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Abstract. In this paper sufficient (necessary) conditions are given under which a differential
equation of the nth order has a noncontinuable solution y : [T, τ) → R, τ < ∞ fulfilling
limt→τ− |y( j)(t)| = ∞, j = 0, 1, . . . , n − 1.
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1. Introduction

Consider the nth order differential equation

y(n) = f(t, y, y′, . . . , y(n−1)), (1)

where n ≥ 2,R+ = [0,∞),R = (−∞,∞), f ∈ C◦(R+ × Rn).
Denote by [[x]] the entire part of a number x.
A solution y defined on [T, τ) ⊂ R+ is called noncontinuable if τ < ∞ and y

cannot be defined for t = τ . Note that in this case lim supt→τ− |y(n−1)(t)| = ∞ and
sometimes y is called singular. A noncontinuable solution is called nonoscillatory
if it is different from zero in a left neighbourhood of τ .

The first results for the nonexistence of noncontinuable solutions are given by
Wintner, see [8] or [11]; other results are obtained, e.g., in [4,5]. In particular,
noncontinuable solutions do not exist if h ∈ C◦(R+) and

| f(t, x1, . . . , xn)| ≤ h(t)
n∑

i=1

|xi| on R+ × Rn.

Our main goal is to investigate nonoscillatory noncontinuable solutions only. Re-
sults for the existence of such solutions of (1) and its special cases are obtained,
e.g., in [1–3,5,6,9–11] under the assumptions α ∈ {−1, 1}, k ∈ {1, 2, . . . , n},
| f(t, x1, . . . xn)| ≥ r(t)|xk|λ, and

α f(t, x1, . . . , xn)xk > 0 for large |x j |, j = 1, 2, . . . , n (2)
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where r ∈ C◦(R+) and r > 0 on R+; noncontinuable solutions exist if α = 1
and λ > 1 ([13], Th 11.3). If (2) holds with α = −1, results for the existence of
nonoscillatory noncontinuable solutions are obtained only under very restrictive
assumptions posed on f , see [3].

In the last period, the problem of the existence of noncontinuable solutions
with prescribed asymptotics on the right-hand side point τ of the definition interval
is studied. More precisely, let τ ∈ (0,∞). Then sufficient (necessary) conditions
for the existence of a noncontinuable solution y fulfilling

lim
t→τ−

y(t) = c◦ ∈ R, lim
t→τ−

y(i)(t), i = 1, 2, . . . , n − 1 exist

are given in [7] (case n = 2) and in [1,3] (case n ≥ 2).
The results are enlarged in [2] to the case

lim
t→τ−

|y(t)| = ∞, lim
t→τ−

y(i)(t), i = 1, 2, . . . , n − 1 exist;

it is clear that in this case limt→τ− y(i)(t) sgn y(t) = ∞, i = 1, 2 . . . , n − 1. So the
following problem was solved: to give sufficient (necessary) conditions assuring
that (1) has a solution y satisfying the boundary-value conditions

τ ∈ (0,∞), lim
t→τ−

y(i)(t) sgn y(t) = ∞, i = 0, 1, . . . , n − 1 (3)

and that is defined in a left neighbourhood of τ . Note that some proofs in [2] are
not correct, see Remark 4 below.

In the present paper we study problems (1) and (3); our approach is more broad
than in [2].

2. Lemmas

We need some lemmas. The first one is a special case of [12, Cor. 1.1.].

Lemma 1. Let [a, b] ⊂ R+, f̃ ∈ C◦([a, b] × Rn) and

f̃ (t, x1, . . . , xn) ≥ 0 on [a, b] × Rn.

Then the problem u(n) = f̃ (t, u, . . . , u(n−1)), u(i−1)(a) = 0 for i = 1, . . . ,

n − 1, u(n−1)(b) = 0 has at least one solution.

Lemma 2. Let k be an integer, β ∈ {−1, 1}, τ ∈ (0,∞) and M ∈ (0,∞) be such
that k ≥ 2M and

β f(t, x1, . . . , xn) ≥ 0 for t ∈ [0, τ], βxi ≥ M, i = 1, 2, . . . , n. (4)

Then there exist T ∗ ∈ [0, τ) such that τ − T ∗ ≤ 1 and the boundary-value
problem (1), y(i)(T ) = βM, i = 0, 1, . . . , n − 2, y(n−1)(τ) = βk has at least
one solution yk for every T ∈ [T ∗, τ). Moreover, T ∗ does not depend on k and
|y(n−1)

k (t)| > M on [T, τ).
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Proof. We prove the statement for β = 1; for β = −1 the proof is similar. Let
T ∈ [0, τ) be such that

