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Abstract. We investigate the asymptotic behaviour of a general set-valued skew product
flow (SVSPF), that is, a set-valued cocycle mapping (coming from a non-autonomous
differential equation or inclusion) driven by another, autonomous, system. Absorptivity
conditions which ensure the existence of several types of attractors for such set-valued
systems are established. The topological properties of and relations between these attractors,
in forward and pullback senses and their strong and weak versions are analyzed. Several
illustrative examples are also provided.
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1. Introduction

Set-valued analysis and attainability set functions are used to handle problems
arising from differential equations without uniqueness, differential inclusions, or
problems arising in control theory, viability theory, finance and economics amongst
others, and have been widely studied in recent decades (see, e.g., [3,21,20,25, 14,
15]). The investigation of the asymptotic behaviour of these phenomena, global,
strong or weak stability and attraction properties, needs the concept of pullback
attractors when non-autonomous equations are considered, in particular stochastic
and random ones which are intrinsically non-autonomous (cf. [11,10,22,16] and
[17,5] for the weak pullback case).

However, the non-autonomous case can also be viewed within the framework of
skew-product flows, which allows us to transform the problem into an autonomous
one (cf. [23,6,7,9,18,8]) and to apply the classical theory for autonomous sys-
tems in a different, extended, phase space. On the other hand, if such an attractor
exists, then we can recover the dynamics in the original phase space R? and its
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asymptotic properties by using suitable projections, which is important as this
original phase space is often the one that is of interest or meaningful in mod-
elling.

The paper is organized as follows: In Section 2, we recall the concepts of skew-
product flows coming from a cocycle set-valued mapping with a related driving
system. Conditions for existence of strong and weak attractors for an autonomous
set-valued semidynamical system in an abstract metric space and its properties
are analyzed in Section 3. Then, in Section 4 we apply these results to the case
of a skew-product flow as introduced above, distinguishing between strong and
weak cases. Here, the sectorial components in the original phase space R? of the
attractor in the extended phase space (under several suitable conditions) will be
analyzed, namely, for strong and weak asymptotic concepts as well as for their
connections with the underlying non-autonomous semi-flow. The formalism used
here allows us to obtain additional results which supplement those in earlier papers
([5,17D).

We also illustrate our theory with some examples and, for the sake of clarity,
give most of the proofs at the end of the paper.

2. Set-valued skew product flows

Hereafter, we will use the following notation: #(X) and K (X) for the set of
nonempty and nonempty compact subsets of a given space X, respectively;
H* for the Hausdorff semi-distance, H*(A, B) = sup,c4 dist(a, B), and H for
the Hausdorff distance, H(A, B) = max(H*(A, B), H*(B, A)).

To establish an appropriate framework for our analysis, we consider given an
autonomous driving system, 6 : Rx P — P, where P is a metric space, i.e. a group
of homeomorphisms under composition on P with the properties

i) Byp = pforall p € P,
il) O45p = 0,0;p forall s, t € R,
iii) the mapping (¢, p) — 6, p is continuous.

For instance, one can think of an ordinary differential system in P = R’ with

an autonomous globally Lipschitz and dissipative vectorfield g, i.e. p’ = g(p).
A set-valued skew product flow (SVSPF for short) consists of an autonomous

driving system 6 on a metric space P and a set-valued cocycle mapping (at-
tainability set mapping) @ : RT x P x RY — K (RY) satisfying the following
properties:
1. Compactness ®(t, p, x) is a nonempty compact subset of R for all ¢ > 0,
pe P, xe RY;
2. Initial condition

(0, p, x) = {x}

forall p € P and x € RY;
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3. Cocycle property
¢(Z + Sa p9 x) = ¢ (ta 93‘p7 ¢(S7 p9 x))

forallt >0,pe P, x e RY;
4. Continuity in time

lin} H (DG, p,x), D, p,x)) =0
S—

foralls,t >0andall pe Pandx € R?;
5. Upper semi continuity in parameter and initial conditions

lim H*(®(t,q,y), D@, p,x) =0

q—>p,y—>Xx
uniformly in ¢ € [Ty, T1] forany 0 < Tp < 7] < ooforall pe Pandx € RY.

Remark 1. Assumptions 4 and 5 imply that @ is globally upper semi continu-
ous (u.s.c.), i.e. if (¢,, pu, x,) — (t, p,x) as n — oo, then H*(P(t,,, pn, Xn),
@(t, p, x)) — 0. Indeed,

H*(¢(tn’ pn’xn)’ ¢(Z9 pa -x)) S H*(¢(tn’ pn’xn)’ ¢(tl‘la p9 x))
+ H*(&(ty, p,x), P(t, p,x)) > 0 as n — oo,

since the first term in the right hand side goes to zero by the u.s.c. in the second and
third variables uniformly in time (property 5), and the second term goes to zero by
the continuity (hence u.s.c.) of @ on its first variable (property 4).

A trajectory of a set-valued cocycle @ is a single-valued mapping ¢, : [0, T']
— R? which, for the indicated p € P, satisfies

¢p(1) € D(t —5,0,p, dp(s)) forall 0<s<i<T. (1)

A trajectory ¢ is called an entire trajectory if it is defined on all of R and satisfies
(1) for all s < ¢. (If necessary, to emphasize a particular p € P, we will use the
notation p-trajectory for the above definition).

Now let us denote

Tp.x([0, T]) = {¢,, trajectory such that ¢,(0) = x}.

Then, we can establish the following generalization of a theorem of Barbashin in
a similar way as in [3,21, 14]:

Theorem 2. The following properties holds:

Tp.x([0, T]) # O (there exist trajectories for all p, x, and T > 0)
Tpx([0,T]) € C(0, T]; RY) (continuity)

Tp.x([0, T1) is a compact subset of C([0, T1; RY)

Tppx (10, T]) = T, ([0, T]) (in H* on C([0, T1; R%)) as Pn —> D, Xp — X.

A~
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Remark 3. 1t is worth noticing that Theorem 2 also holds true if we consider
a Banach space X instead of R? (see the proof in Section 7).

We now consider a general autonomous set-valued semidynamical system
(SVSDS for short) as in Szeg6 and Treccani [25], that is, a set-valued mapping
I : Rt xY — P(Y) satisfying suitable properties, and where Y is a con-
nected metric space. To avoid unnecessary repetitions, such properties are the
stated below for the special case in which the set Y is the extended phase space
P x RY.

