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Abstract. We investigate the asymptotic behaviour of a general set-valued skew product
flow (SVSPF), that is, a set-valued cocycle mapping (coming from a non-autonomous
differential equation or inclusion) driven by another, autonomous, system. Absorptivity
conditions which ensure the existence of several types of attractors for such set-valued
systems are established. The topological properties of and relations between these attractors,
in forward and pullback senses and their strong and weak versions are analyzed. Several
illustrative examples are also provided.
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1. Introduction

Set-valued analysis and attainability set functions are used to handle problems
arising from differential equations without uniqueness, differential inclusions, or
problems arising in control theory, viability theory, finance and economics amongst
others, and have been widely studied in recent decades (see, e.g., [3,21,20,25,14,
15]). The investigation of the asymptotic behaviour of these phenomena, global,
strong or weak stability and attraction properties, needs the concept of pullback
attractors when non-autonomous equations are considered, in particular stochastic
and random ones which are intrinsically non-autonomous (cf. [11,10,22,16] and
[17,5] for the weak pullback case).

However, the non-autonomouscase can also be viewed within the framework of
skew-product flows, which allows us to transform the problem into an autonomous
one (cf. [23,6,7,9,18,8]) and to apply the classical theory for autonomous sys-
tems in a different, extended, phase space. On the other hand, if such an attractor
exists, then we can recover the dynamics in the original phase space Rd and its
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asymptotic properties by using suitable projections, which is important as this
original phase space is often the one that is of interest or meaningful in mod-
elling.

The paper is organized as follows: In Section 2, we recall the concepts of skew-
product flows coming from a cocycle set-valued mapping with a related driving
system. Conditions for existence of strong and weak attractors for an autonomous
set-valued semidynamical system in an abstract metric space and its properties
are analyzed in Section 3. Then, in Section 4 we apply these results to the case
of a skew-product flow as introduced above, distinguishing between strong and
weak cases. Here, the sectorial components in the original phase space Rd of the
attractor in the extended phase space (under several suitable conditions) will be
analyzed, namely, for strong and weak asymptotic concepts as well as for their
connections with the underlying non-autonomous semi-flow. The formalism used
here allows us to obtain additional results which supplement those in earlier papers
([5,17]).

We also illustrate our theory with some examples and, for the sake of clarity,
give most of the proofs at the end of the paper.

2. Set-valued skew product flows

Hereafter, we will use the following notation: P (X) and K(X) for the set of
nonempty and nonempty compact subsets of a given space X, respectively;
H∗ for the Hausdorff semi-distance, H∗(A, B) = supa∈A dist(a, B), and H for
the Hausdorff distance, H(A, B) = max(H∗(A, B), H∗(B, A)).

To establish an appropriate framework for our analysis, we consider given an
autonomous driving system, θ : R× P → P, where P is a metric space, i.e. a group
of homeomorphisms under composition on P with the properties

i) θ0 p = p for all p ∈ P,
ii) θt+s p = θtθs p for all s, t ∈ R,

iii) the mapping (t, p) �→ θt p is continuous.

For instance, one can think of an ordinary differential system in P = Rl with
an autonomous globally Lipschitz and dissipative vectorfield g, i.e. p′ = g(p).

A set-valued skew product flow (SVSPF for short) consists of an autonomous
driving system θ on a metric space P and a set-valued cocycle mapping (at-
tainability set mapping) Φ : R+ × P × Rd → K(Rd) satisfying the following
properties:

1. Compactness Φ(t, p, x) is a nonempty compact subset of Rd for all t ≥ 0,
p ∈ P, x ∈ Rd ;

2. Initial condition

Φ(0, p, x) = {x}
for all p ∈ P and x ∈ Rd ;
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3. Cocycle property

Φ(t + s, p, x) = Φ (t, θs p,Φ(s, p, x))

for all t ≥ 0, p ∈ P, x ∈ Rd ;
4. Continuity in time

lim
s→t

H (Φ(s, p, x),Φ(t, p, x)) = 0

for all s, t ≥ 0 and all p ∈ P and x ∈ Rd;
5. Upper semi continuity in parameter and initial conditions

lim
q→p,y→x

H∗ (Φ(t, q, y),Φ(t, p, x)) = 0

uniformly in t ∈ [T0, T1] for any 0 ≤ T0 < T1 < ∞ for all p ∈ P and x ∈ Rd .

Remark 1. Assumptions 4 and 5 imply that Φ is globally upper semi continu-
ous (u.s.c.), i.e. if (tn, pn, xn) → (t, p, x) as n → ∞, then H∗(Φ(tn, pn, xn),

Φ(t, p, x)) → 0. Indeed,

H∗(Φ(tn, pn, xn),Φ(t, p, x)) ≤ H∗(Φ(tn, pn, xn),Φ(tn, p, x))

+ H∗(Φ(tn, p, x),Φ(t, p, x)) → 0 as n → ∞,

since the first term in the right hand side goes to zero by the u.s.c. in the second and
third variables uniformly in time (property 5), and the second term goes to zero by
the continuity (hence u.s.c.) of Φ on its first variable (property 4).

A trajectory of a set-valued cocycle Φ is a single-valued mapping φp : [0, T ]
→ R

d which, for the indicated p ∈ P, satisfies

φp(t) ∈ Φ(t − s, θs p, φp(s)) for all 0 ≤ s ≤ t ≤ T. (1)

A trajectory φ is called an entire trajectory if it is defined on all of R and satisfies
(1) for all s ≤ t. (If necessary, to emphasize a particular p ∈ P, we will use the
notation p-trajectory for the above definition).

Now let us denote

Tp,x([0, T ]) = {φp, trajectory such that φp(0) = x}.
Then, we can establish the following generalization of a theorem of Barbashin in
a similar way as in [3,21,14]:

Theorem 2. The following properties holds:

1. Tp,x([0, T ]) 	= ∅ (there exist trajectories for all p, x, and T > 0)
2. Tp,x([0, T ]) ⊆ C([0, T ];Rd) (continuity)
3. Tp,x([0, T ]) is a compact subset of C([0, T ];Rd)

4. Tpn ,xn ([0, T ]) → Tp,x([0, T ]) (in H∗ on C([0, T ];Rd)) as pn → p, xn → x.
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Remark 3. It is worth noticing that Theorem 2 also holds true if we consider
a Banach space X instead of Rd (see the proof in Section 7).

We now consider a general autonomous set-valued semidynamical system
(SVSDS for short) as in Szegö and Treccani [25], that is, a set-valued mapping
Π : R+ × Y → P (Y ) satisfying suitable properties, and where Y is a con-
nected metric space. To avoid unnecessary repetitions, such properties are the
stated below for the special case in which the set Y is the extended phase space
P × Rd .

A particular case of an autonomous set-valued semidynamical system is
that generated by a set-valued skew product flow, namely with Π(t, p, x) =
(θt p,Φ(t, p, x)) and satisfying the following properties:

1. Π(t, p, x) is nonempty and compact;
2. Π(0, p, x) = {(p, x)};
3. The semigroup property:

Π(t + s, p, x) = Π (t,Π(s, p, x)) ;
4. t �→ Π(t, p, x) is continuous in the Hausdorff metric, for all p, x, i.e.