τ − T < M/B, τ − T ≤ 1, (5)

where

B = max { f(t, x1, . . . , xn) : t ∈ [0, τ], M ≤ xi ≤ M(n + 1)

for i = 1, 2, . . . , n − 1, M ≤ xn ≤ 2M} + 1

and denote J = [T, τ].
Consider an auxiliary problem k ∈ {1, 2, . . . , }, k ≥ 2M,

u(n) = f̃ (t, u, . . . , u(n−1)), u( j)(T ) = 0, j = 0, 1, . . . , n − 2; u(n−1)(τ) = 0,

(6)

where

f̃ (t, u, . . . , u(n−1)) = f
(
t,Φ(u + P(t)), . . . , Φ(u(n−1) + P(n−1)(t))

)

× g
(
u(n−1) + P(n−1)(t)

)
,

Φ(v) =
{

v for v ≥ M

M for v < M,

P(t) = M
n−2∑

j=0

(t − T ) j

j! + k

(n − 1)!(t − T )n−1,

g(v) =

⎧
⎪⎨

⎪⎩

1 for v ≥ M

2v/M − 1 for M/2 ≤ v < M

0 for v < M/2.

From this and according to (4) f̃
(
t, u, . . . , u(n−1)

) ≥ 0 on [T, τ) × Rn . If we
put [a, b] = [T, τ] all assumptions of Lemma 1 are fulfilled and hence (6) has
a solution ū.

As P( j)(T ) = M for j = 0, 1, . . . , n −2 and P(n−1)(τ) = k, the transformation
y = u + P transforms problem (6) into

y(n) = f
(
t,Φ(y), . . . , Φ(y(n−1))

)
g(y(n−1)),

y( j)(T ) = M, j = 0, 1, . . . , n − 2, (7)

y(n−1)(τ) = k

and hence y = ū + P is a solution of (7). Moreover, (4), (7), and the definition of g
yield y(n)(t) ≥ 0 on J and we prove that y(n−1)(t) ≥ 0 on J . Assume there exists
t0 ∈ [T, τ) such that y(n−1)(t0) < 0. Then, in view of y(n−1)(τ) = k > 0, because
y(n−1) is increasing on J , there exists t1 ∈ (t1, τ) such that y(n−1)(t) < 0 on [t0, t1)
and y(n−1)(t1) = 0. From this and from the definition of g we have y(n)(t) ≡ 0 on
[t0, t1], which contradicts y(n−1)(t0) < 0 and y(n−1)(t1) = 0. From this

y(n)(t) ≥ 0, y(n−1)(t) ≥ 0 is nondecreasing on J, (8)
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and hence

M ≤ y( j)(t) are nondecreasing on J for i = 0, 1, . . . , n − 2. (9)

We estimate y(n−1) from below and prove that

M < y(n−1)(t), t ∈ J. (10)

Suppose that (10) is not valid. As k ≥ 2M and as (8) holds, there exist T1 and T2

such that

T ≤ T1 < T2 ≤ τ, y(n−1)(T1) = M, y(n−1)(T2) = 2M.

From this, using (5), (7), and (8) we have

y(i)(t) =
n−i−2∑

j=0

M(t − T ) j

j! +
∫ t

T

(t − σ)n−i−2

(n − i − 2)! y(n−1)(σ)dσ

≤ M(n − 1) + 2M = M(n + 1), i = 0, 1, . . . , n − 2, t ∈ J,

which, together with (9) and (10), yields

M ≤ y(i)(t) ≤ M(n − 1), i = 0, 1, . . . , n − 2, t ∈ J,

M ≤ y(n−1)(t) ≤ 2M, t ∈ [T1, T2]. (11)

Hence

M = y(n−1)(T2) − y(n−1)(T1) =
∫ T2

T1

y(n)(t)dt

=
∫ T2

T1

f
(
t,Φ(y(t)), . . . , Φ(y(n−1)(t))

)
g(y(n−1)(t)) dt

=
∫ T2

T1

f(t, y(t), . . . , y(n−1)(t))dt ≤ B(T2 − T1) ≤ B(τ − T ).