A particular case of an autonomous set-valued semidynamical system is
that generated by a set-valued skew product flow, namely with II(¢, p,x) =
(6;p, @(t, p, x)) and satisfying the following properties:

1. I1(t, p, x) is nonempty and compact;

2. 110, p, x) = {(p, 0}
3. The semigroup property:

(it +s, p,x) =1 (1, 11(s, p, X)) ;
4. t — II(t, p, x) is continuous in the Hausdorff metric, for all p, x, i.e.
Hp,ga(I1(s, p,x), I1(t, p,x)) = 0, as s = t;
5. (p, x) — II(t, p, x) is upper semicontinuous in the H* sense, i.e.
H;XRd(H(t, q,y),I(t, p,x)) > 0, as ¢ > p,y — x,

uniformly in compact intervals t € [T}, T3].

A trajectory for an SVSDS is a single-valued mapping 7 : [0, T] — Y with
() € It — s,7(s)) forall 0 < s <t < T. Analogously, a trajectory (or
p-trajectory) for a SVSPF is a single-valued mapping 7, : [0, T] — P x RY with
wp(t) € II(t — s, m,(s)) forall0 < s <t < T and the first component of 7,(0)
equals to p.

Proposition 4. 7, is a trajectory for the SVSPF if and only if there exists a trajec-
tory ¢, of @ such that

7p(1) = (O:p, ¢p(1) V1 €[0,T].

The result holds true for any trajectory defined in any interval of time, and also for
entire trajectories.

Remark 5. An analogous result to Theorem 2 holds for an SVSPF IT = (6, @)
(actually for any general SVSDS), replacing C([0, T']; RY) by C([0, T]; P x X) in
all the statements, actually, in any time interval not necessarily in the positive half
line.

This is straightforward because the multi-valued mapping F : {(t, fp) : t > fo}
X P x X — P (P x X) defined by F(t, ty, p, x) := II(t — ty, (p, x)) satisfies the
required conditions, since 6 and @ do (cf. [3,21,14,5]).
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3. Attractors of SVSDS

Now we consider a SVSDS I7 : R x ¥ — £(Y) and recall the basic concepts
on attractors, which will be applied in the following section to our skew product
formulation, denoting then the extended phase space P x R by Y.

For the sake of clarity, subscripts s and w on attractors will denote strong and
weak concepts.

Definition 6. A strong global attractor for an SVSDS I is a nonempty compact
subset A; C Y satisfying

1. strong invariance: I1(t, A;s) = A forallt > 0
2. strong attraction: for every nonempty bounded subset D of Y,

disty (T1(1, D), ;) — 0, as t — oco.

A weak global attractor for an SVSDS Il is a nonempty compact subset
Ay C Y satisfying

1. weak invariance: Vy € A, there exists an entire trajectory w : R — Y with
7(0) = yand nn(t) € Ay forallt € R

2. weak attraction: for every nonempty bounded subset D of Y and y, € D, there
exist trajectories m, : R — Y and numbers t, — oo with 7, (0) = y, and

disty (7, (t,), Ayw) — 0, as n — oo.

For completeness, we recall some results ensuring the existence of such attrac-
tors.

3.1. Strong global attractor of SVSDS

The most simple case of an autonomous semi-flow with a compact absorbing set
Bs (i.e. for every bounded set D there exists Tp > 0 such that I1(¢, D) C By for
all + > Tp) is well known. Assume that 8B, is a nonempty compact absorbing set
in Y. Without loss of generality, we can assume that 8B, is IT—positively invariant
(i.e. I1(t, B;) C By, for all t > 0). Define

Ay = ()11, By).

>0

Then, a € Ay iff a € By and there exist 7, — 00, a, € I1(t,, B;) with a,, — a as
n— oo.

Proposition 7. The set A, has the following properties:

1. It is nonempty and compact and attracts bounded sets.

2. It is [T—invariant, therefore it is a global strong attractor. Actually it is the
maximal invariant compact set, and also the minimal closed set that attracts
bounded sets.

3. If I1(t, x) is connected for all (t,x) € RT x Y, then A is also connected.
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Remark 8. The existence of an absorbing set for the construction of the attrac-
tor and its properties can be relaxed to that of an attracting set (see [19, Th. 1]),
which can be more appropriate in some other situations (e.g. hyperbolic sys-
tems).

3.2. Weak attractors of SVSDS

We consider now an SVSDS T1(z, x) and establish existence of weak attractors. To
this end, we introduce the concept of a weak absorbing set B,,, i.e., a nonempty,
compact set which in addition is

e weakly positively invariant: for all b € 8B,, there exists at least one trajectory
7 with 7(0) = b and 7 (¢) € B, forall r > 0.

e weakly absorbing: for all bounded subset D there exists 7p > 0 such that for
any d € D there exists a trajectory w with w(0) = d and n(f) € 8B, for all
t>Tp.

Theorem 9. Assume there exists a weak absorbing set By, for an SVSDS II.
Then, there exists the maximal weak attractor A, w.r.t. 8y, which is defined
as the set of points a € B, such that there exist b, € By, 1T, — 00 and
trajectories m, : Rt — B, with 7,(0) = b, and dist(n,(1,),a) — 0 as
n — 0o.

Remark 10. As in [5, Lemma 13], we observe that an entire trajectoryw : R — Y
satisfies that

() € By if and only if () € Ay.

Therefore, 4, is the set of points reached by entire trajectories contained in B,,.

4. Attractors of SVSPF

Now specialize to IT = (6, @) with our skew product structure, i.e. we consider
now that ¥ = P x R?. We again split our analysis into two cases concerning the
strong and weak situations.

4.1. (Strong) global attractor of SVSPF

Suppose that there exists a compact positive invariant absorbing set B, C P x R?
for IT1. Then, there exists a strong global attractor

Ay = () (. By).
>0

Let P* = Prp(s;) be the projection of 4, onto the space P and consider the
decomposed notation

A= [ (p} x As(p).

peP*
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Proposition 11. Under the previous assumptions the following properties hold:

1. P* is nonempty, compact and 0, P* = P*. In fact, P* is the global attractor of
the (single-valued) autonomous driving system 6 on P.

