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Abstract. By means of balanced virtual powers, an axiomatic approach is developed, in
the spirit of Noll, to second-gradient continua. The measure-theoretical formulation allows
a considerable simplification since the existence of an edge stress density is regarded as
a special case of a surface stress which is a singular measure with respect to the area. To
prove our results, we introduce a particular class of subbodies, namely the sets with curvature
measure.

1. Introduction and notations

The description of the stresses occurring in a continuous medium is usually given
by means of the concept of material surface. For instance, Gurtin and Martins [9]
introduced the notion of Cauchy flux through a material surface and were able
to prove Cauchy’s Stress Theorem dropping the continuity assumption of the
surface force density. This led to various generalizations [16,14,10,15,2], where
the regularity of the force density was weakened more and more.

The approach by material surfaces left open the problem of the above descrip-
tion whenever the force concentrates on low-dimensional sets, such as edges or
vertices. In this direction, Noll and Virga [13] and Forte and Vianello [6] attempted
to construct a theory including regular one-dimensional subsets of R3 and a corres-
ponding edge interaction. However, some of their assumptions do not have strict
physical evidence, and the generalization to less regular subsets seems to be quite
difficult.

In 1973, Germain [7,8] introduced an alternative approach to the whole matter
by stating D’Alembert’s principle for continuous media. The main notion in this
case is the power expended on velocity fields, a quantity which has a sense on whole
subbodies and does not deal with pieces of their boundaries. In this spirit, Dell’Isola
and Seppecher [3] used the balance of power to prove some of the assumptions
in [13], choosing a precise dependence of the power through the derivatives of the
velocity field, and found a more general form of the Cauchy stress tensor, involving
a third-order tensor field called hyperstress.
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However, in all the papers [13,6,3] considering second-order continua, the
densities of force are presented as primitive notions, in contrast to the set-theoretic
approach of [9,10].

On the other hand, two of us showed in [12] that a power of order one, i.e.
a power which depends only on the first derivatives of the velocity, is sufficient to
recover the Cauchy stress theorem with a stress tensor having divergence measure.
Therefore, edge contact forces cannot be described in this theory.

In this paper we study the properties of powers of order k (see Definition 8),
defined as functions of two variables: a subbody and a velocity field. We define
this concept for very special subbodies like n-intervals and provide an extension
theorem, as in previous papers [2,11,12], for more general classes of subbodies.
This is closely related to the approach to higher-order powers suggested by Di
Carlo and Tatone [4] and has the advantage of avoiding the disputed question about
the suitable class of subbodies.

First, we give an integral representation of the power with respect to Radon
measures. At this level, force densities appear as derived quantities. Then, in the
case k = 2, by means of a weak balance we are able to represent the power as an
integral where stresses and hyperstresses come out in a natural way. In doing this,
we introduce a special subclass of the family of sets with finite perimeter, called sets
with curvature measure, where such an integral representation can be written by
introducing suitable singular measures. In this way, edge contributions are treated
as surface contributions involving a curvature that is singular with respect to the
area.

Finally, let us observe that, with respect to Cauchy fluxes, the approach through
the powers allows natural extensions to manifolds (see e.g. [12]). Moreover, the
presence of the smooth velocity field as a test simplifies the treatment of sets and
stresses with lack of regularity.

In the sequel, Ln will denote the n-dimensional Lebesgue outer measure andHk

the k-dimensional Hausdorff outer measure on Rn . Given a Borel subset Ω ⊆ Rn ,
we denote byB(Ω) the collection of all Borel subsets of Ω.

The topological closure, interior and boundary of E ⊆ Rn will be denoted as
usual by cl E, int E and bd E respectively. Denoting by Br(x) the open ball with
radius r centred at x, we introduce the measure-theoretic interior of E:

E∗ =
{

x ∈ Rn : lim
r→0+

(
r−nLn(Br(x) \ E)

) = 0
}

and the measure-theoretic boundary of E:

∂∗ E = Rn \ (
E∗ ∪ (Rn \ E)∗

)
,

both of which are Borel subsets of Rn . We say that E ⊆ Rn is normalized if
E∗ = E.

Now let Ω be a Borel subset of Rn . We denote by M(Ω) the set of Borel
measures µ : B(Ω) → [0,+∞] finite on compact subsets of Ω and by L

p
loc,+(Ω),
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p ∈ [1,+∞] the set of Borel functions h : Ω → [0,+∞] such that
∫

K
h p dLn < +∞ (p < +∞), ess sup{h(x) : x ∈ K} < +∞ (p = +∞)

for every compact subset K ⊆ Ω.

Definition 1. Let η, λ ∈M(Ω). We write η � λ if

∀E ∈ B(Ω) : λ(E) = 0 ⇒ η(E) = 0 .

We write η ⊥ λ if there exists S ∈ B(Ω) such that λ(S) = 0 and

∀E ∈ B(Ω) : η(E) = η(E ∩ S) .

We denote by η = ηa + ηs the Lebesgue decomposition of η with respect to λ, that
is the unique decomposition of η such that ηa � λ and ηs ⊥ λ.

Definition 2. For any integer k � 2, we denote by Symk the set of symmetric k-
linear forms onRn. Then Symk is a finite-dimensional linear space whose canonical
norm is defined as

∀ f ∈ Symk :
| f | := sup

{| f(x1, . . . , xk)| : x1, . . . , xk ∈ Rn, |x1| � 1, . . . , |xk| � 1
}

.

We also set Sym0 := R and Sym1 := (Rn)∗.
If g is a k-linear form on Rn, its symmetric part [g]S ∈ Symk is defined as

[g]S (x1, . . . , xk) := 1

k!
∑

σ

g
(
xσ(1), . . . , xσ(k)

)
,

where the sum extends over all permutations σ of {1, . . . , k}.
Throughout the remainder of this work, Ω will denote a bounded open normal-

ized subset of Rn , which we call the body.

Definition 3. For every integer k � 0 we set

Polk = {
v ∈ C∞(Ω) : v is a polynomial of degree at most k

}
.

We also set Pol−1 = {0}.
Definition 4. A full grid G is an ordered triple

G = (
x0, (e1, . . . , en), Ĝ

)
,

where x0 ∈ Rn, (e1, . . . , en) is a positively oriented orthonormal basis in Rn and
Ĝ is a Borel subset of R with L1(R \ Ĝ) = 0.