This contradicts the first inequality in (5) and so (10) holds. From this and from (11)

Φ(y(i)(t)) ≡ y(i)(t), i = 0, 1, . . . , n − 1, g(y(n−1)(t)) ≡ 1,

and y is a solution of problem (1), y(i)(T ) = M, i = 0, 1, . . . , n − 1,

y(n−1)(τ) = k, too.
Note that, according to (5), T does not depend on k. Moreover, if (5) holds for

T = T ∗, then (5) is valid for T ∈ [T ∗, τ), too. ��
Remark 1. It follows from (5) that for a fixed number M and for sufficiently small
positive τ we have T ∗ = 0.
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Lemma 3. Let [a, b) ⊂ R+, f̃ ∈ C◦([a, b) × Rn),Φ ∈ C◦[a, b) be a nondecreas-
ing function and let for m ∈ {1, 2, . . . } fixed the equation u(n) = f̃ (t, u, . . . , u(n−1))

have a solution um, defined on [a, b), such that

n−1∑

i=0

∣∣u(i)
m (t)

∣∣ ≤ Φ(t) for t ∈ [a, b).

Then there exists a subsequence {um j }∞j=1 of {um}∞m=1 such that sequences {u(i)
m j

}∞j=1,

i = 0, 1, . . . , n −1 converge locally uniformly on [a, b) and u(t) = lim j→∞ um j (t)

for t ∈ [a, b) is a solution of u(n) = f̃ (t, u, . . . , u(n−1)).

Proof. The assertion follows by applying the Arzelà–Ascoli Theorem, see e.g., [11]
Lemma 10.2. ��
Lemma 4 ([11], Lemma 11.2). Let y ∈ C(n)[a, b), s ∈ {0, 1, . . . , n − 2},
δ ∈ (

0, 1
n−s

)
and

y(i)(t)y(t) > 0 for i = 0, 1, . . . , n − 1, y(n)(t)y(t) ≥ 0 on [a, b).

Then

n−1∏

i=s

|y(i)(t)|−ε ≥ ω

∫ b

t
|y(n)(σ)|δ|y(s)(σ)|γ dσ, t ∈ (a, b),

where

ε = 2[1 − (n − s)δ]
(n − s)(n − s − 1)

> 0, γ = (n − s + 1)δ − 2

n − s − 1

and

ω = ε

n−s∏

i=1

[δ + (n − s − i)ε]−δ−(n−s−i)ε.

Lemma 5. Let λ ≤ 1+ 1
n−1 , τ < ∞ and M1 > 0. Let y be a solution of (1) defined

on [T, τ) ⊂ R+ such that limt→τ− |y(n−1)(t)| = ∞ and

|y(n)(t)| ≤ M1|y(n−1)(t)|λ, t ∈ [T, τ).

Then limt→τ− |y(t)| = ∞.

Proof. Let limt→τ− y(n−1)(t) = ∞. The case limt→τ− y(n−1)(t) = −∞ can be
studied similarly. Then y has a limit for t → τ− and suppose that limt→τ− y(t) =
c < ∞. Moreover, T̄ ∈ [T, τ) exists such that y(n−1)(t) > 0 on [T̄ , τ) and the
assumptions of the lemma yield

y(n)(t) ≤ M(y(n−1)(t))λ, t ∈ [T̄ , τ). (12)
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Let λ > 1. Then the integration of (12) on [t, τ) yields

y(n−1)(t) ≥ [λ1 M1(τ − t)]−λ1, t ∈ [T̄ , τ), λ1 = 1/(λ − 1).

From this and from n − 1 ≤ λ1 we have

c = y(τ−) =
n−2∑

i=0

y(i)(T̄ )

i! (τ − T̄ )i +
∫ τ

T̄

(τ − s)n−2

(n − 2)! y(n−1)(s)ds

≥ −
n−2∑

i=0

|y(i)(T̄ )|
i! (τ − T̄ )i + (λ1 M1)

−λ1

(n − 2)!
∫ τ

T̄
(τ − s)n−2−λ1 ds = ∞.

The contradiction proves the statement of the lemma.
Let λ ≤ 1. Then the integration of (12) yields

(
y(n−1)(τ−)

)1−λ − y(n−1)(T̄ )1−λ ≤ M1(τ − T̄ )(1 − λ) for λ < 1

and

lim
t→τ− log(y(n−1)(t)/y(n−1)(T̄ )) ≤ M1(τ − T̄ ) for λ = 1;

the contradiction to limt→τ− y(n−1)(t) = ∞ shows that this case is impossible. ��

3. Main results

We begin our consideration with two nonexistence results.

Theorem 1. Let τ and M be positive constants and I ⊂ R+ be a left neighborhood
of τ such that β f(t, x1, . . . , xn) ≤ 0 for βxi ≥ M, i = 1, 2, . . . , n, β ∈ {−1, 1},
t ∈ I. Then there exists no solution y of (1) fulfilling (3).

Proof. The theorem is a mild generalization of Theorem 1(i) in [2], and its proof
is similar. ��

The following theorem solves the case in which f has the opposite sign.

