, 232-240 (2003)
3. Bartušek, M., Osička, J.: On existence of singular solutions. Georgian Math. J. 8, 669-681 (2001)
4. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Global monotocity and oscillation for second order differential equations. Czech. Math. J. (to appear)
5. Coffman, C.V., Wong, J.S.W.: Oscillation and nonoscillation theorems for second order differential equations. Funkc. Ekvacioj 15, 119-130 (1972)
6. Izjumova, D.V., Kiguradze, I.T.: Some remarks on solutions of $u^{\prime \prime}+a(t) f(u)=0$. Differ. Uravn. 4, 589-605 (1968) (in Russian)
7. Jaroš, J., Kusano, T.: On black hole solutions of second order differential equations with a singularity in the differential operator. Funkc. Ekvacioj 43, 491-509 (2000)
8. Hartman, P.: Ordinary differential equations. New York, London, Sydney: Wiley 1964
9. Kiguradze, I.T.: Asymptotic properties of solutions of a nonlinear differential equation of Emden-Fowler type. Izv. Akad. Nauk SSSR, Ser. Math. 29, 965-986 (1965)
10. Kiguradze, I.T.: Remark on oscillatory solutions of $u^{\prime \prime}+a(t)|u|^{n} \operatorname{sign} u=0$. Čas. Pěst. Mat. 92, 343-350 (1967)
11. Kiguradze, I.T., Chanturia, T.: Asymptotic properties of solution of nonautonomous ordinary differential equations. Dordrecht: Kluwer 1993
12. Puža, B.: On some boundary-value problems for nonlinear functional-differential equations. Differ. Uravn. 37, 761-770 (2001) (in Russian)

[^0]:    M. Bartušek: Department of Mathematics, Masaryk University, Janáčkovo nám. 2a, 60200 Brno, Czech Republic, e-mail: bartusek@math.muni.cz