If G1, G2 are two full grids, we write G1 ⊆ G2 if Ĝ1 ⊆ Ĝ2 and they share the
point x0 and the list (e1, . . . , en).
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We define now a particularly simple class of subbodies.

Definition 5. Let G = (
x0, (e1, . . . , en), Ĝ

)
be a full grid. A subset M of Rn is

said to be a G-interval if

M = {
x ∈ Rn : a j < (x − x0) · e j < b j ∀ j = 1, . . . , n

}

for some a1, b1, . . . , an, bn ∈ Ĝ. We set

MG = {
M ⊆ Rn : M is a G-interval with cl M ⊆ Ω

}
.

Remark 1. Let λ : MG → R be a function such that

(a) λ is ∗-additive, i.e.

λ((M1 ∪ M2)∗) = λ(M1) + λ(M2)

for every M1, M2 ∈ MG such that (M1 ∪ M2)∗ ∈ MG and M1 ∩ M2 = ∅;
(b) There exists µ ∈M(Ω) such that

∀M ∈ MG : |λ(M)| � µ(M) .

Then there exists a Borel function a : Ω → [−1, 1] such that

∀M ∈ MG : λ(M) =
∫

M
a(x) dµ(x) .

Moreover, a is uniquely determined µ-a.e.
In fact, we can denote by L the linear space spanned by the characteristic

functions χJ of n-intervals of the form

J = {
x ∈ Rn : a j � (x − x0) · e j < b j ∀ j = 1, . . . , n

}
, cl J ⊆ Ω ,

with a1, b1, . . . , an, bn ∈ Ĝ, and consider the linear functional Λ : L → R such
that

Λ(χJ ) := λ(int J ) .

Then L is a lattice of functions on Ω and Λ a Daniell integral on L. The assertion
follows e.g. from [5, 2.5.9].

More generally, let Y be a finite-dimensional normed space and λ:MG×Y →R
a function such that

(a) For every y ∈ Y , λ( · , y) is ∗-additive;
(b) For every M ∈ MG , λ(M, · ) is linear;
(c) There exists µ ∈M(Ω) such that

∀M ∈ MG ,∀y ∈ Y : |λ(M, y)| � |y|µ(M) .

Then there exists a bounded Borel map A : Ω → Y∗ such that

∀M ∈ MG ,∀y ∈ Y : λ(M, y) =
∫

M
〈A(x), y〉 dµ(x) .

Moreover, A is uniquely determined µ-a.e.
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Definition 6. We denote by R the class of open n-intervals I such that cl I ⊆ Ω.

Definition 7. Let A ⊆ R. We say that A contains almost all of R if for every
x0 ∈ Rn and every positively oriented orthonormal basis (e1, . . . , en) in Rn there
exists a full grid

G = (
x0, (e1, . . . , en), Ĝ

)

such that MG ⊆ A .

2. Powers of order k

Definition 8. Let A be a subset of R containing almost all of R and k a nonneg-
ative integer. We say that a function P : A × C∞(Ω) → R is a power of order k if
the following properties hold:

(a) For every v ∈ C∞(Ω), P( · , v) is countably ∗-additive, i.e.

P

((⋃
i∈N

Mi

)

∗
, v

)
=

∑
i∈N

P(Mi , v)

for every disjoint sequence (Mi ) ∈ A such that

(⋃
i∈N

Mi

)

∗
∈ A ;

(b) For every M ∈ A, P(M, · ) is linear;
(c) There exist µ0, . . . , µk ∈M(Ω) such that

∀M ∈ A, ∀v ∈ C∞(Ω) : |P(M, v)| �
k∑

j=0

∫
M

|v( j)(x)| dµ j(x) ,

where v( j)(x) ∈ Sym j denotes the jth derivative of v at x.

Remark 2. Let M ∈ R; then it is easy to prove that for every full grid G there
exists a disjoint sequence (Mi) ⊆ MG such that

(⋃
i∈N

Mi

)

∗
= M.

Remark 3. In view of the previous remark, one could replace (a) by the following
weaker assumption:

(a′) For every v ∈ C∞(Ω) and for every full grid G,

P

((⋃
i∈N

Mi

)

∗
, v

)
=

∑
i∈N

P(Mi , v)

whenever (Mi) ∈ A ∩ MG is a disjoint sequence such that
(⋃

i∈N
Mi

)

∗
∈ A.
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Remark 4. More generally, one could consider powers P(M, �v), where the velocity
field �v takes values in RN , N � 1. If {e1, . . . , eN} denotes the canonical basis in
R

N , for every i = 1, . . . , N it is possible to define Pi(M, v) = P(M, vei ), which
is a power in the sense of Definition 8. On the other hand, if �v = (v1, . . . , vN ), it
holds that

P(M, �v) =
N∑

i=1

Pi(M, vi ) .

For this reason, we only treat the case of scalar velocity fields, as the results for
vector velocity fields can be easily deduced from the corresponding ones in the
scalar case.

2.1. Integral representation

The main result of this section is an integral representation formula (Theorem 1)
for a power of order k.

In the following lemmas, we assume that k � 0, G is a full grid and P :
MG × Polk → R is a function which satisfies (a), (b) and (c) of Definition 8.

Lemma 1. Let P(M, v) = 0 for every M ∈ MG and v ∈ Polk−1.
Then there exists a bounded Borel map Ak : Ω → Sym∗

k such that

∀M ∈ MG ,∀v ∈ Polk : P(M, v) =
∫

M
〈Ak(x), v(k)(x)〉 dµk(x) , (1)

where µk is given by (c) of Definition 8. Moreover, Ak is uniquely determined
µk-a.e.

Proof. First, by countable ∗-additivity and Lebesgue Theorem one has

lim
i→∞ P(Mi , v) = P(M, v),

lim
i→∞

∫

Mi

〈
Ak(x), v(k)(x)

〉
dµk(x) =

∫

M

〈
Ak(x), v(k)(x)

〉
dµk(x)

whenever (Mi) ⊆ MG is an increasing sequence with
⋃
i∈N

Mi = M ∈ MG .

In particular, it is enough to prove (1) for a full grid G ′ ⊆ G, since every set
M ∈ MG is the union of an increasing sequence in MG ′ . Thus, without loss of
generality we assume that for every j = 0, . . . , k, i = 1, . . . , n and a ∈ Ĝ, we
have

µ j ({x ∈ Ω : (x − x0) · ei = a}) = 0 .