Theorem 2. Let τ , M, and M1 be positive constants and I ⊂ R+ a left neighbor-
hood of τ . Suppose that one of the following assumptions holds.

(i) Let α j ∈ R for j = 1, 2, . . . , n − 1, ᾱ = max(0, α1, . . . , αn−1) be such that
ᾱ + λ ≤ 1 and

0 ≤ β f(t, x1, . . . , xn) ≤ M1

n−1∑

i=1

|xi|αi |xn|λ (13)

for t ∈ I, βx j ≥ M, j = 1, 2, . . . , n and β ∈ {−1, 1};
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(ii) Let α ∈ R, s ∈ {0, 1, . . . , n − 2} and λ ≥ 0 be such that

M1|xs+1|α|xn|λ ≤ β f(t, x1, . . . , xn) (14)

for t ∈ I, βx j ≥ M, j = 1, 2, . . . , n and β ∈ {−1, 1}. Further, let either

min(α, 0) + λ > 1 + 1

n − 1
(15)

or

λ > 1 and s >
1

α + λ − 1
(16)

or

α + λ > 1 + 1

n − 1
and s >

2n + (n − 1)(α + λ − 1)

3(α + λ − 1) + 2
. (17)

Then there exists no solution y of (1) such that (3) holds.

Proof. Let, contrarily, y : [τ1, τ) → R be a solution of (1) such that [τ1, τ) ⊂ I
and

lim
t→τ−

y(i)(t) = ∞, i = 0, 1, . . . , n − 1. (18)

The opposite case limt→τ− y(i)(t) = −∞ for i = 0, 1, . . . , n − 1 can be studied
similarly.

Suppose without loss of generality that M ≥ 1. Then there exists T̄ ∈ [τ1, τ)

such that

y(i)(t) ≥ M ≥ 1 on [T̄ , τ), i = 0, 1, . . . , n − 1 (19)

and

τ − T̄ ≤ 1

2
, (τ − T̄ )(1 − α − λ)M1(n − 1) < 1, (20)

where α = 1 − λ in case (i). Note that, due to (13) and (14), we have y(n)(t) > 0
on [T̄ , τ), and hence (19) yields

y(i), i = 0, 1, . . . , n − 1 are increasing on [T̄ , τ). (21)

From this, from (20), and from Taylor series theorem we have

y(i)(t) = y(i)(T̄ ) +
∫ t

T̄
y(i+1)(σ)dσ ≤ K + 1

2
y(i+1)(t),

t ∈ [T̄ , τ), i = 0, 1, . . . , n − 2 where K =
n−2∑

j=0

y( j)(T̄ );

hence, by virtue of (18), there exists T ∈ [T̄ , τ) such that

y(i)(t) ≤ y(i+1)(t), t ∈ J = [T, τ), i = 0, 1, . . . , n − 2. (22)

Suppose that (i) is valid. At first, consider the case ᾱ + λ < 1.
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If αi ≤ 0, i ∈ {1, . . . , n − 1}, then (19) and ᾱ ≥ 0 yield

(
y(i−1)(t)

)αi ≤ 1 ≤ (
y(n−1)(t)

)ᾱ
, t ∈ J;

similarly in the case αi > 0, i ∈ {1, . . . , n − 1} we obtain from (19) and (22)

1 ≤ (
y(i−1)(t)

)αi ≤ (
y(n−1)(t)

)αi ≤ (
y(n−1)(t)

)ᾱ
, t ∈ J.

Hence

n−1∑

i=1

(
y(i−1)(t)

)αi ≤ (n − 1)
(
y(n−1)(t)

)ᾱ
, t ∈ J

and (1), (13), and (19) yield

y(n)(t) ≤ M1

n−1∑

i=1

(
y(i−1)(t)

)αi
(
y(n−1)(t)

)λ ≤ M̄1
(
y(n−1)(t)

)ᾱ+λ
,

where M̄ = (n − 1)M1. From this the integration yields

(
y(n−1)(t)

)1−ᾱ−λ − (
y(n−1)(T )

)1−ᾱ−λ ≤ (1 − λ − ᾱ)M̄1(τ − T ), t ∈ J; (23)

this inequality contradicts ᾱ + λ < 1 and limt→τ− y(n−1)(t) = ∞. If ᾱ + λ = 1,
the proof is similar. It is sufficient to replace (23) with

log
y(n−1)(t)

y(n−1)(T )
≤ M̄1(τ − T ), t ∈ J.