2. As(p*) is nonempty and compact for each p* € P*. It also satisfies the invari-
ance property As(0,p*) = ®(t, p*, As(p*)).

3. The mapping P* > p — As(p) is upper semi continuous.

Now consider the restriction IT* of IT to P* x R?. Since 6, P* = P* for all
t € R, it follows that IT* is an SVSPF on P* x RY.

Consider B = B; N (P* x R?). Then, B; absorbs sets in P* x R? under
IT*(= II). Also 8] is nonempty, compact and /T*-positively invariant, so IT* has
a maximal global attractor

At = (p} x A1 (p),
peP*

in P* x RY. Then, we have the following result:

Proposition 12. The strong global attractors of Il and IT* coincide: A} = A;.

4.2. Weak attractors of SVSPF

Suppose that an SVSPF IT has a weak attractor relative to the compact weak
absorbing set 8,, C P x RY, which is also given by

Au = (p) x Au(p),

peP*

(again we denote P* = Prp #4,,) as described above for general set-valued semi
dynamical systems. Then, we have

Proposition 13. The following properties hold:

1. P* is the global attractor for the single-valued driving system 6 on P.

2. Ay(p) is a nonempty compact set for each p € P*.

3. The map P* 3 p — A,(p) € X(R?) is u.s.c.

4. Ay is weakly invariant, i.e. if (p,a) € A, there exists an entire trajectory
7 = (0, ¢p) such that ¢,(0) = a and 7(t) = (0;p, ¢, (1)) € Ay forallt € R,
i.e. (1) € Ay(6:p).

Moreover, A, is the largest weak invariant set in the absorbing set By,.

If we restrict IT to IT* on P* x RY, we have that I1(t, (p, x)) = IT*(¢, (p, x))
forall r > 0 and (p, x) € P* x R? since P* is #-invariant.
Define

8= | (p} x Bu(p) € Bu = | J{p} x Bu(p).

peP* peP
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Note that A, (p) C By(p) for all p € P*. So, By, (p) is nonempty and compact.
We also have that 8 is weakly positive invariant since P* is f-invariant and B,,
is weakly positive I7-invariant.

Then, we obtain a maximal weak attractor for IT*, A} , with respect to 8 and
we will use the notation

A" = [ J{p} x AL(p).
peP*
Remark 14. Note that a € A} (p) if and only if there exist sequences f, — 00,
(pn, bn) € B;, trajectories w, = (0, ¢,,) with @, (0) = b, and 6,, p, — p and
©p, () — a.
Observe that A}, consists of entire IT*-trajectories, and, since it is weak invari-
ant, A} (p) is nonempty and compact for all p € P*.
Ay C By C By, but A, is the maximal /7-weak invariant family contained

in B,, and A}, is [T*-weak invariant (and so I7-weak invariant), therefore one has
that

AL C Ay

Indeed, as IT and IT* coincide in B}, entire [1-trajectories in -, are IT*-

trajectories and conversely, by the same argument of maximality, we conclude
that

Ay = AL

Thus, we can restrict ourselves to the dynamics on B} and we will study the
relations between weak and strong skew-product attractors and their sections with
respect to pullback weak and strong attractors in the following section.

5. Pullback structure of SVSPF attractors

Once again we split our analysis into two cases: strong and weak attractors.

5.1. The strong case

As before, B, denotes a [1-positive invariant compact absorbing set and B; =
B, N (P* x RY) is a IT*-positive invariant compact absorbing set (we keep using
the notation B; = Upep{p} X Bg(p), so Bs(p) # @ for p € P*). This implies
@-positive invariance for the sections B(p) in P*:

@(t, p, B;(p)) C By(6,p) Vt=0,Vpe P
Indeed, IT*(¢, B)) C B} implies that

(1, (p, Bs(p) = (6:p, (1, p, By(p) C 87 = | J (¢, B(9)

qeP*

what necessarily means our claim if p € P*.
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Lemma 15. Define

Ap) =@, 6-p, B(6-1p))  for peP".

>0

Then, A( p) is nonempty and compact for all p € P*.

Remark 16. Hi Bs(p) and &(t, p, x) are connected for all ¥ > 0, p € P* and
x € RY, then A, ( p) is also connected, since it is the intersection of a nested family
of nonempty, compact, connected sets.

Proposition 17. The following identities hold:

Ay(p) = A*(p) = A(p)  Vpe P~ (2)

Moreover, we also have the following result relating the sections with the notion
of pullback attractor (see e.g. Kloeden and Schmalfuf3 [18, Def. 4.2]).

Proposition 18. {As(p)}pep* is the pullback attractor for ® on P* x RY.

Remark 19.

(i) Notice that Propositions 17 and 18 imply that the p-components of the strong
global [T-attractor +A;, which attracts in the forward and pullback senses,
are the strong pullback attractor for @ when the dynamics are restricted to
P* x RY.

(i) Here we started with a global attractor for the skew-product flow /T and have
obtained a pullback attractor for @. The converse is not true in general, i.e. if
{As(p), p € P*}is astrong pullback attractor for @, then A = UpeP* {p} x
A;(p) may not be a global attractor for I7 (see [8] for a counterexample in the
single-valued case).

(iii) In general, pullback attractors for set-valued flows are only negatively invari-
ant, and strict invariance needs additional assumptions (the easiest is a lower
semi continuous property for the flow). Here, the strict invariance holds since
the driving system has a global attractor.

Now, bearing (2) in mind, we deduce an improvement of the u.s.c. result in
Section 4.1 when the approximation in the parameter space comes from the driving
system.

Corollary 20. Forevery p € P*, the map t — A(6;p) is continuous.

Proof. It follows from the fact that A} = A, is strongly IT-invariant (and thus
D(t, p, As(p)) = As(6;p)), and the continuity of @ on its first variable. |
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5.2. The weak case

Assume that B, = Upe plp} x By(p) is a weak absorbing family for the
skew-product flow and denote B} = B, N (P* x R?). Then, analogously to
the definitions of weak attractor for /7 and an ordinary non-autonomous sys-
tem [5], we will obtain a weak pullback attractor for @, that is, a weakly in-
variant compact family {A,(p)}pep+ such that for every bounded set D C R”
and x, € D, there exist sequences f, — oo and 6_, p-trajectories ¢, with
dist(¢, (ty, 0—1, P, X)), Ay(p)) = Oasn — oo.