Now we claim that

∀M ∈ MG ,∀v ∈ Polk : |P(M, v)| �
∫

M
|v(k)| dµk(x) . (2)



Edge force densities and second order powers 87

Actually, we may assume that k � 1. Given v ∈ Polk, by Remark 1 we have

∀M ∈ MG : P(M, v) −
∫

M
|v(k)| dµk(x) =

∫
M

av(x) dµ(x) ,

where av : Ω → R is Borel and bounded and µ := µ0 + · · · + µk. Let us prove
that av � 0 µ-a.e.

Let

x0 ∈ supt µ := {x ∈ Ω : µ(Ω ∩ Br(x)) > 0 ∀r > 0} ,

and let (Mi) be a sequence of open n-cubes in MG with x0 ∈ Mi and diam Mi → 0
as i → ∞. We have v = u + w with u ∈ Polk−1 and w ∈ Polk satisfying
w( j)(x0) = 0 for 0 � j � k − 1. It follows that

P(Mi , v) −
∫

Mi

|v(k)| dµk(x) = P(Mi , w) −
∫

Mi

|w(k)| dµk(x)

�
k−1∑
j=0

∫

Mi

|w( j)(x)| dµ j(x) ,

hence

lim sup
i

P(Mi , v) −
∫

Mi

|v(k)| dµk(x)

µ(Mi)
� 0 .

Therefore, we have av � 0, namely

∀M ∈ MG ,∀v ∈ Polk : P(M, v) −
∫

M
|v(k)| dµk(x) � 0 .

In a similar way it is possible to prove that

∀M ∈ MG,∀v ∈ Polk : P(M, v) +
∫

M
|v(k)| dµk(x) � 0 ,

whence (2).
Let now k � 0. For every F ∈ Symk, let vF be the homogeneous polynomial

of degree k with v
(k)
F = F. Since (2) implies

∀M ∈ MG ,∀F ∈ Symk : |P(M, vF )| � |F|µk(M) ,

according to Remark 1 there exists a bounded Borel map Ak : Ω → Sym∗
k such

that

∀M ∈ MG,∀F ∈ Symk :
P(M, vF ) =

∫

M
〈Ak(x), F〉 dµk(x) =

∫

M

〈
Ak(x), v

(k)
F

〉
dµk(x) .

Moreover, Ak is uniquely determined µk-a.e. Since P(M, ·) vanishes on Polk−1,
the assertion follows. ��
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Lemma 2. For every j = 0, . . . , k there exists a bounded Borel map A j : Ω →
Sym∗

j such that

∀M ∈ MG,∀v ∈ Polk : P(M, v) =
k∑

j=0

∫
M

〈
A j(x), v( j)(x)

〉
dµ j(x) .

Moreover, each A j is uniquely determined µ j -a.e.

Proof. As in the proof of the previous lemma, we assume without loss of generality
that

µ j ({x ∈ Ω : (x − x0) · ei = a}) = 0

for every j = 0, . . . , k, i = 1, . . . , n and a ∈ Ĝ.
We argue by induction on k. For k = 0 the assertion immediately follows from

Lemma 1.
Let now k � 1 and assume that the assertion is true for k − 1. Since v(k) = 0

for every v ∈ Polk−1, the restriction P
∣∣
MG×Polk−1

satisfies (a), (b) and (c) of

Definition 8. By the inductive assumption, there exist bounded and Borel maps
A j : Ω → Sym∗

j , j = 0, . . . , k − 1 such that

∀M ∈ MG ,∀v ∈ Polk−1 : P(M, v) =
k−1∑
j=0

∫
M

〈
A j(x), v( j)(x)

〉
dµ j(x)

and each A j is uniquely determined µ j-a.e. Then

P̃(M, v) := P(M, v) −
k−1∑
j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x)

satisfies the assumption of Lemma 1. Therefore, there exists a bounded Borel map
Ak : Ω → Sym∗

k such that

∀M ∈ MG,∀v ∈ Polk : P̃(M, v) =
∫

M

〈
Ak(x), v(k)(x)

〉
dµk(x)

and Ak is uniquely determined µk-a.e. ��
Lemma 3. Let A j : Ω → Sym∗

j be as in Lemma 2.

Then, for every j = 0, . . . , k, i = 1, . . . , n and a ∈ Ĝ, we have A j = 0
µ j -a.e. on

{x ∈ Ω : (x − x0) · ei = a} .

In particular, for every M ∈ MG and j = 0, . . . , k, we have A j = 0 µ j -a.e. on
∂∗M.
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Proof. Let i = 1, . . . , n and a ∈ Ĝ. If v ∈ Polk, M1, M2 ∈ MG , (M1∪M2)∗ ∈ MG

and M1 ∩ M2 = ∅, we have

k∑
j=0

∫
(M1∪M2)∗

〈
A j(x), v( j)(x)

〉
dµ j(x) =

k∑
j=0

∫
M1

〈
A j(x), v( j)(x)

〉
dµ j(x)

+
k∑

j=0

∫

M2

〈
A j(x), v( j)(x)

〉
dµ j(x) ,

hence

k∑
j=0

∫
(M1∪M2)∗\(M1∪M2)

〈
A j(x), v( j)(x)

〉
dµ j(x) = 0 .

If we set

Ω′ = {x ∈ Ω : (x − x0) · ei = a}
and we denote by M′

G the family of I sets of the form

I = {
x ∈ Rn : (x − x0) · ei = a, am < (x − x0) · em < bm ∀m �= i

}

with am, bm ∈ Ĝ and cl I ⊆ Ω′, it follows that

∀I ∈ M′
G ,∀v ∈ Polk(Ω′) :

k∑
j=0

∫

I

〈
A j(x), v( j)(x)

〉
dµ j(x) = 0 .

From Lemma 2, applied in n − 1 dimensions, we deduce that A j = 0 µ j -a.e in Ω′
for every j = 1, . . . , k. ��

Finally, we come to the main theorem.

Theorem 1. Let P be a power of order k.
Then, for every j = 0, . . . , k there exists a bounded Borel map A j : Ω →

Sym∗
j such that

∀M ∈ A,∀v ∈ C∞(Ω) : P(M, v) =
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x) ,

where µ0, . . . , µk are given by (c) of Definition 8. Moreover, each A j is uniquely
determined µ j -a.e.