Suppose that (ii) is valid. Then (1), (14), and (19) yield

y(n)(t) ≥ M1
(
y(s)(t)

)α(
y(n−1)(t)

)λ
, t ∈ J. (24)

Let (15) hold. Put σ = min(α, 0). If α ≤ 0, then σ = α and, (19) and (22) yield

(
y(s)(t)

)α ≥ (
y(n−1)(t)

)α = (
y(n−1)(t)

)σ
, t ∈ J;

similarly, if α > 0, then σ = 0 and

(
y(s)(t)

)α ≥ 1 = (
y(n−1)(t)

)σ
, t ∈ J.

From this and from (15), (19), and (24) we obtain

y(n)(t) ≥ M1
(
y(n−1)(t)

)σ+λ ≥ M1
(
y(n−1)(t)

)1+ 1
n−1 +ε

, t ∈ J,

where ε = 1
2 [σ + λ − 1 − 1

n−1 ] > 0. Hence, the integration on [t, τ) and (18) yield

y(n−1)(t) ≤ [
M1λ

−1
1 (τ − t)

]−λ1, t ∈ J, λ1 = ( 1
n−1 + ε

)−1
. From this and from
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Taylor series theorem

∞ = y(τ−) =
n−2∑

i=0

y(i)(T )

i! (τ − T )i +
∫ τ

T

(τ − σ)n−2

(n − 2)! y(n−1)(σ)dσ

≤
n−2∑

i=0

y(i)(T )

i! (τ − T )i + 1

(n − 2)!
(

λ1

M1

)λ1 ∫ τ

T
(τ − σ)n−2−λ1 dσ < ∞

as n − 2 − λ1 > −1. The contradiction proves the statement in this case.
Let (16) hold. Then the second inequality in (16) yields α + λ > 1 + 1

n−1 and,
taking into account the argument used when (15) holds, it is enough to suppose
α > 0. The integration of (24) on [t, τ), (18), and (21) yields

(
y(n−1)(t)

)1−λ ≥ (λ − 1)M1

∫ τ

t

(
y(s)(σ)

)α
dσ

≥ (λ − 1)M1(τ − t)
(
y(s)(t)

)α
, t ∈ J;

hence, using (22), we have

(
y(s)(t)

)α+λ−1 ≤ (
y(s)(t)

)α(
y(n−1)(t)

)λ−1 ≤ 1

(λ − 1)M1(τ − t)

or y(s)(t) ≤ M2
(τ−t)λ2

, t ∈ J where λ2 = 1
λ+α−1 and M2 = (

(λ−1)M1
)−λ2 . Then

∞ = y(τ−) =
s−1∑

i=0

y(i)(T )

i! (τ − T )i +
∫ τ

T

(τ − σ)s−1

(s − 1)! y(s)(σ)dσ

≤
s−1∑

i=0

y(i)(T )

i! (τ − T )i + M2

(s − 1)!
∫ τ

T
(τ − σ)s−1−λ2 dσ < ∞ (25)

as s − 1 − λ2 > −1. The contradiction proves the statement in this case.
Let (17) hold. With respect to the proved conclusion for (15), it is enough to

suppose that α > 0. Put δ = 2/[(α + λ)(n − s − 1) + n − s + 1]. As α + λ > 1,
then δ ∈ (0, 1

n−s ) and Lemma 4 can be applied to

ε = 2(λ + α − 1)

(n − s)[(α + λ)(n − s − 1) + n − s + 1] , γ = (n − s + 1)δ − 2

n − s − 1
< 0;

note that (λ + α)δ + γ = 0.
Hence Lemma 4 (with [a, b) = [T, τ)), (14), and (22) yield

(y(s)(t))n−s ≤ y(s)(t) . . . y(n−1)(t) ≤
[
ω

∫ τ

t
(y(n)(σ))δ(y(s)(σ))γ dσ

]− 1
ε

≤
(

ωMδ
1

∫ τ

t
(y(s)(σ))αδ+γ (y(n−1)(σ))λδdσ

)− 1
ε

(26)

≤
(

ωMδ
1

∫ τ

t
(y(s)(σ))(α+λ)δ+γ dσ

)− 1
ε

= M3(τ − t)−
1
ε , t ∈ J,
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where M3 = (ωMδ
1)

−1/ε. Let λ2 = 1
ε(n−s) . Then (17) yields

s − λ2 = s − (α + λ)(n − s − 1) + n − s + 1

2(λ + α − 1)

= s
[
3(λ + α − 1) + 2

] − (α + λ)(n − 1) − n − 1

2(λ + α − 1)

>
2n + (n − 1)(α + λ − 1) − (α + λ)(n − 1) − n − 1

2(λ + α − 1)
= 0.