In order to do that, firstly observe that the family of sets {B,,(p)},cp “is” (see
Remark 22 below) a weak pullback absorbing family for @, similarly to the concept
of [5], which leads us to consider the following definition:

Au(p) = {a e R

3t, — oo, b, € B, (0—;,p), p — trajectories
¢n : [—tn, 0] = R? with ¢,(—t,) = b, and ¢,(0) = a [~

We will now prove that Aw(p) C A} (p).

Leta € Aw(p), then there exist sequences f, — o0, b, € B,,(0_;, p), and
p-trajectories @, : [—t,, 0] — R< such that ¢, (—t,) = b, and ¢, (0) — a.

Denote p, = 6_, p and ¢, : [0, t,] — R? given by

1> @u(t) = Qu(t — ).
It is obvious that w, = (6, ¢,) are IT*-trajectories with 77,,(0) = (p,, b,) and
T (tn) = (O, Pn, (1)) = (P, $u(0)) — (p, ).
Remark 14 implies that A,,(p) C A* (p).

As for the other inclusion, we have: A}, is weakly invariant, which means that
for all (p,a) € A}, there exists an entire trajectory 7 of IT* with 7(f) € A
forall t € R, i.e. () = (6;p, (1)) with ¢, an entire trajectory of @ such that
9p(0) =a e Ay(p)and ¢, (t) € Ay, (6;p) forall t € R.

Consider any sequence f, — oo and define p, = 6_;, p. Take b, = ¢,(—1,) €
Ay(0_,p) C By(0_;, p). Then, trivially ¢,(t) = ¢,(?) for all n and ¢, jointly
with the cposen values b,, t, and p,, gives that a € Aw(p) and therefore
A% (p) C Au(p).

Therefore, we have proved the following result:

Proposition 21. Under the above assumptions, Aw(p) = Al (p) = Ay(p) for
all p € P*, ie. the maximal weak attractor of II in B, resp. IT* in B, give
the maximal weak pullback attractor of @ with respect to the absorbing family

{Buw(p), p € P}
Remark 22. By Proposition 13 and the continuity of 6, the set-valued mapping
t> Au®ip) = Au(®rp)

is (only) upper semi continuous (in comparison with [5, Prop. 11]).
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6. Examples

Our first example related to the strong structure of a skew product flow is given by
the differential inclusion

x'(1) € G(t, x(1) + Bp(t, x (1), 3)

where the multi-valued mapping G has good properties (for instance, it has closed
and convex values in 2 (R?) and is Lipschitz continuous) and satisfies:

1. almost periodic dependence on its first variable,

2. a dissipativity condition: for all y € G(¢, x) it holds (x, y) < —a0|x|2 + o,
witho; > 0,i =1, 2,

3. and p is single-valued, almost periodic on its first variable, and satisfies

Ip, x)| < yi@®|x] + (1),
Ip, x) — pt, V| < y3(@|x =yl

with y; (i = 1, 2, 3) continuous, positive functions and

] t
lim / yi(s)ds = Cy < oo. 4
t—oo f 0

Under these assumptions, it is easy to deduce the existence of an attractor for
the skew-product flow generated by the above problem if § is positive and small
enough. The parameter space P is the product of the hulls of the mappings G and
p in appropriate function spaces.

The almost periodic time dependence is not essential. Consider the driving
system

P =gp®), (5)
with g : R — R given by

—y—1if y=-1,
g =1y -1 if ye(-11),
1—y if y>1.
Then, it is easy to check that the non-autonomous problem

x'(1) e [-1,—1/21x(t) + p(1)

generates a set-valued cocycle mapping, and jointly with (5), a skew-product flow
with a non-trivial global attractor in the strong sense.

Other examples, arising from differential equations without uniqueness, partial
differential equations with periodic forcing terms, delay and functional differential
models among others can be found in [9,6-8].

A simple example to illustrate the weak case can be provided by using an
almost periodic or even periodic function of time. Suppose we have the differential
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inclusion
xX'(t) € x()[— sin® 1, 0], (6)

which clearly generates a set-valued cocycle mapping. Since for every initial
value x(, the constant function ¢(f) = xo is a solution of the problem, there
does not exist a strong attractor for the skew product flow. However, the set {0} is
a forward attractor for the non-autonomous system (and [0, 7] x {0} is a global
attractor for the skew-product flow, where P = R is equipped with the usual shift
modulo 7, which is considered as the driving operator). Indeed,

x/

= —sin*t = —1/2(1 — cos(21))
X

generates the solutions for the initial data xg
xX(1) = xpe /21450

Finally, in [13] we can find some interesting examples on practical problems
arising in controllability theory for linear differential systems written in the form:

x'(t) = A(H)x + Bu, ueUl,

where A is an almost periodic operator and B a linear operator acting on a control
set U. (Here P is the closure of the set {A(?) : t € R}).

7. Proofs
7.1. Proof of Theorem 2: Barbashin’s Theorem for set-valued cocycle maps

First, we prove a Barbashin Theorem which will be needed below. We follow the
ideas in [14] to construct a trajectory. We proceed in several steps.

Attainability functions
Because of the cocycle property, for general points xg, x;, times 0 < ¢ < #, and
p € P, we have

¢(t19 pa xO) - ¢(Z9 91171p9 ¢(Zl - t? pﬂ xo))'
Then, x| € @(¢, p, xo) if and only if
dx € &(ty —t, p,xo) suchthat x; € @, 60, _p, x).

This suggests the following definition of a restricted backwards attainability func-
tion:

x € G(xo, p; x1, 115 1) &= x1 € D(t, 0, p, X). (7
Then, one has the following result:

Lemma 23. If x| € @(t1, p, xo), then G(xq, p; X1, t1; t) is nonempty and closed,
and G(xg, p; x1, t1; 0) = {x1}.
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The mapping t € [0, ;] — A(f) € PRY) defined by
A@) = &(n — 1, p, x0) N G(xo, p; X1, 115 1) (8)

has nonempty compact images and is continuous in t with respect to the Hausdorff
metric.