Proof. Let G be a full grid with MG ⊆ A. First of all, we claim that for every
j = 0, . . . , k there exists a bounded Borel map A j : Ω → Sym∗

j such that

∀M ∈ MG ,∀v ∈ C∞(Ω) : P(M, v) =
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x) (3)

and each A j is uniquely determined µ j-a.e.
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Consider the restriction P
∣∣
MG×Polk

. By Lemma 2 there exist bounded and Borel

maps A j : Ω → Sym∗
j , j = 0, . . . , k such that

∀M ∈ MG ,∀v ∈ Polk : P(M, v) =
k∑

j=0

∫
M

〈
A j(x), v( j)(x)

〉
dµ j(x)

and each A j is uniquely determined µ j-a.e. Given v ∈ C∞(Ω), by Remark 1 we
have

∀M ∈ MG : P(M, v) −
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x) =

∫

M
av(x) dµ(x) ,

where av : Ω → R is Borel and bounded and µ := µ0 + · · · + µk. To prove the
assertion, it is enough to show that av = 0 µ-a.e.

Let x0 ∈ supt µ and let (Mi) be a sequence of open n-cubes in MG with
x0 ∈ Mi and diam Mi → 0 as i → ∞. We can write v = u + w with u ∈ Polk and
w ∈ C∞(Ω) satisfying w( j)(x0) = 0 for 0 � j � k. We have

P(Mi , v) −
k∑

j=0

∫

Mi

〈
A j(x), v( j)(x)

〉
dµ j(x)

= P(Mi , w) −
k∑

j=0

∫

Mi

〈
A j(x),w( j)(x)

〉
dµ j(x) ,

hence, taking into account (c) of Definition 8,

lim
i

1

µ(Mi)

⎛
⎝P(Mi , v) −

k∑
j=0

∫

Mi

〈
A j(x), v( j)(x)

〉
dµ j(x)

⎞
⎠ = 0

and (3) follows.

Let now M∈A and (Mi)⊆MG be a disjoint sequence such that
(⋃

i∈N
Mi

)
∗
=M

(cf. Remark 2). By (3) and the countable ∗-additivity of P, for any v ∈ C∞(Ω) it
follows that

P(M, v) =
∑
i∈N

P(Mi , v) =
∑
i∈N

k∑
j=0

∫
Mi

〈
A j(x), v( j)(x)

〉
dµ j(x)

=
k∑

j=0

∫
⋃

i∈N
Mi

〈
A j(x), v( j)(x)

〉
dµ j(x)

=
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x),

where the last equality takes into account Lemma 3. ��
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It is easy to see that Theorem 1 admits a form of converse.

Proposition 1. Let µ0, . . . , µk ∈ M(Ω) and, for j = 0, . . . , k, let A j : Ω →
Sym∗

j be Borel and bounded.
Then there exists a set A ⊆ R containing almost all of R such that the function

P : A × C∞(Ω) → R defined as

P(M, v) =
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x) (4)

is a power of order k.

Proof. Let µ = µ0 + · · · + µk and

A = {M ∈ R : µ(bd M) = 0} .

Since µ is finite on compact subsets of Ω, it is easy to see that A contains almost
all of R. Then it is clear that (4) defines a power of order k. ��

2.2. Extension to Borel sets

A first important consequence of the representation formula is an extension result
of the power to the Borel subsets of Ω. This can be done in an easy way, the only
difficulty being to obtain a ∗-additive function. We need a simple definition.

Definition 9. Let η ∈M(Ω). We set

Bη = {M ⊆ Rn : M = M∗ , cl M ⊆ Ω, η(∂∗M) = 0} .

Theorem 2. Let P be a power of order k. Let A j : Ω → Sym∗
j be as in Theorem 1.

Then there exists η ∈ M(Ω) such that the function P̃ : Bη × C∞(Ω) → R

defined as

P̃(M, v) =
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x)

is an extension of P which satisfies (a), (b) and (c) of Definition 8 on Bη.

Proof. Let η = µ0 + · · · + µk. Then P̃ is ∗-additive on Bη. Moreover, it clearly
satisfies (b) and (c) of Definition 8 on Bη; thus the proof is complete. ��

Henceforth we shall denote by the same symbol P such an extension.

2.3. Decomposition in body and contact part

Definition 10. A power P of order k is said to be weakly balanced if there exists
ν ∈M(Ω) such that

∀M ∈ A, ∀v ∈ C∞
c (M) : |P(M, v)| �

∫
M

|v| dν .
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In particular, P is said to be a contact power if

∀M ∈ A, ∀v ∈ C∞
c (M) : P(M, v) = 0 ,

namely if it is weakly balanced with ν = 0.
A power P of order 0 is said to be a body power.

Note that a body power is always weakly balanced, by choosing trivially ν=µ0.

Theorem 3. Let P be a weakly balanced power of order k, and let µ j, A j,
0 � j � k be as in Theorem 1.

Then the following facts hold:

(a) There exists a bounded Borel function B : Ω → R such that

∀v ∈ C∞
c (Ω) :

k∑
j=0

∫

Ω

〈
A j(x), v( j)(x)

〉
dµ j(x) =

∫

Ω

B(x)v(x) dν(x) ;

moreover, B is uniquely determined ν-a.e.;
(b) One has

∀M ∈ A, ∀v ∈ C∞
c (M) : P(M, v) =

∫

M
B(x)v(x) dν(x) .

Proof. If M ∈ A and v ∈ C∞
c (M), we have

∣∣∣∣∣∣
k∑

j=0

∫

M

〈
A j(x), v( j)(x)

〉
dµ j(x)

∣∣∣∣∣∣
= |P(M, v)| �

∫

M
|v| dν .

Since A is an open cover of Ω, assertions (a) and (b) follow easily. ��
Let P be a weakly balanced power of order k, let µ j, A j , 0 � j � k be as in

Theorem 1, and let ν, B be as in Theorem 3. According to Proposition 1 define, for
a suitable class A containing almost all of R, two powers Pb, Pc : A×C∞(Ω) → R

by

Pb(M, v) :=
∫

M
B(x)v(x) dν(x) ,

Pc(M, v) := P(M, v) −
∫

M
B(x)v(x) dν(x) .

It is readily seen that Pb is a body power and Pc a contact power of order k. Of
course, we have P = Pb + Pc.

Definition 11. Pb is said to be the body part of P and Pc the contact part of P.