HP×Rd(Π(s, p, x),Π(t, p, x)) → 0, as s → t;
5. (p, x) �→ Π(t, p, x) is upper semicontinuous in the H∗ sense, i.e.

H∗
P×Rd (Π(t, q, y),Π(t, p, x)) → 0, as q → p, y → x,

uniformly in compact intervals t ∈ [T1, T2].
A trajectory for an SVSDS is a single-valued mapping π : [0, T ] → Y with

π(t) ∈ Π(t − s, π(s)) for all 0 ≤ s ≤ t ≤ T . Analogously, a trajectory (or
p-trajectory) for a SVSPF is a single-valued mapping πp : [0, T ] → P × Rd with
πp(t) ∈ Π(t − s, πp(s)) for all 0 ≤ s ≤ t ≤ T and the first component of πp(0)

equals to p.

Proposition 4. πp is a trajectory for the SVSPF if and only if there exists a trajec-
tory φp of Φ such that

πp(t) = (θt p, φp(t)) ∀t ∈ [0, T ].
The result holds true for any trajectory defined in any interval of time, and also for
entire trajectories.

Remark 5. An analogous result to Theorem 2 holds for an SVSPF Π = (θ,Φ)

(actually for any general SVSDS), replacing C([0, T ];Rd) by C([0, T ]; P × X) in
all the statements, actually, in any time interval not necessarily in the positive half
line.

This is straightforward because the multi-valued mapping F : {(t, t0) : t ≥ t0}
× P × X → P (P × X) defined by F(t, t0, p, x) := Π(t − t0, (p, x)) satisfies the
required conditions, since θ and Φ do (cf. [3,21,14,5]).
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3. Attractors of SVSDS

Now we consider a SVSDS Π : R+ × Y → P (Y ) and recall the basic concepts
on attractors, which will be applied in the following section to our skew product
formulation, denoting then the extended phase space P × Rd by Y .

For the sake of clarity, subscripts s and w on attractors will denote strong and
weak concepts.

Definition 6. A strong global attractor for an SVSDS Π is a nonempty compact
subset As ⊂ Y satisfying

1. strong invariance: Π(t,As) = As for all t ≥ 0
2. strong attraction: for every nonempty bounded subset D of Y,

distY (Π(t, D),As) → 0, as t → ∞.

A weak global attractor for an SVSDS Π is a nonempty compact subset
Aw ⊂ Y satisfying

1. weak invariance: ∀y ∈ Aw there exists an entire trajectory π : R → Y with
π(0) = y and π(t) ∈ Aw for all t ∈ R

2. weak attraction: for every nonempty bounded subset D of Y and yn ∈ D, there
exist trajectories πn : R+ → Y and numbers τn → ∞ with πn(0) = yn and

distY (πn(τn),Aw) → 0, as n → ∞.

For completeness, we recall some results ensuring the existence of such attrac-
tors.

3.1. Strong global attractor of SVSDS

The most simple case of an autonomous semi-flow with a compact absorbing set
Bs (i.e. for every bounded set D there exists TD ≥ 0 such that Π(t, D) ⊂ Bs for
all t ≥ TD) is well known. Assume that Bs is a nonempty compact absorbing set
in Y . Without loss of generality, we can assume that Bs is Π–positively invariant
(i.e. Π(t,Bs) ⊂ Bs, for all t ≥ 0). Define

As =
⋂

t≥0

Π(t,Bs).

Then, a ∈ As iff a ∈ Bs and there exist τn → ∞, an ∈ Π(τn,Bs) with an → a as
n → ∞.

Proposition 7. The set As has the following properties:

1. It is nonempty and compact and attracts bounded sets.
2. It is Π–invariant, therefore it is a global strong attractor. Actually it is the

maximal invariant compact set, and also the minimal closed set that attracts
bounded sets.

3. If Π(t, x) is connected for all (t, x) ∈ R+ × Y, then As is also connected.
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Remark 8. The existence of an absorbing set for the construction of the attrac-
tor and its properties can be relaxed to that of an attracting set (see [19, Th. 1]),
which can be more appropriate in some other situations (e.g. hyperbolic sys-
tems).

3.2. Weak attractors of SVSDS

We consider now an SVSDS Π(t, x) and establish existence of weak attractors. To
this end, we introduce the concept of a weak absorbing set Bw, i.e., a nonempty,
compact set which in addition is

• weakly positively invariant: for all b ∈ Bw there exists at least one trajectory
π with π(0) = b and π(t) ∈ Bw for all t ≥ 0.

• weakly absorbing: for all bounded subset D there exists TD ≥ 0 such that for
any d ∈ D there exists a trajectory π with π(0) = d and π(t) ∈ Bw for all
t ≥ TD.

Theorem 9. Assume there exists a weak absorbing set Bw for an SVSDS Π.
Then, there exists the maximal weak attractor Aw w.r.t. Bw, which is defined
as the set of points a ∈ Bw such that there exist bn ∈ Bw, τn → ∞ and
trajectories πn : R+ → Bw with πn(0) = bn and dist(πn(τn), a) → 0 as
n → ∞.

Remark 10. As in [5, Lemma 13], we observe that an entire trajectory π : R→ Y
satisfies that

π(t) ∈ Bw if and only if π(t) ∈ Aw.

Therefore, Aw is the set of points reached by entire trajectories contained in Bw.

4. Attractors of SVSPF

Now specialize to Π = (θ,Φ) with our skew product structure, i.e. we consider
now that Y = P × Rd . We again split our analysis into two cases concerning the
strong and weak situations.

4.1. (Strong) global attractor of SVSPF

Suppose that there exists a compact positive invariant absorbing set Bs ⊂ P × Rd

for Π. Then, there exists a strong global attractor

As =
⋂

t≥0

Π(t,Bs).

Let P∗ = PrP(As) be the projection of As onto the space P and consider the
decomposed notation

As =
⋃

p∈P∗
{p} × As(p).
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Proposition 11. Under the previous assumptions the following properties hold:

1. P∗ is nonempty, compact and θt P∗ = P∗. In fact, P∗ is the global attractor of
the (single-valued) autonomous driving system θ on P.

2. As(p∗) is nonempty and compact for each p∗ ∈ P∗. It also satisfies the invari-
ance property As(θt p∗) = Φ(t, p∗, As(p∗)).

3. The mapping P∗  p �→ As(p) is upper semi continuous.

Now consider the restriction Π∗ of Π to P∗ × Rd . Since θt P∗ = P∗ for all
t ∈ R, it follows that Π∗ is an SVSPF on P∗ × Rd .

Consider B∗
s = Bs ∩ (P∗ × Rd). Then, B∗

s absorbs sets in P∗ × Rd under
Π∗(≡ Π). Also B∗

s is nonempty, compact and Π∗-positively invariant, so Π∗ has
a maximal global attractor

A∗
s =

⋃

p∈P∗
{p} × A∗

s (p),

in P∗ × Rd . Then, we have the following result:

Proposition 12. The strong global attractors of Π and Π∗ coincide: A∗
s ≡ As.

