
Digital Object Identifier (DOI) 10.1007/s10231-004-0137-1

Annali di Matematica 185, S69–S91 (2006)

Fritz Colonius · Luiz A.B. San Martin · Marco Spadini

Fundamental semigroups for local control sets

Received: March 26, 2003; in final form: September 15, 2003
Published online: March 24, 2005 – © Springer-Verlag 2005

Abstract. In this paper we associate a semigroup to a locally maximal subset of complete
controllability, i.e., a local control set. This fundamental semigroup is based on equivalence
classes under homotopies in the set of trajectories. It reflects the structure of the set of closed
(trajectory) loops in the local control set. We discuss the relations between different local
control sets and prove a Van Kampen-type theorem for their unions and intersections.
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1. Introduction

This paper studies controllability properties of nonlinear control systems described
by ordinary differential equations. More precisely, we study topological properties
of locally maximal subsets of complete controllability, i.e., local control sets as
introduced in [4]. We associate a semigroup Λ(D, p0) to every pointed local
control set (D, p0), i.e., to a local control set with one (inner) point p0 singled
out. This fundamental semigroup Λ(D, p0) is based on equivalence classes under
homotopies in the set of trajectories. It is adapted to the dynamics of the system
and reflects the structure of the set of closed (trajectory-) loops in D. It enables us
to distinguish between different nested local control sets. Furthermore, we discuss
the relations between different local control sets and prove a Seifert–Van Kampen-
type theorem for the union and intersection of local control sets; compare, e.g.,
tom Dieck [13] or Massey [9] for this classical theorem for homotopy groups.

Homotopy properties of control sets in semisimple Lie groups have been dis-
cussed by San Martin and Santana in [10]. Sarychev discussed homotopy properties
of the set of trajectories for completely controllable systems and, in particular, for
systems without drift in [11,12]. Lawson [8] considered homotopies in the con-
text of semigroups in Lie groups. Preliminary results on our construction of the
semigroup have appeared in [3].
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In Section 2 we present some preliminary results on local control sets and, in
particular, on the different parts of their boundaries. Section 3 specifies conditions
that ensure that the intersections and unions of local control sets are again local
control sets. In Section 4 we construct the fundamental semigroup and discuss
some simple properties and examples. Section 5 discusses relative fundamental
semigroups. Finally, Section 6 presents the main result, a Seifert–Van Kampen-
type theorem describing the fundamental semigroup of a union of two local control
sets; here relative fundamental semigroups are used that are obtained by collapsing
the intersection to a point. The proof is based on a careful discussion of the entrance
and exit behavior of local control sets.

Notation. Besides the function space L∞(R,Rd) with norm ‖ · ‖∞, we shall
consider the Sobolev space W1,∞(R,Rd) endowed with the norm ‖x‖W1,∞ =
‖x‖∞ + ‖ẋ‖∞.

2. Preliminaries

In this section, we introduce the basic notions and formulate preliminary results on
local control sets that we use throughout the paper.

Consider the system

ẋ(t) = f(x(t), u(t)), u ∈ U , (1)

where U denotes the set of all piecewise continuous functions taking values in the
compact subset U of Rm , and f : Rd × Rm → R

d is C1. We will endow U with
the topology inherited by the inclusion U ⊂ L∞(R,Rm). We assume that unique
solutions ϕ(t, x0, u), t ∈ R exist for all considered x0 ∈ Rd and u ∈ U.

System (1) is locally accessible in x ∈ Rd if for all T > 0 the positive orbit up
to time T

O+
≤T (x) := {ϕ(t, x, u), 0 < t ≤ T and u ∈ U}

and the negative orbit up to time T

O−
≤T (x) := {ϕ(t, x, u), −T ≤ t < 0 and u ∈ U}

have nonvoid interiors. It is called locally accessible in a subset A ⊂ Rd if it is
locally accessible in every x ∈ A.

Local accessibility holds under a rank condition for the Lie algebra generated
by the vector fields f(·, u), u ∈ U; see, e.g., Jurdjevic [7]. We now define the main
notion discussed in this paper; compare [4].

Definition 2.1. A subset D of Rd with nonempty interior is a local control set if
there exists a neighborhood N of clD such that for each x, y ∈ D and every ε > 0
there exist T > 0 and u ∈ U such that

ϕ(t, x, u) ∈ N for all t ∈ [0, T ] and d(ϕ(T, x, u), y) < ε

and for every D′ with D ⊂ D′ ⊂ N that satisfies this property, one has D′ = D.
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The neighborhood N in the definition above will also be called an isolating
neighborhood of D. If the neighborhood N can be chosen as Rd , we obtain the
usual notion of control set with nonvoid interior as considered, e.g., in [2]. Thus
for local control sets the maximality property of control sets is replaced by a local
maximality property, and we refer to the latter also as global control sets.

The following notation for sets A, B ⊂ Rd will be convenient:

O+
B (A) =

{
q ∈ Rd,

there are T ≥ 0, u ∈ U and p ∈ A with
q = ϕ(T, p, u) and ϕ(t, p, u) ∈ B for 0 ≤ t ≤ T

}
;

an analogous definition can be given for O−
B (A). Thus a local control set with

isolating neighborhood N is a maximal subset D of N with nonvoid interior such
that

D ⊂ cl O+
N (x) for all x ∈ D.

We state some facts on local control sets. First observe that there are at most
countably many local control sets since the topology has a countable base.

Proposition 2.2. Let D be a local control set. Then

(i) D is connected;
(ii) if local accessibility holds in a neighborhood of cl int D, then cl D = cl int D.

If local accessibility holds on cl D, then
(iii) int D ⊂ O+(x) for all x ∈ D;
(iv) for an isolating neighborhood N of D and all x ∈ intD one has

cl O+
N (x) ∩ O−

N (x) = D;
(v) for every x ∈ intD there are T > 0 and a T-periodic control function u ∈ U

such that ϕ(·, x, u) is T-periodic and contained in D.

Proof. Assertions (i), (ii), and (v) are proven in [4]; assertions (iii) and (iv) follow
as for control sets in Lemma 3.2.13 in [2]. 
�

We will need specific information on the boundary of local control sets.

Definition 2.3. For a local control set D with isolating neighborhood N define the
following subsets of the boundary ∂D:

∂ex D = {
x ∈ ∂D, there is y ∈ int D with x ∈ O+

N (y)
}
,

∂en D = {
x ∈ ∂D, there is y ∈ int D with x ∈ O−

N (y)
}
,

∂tg D = {
x ∈ ∂D, O+

N (x) ∩ intD = ∅ and O−
N (x) ∩ int D = ∅}

.

These sets are called the exit, entrance, and tangential boundaries, respectively.

The following results are proven as Lemma 3.2.22, Lemma 3.2.24, and Propo-
sition 3.2.25 in [2], which are stated for global control sets only; however, the
proofs are local and hence immediately apply to local control sets.
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Proposition 2.4. Let D be a local control set of system (1) such that local acces-
sibility holds in intD. Then there exists a unique local control set D∗ of the time
reversed system ẋ(t) = − f(x(t), u(t)), u ∈ U, with intD = intD∗.

Proposition 2.5. Let D be a local control set of system (1) such that local acces-
sibility holds in cl D.

(i) The three sets ∂en D, ∂ex D, and ∂tg D form a decomposition of ∂D.
(ii) The sets ∂en D and ∂ex D are open in ∂D, and ∂tg D is closed in ∂D.
(iii) The equality ∂tg D = cl ∂en D ∩ cl ∂ex D holds and int∂D∂tg D = ∅.

For every point x ∈ ∂D the following assertions hold:

(iv) x ∈ ∂en D if and only if x ∈ D.

(v) x ∈ ∂ex D if and only if x ∈ D∗, where D∗ is the control set of the time reversed
system from Lemma 2.4.

(vi) x ∈ ∂tg D if and only if x /∈ D ∪ D∗.

The following lemma shows that the closure of a local control set can be left
and entered only finitely many times in finite time.