3. First-order contact powers

Let P be a contact power of order 1 such that (c) of Definition 8 holds with
µ1 � Ln . We set η = µ0.
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According to Theorems 1 and 3, there exist a bounded Borel function a :Ω→R
and T ∈ L1

loc(Ω;Rn) such that

∀M ∈ Bη,∀v ∈ C∞(Ω) : P(M, v) =
∫

M
av dη +

∫
M

T · ∇v dLn , (5)

∀v ∈ C∞
c (Ω) :

∫
Ω

av dη +
∫

Ω

T · ∇v dLn = 0 . (6)

Moreover, a is uniquely determined η-a.e. and T is uniquely determined Ln-a.e.
We briefly recall now the concept of outer normal to the measure-theoretic

boundary of a set. Let M ⊆ Rn and x ∈ ∂∗M. We denote by �nM(x) ∈ Rn a unit
vector such that

Ln
({ξ ∈ Br(x) ∩ M : (ξ − x) · �nM(x) > 0})/rn → 0,

Ln
({ξ ∈ Br(x) \ M : (ξ − x) · �nM(x) < 0})/rn → 0

as r → 0+. No more than one such vector can exist. Setting �nM(x) = 0 elsewhere,
we can consider the map �nM : ∂∗M → R

n , which is called the unit outer normal
to M. It turns out that �nM is Borel and bounded.

Whenever Hn−1(∂∗M) < +∞, we say that M is a set with finite perimeter.
In that case it is well known that �nM(x) �= 0 for Hn−1-a.e. x ∈ ∂∗M and the
Gauss–Green theorem for Lipschitz functions holds.

We now define a suitable subclass of Bη which allows us to give a representa-
tion formula for a contact power of order 1 involving only the measure-theoretic
boundary of the subbodies. We refer to [15,2] for a discussion about this class.

Definition 12. For h ∈ L1
loc,+(Ω) we set

Mhη =
{

M ∈ Bη : Hn−1(∂∗M) < +∞,

∫
∂∗ M

h dHn−1 < +∞
}
.

Theorem 4 (Cauchy’s Stress Theorem). There exists h ∈ L1
loc,+(Ω) such that

∀M ∈ Mhη,∀v ∈ C∞(Ω) : P(M, v) =
∫

∂∗ M
v T · �nM dHn−1.

Proof. By [2, Theorem 5.4] and (6), there exists h ∈ L1
loc,+(Ω) such that

∫
M

T · ∇v dLn =
∫

∂∗ M
v T · �nM dHn−1 −

∫
M

av dη

for every locally Lipschitz vector field v : Ω → R and every M ∈ Mhη . Then

P(M, v) =
∫

M
av dη +

∫

M
T · ∇v dLn =

∫

∂∗ M
v T · �nM dHn−1

for every v ∈ C∞(Ω) and M ∈ Mhη . ��
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4. Second-order contact powers

Throughout this section we assume that P is a contact power of order 2 such that
(c) of Definition 8 holds with µ1 � Ln and µ2 � Ln . We set η = µ0.

According to Theorems 1 and 3, there exist a bounded Borel function a :Ω→R,
B ∈ L1

loc(Ω;Rn) and C ∈ L1
loc(Ω; Sym2) such that

∀M ∈ Bη,∀v ∈ C∞(Ω) :
P(M, v) =

∫

M
av dη +

∫

M
B · ∇v dLn +

∫

M
C · ∇∇v dLn , (7)

∀v ∈ C∞
c (Ω) :

∫
Ω

av dη +
∫

Ω

B · ∇v dLn +
∫

Ω

C · ∇∇v dLn = 0 . (8)

Moreover, a is uniquely determined η-a.e. and B, C are uniquely determined
Ln-a.e.

4.1. Boundary representation

When the distribution div C is in fact a function, we have a representation of
P(M, v) in terms of the boundary of M.

Theorem 5. Assume that div C ∈ L1
loc(Ω,Rn). Then there exists h ∈ L1

loc,+(Ω)

such that

P(M, v) =
∫

∂∗ M
[v(B − div C) · �nM + ∇v · C�nM] dHn−1 (9)

for every v ∈ C∞(Ω) and M ∈ Mhη .

Proof. By [2, Theorem 5.4] there exists h ∈ L1
loc,+(Ω) such that

∫

M
C · ∇∇v dLn = −

∫

M
∇v · div C dLn +

∫

∂∗ M
∇v · C�nMdHn−1,

∫
M
(B −div C) ·∇v dLn = −

∫
M
v div(B −div C)+

∫
∂∗ M

v(B −div C) · �nMdHn−1

for every v ∈ C∞(Ω) and M ∈ Mhη . Moreover, rephrasing (8), we have

∀v ∈ C∞
c (Ω) : −

∫

Ω

(B − div C) · ∇v dLn =
∫

Ω

av dη .

Hence it follows that

P(M, v) =
∫

M
av dη +

∫

M
B · ∇v dLn +

∫

M
C · ∇∇v dLn

=
∫

M
av dη +

∫
M

(B − div C) · ∇v dLn +
∫

∂∗ M
∇v · C�nM dHn−1

=
∫

∂∗ M
[v(B − div C) · �nM + ∇v · C�nM] dHn−1

for every v ∈ C∞(Ω) and M ∈ Mhη . ��
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The condition div C ∈ L1
loc(Ω,Rn) has a counterpart in terms of the power P, as

we will show in Theorem 6. This is quite interesting, since assumptions made on
P are in general more meaningful than those made on its representation densities.

First we need a definition and a proposition.

Definition 13. Let G = (
x0, (e1, . . . , en), Ĝ

)
be a full grid and M ∈ MG of the

form

M = {
x ∈ Rn : a j < (x − x0) · e j < b j, j = 1, . . . , n

}
, (10)

where a1, b1, . . . , an, bn ∈ Ĝ . Whenever 1 � j � n and a j � α < β � b j , we
set

M( j)
α,β = {

x ∈ Rn : α < (x − x0) · e j < β, ai < (x − x0) · ei < bi ∀i �= j
}
.

We simply write M( j)
β in the case α = a j .

Proposition 2. Let MG ⊆ A, M ∈ MG be represented as in (10), v ∈ C∞
c (M)

and 1 � j � n. Then M( j)
β ∈ MG for L1-a.e. β ∈ (a j, b j], and the map

{
β �→ P

(
M( j)

β , v
)}

belongs to L∞(a j, b j) for every v ∈ C∞
c (Ω).