4.2. Weak attractors of SVSPF

Suppose that an SVSPF Π has a weak attractor relative to the compact weak
absorbing set Bw ⊂ P × Rd , which is also given by

Aw =
⋃

p∈P∗
{p} × Aw(p),

(again we denote P∗ = PrP Aw) as described above for general set-valued semi
dynamical systems. Then, we have

Proposition 13. The following properties hold:

1. P∗ is the global attractor for the single-valued driving system θ on P.
2. Aw(p) is a nonempty compact set for each p ∈ P∗.
3. The map P∗  p �→ Aw(p) ∈ K(Rd) is u.s.c.
4. Aw is weakly invariant, i.e. if (p, a) ∈ Aw, there exists an entire trajectory

π = (θ, ϕp) such that ϕp(0) = a and π(t) = (θt p, ϕp(t)) ∈ Aw for all t ∈ R,
i.e. ϕp(t) ∈ Aw(θt p).
Moreover, Aw is the largest weak invariant set in the absorbing set Bw.

If we restrict Π to Π∗ on P∗ × Rd , we have that Π(t, (p, x)) = Π∗(t, (p, x))

for all t ≥ 0 and (p, x) ∈ P∗ × Rd since P∗ is θ-invariant.
Define

B∗
w =

⋃

p∈P∗
{p} × Bw(p) ⊂ Bw =

⋃

p∈P

{p} × Bw(p).
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Note that Aw(p) ⊂ Bw(p) for all p ∈ P∗. So, Bw(p) is nonempty and compact.
We also have that B∗

w is weakly positive invariant since P∗ is θ-invariant and Bw

is weakly positive Π-invariant.
Then, we obtain a maximal weak attractor for Π∗, A∗

w, with respect to B∗
w and

we will use the notation

A∗ =
⋃

p∈P∗
{p} × A∗

w(p).

Remark 14. Note that a ∈ A∗
w(p) if and only if there exist sequences tn → ∞,

(pn, bn) ∈ B∗
w, trajectories πn = (θ, ϕpn ) with ϕpn (0) = bn and θtn pn → p and

ϕpn (tn) → a.

Observe that A∗
w consists of entire Π∗-trajectories, and, since it is weak invari-

ant, A∗
w(p) is nonempty and compact for all p ∈ P∗.

Aw ⊂ B∗
w ⊂ Bw but Aw is the maximal Π-weak invariant family contained

in Bw and A∗
w is Π∗-weak invariant (and so Π-weak invariant), therefore one has

that

A∗
w ⊂ Aw.

Indeed, as Π and Π∗ coincide in B∗
w, entire Π-trajectories in Aw are Π∗-

trajectories and conversely, by the same argument of maximality, we conclude
that

Aw = A∗
w.

Thus, we can restrict ourselves to the dynamics on B∗
w and we will study the

relations between weak and strong skew-product attractors and their sections with
respect to pullback weak and strong attractors in the following section.

5. Pullback structure of SVSPF attractors

Once again we split our analysis into two cases: strong and weak attractors.

5.1. The strong case

As before, Bs denotes a Π-positive invariant compact absorbing set and B∗
s =

Bs ∩ (P∗ × Rd) is a Π∗-positive invariant compact absorbing set (we keep using
the notation Bs = ⋃

p∈P{p} × Bs(p), so Bs(p) 	= ∅ for p ∈ P∗). This implies
Φ-positive invariance for the sections Bs(p) in P∗:

Φ(t, p, Bs(p)) ⊂ Bs(θt p) ∀t ≥ 0, ∀p ∈ P∗.

Indeed, Π∗(t,B∗
s ) ⊂ B∗

s implies that

Π(t, (p, Bs(p))) = (θt p,Φ(t, p, Bs(p))) ⊂ B∗
s =

⋃

q∈P∗
(q, Bs(q))

what necessarily means our claim if p ∈ P∗.
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Lemma 15. Define

Âs(p) =
⋂

t≥0

Φ(t, θ−t p, Bs(θ−t p)) for p ∈ P∗.

Then, Âs(p) is nonempty and compact for all p ∈ P∗.

Remark 16. If Bs(p) and Φ(t, p, x) are connected for all t ≥ 0, p ∈ P∗ and
x ∈ Rd , then Âs(p) is also connected, since it is the intersection of a nested family
of nonempty, compact, connected sets.

Proposition 17. The following identities hold:

Âs(p) = A∗
s (p) = As(p) ∀p ∈ P∗. (2)

Moreover, we also have the following result relating the sections with the notion
of pullback attractor (see e.g. Kloeden and Schmalfuß [18, Def. 4.2]).

Proposition 18. { Âs(p)}p∈P∗ is the pullback attractor for Φ on P∗ × Rd.

Remark 19.

(i) Notice that Propositions 17 and 18 imply that the p-components of the strong
global Π-attractor As, which attracts in the forward and pullback senses,
are the strong pullback attractor for Φ when the dynamics are restricted to
P∗ × Rd .

(ii) Here we started with a global attractor for the skew-product flow Π and have
obtained a pullback attractor for Φ. The converse is not true in general, i.e. if
{As(p), p ∈ P∗} is a strong pullback attractor for Φ, then A = ⋃

p∈P∗ {p} ×
As(p) may not be a global attractor for Π (see [8] for a counterexample in the
single-valued case).

(iii) In general, pullback attractors for set-valued flows are only negatively invari-
ant, and strict invariance needs additional assumptions (the easiest is a lower
semi continuous property for the flow). Here, the strict invariance holds since
the driving system has a global attractor.

Now, bearing (2) in mind, we deduce an improvement of the u.s.c. result in
Section 4.1 when the approximation in the parameter space comes from the driving
system.

Corollary 20. For every p ∈ P∗, the map t �→ As(θt p) is continuous.

Proof. It follows from the fact that A∗
s ≡ As is strongly Π-invariant (and thus

Φ(t, p, As(p)) = As(θt p)), and the continuity of Φ on its first variable. ��
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5.2. The weak case

Assume that Bw = ⋃
p∈P{p} × Bw(p) is a weak absorbing family for the

skew-product flow and denote B∗
w = Bw ∩ (P∗ × Rd). Then, analogously to

the definitions of weak attractor for Π and an ordinary non-autonomous sys-
tem [5], we will obtain a weak pullback attractor for Φ, that is, a weakly in-
variant compact family {Aw(p)}p∈P∗ such that for every bounded set D ⊂ Rn

and xn ∈ D, there exist sequences tn → ∞ and θ−tn p-trajectories φn with
dist(φn(tn, θ−tn p, xn), Aw(p)) → 0 as n → ∞.

In order to do that, firstly observe that the family of sets {Bw(p)}p∈P “is” (see
Remark 22 below) a weak pullback absorbing family for Φ, similarly to the concept
of [5], which leads us to consider the following definition:

Âw(p) =
{

a ∈ Rd

∣∣∣∣
∃tn → ∞, bn ∈ Bw(θ−tn p), p − trajectories
ϕn : [−tn, 0] → R

d with ϕn(−tn) = bn and ϕn(0) → a

}
.