Lemma 2.6. Let D be a local control set with p0 ∈ intD and consider a trajectory
x with x(0) = x(T ) = p0 for some T > 0.

(i) There are only finitely many points t+i ∈ [0, T ] with x(t+i ) ∈ ∂en D and x(t) �∈
clD for all t ∈ (t+i − δi, t+i ) and some δi > 0.

(ii) There are only finitely many points t−i ∈ [0, T ] with x(t−i ) ∈ ∂ex D and x(t) �∈
clD for all t ∈ (t−i , t−i + δi) and some δi > 0.

Proof. For assertion (i) consider t+i+1 > t+i . Then x(t+i ), x(t+i+1) ∈ ∂en D ⊂ D.
Since x(t) �∈ clD for all t ∈ (t+i+1 − δi+1, t+i+1) and some δi+1 > 0, it follows
that there is s ∈ (t+i , t+i+1) with x(s) �∈ clD. By local maximality of D we may
assume that x(s) is not in an isolating neighborhood of clD. By boundedness of the
right-hand side of (1), it follows that there can exist only finitely many points t+i .
Assertion (ii) follows by time reversal. 
�

The following lemma shows that the entrance boundary can only be left to the
tangential boundary or to the interior of the control set.

Lemma 2.7. Consider a local control set D.

(i) Let x ∈ ∂en(D) and suppose that for a control u ∈ U one has ϕ(T, x, u) �∈
∂en(D) for some T > 0. Then there is τ ≥ 0 such that either ϕ(t, x, u) ∈ ∂en D
for all t ∈ [0, τ) and ϕ(τ, x, u) ∈ ∂tg D, or ϕ(t, x, u) ∈ ∂en D for all t ∈ [0, τ]
and ϕ(t, x, u) ∈ intD for all t − τ > 0, small.

(ii) Let x ∈ ∂ex(D) and suppose that for a control u ∈ U one has ϕ(T, x, u) �∈
∂ex(D) for some T > 0. Then there is τ ≥ 0 such that either ϕ(t, x, u) ∈ ∂ex D
for all t ∈ [0, τ) and ϕ(τ, x, u) ∈ ∂tg D, or ϕ(t, x, u) ∈ ∂ex D for all t ∈ [0, τ]
and ϕ(t, x, u) �∈ clD for all t − τ > 0, small.

Proof. (i) Let τ = sup{t ≥ 0, ϕ(s, x, u) ∈ ∂en D for all s ∈ [0, t)}. Since ∂D is
closed, it follows that ϕ(τ, x, u) ∈ ∂D. Since ∂en D and ∂ex D are open in ∂D and
disjoint, it follows that either ϕ(τ, x, u) ∈ ∂tg D or ϕ(τ, x, u) ∈ ∂en D. It remains to
discuss the second case. For arbitrarily small t − τ > 0 one has ϕ(t, x, u) �∈ ∂en D.
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Since ϕ(τ, x, u) ∈ ∂en D, this implies for these t that ϕ(t, x, u) ∈ intD. In fact,
otherwise it follows that ϕ(t, x, u) �∈ clD and, by continuous dependence on
the initial value, a neighborhood of ϕ(τ, x, u) is mapped into the complement
of clD. Hence arbitrarily close to ϕ(τ, x, u) there are points in ∂ex D, which is
impossible, since ϕ(τ, x, u) has a positive distance to ∂ex D. Now consider ti ↓ τ

with ϕ(ti, x, u) ∈ intD. If there are si ↓ τ with ϕ(si, x, u) �∈ intD, then the
trajectory leaves intD between si+1 and si . This is only possible through ∂ex D.
By Lemma 2.6 this is only possible finitely often. Hence ϕ(t, x, u) ∈ intD for all
t − τ > 0 small.

(ii) Follows analogously. 
�

3. Operations on local control sets

It is clear that, in general, neither the union nor the intersection of local control sets
is a local control set. We will now discuss two constructions, similar to the union
and the intersection, that when applied to local control sets yield an element of the
same class.

Concerning the union of local control sets, it may happen that D ∪ D′ is not
a local control set because it is not maximal. Hence we have to enlarge the union
appropriately to get a local control set. We impose a “regularity” condition requiring
(locally) that O+(cl D) ∩ O−(cl D′) be closed. This, in the case of control affine
systems with compact control range, means that there are no points that can only
be reached in infinite times forward from cl D and backward from cl D′.

Proposition 3.1. Let D and D′ be local control sets with isolating neighborhoods
N and N ′, respectively. Consider the set

W = N ∪ N ′ (2)

and suppose that intD ∩ intD′ �= ∅. Assume that the sets

O+
W (clD) ∩ O−

W (clD′) and O+
W (clD′) ∩ O−

W (clD) (3)

are closed. Then the set

E = [
O+

W (D) ∩ O−
W (D′)

] ∪ [
O+

W (D′) ∩ O−
W (D)

]
is a local control set with isolating neighborhood W.

Proof. Note that D ∪ D′ ⊂ E, since intD ∩ intD′ �= ∅ implies that

D ⊂ O+
W (D) ∩ O−

W (D′) and D′ ⊂ O+
W (D′) ∩ O−

W (D).

Next observe that

clE = cl
( [

O+
W (D) ∩ O−

W (D′)
] ∪ [

O+
W (D′) ∩ O−

W (D)
] )

= cl
[
O+

W (D) ∩ O−
W (D′)

] ∪ cl
[
O+

W (D′) ∩ O−
W (D)

]
⊂ cl

[
O+

W (clD) ∩ O−
W (clD′)

] ∪ cl
[
O+

W (clD′) ∩ O−
W (clD)

]
= [

O+
W (clD) ∩ O−

W (clD′)
] ∪ [

O+
W (clD′) ∩ O−

W (clD)
] ;
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the last equality follows from our assumption. To show that W is a neighborhood
of clE, take x ∈ O+

W (clD) ∩ O−
W (clD′). Thus there are T > 0, u ∈ U, and y ∈ clD

with

x = ϕ(T, y, u) and ϕ(t, y, u) ∈ W for 0 ≤ t ≤ T .

By continuous dependence on final values and y ∈ intN it follows that

x ∈ intϕ(T, N, u) ⊂ W .

Analogously one argues for x ∈ O+
W (clD′) ∩ O−

W (clD). Next for approximate
controllability let x, y ∈ E. Consider first

x ∈ O+
W (D) ∩ O−

W (D′) and y ∈ O+
W (D′) ∩ O−

W (D).

First steer x to a point z1 in D′ and a point z2 in D′ to y. One can also steer z1 to z2.
All three trajectories and hence their concatenation steering the system from x to
y may be chosen in W . Next consider

x, y ∈ O+
W (D) ∩ O−

W (D′).

First steer x to a point z1 in D′, and a point z2 in D to y. One can also approximately
steer z1 to z2, using O+

W (D′) ∩ O−
W (D) �= ∅ and approximate controllability

in D and D′. Using continuous dependence on initial values one can steer x
approximately to y. All trajectories and hence their concatenation may be chosen
in W . Similarly one can treat the other cases

x ∈ O+
W (D′) ∩ O−

W (D) and y ∈ O+
W (D) ∩ O−

W (D′)

and

x, y ∈ O+
W (D′) ∩ O−

W (D).