Proof. We have
∣∣∣P(

M( j)
β , v

)∣∣∣ �
∫

M
|av| dη +

∫

M

(|B||∇v| + |C||∇∇v|)dLn,

hence the map is bounded. To prove measurability, we apply Fubini’s theorem:
∫ b j

a j

P
(
M( j)

β , v
)

dβ =
∫ b j

a j

∫
M( j)

β

av dη dβ

+
∫ b j

a j

∫
M( j)

β

(B · ∇v + C · ∇∇v)dLn dβ

=
∫

M
(b j − (x − x0) · e j)av dη

+
∫

M
(b j − (x − x0) · e j)(B · ∇v + C · ∇∇v)dLn; (11)

since the right-hand side is integrable, the map {β �→ P(M( j)
β , v)} is measurable. ��

Theorem 6. We have that div C ∈ L1
loc(Ω,Rn) if and only if there exist h ∈

L1
loc,+(Ω) such that

∣∣∣∣∣
∫ b j

a j

P
(
M( j)

β , v
)

dβ

∣∣∣∣∣ �
∫

M
|v|h dLn (12)

for every MG ⊆ A, M ∈ MG, v ∈ C∞
c (M) and j = 1, . . . , n. In this case, we have

|B − 2 div C| � h on Ln-a.a. of Ω.
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Proof. Assume that div C ∈ L1
loc(Ω,Rn). Let MG ⊆ A; taking into account

Theorem 5, the symmetry of C and [2, Proposition 4.5], there exists a full grid
G ′ ⊆ G such that

P(M, v) =
∫

bd M
[v(B − 2 div C) · �nM + div(Cv) · �nM] dHn−1 (13)

for every v ∈ C∞(Ω) and M ∈ MG ′ .
Let now M ∈ MG and v ∈ C∞

c (M). Since v = 0 on bd M, without loss of
generality we can assume that M( j)

β ∈ MG ′ for a.e. β ∈ (a j, b j). Moreover, taking

into account that �nM( j)
β (x) = e j whenever x ∈ bd M( j)

β and v(x) �= 0, by applying

(13) to M( j)
β , 1 � j � n, it follows that

∫ b j

a j

P
(
M( j)

β , v
)

dβ = e j ·
∫ b j

a j

∫
bd M( j)

β

[v(B − 2 div C) + div(Cv)] dHn−1

= e j ·
∫

M
[v(B − 2 div C) + div(Cv)] dLn

= e j ·
∫

M
v(B − 2 div C) dLn,

hence (12) is proved by choosing h = |B − 2 div C|.
On the other hand, let MG ∈ A, M ∈ MG and v ∈ C∞

c (M). By (11) we have

∫ b j

a j

P
(
M( j)

β , v
)

dβ =
∫

Ω

qav dη +
∫

Ω

q(B · ∇v + C · ∇∇v)dLn,

where we set q(x) = b j − (x − x0) · e j . Keeping in mind (8) and (12), by straight-
forward calculation one gets

∀1 � j � n : |e j · (B − 2 div C)| � h on Ln-a.a. of Ω ,

hence div C ∈ L1
loc(Ω,Rn) and |B − 2 div C| � h on Ln-a.a. of Ω. ��

Remark 5. Let MG ⊆ A, and consider the function Q( j)
G : MG × C∞(Ω) → R

given by

Q( j)
G (M, v) =

∫ b j

a j

P
(
M( j)

β , v
)

dβ.

Then Q( j)
G has the properties (a), (b) and (c) of Definition 8 and (12) is tantamount

to saying that Q( j)
G is weakly balanced. We thank Paolo Podio–Guidugli for having

brought this to our attention.
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4.2. Going to the edges

In this subsection we will give an integral representation for P which takes into
account sets with possibly non-smooth normal (such as sets with edges).

First of all, let C ∈ C∞(
Ω, Sym2

)
and M ∈ M with bd M of class C2. Consider

a C1-extension �n of �nM such that (∇ �n)�n = 0 on bd M (for instance, we can take
�n = ∇g, where g(x) = d(x, M) − d(x,Rn \ M)). Then we have

∫
bd M

∇v · [C�nM − (C�nM · �nM)�nM] dHn−1 = −
∫

bd M
v div(C�n − (C�n · �n)�n)dHn−1

=
∫

bd M
v[− div C · �n − C · ∇ �n + (∇sC)�n �n �n + (div �n)C · (�n ⊗ �n)] dHn−1

for every v ∈ C∞(Ω). Keeping in mind Theorem 5 and setting D�n = 1
2∇ �n+ 1

2∇ �nT ,
since C is symmetric one has

P(M, v) =
∫

bd M
v[(B−2 div C)· �n+(∇sC)�n �n �n+C·((�n⊗�n) div �n−D�n)] dHn−1

+
∫

bd M

∂v

∂n
(C�n · �n) dHn−1, (14)

where the field (�n ⊗ �n) div �n − D�n is continuous.

Remark 6. The tensor field (�n ⊗ �n) div �n − D�n does not depend on the extension
�n of �nM , provided that (∇ �n)�n = 0 on bd M. Moreover, in that case one has

div(C�n − (C�n · �n)�n) = divS(C�n − (C�n · �n)�n)

on bd M, where divS denotes the surface divergence.

Now we want to introduce a more general class of sets which allows a further
integration by parts.

Definition 14. Let M be a normalized set with finite perimeter. We say that M is
a set with curvature measure if there exist λM ∈ M(∂∗M) with λM(∂∗M) < +∞
and a Borel tensor field U : ∂∗M → Sym2 with |U(x)| = 1 for λM-a.e. x ∈ ∂∗M,
such that

−
∫

∂∗ M
[−(div C) · �nM + ((∇C)�nM �nM) · �nM] dHn−1 =

∫
∂∗ M

C · U dλM

for every C ∈ C∞
c (Rn; Sym2). It turns out that λM is uniquely determined and U is

uniquely determined λM-a.e.
For h ∈ L1

loc,+(Ω) we set

Chη =
{

M ∈ Mhη : M has curvature measure and
∫

∂∗ M
h dλM < +∞

}
.
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Remark 7. One can prove that the elements of R are sets with curvature measure.
Indeed, since on each face the term [−(div C) · �nM +((∇C)�nM �nM) · �nM] is a surface
divergence, it turns out that λM is the Hausdorff measure Hn−2 restricted to the
edges, and U = �nM ⊗ �N + �N ⊗ �nM , where �N is the normal to the edge in the
hyperplane of the surface.