We will now prove that Âw(p) ⊂ A∗
w(p).

Let a ∈ Âw(p), then there exist sequences tn → ∞, bn ∈ Bw(θ−tn p), and
p-trajectories ϕ̂n : [−tn, 0] → R

d such that ϕ̂n(−tn) = bn and ϕ̂n(0) → a.
Denote pn = θ−tn p and ϕn : [0, tn] → R

d given by

t �→ ϕn(t) = ϕ̂n(t − tn).

It is obvious that πn = (θ, ϕn) are Π∗-trajectories with πn(0) = (pn, bn) and

πn(tn) = (θtn pn, ϕn(tn)) = (p, ϕ̂n(0)) → (p, a).

Remark 14 implies that Âw(p) ⊂ A∗
w(p).

As for the other inclusion, we have: A∗
w is weakly invariant, which means that

for all (p, a) ∈ A∗
w, there exists an entire trajectory π of Π∗ with π(t) ∈ A∗

w

for all t ∈ R, i.e. π(t) = (θt p, ϕp(t)) with ϕp an entire trajectory of Φ such that
ϕp(0) = a ∈ Aw(p) and ϕp(t) ∈ Aw(θt p) for all t ∈ R.

Consider any sequence tn → ∞ and define pn = θ−tn p. Take bn = ϕp(−tn) ∈
Aw(θ−tn p) ⊂ Bw(θ−tn p). Then, trivially ϕn(t) ≡ ϕp(t) for all n and t, jointly
with the chosen values bn , tn and pn , gives that a ∈ Âw(p) and therefore
A∗

w(p) ⊂ Âw(p).
Therefore, we have proved the following result:

Proposition 21. Under the above assumptions, Âw(p) = A∗
w(p) = Aw(p) for

all p ∈ P∗, i.e. the maximal weak attractor of Π in Bw, resp. Π∗ in B∗
w give

the maximal weak pullback attractor of Φ with respect to the absorbing family
{Bw(p), p ∈ P∗}.
Remark 22. By Proposition 13 and the continuity of θ , the set-valued mapping

t �→ Âw(θt p) = Aw(θt p)

is (only) upper semi continuous (in comparison with [5, Prop. 11]).
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6. Examples

Our first example related to the strong structure of a skew product flow is given by
the differential inclusion

x ′(t) ∈ G(t, x(t)) + βp(t, x(t)), (3)

where the multi-valued mapping G has good properties (for instance, it has closed
and convex values in P (Rd) and is Lipschitz continuous) and satisfies:

1. almost periodic dependence on its first variable,
2. a dissipativity condition: for all y ∈ G(t, x) it holds (x, y) ≤ −α0|x|2 + α1,

with αi > 0, i = 1, 2,
3. and p is single-valued, almost periodic on its first variable, and satisfies

|p(t, x)| ≤ γ1(t)|x| + γ2(t),

|p(t, x) − p(t, y)| ≤ γ3(t)|x − y|
with γi (i = 1, 2, 3) continuous, positive functions and

lim
t→∞

1

t

∫ t

0
γ1(s)ds = Cf < ∞. (4)

Under these assumptions, it is easy to deduce the existence of an attractor for
the skew-product flow generated by the above problem if β is positive and small
enough. The parameter space P is the product of the hulls of the mappings G and
p in appropriate function spaces.

The almost periodic time dependence is not essential. Consider the driving
system

p′(t) = g(p(t)), (5)

with g : R→ R given by

g(y) =
⎧
⎨

⎩

−y − 1 if y ≤ −1,

y2 − 1 if y ∈ (−1, 1),

1 − y if y ≥ 1.

Then, it is easy to check that the non-autonomous problem

x ′(t) ∈ [−1,−1/2]x(t) + p(t)

generates a set-valued cocycle mapping, and jointly with (5), a skew-product flow
with a non-trivial global attractor in the strong sense.

Other examples, arising from differential equations without uniqueness, partial
differential equations with periodic forcing terms, delay and functional differential
models among others can be found in [9,6–8].

A simple example to illustrate the weak case can be provided by using an
almost periodic or even periodic function of time. Suppose we have the differential
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inclusion

x ′(t) ∈ x(t)[− sin2 t, 0], (6)

which clearly generates a set-valued cocycle mapping. Since for every initial
value x0, the constant function φ(t) = x0 is a solution of the problem, there
does not exist a strong attractor for the skew product flow. However, the set {0} is
a forward attractor for the non-autonomous system (and [0, π] × {0} is a global
attractor for the skew-product flow, where P = R is equipped with the usual shift
modulo π, which is considered as the driving operator). Indeed,

x ′

x
= − sin2 t = −1/2(1 − cos(2t))

generates the solutions for the initial data x0

x(t) = x0e−t/2+1/4 sin(2t).

Finally, in [13] we can find some interesting examples on practical problems
arising in controllability theory for linear differential systems written in the form:

x ′(t) = A(t)x + Bu, u ∈ U,

where A is an almost periodic operator and B a linear operator acting on a control
set U . (Here P is the closure of the set {A(t) : t ∈ R}).

7. Proofs

7.1. Proof of Theorem 2: Barbashin’s Theorem for set-valued cocycle maps

First, we prove a Barbashin Theorem which will be needed below. We follow the
ideas in [14] to construct a trajectory. We proceed in several steps.

Attainability functions
Because of the cocycle property, for general points x0, x1, times 0 ≤ t ≤ t1, and
p ∈ P, we have

Φ(t1, p, x0) = Φ(t, θt1−t p,Φ(t1 − t, p, x0)).

Then, x1 ∈ Φ(t1, p, x0) if and only if

∃ x ∈ Φ(t1 − t, p, x0) such that x1 ∈ Φ(t, θt1−t p, x).

This suggests the following definition of a restricted backwards attainability func-
tion:

x ∈ G(x0, p; x1, t1; t) ⇐⇒ x1 ∈ Φ(t, θt1−t p, x). (7)

Then, one has the following result:

Lemma 23. If x1 ∈ Φ(t1, p, x0), then G(x0, p; x1, t1; t) is nonempty and closed,
and G(x0, p; x1, t1; 0) = {x1}.
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The mapping t ∈ [0, t1] → A(t) ∈ P (RN ) defined by

A(t) = Φ(t1 − t, p, x0) ∩ G(x0, p; x1, t1; t) (8)

has nonempty compact images and is continuous in t with respect to the Hausdorff
metric.

Proof. Owing to the cocycle property, it is obvious that G(x0, p; x1, t1; t)
is nonempty. To prove that it is closed, we proceed as in [21]. Suppose
yi ∈ G(x0, p; x1, t1; t) with yi → y as i → ∞, then x1 ∈ Φ(t, θt1−t p, y). In-
deed,

d(x1,Φ(t,θt1−t p, y))

≤ d(x1,Φ(t, θt1−t p, yi)) + H∗(Φ(t, θt1−t p, yi),Φ(t, θt1−t p, y)).