It remains to show that E is maximal in N ∪ N ′. So let E ′ be a set containing E
such that every x can approximately be controlled to any other y ∈ E ′ within W .
Choosing y ∈ intD′ one finds that x ∈ O−

W (D′). Similarly, one sees that a point
z ∈ D can be steered to x, and hence x ∈ O+

W (D) ∩ O−
W (D′) ⊂ E. (The same

argument also shows that x ∈ O+
W (D′) ∩ O−

W (D)). We conclude that E = E ′. 
�
Proposition 3.2. Assume that the number of local control sets is finite and that,
for n ∈ N, there are neighborhoods Nn and N ′

n of D and D′, respectively, with

Nn ⊃ Nn+1 and N ′
n ⊃ N ′

n+1 for n ∈ N,⋂
n

Nn = clD and
⋂

n
N ′

n = cl D′

such that, for Wn = Nn ∪ N ′
n , the sets

O+
Wn

(cl D) ∩ O−
Wn

(cl D′) and O+
Wn

(cl D′) ∩ O−
Wn

(cl D) (4)

are closed. Then there exists a unique local control set that we denote by D � D′
with

D ∪ D′ ⊂ D � D′ ⊂ cl (D ∪ D′). (5)
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Proof. For the isolating neighborhoods Nn and N ′
n we can construct a local control

set En with isolating neighborhood Nn ∪ N ′
n as in the previous proposition. Then,

clearly, for Nn ⊂ Nm and N ′
n ⊂ N ′

m one has D ∪ D′ ⊂ En ⊂ Em ⊂ Nm ∪ Nm .
Since, by assumption, the number of local control sets is finite, we conclude that
for some N ∈ N all En, n > N, coincide and we denote this local control set by
D � D′. Clearly, it satisfies (5). 
�

We now study the intersection of local control sets D and D′. One easily
observes that D ∩ D′ need not be a local control set, since the trajectories between
points p and q in D ∩ D′ need not be contained in this set (they do exist in D and
in D′).

Let N and N ′ be isolating neighborhoods of D and D′. A natural candidate for
a notion of “intersection” of D and D′ is a maximal local control set in N ∩ N ′.
Unfortunately, it may happen that N ∩ N ′ is empty or contains more than one local
control set.

Proposition 3.3. Let D and D′ be local control sets with with isolating neighbor-
hoods N and N ′, respectively, and let W = N ∩ N ′. Then

D ∧ D′ :=
⋃

p∈D∩D′

[
cl O+

W (p) ∩ O−
W (p)

]

is empty or it is the union of local control sets with isolating neighborhood W.

Proof. Note that D ∧ D′ ⊂ D ∩ D′ since for p ∈ D ∩ D′

cl O+
W (p) ∩ O−

W (p) ⊂ cl O+
N (p) ∩ O−

N (p) = D

and the same inclusion holds for N ′ and D′ instead of N and D, respectively. The
set W is a neighborhood of cl (D ∧ D′), since

cl (D ∧ D′) ⊂ cl (D ∩ D′) ⊂ cl D ∩ cl D′ ⊂ N ∩ N ′ = W.

If for some p ∈ D ∩ D′ the intersection cl O+
W (p) ∩ O−

W (p) is nonvoid, then it is
a maximal set such that complete approximate controllability within W holds. Using
continuous dependence on initial conditions one sees that it is in fact a maximal
set with this property. 
�

When D ∧ D′ contains only one local control set, it coincides with it. We
will study the case where this local control set coincides up to closure with the
intersection of D and D′ and give the following formal definition for the intersection
and the union of local control sets.

Definition 3.4. Let D and D′ be local control sets. If there exists a local control
set, denoted by D � D′, with

D ∪ D′ ⊂ D � D′ ⊂ cl(D ∪ D′), (6)

it is called the union of D and D′. If there exists a unique local control set, denoted
by D 
 D′, with

D 
 D′ ⊂ D ∩ D′ and cl(D 
 D′) = cl(D ∩ D′) = clD ∩ clD′, (7)

it is called the intersection of D and D′.
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Note that Proposition 3.2 gives a sufficient condition for the existence of D�D′.
The local control set D 
 D′ has the isolating neighborhood N ∩ N ′, where N and
N ′ are isolating neighborhoods of D and D′, respectively.

4. Fundamental semigroups

Consider a local control set D ⊂ Rd of system (1) and fix p0 ∈ intD. Define

P(D, p0) =
⎧⎨
⎩x ∈ W1,∞([0, 1],Rd),

x(0) = x(1) = p0, x(t) ∈ int D for
t ∈ [0, 1] and ∃γ−

x , γ+
x > 0 s.t.

ẋ(t) ∈ [
γ−

x , γ+
x

]
f(x(t), U), t ∈ [0, 1]

⎫⎬
⎭ .

We endow P(D, p0) with the metric structure given by d(x1, x2) = ‖x1 − x2‖∞
for x1, x2 ∈ P(D, p0).

The following result characterizes the elements of P(D, p0) as reparametrized
trajectories of the control system. Note the role of the lower bound γ−

x > 0 that
appears in the definition of P(D, p0); if it is absent, every point, in particular
point p0, is an equilibrium for the system in (8). The theorem shows that P(D, p0)

consists of the periodic trajectories in intD of (1) through p0, reparametrized to
[0, 1].
Theorem 4.1. Let x ∈ W1,∞([0, 1],Rd) be such that x(0) = x(1) = p0 and
x(t) ∈ intD for t ∈ [0, 1]. Then x ∈ P(D, p0) if and only if there are γ+

x ≥ γ−
x > 0

and measurable functions γ : [0, 1] → [γ−
x , γ+

x ] and u : [0, 1] → U such that

ẋ(t) = γ(t) f(x(t), u(t)), t ∈ [0, 1]. (8)

Equivalently, for α(s) = ∫ s
0 γ(t)dt, s ∈ [0, 1], and T = ∫ 1

0 γ(t)dt, the function
y(t) := x(α(t)) is a T-periodic solution in intD of (1) with y(0) = p0.

Proof. The latter equivalence is clear since it based on a time reparametrization.
Observe that

d

ds
α(s) = γ(s), s ∈ [0, 1],

and hence
d

dt
α−1(t) = 1

γ(t)
, t ∈ [0, T ].

It is also clear that a solution of (8) is an element of P(D, p0). Consider x ∈
W1,∞([0, 1],Rd) with x(0) = x(1) = p0 and x(t) ∈ int D for t ∈ [0, 1] and

ẋ(t) ∈ [
γ−

x , γ+
x

]
f(x(t), U) for a.a. t ∈ [0, 1] and γ−

x , γ+
x > 0.

Since f is C1, it is a Carathéodory map. Thus by Filippov’s theorem, see e.g.
Aubin/Frankowska [1], Theorem 8.2.10, there exists a measurable function [0, 1] →
[γ−

x , γ+
x ] × U given by t �→ (

γ(t), u(t)
)

such that

ẋ(t) = γ(t) f(x(t), u(t)) for a.a. t ∈ [0, 1].
This concludes the proof. 
�
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As a consequence, we find that for a local control set D with local accessibility
in D, one has P(D, p0) �= ∅ for all p0 ∈ intD.

Given x, y ∈ P(D, p0) we say that they are homotopic, written x � y, if there
exists a continuous map (a homotopy) H : [0, 1] → P(D, p0) such that H(0) = x
and H(1) = y. One can check that this is an equivalence relation. We will denote
by Λ(D, p0) the quotient P(D, p0)/ �.

Define a binary operation on P(D, p0) by setting for x, y ∈ P(D, p0)

(x ∗ y)(t) =
{

x(2t) t ∈ [0, 1/2]
y(2t − 1) t ∈ [1/2, 1] . (9)

Clearly, the map P(D, p0) × P(D, p0) → P(D, p0) given by (x, y) �→ x ∗ y is
continuous.

We extend this operation to Λ(D, p0) by passing to the quotient, i.e., we
set [x] ∗ [y] := [x ∗ y], where x, y ∈ P(D, p0) and the square brackets denote
equivalence classes. We now show that the operation is well defined in Λ(D, p0),
that is, it does not depend on the chosen representative for the equivalence class.
Assume x � x ′ and y � y′ with homotopies h1 and h2, respectively. Then h1 ∗ h2

yields a homotopy between x ∗ y and x ′ ∗ y′; in other words [x ∗ y] = [x ′ ∗ y′].
Notice that “∗” is not associative on P(D, p0); however, it turns out to be

associative on Λ(D, p0). To see that, let x, y, z ∈ P(D, p0) and notice that λ �→
hλ(·), with

hλ(t) =

⎧⎪⎨
⎪⎩

x(2t + 2λt) t ∈ [
0, 1

2 − λ
4

]
y(4t − 2 − λ) t ∈ [

1
2 − λ

4 , 3
4 − λ

4

]
z(4t − 2λt + 2λ − 3) t ∈ [ 3

4 − λ
4 , 1

]

yielding a homotopy between x ∗ (y ∗ z) and (x ∗ y) ∗ z.