Proof. Owing to the cocycle property, it is obvious that G(xo, p; X1, t1; )
is nonempty. To prove that it is closed, we proceed as in [21]. Suppose
yi € G(xo, p; x1,t1;1) with y; — yasi — oo, then x; € @(1,6;,_,p,y). In-
deed,

d(.Xl, ¢(Z’9t171p’ y))
S d(.XI, ¢(Z9 91171p9 yl)) + H*(¢(Z9 eflftp9 )’i), ¢(t7 etlftpa y))~

The first term on the right hand side is zero, and the second one converges to zero
due to the u.s.c. of @, so d(x1, D(t,0,—p,y)) =0and x; € @, 0, p, y).

The statement of G (xo, p; x1, t1; 0) = {x;} is trivial.

It is clear that A(f) is nonempty (see the construction of G and (7)), and also
compact since it is the intersection of a compact set and a closed one. We now need
to prove the continuity of # — A(f), i.e. we have to check that H(A(s), A(sp)) — 0
as s — sp.

We start with the case H*(A(s), A(sp)) — 0. Suppose it is not so, i.e. there
exist a constant ¢ > 0 and a sequence s; — s, such that H*(A(s;), A(sp)) > e.
As A(s;) is compact, the maximum is achieved at some point, say z;:

H*(A(s), A(s0)) = d(zi, A(s0)) = e.

Since z; € A(s;)) C @(t1 — si, p, xo), they belong to a compact set (by the con-
tinuity of @ and its compact values), so there exists a convergent subsequence
zir = 20 € D(t1 —S0, p, X0). Onthe otherhand, as z; € G(xo, p; x1, t1; 8;),1.€. X1 €
D(s;, 0, —s; D> 2i), because of the u.s.c. of @ on its three variables (see Remark 1)
and as (s;, 0y, —; p, 2i)) = (80, 01, —5, P> 20)» we have that x; € @ (so, 0y, —s, P> 20), 1.€.
z0 € G(xg, p; x1, t1; so) and therefore zo € A(sp), which leads to a contradiction,
since then H*(A(s;), A(so)) = d(z;, A(so)) < d(z;, z9) — O.

‘We now prove that H*(A(so), A(s)) — 0ass — sp. Arguing by contradiction,
assume there exist a constant ¢ > 0 and a sequence {s;};>; with s; — sp asi — 00,
such that H*(A(sp), A(s;)) > e. Consider z) € A(sp) such that d(z?, A(s;)) =
H*(A(so), A(s;)). This is possible since A(sg) is compact, and indeed, w.l.o.g. we
can assume that z? — 70 € A(sp). To finish, now it is enough to prove that there
exists z; € A(s;) such that z; — zo. We split into two cases (the general case is
a combination of these):

s;i <so Consider
20 € A(so) = @(t1 — 50, p» X0) N G(xo, p; X1, 115 So),
thus x1 € ®@(so, 0y, s, P> 20). On the one hand,

d)(s() — Si 9t|—sopv ZO) N G(Z()v et] —50P§ X1, 805 Si) 75 %]
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by the same reasons as A (7). On the other hand, one can easily see that

G(-x07 P X1, 15 Si) = G(Z09 Qtl—SOP; X1, 50, si)v

and
@(SO — i, 9[| —Sopy ZO) C Q(tl —Si, P, xO)-
Therefore,
D # D(so — i, 0159 P> 20) N G (20, Oy —so Ps X1, S05 51) T A(s)).
Pick

zi € D(so — i, 01—y P> 20) N G (20, 01 —sy 3 X1, S0 Si)-
By the continuity of @ we have that z; — zo.
s; > so The same argument shows that

I # @ty — si, p, x0) N G(xo, P; 20, 11 — 505 Si — $0)s
and we also have the following inclusion

G (x0, p; 20, 11 — S0 5i — s0) C G(x0, p; X1, 115 5i)

by means of the cocycle property of @. Thus,

@ # D(1y — si, p, x0) N G (xo, p; 20, 11 — S03 Si — S0)

C (1) — si, p, x0) N G(xo, p; X1, 115 8) = A(si).

By choosing

zi € @(t1 = si, p, x0) N G(xo, p; 20, 11 — 03 Si — 50),

we have that z; € @([0, t; — so], p, xo) for all i, which is compact. Therefore,
there exists a converging subsequence z;; — &. On the other hand, as long as
20 € D(s; — S0, 0, -5, P, 2i), particularizing to the case of the subsequence z
commented above, the u.s.c. of @ implies zo € @(0, 6,5, p, &) = {§}, 5020 =&
(observe that therefore the whole sequence converges), and the proof is complete.

O

Corollary 24. Every ®-trajectory is continuous.

Proof. Let ¢, : [0, T] — R9 be a p-trajectory, i.e. ¢,(t) € D(t — 5,65 p, P,(s))
forall0 <s <r < T. We consider t, fixed, and t — 7,. Separate the proof in two
cases:

t > t, Then,

¢(t) € P(1 — 10,01, p, Pp(1a)) = PO, 6, . $p(ta)) = {Pp(ta)}.

t < t, By easy computations, we see that

¢(1) € (1 — 10, 04y P, $p(10)) N G(@(10), Ory s (L), ta — 10, ta — 1).

Observe that this set has the form described in the definition (8) for A(f), but with
Xo = ¢p(t0), p = yp. X1 = Pplty), 11 = t, — 1o, T = t, — t. Thus, now we have
that A(f) — A(0) as7 =1, —t — 0, but A(0) = {¢,(,)}, which gives us the
desired result. O
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Proof of Theorem 2. We prove Theorem 2 following the ideas in [14,21].

In order to do that, firstly we show how to construct trajectories.

Consider ¢ < b and (6,p,x) € P x R?. We will construct a trajectory p
with ¢,(a) = x passing through any other (given) point at time b, say ¢,(b),
which necessarily belongs to @(b — a, 6,p, ¢,(a)). A first step is to choose the
mid time point (a 4 b) /2 of the interval (a, b) and an image for it. By the previous
considerations, this image must be in

D((b —a)/2,0ap, pp(@)) N G(@a(a), Oup, p(b), b —a, (b —a)/2),

which is a nonempty compact set. We iterate this process in the intervals [a,
(a + b)/2] and [(a + b)/2, b]. Repeating this process, we can obtain a dyadic
sequence of points which satisfies the relation for being a trajectory. The problem
of completing from this set to the whole interval is solved by density: let # be a non
dyadic point of [a, b], and ¢’ and ¢” any dyadic points such that ¥’ < ¢ < ", then
we choose

ép(1) € K(1)
= [ @4 —1,60p,$p(")) NG (1), 00 p, dpt"), 1" =1, 1" —1).

t<t<t"

Now, we need to check that each of these sets is nonempty (which can be seen
again as in (8)), and that this construction is consistent, i.e. the finite intersection
property holds. The arguments are the same as in [14].