The first term on the right hand side is zero, and the second one converges to zero
due to the u.s.c. of Φ, so d(x1,Φ(t, θt1−t p, y)) = 0 and x1 ∈ Φ(t, θt1−t p, y).

The statement of G(x0, p; x1, t1; 0) = {x1} is trivial.
It is clear that A(t) is nonempty (see the construction of G and (7)), and also

compact since it is the intersection of a compact set and a closed one. We now need
to prove the continuity of t �→ A(t), i.e. we have to check that H(A(s), A(s0)) → 0
as s → s0.

We start with the case H∗(A(s), A(s0)) → 0. Suppose it is not so, i.e. there
exist a constant ε > 0 and a sequence si → s0, such that H∗(A(si), A(s0)) ≥ ε.
As A(si) is compact, the maximum is achieved at some point, say zi :

H∗(A(si), A(s0)) = d(zi, A(s0)) ≥ ε.

Since zi ∈ A(si) ⊂ Φ(t1 − si , p, x0), they belong to a compact set (by the con-
tinuity of Φ and its compact values), so there exists a convergent subsequence
zi′ → z0 ∈ Φ(t1−s0, p, x0). On the other hand, as zi ∈ G(x0, p; x1, t1; si), i.e. x1 ∈
Φ(si , θt1−si p, zi), because of the u.s.c. of Φ on its three variables (see Remark 1)
and as (si, θt1−si p, zi) → (s0, θt1−s0 p, z0), we have that x1 ∈ Φ(s0, θt1−s0 p, z0), i.e.
z0 ∈ G(x0, p; x1, t1; s0) and therefore z0 ∈ A(s0), which leads to a contradiction,
since then H∗(A(si), A(s0)) = d(zi, A(s0)) ≤ d(zi, z0) → 0.

We now prove that H∗(A(s0), A(s)) → 0 as s → s0. Arguing by contradiction,
assume there exist a constant ε > 0 and a sequence {si}i≥1 with si → s0 as i → ∞,
such that H∗(A(s0), A(si)) ≥ ε. Consider z0

i ∈ A(s0) such that d(z0
i , A(si)) =

H∗(A(s0), A(si)). This is possible since A(s0) is compact, and indeed, w.l.o.g. we
can assume that z0

i → z0 ∈ A(s0). To finish, now it is enough to prove that there
exists zi ∈ A(si) such that zi → z0. We split into two cases (the general case is
a combination of these):

si ≤ s0 Consider

z0 ∈ A(s0) = Φ(t1 − s0, p, x0) ∩ G(x0, p; x1, t1; s0),

thus x1 ∈ Φ(s0, θt1−s0 p, z0). On the one hand,

Φ(s0 − si, θt1−s0 p, z0) ∩ G(z0, θt1−s0 p; x1, s0; si) 	= ∅
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by the same reasons as A(t). On the other hand, one can easily see that

G(x0, p; x1, t1; si) = G(z0, θt1−s0 p; x1, s0; si),

and
Φ(s0 − si, θt1−s0 p, z0) ⊂ Φ(t1 − si , p, x0).

Therefore,

∅ 	= Φ(s0 − si, θt1−s0 p, z0) ∩ G(z0, θt1−s0 p; x1, s0; si) ⊂ A(si).

Pick
zi ∈ Φ(s0 − si , θt1−s0 p, z0) ∩ G(z0, θt1−s0 p; x1, s0; si).

By the continuity of Φ we have that zi → z0.

si ≥ s0 The same argument shows that

∅ 	= Φ(t1 − si, p, x0) ∩ G(x0, p; z0, t1 − s0; si − s0),

and we also have the following inclusion

G(x0, p; z0, t1 − s0; si − s0) ⊂ G(x0, p; x1, t1; si)

by means of the cocycle property of Φ. Thus,

∅ 	= Φ(t1 − si , p, x0) ∩ G(x0, p; z0, t1 − s0; si − s0)

⊂ Φ(t1 − si , p, x0) ∩ G(x0, p; x1, t1; si) = A(si).

By choosing

zi ∈ Φ(t1 − si , p, x0) ∩ G(x0, p; z0, t1 − s0; si − s0),

we have that zi ∈ Φ([0, t1 − s0], p, x0) for all i, which is compact. Therefore,
there exists a converging subsequence zi′ → ξ . On the other hand, as long as
z0 ∈ Φ(si − s0, θt1−si p, zi), particularizing to the case of the subsequence zi′
commented above, the u.s.c. of Φ implies z0 ∈ Φ(0, θt1−s0 p, ξ) = {ξ}, so z0 = ξ

(observe that therefore the whole sequence converges), and the proof is complete.
��

Corollary 24. Every Φ-trajectory is continuous.

Proof. Let φp : [0, T ] → R
d be a p-trajectory, i.e. φp(t) ∈ Φ(t − s, θs p, φp(s))

for all 0 ≤ s ≤ t ≤ T . We consider ta fixed, and t → ta. Separate the proof in two
cases:

t > ta Then,

φ(t) ∈ Φ(t − ta, θta p, φp(ta)) → Φ(0, θta p, φp(ta)) = {φp(ta)}.
t < ta By easy computations, we see that

φ(t) ∈ Φ(t − t0, θt0 p, φp(t0)) ∩ G(φ(t0), θt0 p, φ(ta), ta − t0, ta − t).

Observe that this set has the form described in the definition (8) for A(t̃ ), but with
x̃0 = φp(t0), p̃ = θt0 p, x̃1 = φp(ta), t̃1 = ta − t0, t̃ = ta − t. Thus, now we have
that A(t̃ ) → A(0) as t̃ = ta − t → 0, but A(0) = {φp(ta)}, which gives us the
desired result. ��
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Proof of Theorem 2. We prove Theorem 2 following the ideas in [14,21].
In order to do that, firstly we show how to construct trajectories.
Consider a ≤ b and (θa p, x) ∈ P × Rd . We will construct a trajectory φp

with φp(a) = x passing through any other (given) point at time b, say φp(b),
which necessarily belongs to Φ(b − a, θa p, φp(a)). A first step is to choose the
mid time point (a + b)/2 of the interval (a, b) and an image for it. By the previous
considerations, this image must be in

Φ((b − a)/2, θa p, φp(a)) ∩ G(φa(a), θa p, φp(b), b − a, (b − a)/2),

which is a nonempty compact set. We iterate this process in the intervals [a,

(a + b)/2] and [(a + b)/2, b]. Repeating this process, we can obtain a dyadic
sequence of points which satisfies the relation for being a trajectory. The problem
of completing from this set to the whole interval is solved by density: let t be a non
dyadic point of [a, b], and t ′ and t ′′ any dyadic points such that t ′ < t < t ′′, then
we choose

φp(t) ∈ K(t)

=
⋂

t′<t<t′′
Φ(t − t ′, θt′ p, φp(t

′)) ∩ G(φp(t
′), θt′ p, φp(t

′′), t ′′ − t ′, t ′′ − t).

Now, we need to check that each of these sets is nonempty (which can be seen
again as in (8)), and that this construction is consistent, i.e. the finite intersection
property holds. The arguments are the same as in [14].