Remark 4.2. Observe that this map is not continuous with respect to the W1,∞-
topology, which at first glance might appear more natural for P(D, p0).

Definition 4.3. For a local control set D and p0 ∈ intD the semigroup Λ(D, p0)

with the operation “∗” is called the fundamental semigroup of the pointed local
control set (D, p0).

Remark 4.4. As was already noted, the operation “∗” is continuous in P(D, p0).
Thus the semigroup Λ(D, p0) is, in fact, a topological semigroup (with the quotient
topology). This topology, however, does not seem to carry interesting information.

In general, the fundamental semigroup does not admit a unity; however, a unity
exists when p0 is an equilibrium. Note that the unity in a semigroup is unique (we
refer the reader to Howie [6] for the general theory of algebraic semigroups).

Proposition 4.5. If p0 ∈ intD is an equilibrium for the control system, then the
function x0(t) ≡ p0 represents the unity of Λ(D, p0).
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Proof. We need to prove that x0 ∗ x � x ∗ x0 � x for any x ∈ P(D, p0). Consider
the map H : [0, 1] → P(D, p0) given by λ �→ hλ(·) with

hλ(t) =
{

p0 t ∈ [
0, 1−λ

2

]
x(2t − tλ + λ − 1) t ∈ [ 1−λ

2 , 1
] .

Clearly H is a homotopy between x0 ∗ x and x. An analogous homotopy can be
constructed between x ∗ x0 and x. 
�
Remark 4.6. Let x and y be elements of P(D, p0) that differ only by a reparametri-
zation, i.e., there exists a continuous bijective map τ : [0, 1] → [0, 1], with
τ(0) = 0 and τ(1) = 1, such that x

(
τ(t)

) = y(t) for t ∈ [0, 1]. Then

h(λ, t) = x(λτ(t) + (1 − λ)t)

defines a homotopy between x and y since h(λ, ·) belongs to P(D, p0) and h is
continuous.

For linear control systems, the fundamental semigroup is trivial, as shown by
the following proposition.

Proposition 4.7. Consider the linear control system

ẋ = Ax + Bu, u ∈ U,

with A ∈ Rd×d and B ∈ Rd×m. Assume that (A, B) is controllable and U is
compact, convex with 0 ∈ int U. Then there exists a unique local control set D, and
the semigroup Λ(D, 0) consists of just its unity.

Proof. By Example 3.2.16 in [2] there exists a unique control set D and it contains
the origin in its interior. By linearity the set P(D, 0) is convex, and this yields the
desired homotopy. By Theorem 4.1 this is also a homotopy of periodic trajectories
through p0 = 0, implying that the control set D is also the unique local control set.


�
The following simple example shows that the fundamental semigroup allows

us to distinguish control sets via the dynamic behavior of the system.

Example 4.8. Let U ⊂ Rm be a compact and convex set containing 0 in its interior.
Consider control-affine systems of the form

ẋ = f0(x) +
m∑

i=1

ui(t) fi(x), u ∈ Uρ, (10)

where Uρ denotes the set of measurable functions on R with values in ρU, ρ ≥ 0.
Suppose that the uncontrolled system (with u ≡ 0) has a homoclinic orbit given by

ϕ(t, p1, 0), t ∈ R, with lim
t→±∞ ϕ(t, p1, 0) = p0,
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where p0 �= p1 is an equilibrium. Suppose that H := {p0}∪ {ϕ(t, p1, 0), t ∈ R} is
a chain recurrent component of the uncontrolled system and that the controllability
condition

span
{
adk

f0
fi(x), i = 1, ..., m, k = 0, 1, ...

} = Rd (11)

holds for all points x ∈ H . Then for every ρ > 0 there is a control set Dρ containing
H in its interior and

⋂
ρ>0

Dρ = H;

see Corollary 4.7.6 in [2] (the controlled Takens–Bogdanov oscillator is a sys-
tem where these conditions can be verified; cf. Häckl/Schneider [5] or Section 9.4
in [2]). By Proposition 4.5 the fundamental semigroup Λρ(Dρ, p0) contains a unity.
On the other hand, consider a system (10) where the uncontrolled system has a peri-
odic trajectory Ĥ = {ϕ(t, p0, 0), t ∈ [0, T ]}. If Ĥ is a chain recurrent component
of the uncontrolled system and (11) holds on Ĥ , then again Corollary 4.7.6 in
[2] implies the existence of control sets D̂ρ containing Ĥ in the interiors with⋂

ρ>0 D̂ρ = Ĥ. We will show that for ρ > 0, small enough, the fundamental
semigroups Λρ(D̂ρ, p0) do not contain a unity. In fact, let ρ > 0 be small enough,
such that there is no periodic trajectory through p0 that is contractible in intD̂ρ.
Concatenation of the periodic trajectory with itself yields the existence of elements
a ∈ Λρ(D̂ρ, p0) with an �= am for m, n ∈ Nwith m �= n. Suppose that there exists
an element e ∈ Λρ(D̂ρ, p0) with e ◦ a = a. Then periodic trajectories representing
a and b = e ◦ a yield elements a′ and b′ in the fundamental group of intD̂ρ. Since
e ◦ a is a concatenation, we get a decomposition b′ = e′ ◦ a′ in the fundamental
group with e′ representing e. Since e ◦ a = a in Λρ(D̂ρ, p0), one has

e′ ◦ a′ = b′ = a′

in the fundamental group. This implies that e′ is the unity in the fundamental
group. Since there is no periodic trajectory that is contractible in intD̂ρ, this is
a contradiction.

Now we analyze the dependence of the constructed semigroups on the under-
lyinglocal control sets. Let D ⊂ D′ be local control sets for (1). If p0 ∈ int D, the
inclusion i : D ↪→ D′ induces a homomorphism i∗ : Λ(D, p0) → Λ(D′, p0) that
maps [x] ∈ Λ(D, p0) to element [x] of Λ(D′, p0).

Lemma 4.9. Take x ∈ P(D′, p0) \ P(D, p0). Then y � x implies y ∈ P(D′, p0) \
P(D, p0).

Proof. By the definition of local control sets there exists an open neighborhood N
of p0 containing clD such that D is the maximal subset of complete controllability
of N (and, clearly, we may assume that D′ �⊂ N). Assume by contradiction that
x ∈ P(D, p0). Since y � x, there exists a continuous map H : [0, 1] → P(D′, p0),
λ �→ xλ, such that H(0) = x and H(1) = y. Therefore, by continuity there exists
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some λ0 ∈ [0, 1] such that xλ0([0, 1]) ⊂ N and xλ0([0, 1]) �⊂ D. By Theorem 4.1
the set

xλ0([0, 1]) ∪ D ⊂ N

is completely controllable, contradicting the choice of N. 
�
Proposition 4.10. Let D and D′ be local control sets for (1) such that p0 ∈ intD
and D ⊂ D′. Then i∗ is injective and, if D �= D′, then i∗ is not surjective.

Proof. We may assume that D �= D′. To prove that i∗ is injective, we have to
show that, given any x and y in P(D, p0), with [x] �= [y] in Λ(D, p0), they
cannot be joined by a continuous curve in P(D′, p0). In fact, if they are connected
by some H : [0, 1] → P(D′, p0), λ �→ xλ, there exists λ0 ∈ [0, 1] such that
xλ0 ∈ P(D′, p0) \ P(D, p0), but this is impossible by Lemma 4.9. By Lemma 4.9,
no element of P(D′, p0) \ P(D, p0) can be joined to any one of P(D, p0) by
a continuous curve in P(D′, p0). This means that, given any x ∈ P(D′, p0) \
P(D, p0), one has [x] /∈ i∗(Λ(D, p0)). Hence i∗ is not surjective. 
�

Theorem 4.10 allows us to drop the i∗ and consider Λ(D, p0) as a subsemigroup
of Λ(D′, p0).