Indeed, for any 51 < 52 <t < s3 < s4, we have that the following sets are well
defined and the inclusions hold:

P(Pp(s52), b5, P, 1 — 52) C P(Pp(s1), 05 p, 1 — 51)

and

G(pp(s1), 05, p; Pp(53), 53 — 51583 — 1) = G(Pp(52), O5, P; Pp(53), 53 — $2; 53— 1)
C G(¢p(sl)a 9s117; ¢p(s4), S4 — 81584 —1)
= G(¢p(52), 05, P Pp(54), 54 — 525 54 —1).

Thus, we have proved the existence of at least one trajectory. We recall that
every trajectory has been proved to be continuous.

Now we prove that 7, ([0, T]) is compact in C([0, T']; RY). Let be {¢,} C
Tp,x([0,T]). As (T, p, x) is compact, there exists a subsequence {¢,, (T)} C
{¢.(T)} converging to a point denoted ¢(7"). By the same reason, there exists
another subsequence {¢,,,(T/2)} C {¢,,(T/2)} converging to a point ¢(7/2) and we
iterate this procedure. By a diagonal argument, we obtain a subsequence relabeled
again with index m, converging in all the dyadic numbers of [0, T']: ¢, (pT/2%) —
$(pT/29).

As {¢, } are trajectories, then ¢, (1) € @(t—s, O, p, P, (s)) forall0 <s <t < T,
in particular for dyadic numbers, whence ¢(f) € @(t — s, 65 p, ¢(s)) by the u.s.c.
of @. To extend it to the whole interval to obtain a trajectory, we proceed as before.
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Let us prove that ¢, — ¢ in C([0, T']; R?). The pointwise convergence follows
easily. Indeed, for any ¢, let us write

¢n () — @) = ¢u (1) — Pu(tp) + Gu(tp) — ¢(1p) + ¢(1p) — P(1),

with 75 a dyadic number close enough to ¢ such that |¢(tp) — ¢(¥)| < ¢/3, and
with H(®(t, p, x), @(tp, p, x)) < &/3. Then we can choose n(zp) such that for all
n > n(tp), onehas |¢,(tp) — ¢(tp)| < &/3. However, for the uniform convergence
one needs to be more careful. We follow the proofin [21, Th. 6.2]. By a contradiction
argument, if it does not hold, there exist a constant ¢ > 0, sequences t,, with
t, — t € [0, T], and ¢, such that

|@n (1) — P()] > &. )
t,T] if t<T
{T} if t=T.

As {¢,(t,)} C @([0, T], p, x), which is compact, there exists a convergent

subsequence (we do not relabel it) ¢, (,) — z. Then, there exists n, € N such that

forall n > n,, we have that 1, < 7. Since ¢, (1) € @(t — 1, 6, p, Pu(t,)) and 7 is
dyadic, we have ¢, (7) — ¢(7) and so, the global u.s.c. of @ implies that

¢(v) € P(t —1,0:p, 2).
Using now the continuity of ¢ and the density of dyadic numbers we have:

o) = llinz ¢(t) € limsup @(t — 1, 6,p, z7) = ©(0,6,p, 2) = {z},

T—>t

Consider a dyadic number 7 €

which contradicts (9).
Finally, we prove the upper semicontinuity result claimed in (4):

H*(Tp,x, ([0, T1), Tp ([0, TD) — 0 if  (py, Xn) = (p, X).

According to the last section, it is equivalent to prove e-u.s.c. We proceed again
by a contradiction argument. Suppose there exist a positive constant ¢ > 0,
a sequence of pairs (p,,x,) converging to (p,x) in P x R?, and trajectories
®n € Tp,.x, ([0, T]) such that ¢, & Bjo.71.rd) (Tp.x ([0, T1), €). We will prove that
for a subsequence ¢,/, it is satisfied that ¢,, — ¢ € T, ([0, T']), which will give
us the contradiction.

First, we have that ¢,,(0) = x, — x. As ¢,,(T) € (T, py, x,,), by the compact
values and u.s.c. of @, there exists a subsequence (which we do not relabel)
converging to an element ¢(7') in @(7, p, x). The same argument can be applied to
this subsequence at time 7/2, and, taking a diagonal subsequence, for a countable
set of numbers (the dyadic in [0, T']), defining a set of points ¢(k7/2™). Of course,
they satisfy the trajectory property, as far as ¢, are:

Ou(t) € D(t — 5, 05 pn, Pu(s)),
for dyadic0 < s <t < T. By the u.s.c. of @ we have
() € D(t — 5,05 p, P(s)).

The extension to the whole interval is done as above, preserving the trajectory
property. To finish, the uniform convergence of ¢, to ¢ is deduced as in the
previous case.
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7.2. Autonomous strong attractors of SVSDS. Proof of Proposition 7

Clearly, +; is nonempty since it is the intersection of a nested family of compact
sets. Moreover, it is compact too.

Since any bounded set is absorbed by By, it is enough to see that By is attracted
by ;. If not, there exist ¢ > 0 and a sequence x, € II(t,, B;), with 1, — o0,
such that dist(x,, A;) > ¢ > 0. But x,, € B, for all n > n(B,) by the absorbing
property of By, and as it is compact, there is a subsequence converging (we do not
relabel) to x € +,, which is a contradiction.

We check IT-invariance in two steps: First, we prove that [1(¢, A;) C A as in
the single-valued case. Indeed,

11, 4) = 1(1 (116 8)) < ()16, 110, 8,))

r>0 r>0

= (G +r, B) =\, By) = [ 11, By) = A

r>0 r>t r=0

where we have used the semigroup property of IT and the positive invariance of 8B;.