Indeed, for any s1 < s2 < t < s3 < s4, we have that the following sets are well
defined and the inclusions hold:

Φ(φp(s2), θs2 p, t − s2) ⊂ Φ(φp(s1), θs1 p, t − s1)

and

G(φp(s1), θs1 p; φp(s3), s3 − s1; s3 − t) = G(φp(s2), θs2 p; φp(s3), s3 − s2; s3 − t)

⊂ G(φp(s1), θs1 p; φp(s4), s4 − s1; s4 − t)

= G(φp(s2), θs2 p; φp(s4), s4 − s2; s4 − t).

Thus, we have proved the existence of at least one trajectory. We recall that
every trajectory has been proved to be continuous.

Now we prove that Tp,x([0, T ]) is compact in C([0, T ];Rd). Let be {φn} ⊂
Tp,x([0, T ]). As Φ(T, p, x) is compact, there exists a subsequence {φn1(T )} ⊂
{φn(T )} converging to a point denoted φ(T ). By the same reason, there exists
another subsequence {φn2(T/2)} ⊂ {φn1(T/2)} converging to a point φ(T/2) and we
iterate this procedure. By a diagonal argument, we obtain a subsequence relabeled
again with index m, converging in all the dyadic numbers of [0, T ]: φm(pT/2q) →
φ(pT/2q).

As {φn} are trajectories, then φn(t) ∈ Φ(t−s, θs p, φn(s)) for all 0 ≤ s ≤ t ≤ T ,
in particular for dyadic numbers, whence φ(t) ∈ Φ(t − s, θs p, φ(s)) by the u.s.c.
of Φ. To extend it to the whole interval to obtain a trajectory, we proceed as before.



S38 T. Caraballo et al.

Let us prove that φn → φ in C([0, T ];Rd). The pointwise convergence follows
easily. Indeed, for any t, let us write

φn(t) − φ(t) = φn(t) − φn(tD) + φn(tD) − φ(tD) + φ(tD) − φ(t),

with tD a dyadic number close enough to t such that |φ(tD) − φ(t)| ≤ ε/3, and
with H(Φ(t, p, x),Φ(tD, p, x)) ≤ ε/3. Then we can choose n(tD) such that for all
n ≥ n(tD), one has |φn(tD)−φ(tD)| ≤ ε/3. However, for the uniform convergence
one needs to be more careful. We follow the proof in [21, Th. 6.2]. By a contradiction
argument, if it does not hold, there exist a constant ε > 0, sequences tn , with
tn → t ∈ [0, T ], and φn such that

|φn(tn) − φ(t)| > ε. (9)

Consider a dyadic number τ ∈
{

(t, T ] if t < T
{T } if t = T.

As {φn(tn)} ⊂ Φ([0, T ], p, x), which is compact, there exists a convergent
subsequence (we do not relabel it) φn(tn) → z. Then, there exists nτ ∈ N such that
for all n ≥ nτ , we have that tn < τ . Since φn(τ) ∈ Φ(τ − tn, θtn p, φn(tn)) and τ is
dyadic, we have φn(τ) → φ(τ) and so, the global u.s.c. of Φ implies that

φ(τ) ∈ Φ(τ − t, θt p, z).

Using now the continuity of φ and the density of dyadic numbers we have:

φ(t) = lim
τ→t

φ(τ) ∈ lim sup
τ→t

Φ(τ − t, θt p, z) = Φ(0, θt p, z) = {z},
which contradicts (9).

Finally, we prove the upper semicontinuity result claimed in (4):

H∗(Tpn ,xn ([0, T ]),Tp,x([0, T ])) → 0 if (pn, xn) → (p, x).

According to the last section, it is equivalent to prove ε-u.s.c. We proceed again
by a contradiction argument. Suppose there exist a positive constant ε > 0,
a sequence of pairs (pn, xn) converging to (p, x) in P × Rd , and trajectories
φn ∈ Tpn ,xn ([0, T ]) such that φn 	∈ BC([0,T ];Rd)(Tp,x([0, T ]), ε). We will prove that
for a subsequence φn′ , it is satisfied that φn′ → φ ∈ Tp,x([0, T ]), which will give
us the contradiction.

First, we have that φn(0) = xn → x. As φn(T ) ∈ Φ(T, pn, xn), by the compact
values and u.s.c. of Φ, there exists a subsequence (which we do not relabel)
converging to an element φ(T ) in Φ(T, p, x). The same argument can be applied to
this subsequence at time T/2, and, taking a diagonal subsequence, for a countable
set of numbers (the dyadic in [0, T ]), defining a set of points φ(kT/2m). Of course,
they satisfy the trajectory property, as far as φn are:

φn(t) ∈ Φ(t − s, θs pn, φn(s)),

for dyadic 0 ≤ s ≤ t ≤ T . By the u.s.c. of Φ we have

φ(t) ∈ Φ(t − s, θs p, φ(s)).

The extension to the whole interval is done as above, preserving the trajectory
property. To finish, the uniform convergence of φn to φ is deduced as in the
previous case.
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7.2. Autonomous strong attractors of SVSDS. Proof of Proposition 7

Clearly, As is nonempty since it is the intersection of a nested family of compact
sets. Moreover, it is compact too.

Since any bounded set is absorbed by Bs, it is enough to see that Bs is attracted
by As. If not, there exist ε > 0 and a sequence xn ∈ Π(tn,Bs), with tn → ∞,
such that dist(xn,As) ≥ ε > 0. But xn ∈ Bs for all n ≥ n(Bs) by the absorbing
property of Bs, and as it is compact, there is a subsequence converging (we do not
relabel) to x ∈ As, which is a contradiction.

We check Π–invariance in two steps: First, we prove that Π(t,As) ⊂ As as in
the single-valued case. Indeed,

Π(t,As) = Π
(

t,
⋂

r≥0

Π(r,Bs)
)

⊂
⋂

r≥0

Π(t,Π(r,Bs))

=
⋂

r≥0

Π(t + r,Bs) =
⋂

r≥t

Π(r,Bs) =
⋂

r≥0

Π(r,Bs) = As

where we have used the semigroup property of Π and the positive invariance of Bs.
For the converse, As ⊂ Π(t,As), pick a ∈ As. Then, there exist sequences

τn → ∞, and an ∈ Π(τn,Bs) with an → a. Consider t > 0 and n(t) such that for
all n ≥ n(t), τn − t ≥ 0. Then, for all n ≥ n(t):

an ∈ Π(τn,Bs) = Π(t,Π(τn − t,Bs))

and thus there exists a sequence a′
n ∈ Π(τn − t,Bs) with an ∈ Π(t, a′

n). Since Bs

is compact and positively invariant, we deduce from

a′
n ∈ Π(τn − t,Bs) ⊂ Bs

the existence of a convergent subsequence a′
n j

→ a′ ∈ Bs if j → ∞. Of course,
τn j − t → ∞ and therefore, a′ ∈ As. By the upper semicontinuity we have that

H∗(Π(t, a′
n j

),Π(t, a′)) → 0 j → ∞,

and from an j → a and an j ∈ Π(t, a′
n j

) we obtain a ∈ Π(t, a′) ⊂ Π(t,As) as
desired.