When D � D′, Theorem 4.10 means that Λ(D, p0) is a proper subsemigroup
of Λ(D, p0). We note the following immediate consequence of Theorem 4.10.

Corollary 4.11. Let D be a local control set for (1) and let Dglob be a (global)
control set containing p0 in its interior. If D �= Dglob, then Λ(D, p0) is a proper
subsemigroup of Λ(Dglob, p0).

Theorem 4.10 says that one cannot pass from a local control set to a larger
one containing it without a “jump” in the complexity of the associated semigroup.
In particular, one cannot have nested local control sets with the same associated
semigroup.

A similar argument shows that one can identify the “minimal” local control set
containing a given equilibrium.

Theorem 4.12. Let D be a local control set for (1) containing the equilibrium p0.
If Λ(D, p0) consists only of its unity, then every local control set containing p0

must contain D.

Proof. Assume by contradiction that there exists a local control set D′ containing
p0 and such that D ∩ D′

� D. Let N ′ be an isolating neighborhood of D′. One
can find an element x ∈ P(D, p0) \ P(D′, p0). By assumption Λ(D, p0) consists
only of its unity. Therefore, Λ(D, p0) = {[x0]}, with x0(t) ≡ p0. Consequently,
there exists a continuous H : [0, 1] �→ P(D, p0), H(λ) = xλ, with H(0) = x
and H(1) = x0. Then there exists some λ̄ ∈ [0, 1] such that xλ̄([0, 1]) ⊂ N ′ and
xλ̄([0, 1]) �⊂ D′. This, as in the proof of Lemma 4.9, yields a contradiction. 
�
Proposition 4.13. Let D ⊂ D′ be local control sets. If for some p0 ∈ int D the
fundamental semigroup Λ(D′, p0) has a unity, then Λ(D, p0) also has a unity.
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Proof. Let x0 ∈ P(D′, p0) be such that [x0] is the unity in Λ(D′, p0). Then for every
[y] ∈ Λ(D, p0) ⊂ Λ(D′, p0) one has y ∗ x0 � y in P(D′, p0). If x0 �∈ P(D, p0),
then y ∗ x0 ∈ P(D′, p0)\ P(D, p0). Now Lemma 4.9 yields a contradiction. Hence
x0 ∈ P(D, p0), and obviously it represents the unity in Λ(D, p0). 
�

In Section 6 we will study semigroups for the intersection and union of local
control sets D and D′ satisfying (6) and (7), respectively, as specified in Defin-
ition 3.4. Then consider the inclusion maps

i : D 
 D′ → D, i ′ : D 
 D′ → D′,
j : D → D � D′, j ′ : D′ → D � D′

and, for p0 ∈ int (D 
 D′), the corresponding semigroups

Λ(D 
 D′, p0), Λ(D, p0), Λ(D′, p0), Λ(D � D′, p0).

By Proposition 4.10 the induced homomorphisms

i∗ : Λ(D 
 D′, p0) → Λ(D, p0), i ′∗ : Λ(D 
 D′, p0) → Λ(D′, p0),

j∗ : Λ(D, p0) → Λ(D � D′, p0), j ′∗ : Λ(D′, p0) → Λ(D � D′, p0)

are injective, but not surjective if the involved local control sets are different.
Clearly one has j∗ ◦ i∗ = j ′∗ ◦ i ′∗, i.e., the diagram

Λ(D 
 D′, p0)
i∗−→ Λ(D, p0)

↓i′∗ ↓ j∗

Λ(D, p0)
j ′∗−→ Λ(D � D′, p0)

is commutative.

5. Relative fundamental semigroups

In this section we consider two local control sets D ⊂ D′ and introduce a relative
fundamental semigroup for D′ by identifying D with a point and considering
periodic trajectories in the resulting space (actually ignoring the behavior within D).

For local control sets D ⊂ D′, p0 ∈ int D and clD compact we consider the
quotient set D′/cl D and let π : D′ → D′/cl D be the canonical projection. Let d′
be the metric on this space given by

d′(x, y) = d(x, y) for x, y ∈ D′ \ cl D,

d′(x, cl D) = min{d(x, y), y ∈ cl D}.
Note that the quotient topology coincides with the one induced by d′. Given x ∈
P(D′, p0) we denote by πx the map t �→ π(x(t)). For technical reasons, we have
to restrict our attention to special trajectories: If they hit clD then they actually
enter D. More precisely, we will require the following additional property.
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Definition 5.1. A trajectory x ∈ P(D′, p0) is nontangential to D if

x(t) ∈ ∂D implies x(t) ∈ ∂ex D ∪ ∂en D.

Since by Lemma 2.5 the boundary ∂D is the disjoint union of the exit, entrance,
and tangential boundaries, it follows that a trajectory x ∈ P(D′, p0) is nontangential
to D iff x(t) �∈ ∂tg D for all t. Now define

P(D′, D, p0) = {πx, x ∈ P(D′, p0) is nontangential to D}

endowed with the metric topology given by

d(α, β) = min

{
sup

t∈[0,1]
d′(πx(t), πy(t)

) : x, y ∈ P(D′, p0) with
πx = α, πy = β

}
(12)

for α, β ∈ P(D′, D, p0). Clearly the distance d′(x, y) depends only on α and β

(and not on the choice of x ∈ π−1(α) and y ∈ π−1(β)). Thus,

d(α, β) = sup
t∈[0,1]

d′(πx(t), πy(t))

for any x and y such that πx = α and πy = β.
We say that α, β ∈ P(D′, D, p0) are homotopic if there exists a continuous

map F : [0, 1] → P(D′, D, p0) with F(0) = α and F(1) = β. In this case, we
write α � β. In other words, trajectories x, y ∈ P(D′, p0) are homotopic relative
to D if their compositions with the canonical projection π : D′ → D′/cl D are
homotopic. It is clear that this defines an equivalence relation.

Finally, we put

Λ(D′, D, p0) = P(D′, D, p0)/ � (13)

and denote with square brackets the equivalence classes. We introduce a semigroup
operation in Λ(D′, D, p0) defining, for [α] and [β] in Λ(D′, D, p0),

[α] ∗ [β] := [π(x ∗ y)],

where x, y ∈ P(D′, p0) are such that πx = α and πy = β. To see that the operation
“∗” is well defined, consider x, y, x ′, y′ ∈ P(D′, p0) with πx � πx ′ and πy � πy′,
with homotopies h1 : [0, 1] → P(D′, D, p0) and h2 : [0, 1] → P(D′, D, p0),
respectively. It is easily checked that h1 ∗h2 : [0, 1] → P(D′, D, p0), defined as in
(9), is continuous, hence it establishes a homotopy πx∗πy � πx ′∗πy′. Furthermore,
this operation is associative. Thus we arrive at the following definition.

Definition 5.2. Let D ⊂ D′ be local control sets and assume that D is bounded. Fix
p0 ∈ intD. The fundamental semigroup of D′ relative to D is the set Λ(D′, D, p0)

defined in (13) with the operation “∗”.
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Immediately one sees that Λ(D′, D, p0) contains a unity (represented by any
periodic trajectory through p0 in D). A major difficulty in the analysis of the relative
fundamental semigroup arises from the fact that there may exist trajectories that
are nontangential but converge uniformly to trajectories that are tangential.

To describe the properties of relative fundamental semigroups, we first de-
compose nontangential trajectories into finitely many pieces inside and outside
clD.

Proposition 5.3. Let D ⊂ D′ be local control sets with p0 ∈ intD and consider
a trajectory x ∈ P(D′, p0) that is nontangential to D. Then there are times t+0 =
0 < t−1 < t+1 < ... < t−k < t+k < t−k+1 = 1 such that

x| [t+i , t−i+1

] ⊂ clD, x| [t+i , t−i+1

] ∩ intD �= ∅ and x| (t−i , t+i
) ⊂ D′\clD.