From this and from (26) we have that (25) holds and the contradiction gives the
assertion. ��
Remark 2. (i) A special case of Theorem 2(ii) with (15) and α = 0 is published

in [2] Th. 1. (ii).
(ii) Note that if (16) holds, then α + λ > 1 + 1

n−1 and s = 0.

Let us turn our attention to existence results.

Theorem 3. Let 0 ≤ τ̄ < τ < ∞, 0 ≤ λ ≤ λ1, β ∈ {−1, 1}, M > 0,

M1 > 0, M2 > 0, α ∈ R, s ∈ {0, 1, . . . , n − 2}, α j ∈ R for j = 1, 2, . . . , n − 1
and ᾱ = max(0, α1, . . . , αn−1) be such that

1 < α + λ, ᾱ + λ1 ≤ 1 + 1

n − 1

and

M1|xs+1|α|xn|λ ≤ β f(t, x1, . . . , xn) ≤ M2

n−1∑

i=1

|xi |αi |xn|λ1

for t ∈ [τ̄ , τ], βxi ≥ M, i = 1, 2, . . . , n. (27)

Then there exists a solution y of (1), defined in a left neighborhood of τ , such
that (3) holds.

Proof. We prove the statement for β = 1; for β = −1 the proof is similar. Suppose,
without loss of generality, that M ≥ 1. As according to (27) all assumptions of
Lemma 2 are fulfilled, there exists T ∈ [τ̄ , τ) such that

τ − T ≤ 1 (28)

and for k ∈ {k0, k0 + 1, . . . }, k0 ≥ 2M the boundary-value problem

y(n) = f(t, y, . . . , y(n−1)), t ∈ [T, τ],
y(i)(T ) = M, i = 0, 1, . . . , n − 2, y(n−1)(τ) = k (29)

has a solution yk; at the same time, T does not depend on k. Let J = [T, τ].
Lemma 2 implies

y(i)
k ≥ M and y(i)

k are increasing on J for i = 0, 1, . . . , n − 1. (30)
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Now, we estimate the derivatives of yk independently on k. By virtue of (28)–(30)

y(i)
k (t) = M +

∫ t

T
y(i+1)

k (σ)dσ ≤ M + y(i+1)
k (t)(t − T ) ≤ 2y(i+1)

k (t),

y(i)
k (t) ≤ 2n−1y(n−1)

k (t) (31)

t ∈ J, i = 0, 1, . . . , n − 2, k = k0, k0 + 1, . . . .

We apply Lemma 4 to δ = 2/[(n − s − 1)(α+λ)+ n − s + 1] and [a, b] = J . Due
to α + λ > 1, we have δ ∈ (0, 1

n−s ). If γ , ω, and

ε = 2(α + λ − 1)

(n − s)
[
(n − s − 1)(α + λ) + n − s + 1

] > 0

are given by Lemma 4, then (α + λ)δ + γ = 0 and

n−1∏

i=s

y(i)
k (t) ≤

[
ω

∫ τ

t

(
y(n)

k (σ)
)δ(

y(s)
k (σ)

)γ
dσ

]−1/ε

. (32)

As (30) yields Mn−s−1 y(n−1)
k (t) ≤ ∏n−1

i=s y(i)
k (t), t ∈ J and as (31) yields y(n−1)

k (t) ≥
21−n y(s)

k (t), t ∈ J , it follows from ε > 0, λδ ≥ 0, (1), (32), and from the first
inequality in (27) that

Mn−s−1 y(n−1)
k (t) ≤

[
ω

∫ τ

t
Mδ

1

(
y(s)

k (σ)
)αδ+γ (

y(n−1)
k (σ)

)λδ
dσ

]−1/ε

≤
[
ωMδ

1

∫ τ

t
2(1−n)λδ

(
y(s)

k (σ)
)(α+λ)δ+γ

dσ

]−1/ε

=
[

2(1−n)λδωMδ
1

∫ τ

t
dσ

]−1/ε

= C(τ − t)−
1
ε , t ∈ J,

where C = (ωMδ
12(1−n)λδ)−1/ε. Hence, from this and from (30) and (31)

M ≤ y(i)
k (t) ≤ 2n−1M1+s−nC(τ − t)−

1
ε , t ∈ J, i = 0, 1, . . . , n − 1,

and Lemma 3 yields the existence of a subsequence of {yk} (we denote it by {yk} for
simplicity) that converges locally uniformly (together with the derivatives up to the
order n−1) to a solution y of (1) on J . Note that (30) yields y(i), i = 0, 1, . . . , n−1
are increasing on J .