Since a compact set K that is Π-invariant satisfies by the attraction property,
H∗(Π(t, K ),As) → 0, and we have that H∗(K,As) = H∗(Π(t, K ),As), then
H∗(K,As) = 0 and so K ⊂ As.

On the other hand, for a closed set B attracting bounded sets, we have that
H∗(As, B) = H∗(Π(t,As), B) → 0 and therefore H∗(As, B) = 0 and As ⊂ B.

For the last statement, we adapt the proof given in Gobbino and Sardella
[12, Th. 3.1]; see also [9]. By contradiction, if A f is not connected, then A f =
A1 ∪ A2 with Ai nonempty disjoint compact sets (i = 1, 2). Take ε > 0 such that



S40 T. Caraballo et al.

B(A1, ε) ∩ B(A2, ε) = ∅, and define for i = 1, 2

Yi = {y ∈ Y : Π(t, y) ∈ B(Ai, ε) for t large enough}.

As A f is a global attractor and taking into account the assumptions on connect-
edness for Π, these sets are well defined, and they are nonempty, disjoint, contain
the respective set Ai , and complete the whole space Y . We will see they are open
sets, which will finish the proof. Indeed, given y ∈ Yi and a neighborhood B,
it is attracted by A f , call T(B, ε) ≥ 0 the absorption time for B to B(A f , ε),
i.e. Π(t, B) ⊂ B(A f , ε) for all t ≥ T(B, ε). In particular, as Π(t, y) ⊂ B(Yi, ε),
a neighborhood U ⊂ B of y satisfies by u.s.c. that Π(t, U) ⊂ B(Ai, ε), and so
U ⊂ Yi , which means Yi is open as desired.

7.3. Autonomous weak attractors of SVSDS. Proof of Theorem 9

Nonempty and compact: consider any sequences τn → ∞ and bn ∈ Bw. By the
weak positive invariance of Bw, there exist trajectories πn with πn(0) = bn and
πn(t) ∈ Bw for all t ≥ 0. In particular, an = πn(τn) ∈ Bw, and by the compactness
of Bw we can extract a subsequence an j converging to an element a in Bw as
j → ∞. Taking {τn j , bn j , an j } j as the original sequences, we have that a ∈ Aw

which is therefore nonempty.
To show that Aw is compact, we only need to see that it is closed since is

contained in the compact set Bw. Suppose ak ∈ Aw and ak → a as k → ∞. Then,
there exist sequences τk,n → ∞ as n → ∞ and trajectories πk,n with πk,n(t) ∈ Bw

for all t ≥ 0 and πk,n(τk,n) → ak as n → ∞. Pick nk so that

|πk,nk (τk,nk ) − ak| ≤ 1/k and tk+1,nk+1 ≥ tk,nk + 1 ∀k ∈ Z+.

Then

|πk,nk (τk,nk ) − a| ≤ |πk,nk (τk,nk ) − ak| + |ak − a|
≤ 1/k + |ak − a| → 0 as k → ∞.

Taking {πk,nk , τk,nk }k as the original sequences, we have again that a ∈ Aw, which
is closed as desired, and hence compact.

Weak positive invariance: Take a ∈ Aw, then there exist a sequence τn → ∞ and
trajectories πn with π(t) ∈ Bw for all t ≥ 0, such that πn(τn) → a as n → ∞. If
we denote vn(t) := πn(τn + t), it is obvious that vn is a trajectory and vn(t) ∈ Bw

for all t ≥ 0 and vn(0) → a ∈ Aw. Applying Barbashin’s Theorem 2 on an
interval, say [0, T ], we obtain a convergent subsequence vn j (t) → v(t) uniformly
for t ∈ [0, T ]. Naturally, v : [0, T ] → Bw is a trajectory and v(0) = a. Moreover,
v(t) ∈ Aw since πn j (τn j ) ∈ Bw, πn j (τn j + t) → v(t) and τn j + t → ∞. A diagonal
argument shows again that we can obtain a trajectory defined on all of R+.
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Weak negative invariance: The same idea can be used backwards in time. For
any T > 0, consider nT such that τn − T ≥ 0 for all n ≥ nT , and write

vn : [−T, 0] → Bw : s �→ vn(s) := πn(τn + s).

Barbashin’s theorem can be applied successively on intervals [−T, 0], [−2T,−T ],
. . . and by a diagonal argument we obtain the existence of a trajectory v̄ :
R

− → Bw, which indeed takes values in Aw as before, with v̄(0) = a. The
concatenation of v and v̄ gives us the invariance of Aw as desired.

Weak attraction: Let D be a bounded subset ofRd . Since Bw is weakly absorbing,
there exists a time TD > 0 such that for each dn ∈ D there exists a trajectory πn

with πn(0) = dn and πn(t) ∈ Bw for all t ≥ TD.
By the weak positive invariance of Bw, we can consider trajectories π̃n : R+ →

Bw with π̃n(0) = πn(TD). Since Bw is compact, for any sequence τn,k → ∞ as
k → ∞, there exist subsequences π̃n(τn,k′ ) → an as k′ → ∞ for some an ∈ Bw

(for each n). By definition of A, we have that an ∈ Aw. Define

π∗
n (t) :=

{
πn(t) 0 ≤ t ≤ TD,

π̃n(t − TD) t ≥ TD.

Then, π∗
n (0) = dn and π∗

n (τn,k′ + TD) → an as k′ → ∞. Pick k′
n such that

τn,k′
n

< τn+1,k′
n+1

and dist(π∗
n (τn,k′

n
+TD),Aw) ≤ 1/n. Therefore we have obtained

for the trajectories π∗
n which start at dn that

dist
(
π∗

n (τn,k′
n
+ TD),Aw

) → 0.

Thus, we have weak attraction.
The maximality statement w.r.t. Bw comes from its definition.

7.4. Attractors for SVSPF and their restrictions

7.4.1. Proof of Proposition 11. The first assertion is obvious.
For the second one, as P∗ is the projection onto P of the attractor As, for

every p∗ ∈ P∗, As(p∗) is nonempty. Compactness follows from that of As and
the continuity of the projection of P∗ × Rd onto Rd . The Φ-invariance of As(p)

follows trivially from the Π-invariance of As.
We now prove the third claim. Since As(p) is compact, it is equivalent to prove

ε-u.s.c. (cf. [1]). Suppose not, then there exists a constant ε > 0 and pn → p
(elements of P∗) such that As(pn) 	⊂ B(As(p), ε), i.e. there exists a sequence
xn ∈ As(pn) with xn 	∈ B(As(p), ε). By the sectorial definition of As(p), for each
(pn, xn), there exist sequences tn

m → ∞ as m → ∞ and yn
m ∈ Φ(tn

m , pn
m, bn

m),
with (pn

m, bn
m) ⊂ Bs, such that (θtn

m pn
m, yn

m) → (pn, xn) as m → ∞. Pick m(n)

strictly increasing such that tn
m(n) is also strictly increasing. From (θtn

m(n)
pn

m(n), yn
m(n))

we can extract a subsequence converging to a pair (p, y) ∈ {p} × As(p), as they
belong to Bs asymptotically. But this means that a subsequence of xn approximates
y ∈ As(p), which is a contradiction.
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7.4.2. Proof of Proposition 12. Obviously A∗
s ⊂ As, since A∗

s attracts a smaller
class of sets, in fact, just those from P∗ × Rd rather than P × Rd .