Furthermore, x(t+i ) ∈ ∂en D and x(t−i ) ∈ ∂ex D for i = 1, ..., k.

Proof. By Lemma 2.6 a trajectory of the control system can enter and leave clD
only finitely many times. Invoking Theorem 4.1, we see that this is also true for
x ∈ P(D′, p0). Hence there are only finitely many points

0 < t−1 < t−2 < ... < t−k < 1

with x(t−i ) ∈ ∂ex(D) and x(τ) �∈ clD for all t ∈ (ti , ti + δ) and some δ > 0.
Furthermore, one finds only finitely many points

0 < t+1 < t+2 < ... < t+l < 1

with x(t+i ) ∈ ∂en(D) and x(τ) �∈ clD for all τ ∈ (t+i − δ, t+i ) and some δ > 0.
Clearly, one has that

x| [0, t−1
] = x| [t+0 , t−1

] ⊂ clD (14)

and t+1 > t−1 . We also know that

x| (t−1 , t+1
) ⊂ D′\clD,

since the trajectory x can enter ∂D only in the exit boundary (which is impossible
from the outside) or in the tangential boundary (which is forbidden by assumption)
or the entrance boundary (which yields x(t+1 )).

From x(t+1 ) we can, by Lemma 2.7, leave the entrance boundary of D only by
going into the interior of D or into the tangential boundary of D. But by assumption
the trajectory x does not intersect the tangential boundary of D. Hence the trajectory
enters the interior of D for some t > t+1 and t+1 < t−2 .

Now we repeat this construction until k. Then it must stop. 
�
The times t±i specified by Proposition 5.3 will be called the “transition times.”

The next lemma shows that the transition times can be shifted by homotopies.
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Lemma 5.4. Let πx ∈ P(D′, D, p0) with transition times t±i , i = 1, ..., k. Then
there exists a continuous function F : [0, 1] → P(D′, D, p0) with F(0) = πx such
that πy = F(1) has the transition times

s−
i = 2i − 1

2k
and s+

i = i

k
, i = 1, ..., k.

Proof. By definition

x|[t+i , t−i+1

] ⊂ clD and x| (t−i , t+i
) ⊂ D′\clD.

Hence πx(t) = clD for t ∈ [t+i , t−i+1]. The following arguments illustrate that one
can shift the transition times continuously one by one. Let i = 1 and suppose first
that t−1 > 1

2k . Define a first homotopy F1(λ) = πxλ, λ ∈ [0, 1], as follows. With

tλ,−
1 = (1 − λ)t−1 + λ

1

2k

let

xλ(t) = x(t) for t ∈ [
t+1 , 1

]
,

xλ(t) = x

(
t−1

tλ,−
1

t

)
for t ∈ [

0, tλ,−
1

]
,

xλ(t) = x

(
t−1 + t+1 − t−1

t+1 − tλ,−
1

(t − tλ,−
1 )

)
for t ∈ [

tλ,−
1 , t+1

]
.

All xλ are solutions of ẋ(t) ∈ [γ−, γ+] f
(
x(t), U

)
, t ∈ [0, 1] for some γ−, γ+ > 0

and satisfy xλ(0) = xλ(1) = p0. Clearly, x0 = x and x1 has first transition times
s−

1 = 1
2k and s+

1 = t+1 . The map λ → xλ is continuous in the metric on P(D′, p0)

and hence in the metric on P(D′, D, p0) given by (12). An analogous construction
can be performed if t−1 < 1

2k (if t+1 < 1
2k we also have to change the next transition

time). Proceeding in this way for all i we find the desired continuous function F. 
�
Now we begin to study the behavior of trajectories and their transition points

under arbitrary homotopies.

Proposition 5.5. Let F : [0, 1] → P(D′, D, p0) be continuous. Then for the
elements

πxλ := F(λ) ∈ P(D′, D, p0), λ ∈ [0, 1],
there is an upper bound for the number of transition times.

Proof. Suppose, contrary to our assertion, that there are λn ∈ [0, 1] with an un-
bounded number of corresponding transition times. We may assume that λn →
γ ∈ [0, 1]. Note that by continuity of F the image set F([0, 1]) ⊂ P(D′, D, p0) is
compact in the uniform topology; hence we also may assume that πxλn converges
uniformly to πxγ . Observe that for every ε > 0 there are only finitely many
intervals [a j, b j] in [0, 1] with b j < a j+1 such that for all j there are s j ∈ [a j, b j]
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and r j ∈ (b j, a j+1) with d(πxγ (s j), clD) ≥ ε and πxγ (r j) = clD. The exit and
entrance times tλn ,−

i , tλn ,+
i must cluster for n → ∞, and we denote limit points by

τ
γ,−
i and τ

γ,+
i , respectively. For converging subsequences one finds that

πxλn
(
tλn ,−
i

) → πxγ
(
τ

γ,−
i

) = clD and πxλn
(
tλn ,+
i

) → πxγ
(
τ

γ,+
i

) = clD.

Proposition 5.3 implies that xλn (tλn ,−
i ) ∈ ∂ex D, xλn (tλn ,+

i ) ∈ ∂en D, and
xλn

∣∣(tλn ,−
i , tλn ,+

i ). ⊂ D′\clD. Now suppose that tλn ,+
i − tλn ,−

i → 0 for n → ∞.
Since πxλn converge uniformly to the continuous function πxγ , we find that, for n
large enough, πxλn

∣∣[tλn ,−
i , tλn ,+

i ]. is contained in an ε-neighborhood of the point clD

in the space D′/clD. Hence xλn
∣∣[tλn ,−

i , tλn ,+
i ]. is contained in an ε-neighborhood

of the subset clD in the space D′. For n large enough this contradicts the local
maximality property of D if ε is chosen small enough so that the ε-neighborhood
is contained in an isolating neighborhood of D. Hence tλn ,+

i − tλn ,−
i remains

bounded away from 0. The same argument shows that xλn
∣∣[tλn ,−

i , tλn ,+
i ]. cannot

remain within an isolating neighborhood of clD. Thus there is ε > 0 (not de-
pending on n or i) such that for all n and all i there are times si,n ∈ (tλn ,−

i , tλn ,+
i )

with d(xλn (si,n), clD) ≥ ε. Since between any two exit times tλn ,−
i there is an

entrance time and between any two entrance times tλn ,+
i there is an exit time, we

obtain for n → ∞ that there are infinitely many cluster points si of si,n in intervals
[τγ,−

i , τ
γ,+
i ] satisfying d(πxγ (si), clD) ≥ ε and πxγ (τ

γ,−
i ), πxγ (τ

γ,+
i ) = clD. This

is impossible, as shown by the argument above. 
�
We also note the following analog of Proposition 4.10.

Proposition 5.6. Let D ⊂ D′ ⊂ D′′ be local control sets with D bounded. Then
the inclusion map i : D′ → D′′ induces for p0 ∈ intD an injective homomorphism

i+ : Λ(D′, D, x0) → Λ(D′′, D, p0).