For the converse, A, C I1(t, A;), pick a € A;. Then, there exist sequences
T, — 00, and a, € I1(t,, B;) with a, — a. Consider ¢ > 0 and n(¢) such that for
alln > n(t), t, —t > 0. Then, for all n > n(z):

ap € H('L’n, £S‘) = H(ta H(Tn -1 £v))

and thus there exists a sequence a), € [1(t, — t, B,) with a, € I1(t, a,). Since B
is compact and positively invariant, we deduce from

d, € M(t, —1, By) C By

the existence of a convergent subsequence a;lj — d' € By if j = oo. Of course,
Tp; —t — o0 and therefore, a’ € Ay. By the upper semicontinuity we have that

H*(I1(t, a;j), I(t,a’)) — 0 Jj — oo,

and from a,;, — a and a,; € It a;lj) we obtain a € I1(t,a’) C II(t, Ay) as
desired.

Since a compact set K that is [T-invariant satisfies by the attraction property,
H*(I1(t, K), A;) — 0, and we have that H*(K, A;) = H*(I1(t, K), +4Ay), then
H*(K, A;) = 0and so K C .

On the other hand, for a closed set B attracting bounded sets, we have that
H*(Ag, B) = H*(I1(t, A;), B) — 0 and therefore H*(A,, B) = 0 and A, C B.

For the last statement, we adapt the proof given in Gobbino and Sardella
[12, Th. 3.1]; see also [9]. By contradiction, if + ; is not connected, then 4 ; =
A1 U A, with A; nonempty disjoint compact sets (i = 1, 2). Take ¢ > 0 such that
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B(A1,&) N B(A,, ¢) = @, and define fori =1, 2
Yi={yeY: : Ity € B(Aj,e) for t largeenough}.

As Ay is a global attractor and taking into account the assumptions on connect-
edness for I7, these sets are well defined, and they are nonempty, disjoint, contain
the respective set A;, and complete the whole space Y. We will see they are open
sets, which will finish the proof. Indeed, given y € Y; and a neighborhood B,
it is attracted by ¢, call T(B, ) > 0 the absorption time for B to B(Ay, €),
i.e. [1(t, B) C B(Ay,¢) for all t > T(B, ¢). In particular, as I1(¢, y) C B(Y;, €),
a neighborhood U C B of y satisfies by u.s.c. that I1(t, U) C B(A;, €), and so
U C Y;, which means Y; is open as desired.

7.3. Autonomous weak attractors of SVSDS. Proof of Theorem 9

Nonempty and compact: consider any sequences 7, — oo and b, € 8B,,. By the
weak positive invariance of 8,,, there exist trajectories 7, with 7,(0) = b, and
(1) € By, forall r > 0. In particular, a, = 7,(t,) € 8By, and by the compactness
of B, we can extract a subsequence a,; converging to an element a in B, as
j — oo. Taking {r,,j, bnj, anj}j as the original sequences, we have that a € A,
which is therefore nonempty.

To show that +4,, is compact, we only need to see that it is closed since is
contained in the compact set B,,. Suppose a; € 4, and ax — a as k — oo. Then,
there exist sequences 1, — 00 as n — oo and trajectories 7y, With 7, (f) € By,
for all + > 0 and 7y, (tx.,) — ax as n — oo. Pick ny so that

[7kng (Tem) — akl < 1/k and gy, > ton, +1 Yk € ZF.
Then

|7Tk,nk(77k,nk) - a| S |7Tk,nk(77k,nk) - akl + |ak - a|

<l1l/k+l|ax—al -0 as k— oo.

Taking {7k n, , Tk.n, Jx as the original sequences, we have again that a € +#4,,, which
is closed as desired, and hence compact.

Weak positive invariance: Take a € 4., then there exist a sequence t, — 0o and
trajectories m, with (f) € B,, for all t > 0, such that 7, (r,) — aasn — oo. If
we denote v, (¢) := m,(t, + 1), it is obvious that v, is a trajectory and v, (f) € By,
for all + > 0 and v,(0) — a € #A,. Applying Barbashin’s Theorem 2 on an
interval, say [0, T'], we obtain a convergent subsequence Un; (t) = v(¢) uniformly
for ¢t € [0, T]. Naturally, v : [0, T] — 8B, is a trajectory and v(0) = a. Moreover,
v(t) € A, since Ty, (r,,j) € B, 7 (Tn, +1) — v(r) and Ty, +1 — 0. A diagonal
argument shows again that we can obtain a trajectory defined on all of RT.
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Weak negative invariance: The same idea can be used backwards in time. For
any 7 > 0, consider ny such that t, — T > O for all n > nr, and write

v, [=T,0] = By : s = v,(5) ;== 7, (1, + 5).

Barbashin’s theorem can be applied successively on intervals [T, 0], [-27, —T1],

. and by a diagonal argument we obtain the existence of a trajectory v :
R~ — &B,, which indeed takes values in +, as before, with v(0) = a. The
concatenation of v and v gives us the invariance of 4, as desired.

Weak attraction: Let D be abounded subset of R?. Since 8,, is weakly absorbing,
there exists a time T > 0 such that for each d, € D there exists a trajectory 7,
with 7, (0) = d, and 7,,(f) € B, forall t > Tp.

By the weak positive invariance of 8,,, we can consider trajectories 7, : RT™ —
B, with 7,(0) = m,(Tp). Since B,, is compact, for any sequence 7, ; — 0O as
k — oo, there exist subsequences 7, (7, i) — a, as k' — oo for some a, € By,
(for each n). By definition of +, we have that a,, € #4,,. Define

7, (1) 0<t<Tp,

* *—_
D = Fut = Tp) 1= Tp.

Then, 7;(0) = d, and 7 (z, v + Tp) — a, as k' — oo. Pick k], such that
Tk, < Tt k), and dist(r, (7, ¢, +Tp), #w) < 1/n. Therefore we have obtained
for the trajectories 77 which start at d,, that

dist(7;\(z, 41, + Tp), Aw) — 0.

Thus, we have weak attraction.
The maximality statement w.r.t. 8,, comes from its definition.

7.4. Attractors for SVSPF and their restrictions

7.4.1. Proof of Proposition 11. The first assertion is obvious.

For the second one, as P* is the projection onto P of the attractor A, for
every p* € P*, A;(p*) is nonempty. Compactness follows from that of 4, and
the continuity of the projection of P* x R? onto RY. The ®-invariance of A,(p)
follows trivially from the [T-invariance of ;.