As a first integration by parts gave the boundary representation formula (9)
for P, a further integration should reduce the order of derivative of the test field
v and bring up line integrals. In doing this, however, we notice that the normal
derivative of v cannot be dropped, since it corresponds to a field of doublets
assigned on the boundary. Moreover, line integrals will appear as surface integrals
with respect to a singular measure.

Let us begin with some preliminary facts.

Definition 15. Let C ∈ L1
loc(Ω, Sym2). We define the symmetric gradient of C

by setting (∇sC) = [∇C]S, that is to say, for any u, v,w ∈ Rn we define the
distribution (∇sC)uvw on Ω as

〈(∇sC)uvw, ϕ〉
= 1

3

∫

Ω

[(Cv · w)(∇ϕ · u) + (Cu · w)(∇ϕ · v) + (Cu · v)(∇ϕ · w)] dLn

for every ϕ ∈ C∞
c (Ω). The function {(u, v,w) �→ (∇sC)uvw} is 3-linear and

symmetric; moreover, ((∇C)uu) · u = (∇sC)uuu holds for every u ∈ Rn.

Proposition 3. Let f ∈ Sym3, and set c(u) = f(u, u, u) for every u ∈ Rn. Then
f is uniquely determined by c and

f(u, v,w) = 1

24

(
c(u + v + w) − c(u + v − w) − c(u − v + w) + c(u − v − w)

)

for every (u, v,w) ∈ Rn × Rn × Rn. Moreover,

| f | � 3

2
sup{|c(u)| : u ∈ Rn, |u| = 1}.

Proof. Since it holds that

c(u + v + w) = c(u) + c(v) + c(w) + 6 f(u, v,w)

+ 3
[

f(u, u, v) + f(u, u, w) + f(v, v, u) + f(v, v,w) + f(w,w, u) + f(w,w, v)
]
,

it follows that

c(u +v+w)−c(u +v−w) = 2c(w)+12 f(u, v,w)+6
[

f(u, u, w)+ f(v, v,w)
]
,

c(u −v−w)−c(u−v+w) = −2c(w)+12 f(u, v,w)−6
[

f(u, u, w)+ f(v, v,w)
]
.

Hence we have
[
c(u + v + w) − c(u + v − w)

]+ [
c(u − v − w) − c(u − v + w)

] = 24 f(u, v,w),

which gives the first statement.
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Now set M = sup{|c(u)| : u ∈ Rn, |u| = 1}; it follows from the parallelogram
identity that

| f(u, v,w)| � M

24
(|u + v + w|3 + |u + v − w|3 + |u − v + w|3 + |u − v − w|3)

� M

6
(|u| + |v| + |w|)(|u|2 + |v|2 + |w|2).

Taking the supremum as |u|, |v|, |w| � 1 the proof is complete. ��
Lemma 4. Let p ∈ [1,+∞] and consider a tensor field C ∈ L p

loc(Ω, Sym2) such
that div C ∈ L1

loc(Ω,Rn) and ∇sC ∈ L1
loc(Ω, Sym3). Then there exist a sequence

(Cm) ∈ C∞
c (Ω, Sym2) and h0 ∈ L

p
loc,+(Ω), h1 ∈ L1

loc,+(Ω) with

∀x ∈ Ω : |Cm(x)| � h0(x), | div Cm(x)| � h1(x), |∇sCm(x)| � h1(x),

h0(x) < +∞ ⇒ x is a Lebesgue point of C and lim
m

Cm(x) = C̃(x),

h1(x) < +∞ ⇒ x is a Lebesgue point of div C and lim
m

div Cm(x) = d̃iv C(x),

h1(x) < +∞ ⇒ x is a Lebesgue point of ∇sC and lim
m

∇sCm(x) = ∇̃sC(x),

where f̃ (x) denotes the Lebesgue limit of f in x.

Proof. Let ρ ∈ C∞
c (Rn) with ρ � 0 and

∫
ρ dLn = 1. Let ρm = mnρ(mx). Let

(Km) be an increasing sequence of compact subsets of Ω with Ω =
∞⋃

m=1
Km . Let

θm ∈ C∞
c (Ω) with 0 � θm � 1 and θm = 1 on Km . We set

Cm(x) =
∫

Ω

ρm(x − y)θm(y)C(y) dLn(y).

Then we have that Cm ∈ C∞
c (Ω, Sym2), Cm → C̃ in L1

loc(Ω, Sym2) and

|Cm(x)| � ess sup
Ω

|̃C(x)|.

By [1, Theorem IV.9] there exist h0 ∈ Lp
loc,+(Ω) and h1 ∈ L1

loc,+(Ω) such that,
up to a subsequence,

|Cm(x)| � h0(x), h0(x) < +∞ → lim
m

Cm(x) = C̃(x),

| div Cm(x)| � h1(x), h1(x) < +∞ → lim
m

div Cm(x) = f(x),

|∇sCm(x)| � h1(x), h1(x) < +∞ → lim
m

∇sCm(x) = g(x),

for some functions f, g. Moreover, one has∫
Ω

div Cm · ϕ dLn = −
∫

Ω

Cm · ∇ϕ dLn

= −
∫

Ω

∇ϕ(x) ·
( ∫

Ω

ρm(x − y)θm(y)C̃(y) dLn(y)
)

dLn(x)

= −
∫

Ω

θm(y)C̃(y) ·
( ∫

Ω

ρm(x − y)∇ϕ(x) dLn(x)
)

dLn(y)
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for every ϕ ∈ C∞
c (Ω, Sym2). In particular

∫
Ω

div Cm · ϕ dLn → −
∫

Ω

C̃ · ∇ϕ dLn =
∫

Ω

div C̃ · ϕ dLn,

i.e. div Cm ⇀ div C̃ = d̃iv C. Hence it follows f(x) = d̃iv C(x) for Ln-a.e. x ∈ Ω.
In a similar way, one can prove that g(x) = ∇̃sC(x) for Ln-a.e. x ∈ Ω. A change
of h0, h1 on a Ln-negligible suitable set ends up the proof. ��
Theorem 7. Let P be a contact power of order 2 such that (c) of Definition 8
holds with µ1 � Ln and µ2 � Ln, and let η = µ0. Assume moreover that
div C ∈ L1

loc(Ω,Rn) and ∇sC ∈ L1
loc(Ω, Sym3).