We prove that

lim
t→τ−

y(t) = ∞.

Thus, suppose that (see (30))

M ≤ y(t) ≤ Q1 < ∞ on [T, τ). (33)
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Then according to (30) and M ≥ 1, inequalities y(i)(t) ≥ 1, i = 0, 1, . . . , n − 1
hold on J . Let αi > 0. Then (31) and ᾱ > 0 yield

(
y(i−1)

k (t)
)αi ≤ (

y(i−1)
k (t)

)ᾱ ≤ 2(n−1)ᾱ
(
y(n−1)

k (t)
)ᾱ

, t ∈ J.

Similarly, if αi ≤ 0, (31) and ᾱ ≥ 0 yield

(
y(i−1)

k (t)
)αi ≤ 1 ≤ (

y(n−1)
k (t)

)ᾱ ≤ 2(n−1)ᾱ
(
y(n−1)

k (t)
)ᾱ

, t ∈ J.

Hence, (1) and (27) yield

y(n)
k (t) ≤ M2

n−1∑

i=1

(
y(i−1)

k (t)
)αi y(n−1)

k (t)λ1 ≤ M3
(
y(n−1)

k (t)
)ᾱ+λ1

≤ M3
(
y(n−1)

k (t)
)1+ 1

n−1 , t ∈ J, k ≥ k0, (34)

where M3 = (n − 1)2(n−1)ᾱM2.
We prove that limt→τ− y(n−1)(t) = ∞. Hence, suppose, contrarily, that

lim
t→τ−

y(n−1)(t) = Q2 < ∞.

Let T1 ∈ [T, τ) be such that τ − T1 ≤ n−1
4M3

( 1
Q2+1

) 1
n−1 . The uniform convergence

of {y(n−1)
k } to y(n−1) on [T, T1] yields the existence of k̄ ≥ k0 such that k̄ ≥

4n−1(Q2 + 1) and
∣∣y(n−1)

k (t) − y(n−1)(t)
∣∣ < 1 for k ≥ k̄ and t ∈ [T, T1].

Because y(n−1) is increasing, we obtain

y(n−1)
k (T1) ≤ 1 + Q2, k ≥ k̄,

and the integration of (34) on [T1, τ] yields

1 + Q2 ≥ y(n−1)
k (T1) ≥

(
k− 1

n−1 + M3

n − 1
(τ − T1)

)1−n

≥
(

k̄− 1
n−1 + 1

4

(
1

Q2 + 1

) 1
n−1

)1−n

≥ 2n−1(Q2 + 1).

The contradiction proves that limt→τ− y(n−1)(t) = ∞. Hence from this and from
(34) it follows that the assumptions of Lemma 5 are fulfilled and, thus, (32) con-
tradicts its conclusion. Hence y is unbounded on J and, as it is increasing on J ,
limt→τ− y(t) = ∞ and (3) holds. ��
Remark 3. It follows from the proof of Theorem 3 and from Remark 1 that for
sufficiently small positive τ , the solution y is defined on [0, τ).
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We illustrate the situation on special cases of (1). Consider the differential
equations

y(n) = r(t)h(y)g(y(n−1)), (35)

y(n) = r(t)h1(y, . . . , yn−2), (36)

y(n) = r(t)h(y(s))g(y(n−1)), s ∈ {0, 1, . . . , n − 2}, (37)

where r ∈ C◦(R+), h ∈ C◦(R), g ∈ C◦(R), h1 ∈ C◦(Rn−1), M ∈ (0,∞),

τ ∈ (0,∞), h(x)x > 0 for |x| ≥ M, r(τ) = 0, g(x) > 0 for |x| ≥ M,

βh1(x1, . . . , xn−2) > 0 for βxi ≥ M, i = 1, . . . , n − 2, and β ∈ {−1, 1} .

Corollary 1. Let αi ∈ R, i = 1, 2, . . . , n − 1, ᾱ = max(α1, . . . , αn−1), α ∈ R,

M > 0, M1 > 0, M2 > 0, and s ∈ {0, 1, . . . , n − 2}.
(i) Let 1 < α ≤ ᾱ ≤ 1 + 1

n−1 , r(τ) > 0,

M1|xs+1|α ≤ |h1(x1, . . . , xn−1)|, |xi| ≥ M, i = 0, 1, . . . , n − 1, (38)

and

|h1(x1, . . . , xn−1)| ≤ M2

n−1∑

i=1

|xi |αi , |xi| ≥ M, i = 0, 1, . . . , n − 1. (39)

Then (36) has a solution y fulfilling (3).
(ii) If r(τ) < 0

or

r(τ) > 0, ᾱ ≤ 1 and (39) holds

or

r(τ) > 0, α > 1 + 1

n − 1
, s >

α(n − 1) + n + 1

3α − 1
, and (38)

holds, then (36) has no solution y fulfilling (3).