We now prove the third claim. Since A;(p) is compact, it is equivalent to prove
e-u.s.c. (cf. [1]). Suppose not, then there exists a constant &€ > 0 and p, — p
(elements of P*) such that A;(p,) ¢ B(As(p),¢), i.e. there exists a sequence
Xn € As(py) with x,, € B(A(p), €). By the sectorial definition of A,(p), for each
(pn, xn), there exist sequences f, — oo as m — oo and y, € &(t), pi,br),
with (py,, b)) C Bs, such that (0,2 ., y,) — (pn, Xs) as m — oo. Pick m(n)
strictly increasing such that ), is also strictly increasing. From (9’Z<n) Poys Yy
we can extract a subsequence converging to a pair (p, y) € {p} x As;(p), as they
belong to B, asymptotically. But this means that a subsequence of x,, approximates
y € Ay(p), which is a contradiction.
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7.4.2. Proof of Proposition 12. Obviously A} C A, since 4 attracts a smaller
class of sets, in fact, just those from P* x R rather than P x RY.

Now IT*(t, ;) = I1(1, As) = As, Vi > 0 since A; C P* x RY and [T* = [T
on P* x R?. Since #* attracts nonempty bounded subsets of P* x R? including
Ay, one has that

H*(Ag, AY) = H*(IT (1, Ay), A)) — 0, ast — oo,

ie. H* (A, A)) =0, thus A; C A} and therefore A; = A

Alternatively, one can also argue in the following way: +4; is a IT*—invariant set
and the global attractor A* of IT* in P* x R? is the maximal compact /T*~invariant
subset of P* x RY, 50 A; C A

7.4.3. Proof of Proposition 13. The statement about P* is clear even in this weak
framework since 6 is single-valued and the weak [7-invariance easily implies
f-invariance for P*, and the weak attraction property of «4,, implies the strong
attraction property for 6 in P*.

That A, (p) is nonempty is trivial, as mentioned before, since P* is the projec-
tion of #4,, onto P. It is also compact, the proof is the same in Theorem 9, since
forall @, € P x RY we have that Prp (ax) = p and so the limit a.

Let us prove that P* > p — A,(p) is u.s.c. We want to see that if p’ — p,
then H*(A(p'), Aw(p)) — 0. If not, there exist a constant ¢ > 0 and a sequence
pn — p with ¢ < H*(Ay(pn), Ay(p)) = dist(a,, Ay(p)), where we have used
that A, (p,) is compact. Therefore,

e < dist(a,, a) Ya € Ay(p). (10)

As Ay(py) C Prga Ay, which is compact, from {a,} we extract a convergent
subsequence (which we do not relabel), and so (p,, a,) — (p, a). From the weak
invariance of #,,, there exists at least one entire trajectory 7, passing through
each (p,, a,). Barbashin’s theorem (Th. 2, see Remark 5) provides a converging
subsequence {m,, },, on the interval [—1, 1] to a trajectory. Applying it again to
this subsequence we obtain another one denoted by {m,, },,, which is uniformly
converging on [—2, 2]. A diagonal argument gives an entire trajectory 7 such that
7(0) = (p, a). By Remark 10, we have that (p, a) € #A,, soa € A,(p), which
contradicts (10).
The last statement is obvious.

7.5. Pullback structure of SVSPF attractors

7.5.1. Proof of Lemma 15. Thanks to the @-positive invariance of B(p) for
p € P*, and the cocycle property, we have that

Q(t + r, e—t—rpv BS(Q—t—rp)) = @(tv 9—1p9 @(I", e—t—rp9 BS(Q—I—VP)))
C D(t,0_;p, Bs(6_p)).
Thus, these sets are nested, and by the u.s.c. of @ on its third variable and the

compactness of B,(p) for p € P*, they are compact. Thus, As(p)is nonempty and
compact.
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7.5.2. Proof of Proposition 17. We only need to check the first identity since the
second one has already been proved.
First, let us prove that A;(p) C A (p):

{py x Ay(p) = {p} x [ @, 60— p, By(6-1p))

t>0

=[P} x ®(t.6_.p. By(6_1p))

>0

= [ (6:(6-:p)} x D(t,6_,p. By(0_1p))

>0

= m H(t, (9,;]7, Bs(effp)))

>0

()t B;) = AL

>0

Here we have used that P* is f-invariant. Thus {p} x Aq( p) C A} what implies

that {p} x As(p) C {p} x A% (p) and therefore As(p) C A}(p) as desired.
As for the converse, notice that IT*(t, A}) = A} forall t > 0. So, in particular,

(1, p, AL (p)) = AL(6:p) forall t>0, pe P*.
Moreover, we know that

Ay(p) C AX(p) C By(p).

Thus, setting 6_; p instead of p,

A%(p) = @(t, p, AX(0_1p)) C D(t,0_p, By(6—,p))

forall + > 0 and p € P*. Therefore, we finally obtain that

Al(p) €)@, 0-1p, By(6-:p)) = A,(p).

>0

7.5.3. Proof of Proposition 18. Suppose not, then there exist a positive constant
¢, a bounded set D and sequences t, — 00, ¥, € D(t,, 60—, p,d,) with p € P*
and d,, € D such that

dist(y,, As(p)) > & > 0.

There exists Tp(p) such that @(t,0_,p, D) C Bs(p) for all + > Tp(p). So,
as Bs(p) is compact, there exists a converging subsequence (denoted the same)
yn — x € By(p). We will see that in fact x € AS( p), which will be a contradiction.

Consider any t > 0 and take n(t) big enough such that 7, — v > 0 and
D(t, — 7,604, p,dy) C Bs(6—,p) which is possible since 7, — oo and the family
B;(p) is @-pullback absorbing.



S44 T. Caraballo et al.

Then, we have that
Yn € @(ty, 0, p, dn) = (T, 01 p, Pty — 7,04, p, dn)),
which shows that x € As( p) as desired.

Now we show that this is the minimal pullback attractor, i.e. it coincides with
the closure of the union of the omega-limit sets on each p-fiber:

U NUewop. D).

Dbounded t>0 t>71

Indeed, this is a trivial consequence of the fact that for all p € P*, By(p) is
contained in a compact set K, namely, K = Prya B;:

(1,0, p, Bs(0—1p)) C P(1,0_;p, K)

and so

Apc | NUewop D).

Dbounded t>0 t>1

The other inclusion is obvious, using the minimality of the omega-limit set for D
at fiber p.
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