Then there exists h ∈ L1
loc,+(Ω) such that

P(M, v) =
∫

∂∗ M
v
[
(B − 2 div C) · �nM + (∇sC)�nM �nM �nM

]
dHn−1

+
∫

∂∗ M

∂v

∂n
(C�nM · �nM) dHn−1 +

∫
∂∗ M

v C · U dλM (15)

for every M ∈ Chη and v ∈ C∞(Ω).

Proof. In view of (9), it is sufficient to prove that
∫

∂∗ M
∇v ·

[
C�nM − (C�nM · �nM)�nM

]
dHn−1

=
∫

∂∗ M
v
[
((∇C)�nM �nM) · �nM − div C · �nM

]
dHn−1 +

∫

∂∗ M
v C · U dλM (16)

on Chη for every v ∈ C∞(Ω).
Consider a sequence (Cm) ∈ C∞

c (Ω, Sym2) and h0, h1 ∈ L1
loc,+(Ω) as in

Lemma 4. Let h ∈ L1
loc,+(Ω) be such that (9) holds on Chη and h0, h1 � h. Let

v ∈ C∞(Ω), and denote by �n the map �nM . Taking into account Definition 14, we
obtain∫

∂∗ M
vCm · U dλM = −

∫
∂∗ M

[
− div(vCm) · �n + (∇(vCm)�n �n) · �n

]
dHn−1

=
∫

∂∗ M

[
v div Cm · �n + ∇v · Cm �n − (Cm �n · �n)(∇v · �n) − v(∇sCm)�n �n �n

]
dHn−1.

Since h is (Hn−1+λM)-summable on ∂∗M and |Cm|� h, | div Cm |� h, |∇sCm |� h,
we get (16) by Lebesgue Theorem. ��
Remark 8. If C ∈ L∞

loc(Ω; Sym2), then the previous theorem holds on every set in
Mhη with curvature measure. Indeed, in that case the function h0 of Lemma 4 can
be taken in L∞

loc,+(Ω), which is sufficient to apply Lebesgue Theorem to the term∫
∂∗ M vCm · U dλM .

In the same spirit as above, we show that the condition ∇sC ∈ L1
loc(Ω, Sym3)

has a counterpart in terms of P.
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Theorem 8. We have that ∇sC ∈ L1
loc(Ω, Sym3) if and only if there exists h ∈

L1
loc,+(Ω) such that

∣∣∣∣
∫ β

α

P
(
M( j)

s , v
)

ds

∣∣∣∣ �
∫

M( j)
α,β

(
|v| +

∣∣∣∣
∂v

∂e j

∣∣∣∣
)

h dLn (17)

for every MG ⊆ A, M ∈ MG, v ∈ C∞
c (M), j = 1, . . . , n and a j < α < β < b j .

In this case, we have |∇sC| � 3
2 (h + |B − 2 div C|) on Ln-a.a. of Ω.

Proof. Whenever u ∈ Rn , |u| = 1, we have trivially

∇v · Cu = ∂v

∂u
(Cu · u) + ∇v · (Cu − (Cu · u)u) .

Let MG ⊆ A, M ∈ MG and v ∈ C∞
c (M); moreover, let 1 � j � n and a j <

α < β < b j . Since �nM( j)
s (x) = e j whenever x ∈ bd M( j)

s and v(x) �= 0, by
combining (9) with the previous identity we obtain
∫ β

α

P
(
M( j)

s , v
)

ds

=
∫

M( j)
α,β

[
v(B − div C) · e j + ∂v

∂e j
Ce j · e j + ∇v · (Ce j − (Ce j · e j)e j)

]
dLn

=
∫

M( j)
α,β

[
∂v

∂e j
Ce j · e j + v

(
(B − 2 div C) · e j + (∇sC)e je je j

)]
dLn,

where we applied the divergence theorem and considered the identity

div((Ce j · e j)e j) = (∇sC)e je je j .

Hence, if ∇sC ∈ L1
loc(Ω, Sym3) holds, then (17) is satisfied by choosing

h = |C| + |B − 2 div C| + |∇sC|.
On the other hand, in view of Proposition 3 it is enough to prove that

∀u ∈ Rn, |u| = 1 : ((∇C)uu) · u ∈ L1
loc(Ω). (18)

Since (B −div C) ∈ L1
loc(Ω,Rn), the theorem is proved if one finds h ∈ L1

loc,+(Ω)

such that∣∣∣∣
∫

Ω

[v(B − div C) · u + ∇v · (Cu − (Cu · u)u)]dLn

∣∣∣∣ �
∫

Ω

|v|h dLn (19)

for every v ∈ C∞
c (Ω) and u ∈ Rn with |u| = 1. Fix such a u and let

G = (
x0, (e1, . . . , en), Ĝ

)

be a full grid such that MG ⊆ A and u = e1 . Let v ∈ C∞
c (Ω) and M ∈ MG be

such that v(x) = 0 whenever x /∈ M. Then there exist a1, b1, . . . , an, bn ∈ Ĝ with

M = {
x ∈ Rn : a j < (x − x0) · e j < b j, j = 1, . . . , n

}
.
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We define a sequence (vm) ⊆ L∞(M) in this way: let

sm,k = a1 + k
b1 − a1

m
, k = 1, . . . , m ;

we set

vm(x1, . . . , xn) =
{

v(sm,k, x2, . . . , xn) for sm,k � x1 < sm,k+1, k = 1, . . . , m

0 otherwise.

Then for Ln-a.e. x ∈ M we have

∂vm

∂e1
(x) = 0, lim

m→∞ vm(x) = v(x), lim
m→∞

∂vm

∂ei
(x) = ∂v

∂ei
(x), i �= 1.

By (17) it follows that
∣∣∣∣
∫

Ω

[v(B − div C) · u + ∇v · (Cu − (Cu · u)u)]dLn

∣∣∣∣

=
∣∣∣∣∣limm

m−1∑
k=0

∫
M(1)

sm,k ,sm,k+1

vm(B − div C) · e1 + ∇vm · (Ce1 − (Ce1 · e1)e1)dLn

∣∣∣∣∣

=
∣∣∣∣∣limm

m−1∑
k=0

∫ sm,k+1

sm,k

P
(
M(1)

s , vm
)
ds

∣∣∣∣∣� lim
m

m−1∑
k=0

∫
M(1)

sm,k ,sm,k+1

|vm |h dLn =
∫

Ω

|v|h dLn,

where we considered that vm is smooth for sk < x j < sk+1.
By combining (19) with Proposition 3, we get also the estimate on |∇sC|. ��
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