Proof. Denote by π ′ and π ′′ the projections onto D′/cl D and D′′/cl D, respec-
tively. Since D′/cl D ⊂ D′′/cl D, one has that π ′ and π ′′ coincide on D′/cl D.
Consequently, one has a natural immersion P(D′, D, p0) ↪→ P(D′′, D, p0). Define
i+ : Λ(D′, D, x0) → Λ(D′′, D, p0) as the map α �→ π ′′x, where x ∈ P(D′, p0)

is such that α = π ′x. To see that i+ is well defined, take periodic trajectories
x, y ∈ P(D′, p0) such that π ′x � π ′y in P(D′, D, p0). We have to show that π ′′x
and π ′′y yield the same element in Λ(D′′, D, p0), that is, that they are homotopic
in P(D′′, D, p0). Let h be a homotopy in P(D′, D, p0) between π ′x and π ′y. The
composition k given by

[0, 1] h−→ P(D′, D, p0) ↪→ P(D′′, D, p0)

is a homotopy between k(0) = π ′′h(0) = πx and k(1) = π ′′h(1) = π ′y. As in
Lemma 4.9 one can prove that π ′′x ∈ P(D′′, D, p0) \ P(D′, D, p0) and y � x in
P(D′′, D, p0) imply y ∈ P(D′′, D, p0) \ P(D′, D, p0). Injectivity is then obtained
with an argument similar to Proposition 4.10. 
�
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6. A Seifert–Van Kampen Theorem

In this section we will study the intersection and the union of two local control
sets, assuming that D 
 D′ and D � D′ are well defined. However, we cannot
describe the relations between the subsemigroups j∗(Λ(D, p0)), j ′∗(Λ(D′, p0)) and
Λ(D � D′, p0). In the analogous situation for the fundamental group in algebraic
topology, one “decomposes” the big loops in D ∪ D′ that cross int (D ∩ D′) by
inserting paths to the base point p0 and their inverses (see, e.g., tom Dieck, Satz 3.7).
In our context, however, inverses do not always exist, so this procedure does not
apply. In fact, a periodic trajectory in P(D� D′, p0) with p0 ∈ int (D
 D′) cannot,
in general, be written as the concatenation of periodic trajectories in P(D, p0) and
P(D′, p0). As a consequence, the semigroup Λ(D � D′, p0) need not be generated
by the images j∗(Λ(D, p0)) and j ′∗(Λ(D′, p0)). To overcome these difficulties, we
will consider fundamental semigroups relative to D 
 D′.

In the following discussion we assume that local control sets D and D′ are
given and that there exist local control sets D � D′ and D 
 D′ with (6) and (7) and
that D 
 D′ is bounded. We apply Proposition 5.6 to the inclusions

D 
 D′ ⊂ D ⊂ D � D′ and D 
 D′ ⊂ D′ ⊂ D � D′

and denote the induced maps by

j+ : Λ(D, D 
 D′, p0) → Λ(D � D′, D 
 D′, p0),

j ′
+ : Λ(D′, D 
 D′, p0) → Λ(D � D′, D 
 D′, p0).

Since these maps are injective homomorphisms, we identify Λ(D, D
 D′, p0) and
Λ(D′, D 
 D′, p0) with subsemigroups of Λ(D � D′, D 
 D′, p0). Our aim in the
rest of this section is to analyze these semigroups.

The following lemma shows that the pieces of a trajectory outside D 
 D′ are
contained in either D or D′.

Lemma 6.1. Let πx ∈ P(D, D 
 D′, p0) ⊂ P(D � D′, D 
 D′, p0). Then the
decomposition according to Proposition 5.3 applied to the local control sets
D 
 D′ ⊂ D � D′ yields for all i

x| (t−i , t+i
) ⊂ D\cl(D 
 D′) or x| (t−i , t+i

) ⊂ D′\cl(D 
 D′).

In the first case, x(t−i ) ∈ ∂ex D′ and x(t+i ) ∈ ∂en D′, and in the second case,
x(t−i ) ∈ ∂ex D and x(t+i ) ∈ ∂en D.

Proof. By Proposition 5.3 we know that for all i

x| [t+i , t−i+1

] ⊂ cl(D 
 D′) and x| (t−i , t+i
) ⊂ (D � D′)\cl(D 
 D′).

Suppose that there is i such that for times t−i < s, s′ < t+i , say with s < s′,

x(s) ∈ D\cl(D 
 D′) and x(s′) ∈ D′\cl(D 
 D′).
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Then there must exist a point x(τ) ∈ ∂ex(D) with s < τ < s′. Let

σ = max{t ≥ τ, x(t ′) ∈ clD for all t ′ ∈ [τ, t]}.
Then σ < s′ and x(σ) ∈ ∂ex(D) such that

x(t) �∈ clD for all t ∈ (σ, σ + δ) and some δ > 0.

Since x(t) ∈ D � D′ ⊂ cl(D ∪ D′) for t ∈ (σ, σ + δ), it follows that x(σ) ∈
clD ∩ clD′ = cl(D 
 D′). This is impossible, since t−i < σ < t+i .

For the second assertion observe that

x(t−i ) ∈ ∂ex(D 
 D′) and x
(
t+i

) ∈ ∂en(D 
 D′)

and one has that for all s ∈ (t−i , t+i ) either

x(s) �∈ D′ or x(s) �∈ D.

Consider the first case. Since cl(D 
 D′) = clD ∩ clD′, it follows that at x(t−i )

the trajectory (coming from int(D 
 D′) ⊂ intD ∩ intD′) leaves clD′. This is
possible only through ∂ex D′ and x(t−i ) ∈ ∂ex D′ follows. Similarly, one argues for
x(t+i ) ∈ ∂en D′; and analogously in the second case. 
�

The following theorem, which is the main result of this paper, may be viewed
as an analog of Seifert–Van Kampen’s theorem for fundamental groups (compare,
e.g., tom Dieck [13], Satz II.5.7). It shows that the semigroup for the union of two
local control sets D and D′ relative to their intersection is the free product of the
relative semigroups for D and D′ in the category of semigroups.

Theorem 6.2. Let D and D′ be local control sets and assume that there exist local
control sets D � D′ and D 
 D′ with

D ∪ D′ ⊂ D � D′ ⊂ cl (D ∪ D′)

and

D 
 D′ ⊂ D ∩ D′ and cl(D 
 D′) = cl(D ∩ D′) = clD ∩ clD′.

Suppose that D 
 D′ is bounded and fix p0 ∈ int (D 
 D′). Then for every pair of
homomorphisms h : Λ(D, D
D′, p0) → H and h′ : Λ(D′, D
D′, p0) → H into
a semigroup H there is a unique homomorphism φ : Λ(D � D′, D 
 D′, p0) → H
with

φ ◦ j = h and φ ◦ j ′ = h′.

Proof. First we discuss uniqueness of φ; it will follow from a decomposition of
any trajectory in Λ(D � D′, D 
 D′, p0) into elements of Λ(D, D 
 D′ p0) and
of Λ(D′, D 
 D′, p0). Consider an element α ∈ Λ(D � D′, D 
 D′, p0) and
let x ∈ P(D � D′, p0) be such that [πx] = α, where π denotes the projection
D � D′ → (D � D′)/cl (D 
 D′).
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According to Proposition 5.3, then, there are transition times t+0 = 0 < t−1 <

t+1 < ... < t−k < t+k < t−k+1 = 1 such that for all i

x| [t+i , t−i+1

] ⊂ cl(D 
 D′) and x| (t−i , t+i
) ⊂ (D � D′)\cl(D 
 D′).

Proposition 6.1 implies for all i

x| (t−i , t+i
) ⊂ D\cl(D 
 D′) or x| (t−i , t+i

) ⊂ D′\cl(D 
 D′).

Setting x±
i := x(t±i ) one has in the first case x−

i ∈ ∂ex D′ and x+
i ∈ ∂en D′ and in the

second case x−
i ∈ ∂ex D and x+

i ∈ ∂en D. We will construct elements of P(D, p0)

and P(D′, p0) such that their concatenations under the projection π are homotopic
to πx. Then uniqueness follows.

By Lemma 5.4 we may (without changing the homotopy class) assume that the
transition times are t−i = 2i−1

2k and t+i = i
k . It will be convenient to transform x

(defined on [0, 1]) into the solution of

ż(t) = 3

2k
f

(
z(t), u

(
3t

2k

))
, t ∈

[
0,

2k

3

]
,

which we denote by x̃ (compare Theorem 4.1); it has the transition times t−i =
2i−1

3 and t+i = 2i
3 . We denote the trajectory pieces outside cl(D 
 D′) by xi =

x̃
∣∣[ 2i−1

3 , 2i
3 ], i = 1, ..., k.