Proof. (i) It is a consequence of Theorem 3, with λ = λ1 = 0 and [τ̄ , τ] ⊂ R+
being such that r > 0 on [τ̄ , τ].

(ii) It is an application of Theorem 1, Theorem 2(i), and Theorem 2(ii) with (17).
��

A simple application of Corollary 1 yields the following result.

Corollary 2. Consider the equation y(n) = r(t) | y(s) |α sgn y(s), where s ∈
{1, . . . , n − 2}, τ ∈ (0,∞), r(τ) = 0 and s > α(n−1)+n+1

3α−1 . Then this equation

has a solution y fulfilling (3) if and only if α ∈ (1, 1 + 1
n−1 ] and r(τ) > 0.
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Corollary 3. (i) Let 0 ≤ λ ≤ λ̄, M > 0, M1 > 0, and 0 ≤ α ≤ ᾱ be such that

M1 |x|α ≤ | f(x)|, |x|λ ≤ g(x), |x| ≥ M, (40)

| f(x)| ≤ |x|ᾱ, g(x) ≤ |x|λ̄, |x| ≥ M. (41)

If 1 < α + λ ≤ ᾱ + λ̄ ≤ 1 + 1
n−1 and r(τ) > 0, then (37) has a solution y

fulfilling (3).
(ii) If r(τ) < 0

or r(τ) > 0, (41) holds with ᾱ ∈ R and max(ᾱ, 0) + λ ≤ 1
or r(τ) > 0, α ≤ 0, λ > 1 + 1

n−1 and (40) holds

or r(τ) > 0, α > 0, λ > 1, s > 0, α + λ > 1 + 1
s and (40) holds

or

r(τ) > 0, α + λ > 1 + 1

n − 1
, s >

2n + (n − 1)(α + λ − 1)

3(α + λ − 1) + 2
(42)

and (40) holds, then (37) does not have solutions y fulfilling (3).

Proof. The argument is similar to the one in Corollary 1. ��
Corollary 4. Consider the equation y(n) = r(t)|y(s)|α|y(n−1)|λ sgn y(s) with τ ∈
(0,∞), r(τ) = 0, s ∈ {1, . . . , n − 2}, α ≥ 0, λ ≥ 0 and s > 2n+(n−1)(α+λ−1)

3(α+λ−1)+2 . Then

this equation has a solution y fulfilling (3) if and only if α + λ ∈ (1, 1 + 1
n−1 ] and

r(τ) > 0.

Corollary 5. Let λ ≥ 0, M > 0, M1 > 0 be such that |x|λ ≤ g(x) ≤ M1|x|λ
for |x| ≥ M and let |h| be bounded from below and from above by positive
constants for |x| ≥ M. Then (35) has a singular solution fulfilling (3) if and only
if 1 < λ ≤ 1 + 1

n−1 and r(τ) > 0.

Proof. It is a special case of Corollary 3 with λ = λ1 and ᾱ = α = 0. ��
Remark 4. The results of Theorem 2 are valid also for α = 0 and λ = λ̄. This
case was studied in Theorem 2 in [2]. But the proof of this theorem has a gap and
the upper estimation in (27) is missing. So the precise formulation is given by our
Theorem 3 and, similarly, the precise formulation of Corollary 2 in [2] is given by
Corollary 5.; Corollary 1 in [2] is not valid.

Remark 5. Condition (17) is not valid for s = 0 and for n = 2. There exists
s ∈ {1, . . . , n − 2} for which (17) is valid (or the two last inequalities in (42) are
valid) if α + λ > 1 + 4

2n−5 and n ≥ 3. If 1 + 1
n−1 < α + λ ≤ 1 + 4

2n−5 and n ≥ 3,
then there exists no s ∈ {1, . . . , n − 2} for which (17) holds.

The problem of the existence of solution y of (1) fulfilling (3) is not solved
fully. The following example shows that solutions for which (3) is valid may exist
in the case α + λ > 1 + 1

n−1 .

Example 1. The equation y(n) = 3
3
4 (n− 2

3 )|y′| 3
4 |y(n−1)| sgn y′, n ≥ 3 has a solution

y(t) = 1

(τ−t)
1
3

of the form (3). At the same time α + λ = 7
4 > 1 + 1

n−1 .
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