Now Π∗(t,As) ≡ Π(t,As) ≡ As,∀t ≥ 0 since As ⊂ P∗ × Rd and Π∗ ≡ Π

on P∗ × Rd . Since A∗
s attracts nonempty bounded subsets of P∗ × Rd including

As, one has that

H∗(As,A
∗
s

) = H∗(Π∗(t,As),A
∗
s

) → 0, as t → ∞,

i.e. H∗(As,A∗
s ) ≡ 0, thus As ⊂ A∗

s and therefore As ≡ A∗
s .

Alternatively, one can also argue in the following way: As is a Π∗–invariant set
and the global attractor A∗

s of Π∗ in P∗ ×Rd is the maximal compact Π∗–invariant
subset of P∗ × Rd , so As ⊂ A∗

s .

7.4.3. Proof of Proposition 13. The statement about P∗ is clear even in this weak
framework since θ is single-valued and the weak Π-invariance easily implies
θ-invariance for P∗, and the weak attraction property of Aw implies the strong
attraction property for θ in P∗.

That Aw(p) is nonempty is trivial, as mentioned before, since P∗ is the projec-
tion of Aw onto P. It is also compact, the proof is the same in Theorem 9, since
for all ak ∈ P × Rd we have that PrP(ak) = p and so the limit a.

Let us prove that P∗  p �→ Aw(p) is u.s.c. We want to see that if p′ → p,
then H∗(Aw(p′), Aw(p)) → 0. If not, there exist a constant ε > 0 and a sequence
pn → p with ε ≤ H∗(Aw(pn), Aw(p)) = dist(an, Aw(p)), where we have used
that Aw(pn) is compact. Therefore,

ε ≤ dist(an, a) ∀a ∈ Aw(p). (10)

As Aw(pn) ⊂ Pr
Rd Aw, which is compact, from {an} we extract a convergent

subsequence (which we do not relabel), and so (pn, an) → (p, a). From the weak
invariance of Aw, there exists at least one entire trajectory πn passing through
each (pn, an). Barbashin’s theorem (Th. 2, see Remark 5) provides a converging
subsequence {πn1}n1 on the interval [−1, 1] to a trajectory. Applying it again to
this subsequence we obtain another one denoted by {πn2}n2 , which is uniformly
converging on [−2, 2]. A diagonal argument gives an entire trajectory π such that
π(0) = (p, a). By Remark 10, we have that (p, a) ∈ Aw, so a ∈ Aw(p), which
contradicts (10).

The last statement is obvious.

7.5. Pullback structure of SVSPF attractors

7.5.1. Proof of Lemma 15. Thanks to the Φ-positive invariance of Bs(p) for
p ∈ P∗, and the cocycle property, we have that

Φ(t + r, θ−t−r p, Bs(θ−t−r p)) = Φ(t, θ−t p,Φ(r, θ−t−r p, Bs(θ−t−r p)))

⊂ Φ(t, θ−t p, Bs(θ−t p)).

Thus, these sets are nested, and by the u.s.c. of Φ on its third variable and the
compactness of Bs(p) for p ∈ P∗, they are compact. Thus, Âs(p) is nonempty and
compact.
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7.5.2. Proof of Proposition 17. We only need to check the first identity since the
second one has already been proved.

First, let us prove that Âs(p) ⊂ A∗
s (p):

{p} × Âs(p) = {p} ×
⋂

t≥0

Φ(t, θ−t p, Bs(θ−t p))

=
⋂

t≥0

{p} × Φ(t, θ−t p, Bs(θ−t p))

=
⋂

t≥0

{θt(θ−t p)} × Φ(t, θ−t p, Bs(θ−t p))

=
⋂

t≥0

Π(t, (θ−t p, Bs(θ−t p)))

⊂
⋂

t≥0

Π
(
t,B∗

s

) ≡ A∗
s .

Here we have used that P∗ is θ-invariant. Thus {p} × Âs(p) ⊂ A∗
s what implies

that {p} × Âs(p) ⊂ {p} × A∗
s (p) and therefore Âs(p) ⊂ A∗

s (p) as desired.
As for the converse, notice that Π∗(t,A∗

s ) = A∗
s for all t ≥ 0. So, in particular,

Φ
(
t, p, A∗

s (p)
) = A∗

s (θt p) for all t ≥ 0, p ∈ P∗.

Moreover, we know that

Âs(p) ⊂ A∗
s (p) ⊂ Bs(p).

Thus, setting θ−t p instead of p,

A∗
s (p) = Φ

(
t, p, A∗

s (θ−t p)
) ⊂ Φ(t, θ−t p, Bs(θ−t p))

for all t ≥ 0 and p ∈ P∗. Therefore, we finally obtain that

A∗
s (p) ⊂

⋂

t≥0

Φ(t, θ−t p, Bs(θ−t p)) = Âs(p).

7.5.3. Proof of Proposition 18. Suppose not, then there exist a positive constant
ε, a bounded set D and sequences tn → ∞, yn ∈ Φ(tn, θ−tn p, dn) with p ∈ P∗
and dn ∈ D such that

dist(yn, Âs(p)) > ε > 0.

There exists TD(p) such that Φ(t, θ−t p, D) ⊂ Bs(p) for all t ≥ TD(p). So,
as Bs(p) is compact, there exists a converging subsequence (denoted the same)
yn → x ∈ Bs(p). We will see that in fact x ∈ Âs(p), which will be a contradiction.

Consider any τ > 0 and take n(τ) big enough such that tn − τ > 0 and
Φ(tn − τ, θ−tn p, dn) ⊂ Bs(θ−τ p) which is possible since tn → ∞ and the family
Bs(p) is Φ-pullback absorbing.
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Then, we have that

yn ∈ Φ(tn, θ−tn p, dn) = Φ(τ, θ−τ p,Φ(tn − τ, θ−tn p, dn)),

which shows that x ∈ Âs(p) as desired.

Now we show that this is the minimal pullback attractor, i.e. it coincides with
the closure of the union of the omega-limit sets on each p-fiber:

⋃

D bounded

⋂

τ≥0

⋃

t≥τ

Φ(t, θ−t p, D).

Indeed, this is a trivial consequence of the fact that for all p ∈ P∗, Bs(p) is
contained in a compact set K , namely, K = Pr

Rd Bs:

Φ(t, θ−t p, Bs(θ−t p)) ⊂ Φ(t, θ−t p, K )

and so

Âs(p) ⊂
⋃

D bounded

⋂

τ≥0

⋃

t≥τ

Φ(t, θ−t p, D).

The other inclusion is obvious, using the minimality of the omega-limit set for D
at fiber p.
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