Since x−
i = x̃( 2i−1

3 ) ∈ ∂ex(D 
 D′) and x+
i = x̃( 2i

3 ) ∈ ∂en(D 
 D′) ⊂ D 
 D′,
there are trajectories q−

i and q+
i in D 
 D′ from p0 to x−

i and from x+
i to p0. More

precisely, for i = 1, ..., k there are s+
i , s−

i > 0 and u+
i , u−

i ∈ U such that

ϕ
(
s−

i , p0, u−
i

) = x−
i and ϕ

(
s+

i , x+
i , u+

i

) = p0.

Then the concatenated trajectories ỹi = q−
i ◦ xi ◦ q+

i for i = 1, ..., k start in p0

and are closed. By Theorem 4.1 they induce by time transformation elements yi in
P(D, p0) and in P(D′, p0), respectively. We adjust these time transformations such
that the pieces where ỹi(t) coincides with xi(t) are just shifted to [0, 1] (the time
length is 1

3 ). Thus only the time intervals [0, s−
i ] and [s+

i , 1], where the trajectory is
in cl(D
 D′), are adjusted to [0, 1

3 ] and [ 2
3 , 1], respectively. Under the projection π

the yi yield elements πyi in P(D, D
D′, p0) and in P(D′, D
D′, p0), respectively.
Now consider the concatenated trajectory

ỹ = (
q−

1 ◦ x1 ◦ q+
1

) ◦ . . . ◦ (
q−

i ◦ xi ◦ q+
i

) ◦ . . . ◦ (
q−

k ◦ xk ◦ q+
k

)
.

Again by Theorem 4.1 this induces via time transformation an element in P(D �
D′, p0); under the projection π it yields an element πy in P(D � D′, D 
 D′, p0).
Identifying P(D, D
 D′, p0) and P(D′, D
 D′, p0) with subsemigroups of P(D�
D′, D 
 D′, p0) one sees that πy is the ∗-product of elements πyi . On the other
hand, the trajectory ỹ coincides outside of cl(D 
 D′) with the xi and hence with
x̃ and the transition times coincide. Thus transforming also ỹ back to a function y
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defined on [0, 1] and applying the projection π one finds that the trajectories πx
and πy coincide. We conclude

πx = πy = πy1 ∗ ... ∗ πyk and

πyi ∈ P(D, D 
 D′, p0) or πyi ∈ P(D′, D 
 D′, p0).

This implies uniqueness.
Next we construct the map φ. According to Lemma 6.1 and Proposition 5.6 we

can write α ∈ Λ(D � D′, D 
 D′, x0) as

α = j1(α1) ... jk(αk)

with αν ∈ Λ(D, D 
 D′, x0), jν = j or the corresponding dashed objects. Then
we define

φ(α) =
∏

hν(αν),

where, as above, hν = h or h′. If we can show that this is independent of the
representation of α, we have defined a homomorphism with the desired properties.
Hence we show (for βν defined analogously)

∏
jν(αν) =

∏
jν(βν) implies

∏
hν(αν) =

∏
hν(βν). (15)

For all ν we write

αν = πyν and βν = πzν

with yν, zν in P(D, D
 D′, p0) or in P(D′, D
 D′, p0). By definition of the relative
fundamental semigroup, there is a homotopy F : [0, 1] → P(D � D′, D 
 D′, p0)

from the concatenation of the πyν to the concatenation of the πzν and we abbreviate
πxλ = F(λ). By Proposition 5.5 there is an upper bound on the number of loops
occurring along the homotopy. Hence, by introducing trivial factors (corresponding
to trajectories in D 
 D′) we may assume that along the homotopy the number of
factors is constant. We lump together all consecutive factors in D and in D′, and
we do not start with a trivial loop.

Claim. Let γ ∈ [0, 1]. If a loop xγ
∣∣(tγ,−

i , tγ,+
i ). ⊂ D\cl(D 
 D′), then for every

t ∈ (tγ,−
i , tγ,+

i ) there is ε > 0 such that for every λ with |λ − γ | < ε it follows that
xλ(t) ∈ D\cl(D 
 D′), and hence the loop of xλ containing xλ(t) is also contained
in D\cl(D 
 D′). An analogous statement holds for D′.

Proof of the claim. The assumption guarantees that for t ∈ (tγ,−
i , tγ,+

i ) the point
xγ (t) ∈ intD\cl(D 
 D′). Hence the claim follows from the uniform convergence
of πxλ to πxγ for λ → γ .

Now consider the first factor α1 = πx1 = πx0
1 and suppose that x1 is contained

in D. Then for all λ > 0 small enough it follows that xλ
1 is also contained in D.

In fact, suppose that there are λn → 0 with xλn
1 ⊂ D′. Pick t ∈ (t0,−

1 , t0,+
1 ). By

the claim, it follows for n large enough that xλn (t) ∈ D and hence tλn ,+
1 < t0,−

1 .
Arguing as in the proof of Proposition 5.5, one sees that x([tλn ,−

1 , tλn ,+
1 ]) cannot
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be contained in an isolating neighborhood of D. Hence for some ε > 0 and all n
one finds points sn ∈ (tλn ,−

1 , tλn ,+
1 ) with d(xλn (sn), clD) ≥ ε. Letting n tend to ∞

and considering a convergent subsequence, one finds for s0
1 = lim sn ≤ t0,−

1 that
d(πx0(s0

1), clD) ≥ ε. This contradicts the definition of t0,−
1 . Hence we see that

γ = sup
{
λ > 0, xλ′

1 ⊂ D for all λ′ with λ ≥ λ′ > 0
}

> 0.

We claim that xγ

1 ⊂ D. Suppose to the contrary that xγ

1 ⊂ D′. Then arguing
as before, we obtain that for λ < γ , with γ − λ small enough, also xλ

1 ⊂ D′,
contradicting the definition of γ . We conclude that γ = 1, and hence for all
λ ∈ [0, 1] the first factors are in D. Then, invoking Lemma 5.4, we can shift
the first transition times tλ,±

1 to some fixed value in (0, 1). Now we proceed by
induction and show that for all λ we obtain the same sequence of factors in D and
in D′, respectively, with the same transition times. Restricting the homotopy F we
find that all these factors are homotopic in D and in D′, respectively. 
�
Remark 6.3. Theorem 6.2 shows that

{e} = Λ(D 
 D′, D 
 D′, p0)
i+−→ Λ(D, D 
 D′, p0)

↓i′+ ↓ j+

Λ(D, D 
 D′, p0)
j ′+∗−→ Λ(D � D′, D 
 D′, p0)

is a push-out in the category of semigroups. Hence Λ(D � D′, D 
 D′, p0) is
uniquely determined up to isomorphisms.

By Proposition 4.10 we can identify Λ(D 
 D′, x0) with a subsemigroup of
Λ(D � D′, x0), and there is a surjective homomorphism

h : Λ(D � D′, x0) → Λ(D � D′, D 
 D′, x0).

There always exists a unity, which we denote by e, in Λ(D � D′, D 
 D′, x0) (just
take the equivalence class of some periodic trajectory α0 in D 
 D′). We claim that

{α ∈ Λ(D � D′, x0), h(α) = e} = Λ(D 
 D′, x0).

The inclusion “⊃” is obvious. Conversely, h(α) = e means that the periodic orbits
representing α in Λ(D � D′, x0) are homotopic in

(
D � D′) /cl(D 
 D′) to the

projection of the trajectory α. If α is not in Λ(D 
 D′, x0), then there must exist
periodic trajectories through x0 that are arbitrarily close to D 
 D′ and not in
D 
 D′. This contradicts local maximality of this local control set. Thus we obtain
the following result.

Proposition 6.4. Under the assumptions of Theorem 6.2 the sequence

1 → Λ(D 
 D′, x0) → Λ(D � D′, x0) → Λ(D � D′, D 
 D′, x0) → 1

is exact, in the sense that the second map is injective; the kernel of the third map
equals Λ(D 
 D′, x0), and it is surjective.
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