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Abstract. We prove a small excess regularity theorem for almost minimizers of a quasi-
convex variational integral of subquadratic growth. The proof is direct, and it yields an
optimal modulus of continuity for the derivative of the almost minimizer. The result is
new for general almost minimizers, and in the case of absolute minimizers it considerably
simplifies the existing proof.
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1. Introduction

In this paper we study the regularity properties of almost minimizers of variational
integrals

F (u) =
∫

U
f(Du) dx , (1)

where U is a bounded open subset of Rn , n ≥ 2, and u : U → R
N is a map defined

on U taking values in RN , N ≥ 1. Here

Du =
(

∂ui

∂xα

)
1≤α≤n, 1≤i≤N

: U → Hom(Rn,RN )

is the derivative of the function u and Hom(Rn,RN ) denotes the space of all n × N
matrices. The function f : Hom(Rn,RN ) → R is a C2-integrand of subquadratic
p-growth, i.e. for some L > 0 and p ∈ (1, 2) there holds:

| f(A)| ≤ L(1 + |A|p), (2)
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for any A ∈ Hom(Rn,RN ). Further we assume that f is strictly quasi-convex,
meaning that there holds

∫
U

(
f(A + Dϕ) − f(A)

)
dx ≥ λ

∫
U

(
1 + |A|2 + |Dϕ|2) p−2

2 |Dϕ|2 dx, (3)

for some fixed constant λ > 0, for any A ∈ Hom(Rn,RN ) and ϕ ∈ C1
0(U,RN ).

The condition of quasi-convexity was introduced by Morrey in [28]; for the notion
of strict quasi-convexity in the case p ≥ 2 we refer to the paper of Evans [19]. In
[10] and [11] this condition was generalized to the case 1 < p < 2 (i.e. the case of
integrands with subquadratic growth) in the form given in (3).

For every u ∈ W1,p(U,RN ) the variational integral F (u) is defined. We say
that u is an (F , ω)-minimizing function (or an (F , ω)-minimizer) if there holds

∫
Bρ(x0)

f(Du) dx

≤
∫

Bρ(x0)

f(Du + Dϕ) dx + ω(ρ)

∫
Bρ(x0)

(
1 + |Dϕ|p + |Du|p

)
dx, (4)

for any ball Bρ(x0) ⊂⊂ U and any ϕ ∈ W1,p(U,RN ) with spt ϕ ⊂ Bρ(x0). Here the
modulus of almost minimality ω : [0,∞) → [0,∞) is a non-decreasing bounded
function with limρ↓0 ω(ρ) = ω(0) = 0 satisfying the Dini condition

Ω(r) =
∫ r

0

√
ω(ρ)

ρ
dρ < ∞, (5)

for any r > 0. In particular, note that the case ω ≡ 0 corresponds to the case of
F -minimizers.

For examples, and motivation for studying almost minimizers (which are also
immediately seen to be applicable to the subquadratic case) we refer the reader to
the papers [15] and [5]. In particular we note here the example of Sverak given in
[31] of a quasi-convex integrand with subquadratic growth which is not convex,
nor even polyconvex.

In the fundamental paper [19] Evans considered strictly quasi-convex inte-
grands f in the superquadratic case (i.e. p ≥ 2). He proved that if f is of class C2

and satisfies the growth assumption

|D2 f(A)| ≤ L(1 + |A|p−2), (6)

for any A ∈ Hom(Rn,RN ) (note that this is stronger than (2)), then any
F -minimizing function u ∈ W1,p(U,RN ) is of class C1,α on some open sub-
set U0 ⊂ U whose complement has n-dimensional Lebesgue measure zero. In [1]
this result was generalized to integrands f of p-growth with p ≥ 2 satisfying the
weaker assumption (2); in that paper the authors were also able to handle the case
of integrands f depending also on x and u, i.e. the case of quasi-convex variational
integrals of the form F (u) = ∫U f(x, u(x), Du(x)) dx.

In [11] the result of Evans (under the weaker growth assumption (2)) was
extended to the case of quasi-convex variational integrals with an integrand of
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subquadratic growth; cf. the earlier paper [10] for a treatment of the particular case
2n

n+2 < p < 2.
The proofs of the regularity results for F -minimizing functions u of the above-

mentioned papers are based on a blow-up technique originally developed by De
Giorgi [13] and Almgren [3], [4] in the setting of geometric measure theory, and
first adapted to the setting of partial-regularity theory for elliptic systems by Giusti–
Miranda [24]. The key step is to establish a certain excess-decay estimate for the
excess function Φ. In the case p ≥ 2 this function is given by

Φ(x0, ρ) =
(∫

−
Bρ(x0)

(|Du − (Du)x0 ,ρ|2 + |Du − (Du)x0 ,ρ|p) dx

)1/2

,

whereas in the case 1 < p < 2 one uses

Φ(x0, ρ) =
(∫

−
Bρ(x0)

|V(Du) − V((Du)x0,ρ)|2 dx

)1/2

, (7)

where

V(A) = (1 + |A|2) p−2
4 A for A ∈ Hom(Rn,RN ).

It is shown that if Φ(x0, ρ) is small enough on a ball Bρ(x0) ⊂⊂ U , then for
some fixed ϑ ∈ (0, 1) one has the excess improvement Φ(x0, ϑρ) ≤ cϑΦ(x0, ρ).
Iteration of this result yields the excess-decay estimate which implies the regularity
result. In each of the above-mentioned papers the excess improvement is established
by an indirect argument.

Partial regularity for (F , ω)-minimizing functions was first established in [15]
in the case of quasi-convex variational integrands of quadratic growth and later in
[17] for the case of p-growth with p ≥ 2 under the stronger growth assumption (6).
Both papers use the method of A-harmonic approximation, which in particular
enables the authors to prove the excess-improvement estimate directly. We give
a brief discussion of this technique in the following, but remark here that the
technique has its origins in Simon’s proof of the regularity theorem of Allard ([2]),
see [30, Section 23], and cf. [6]. The technique has been successfully applied in the
framework of geometric measure theory (see [18]), and to obtain partial-regularity
results for general elliptic systems (see [16], [14], [25], [26], [27]).

We consider a bilinear form on Hom(Rn,RN ) which is (strongly) elliptic in the
sense of Legendre–Hadamard, i.e. for all η ∈ Rn and ξ ∈ RN there holds:

A(η ⊗ ξ, η ⊗ ξ) ≥ κ|η|2|ξ|2,
for some positive constant κ. The method of A-harmonic approximation is based on
the fact that one is able to obtain a good approximation of functions
g ∈ W1,2(B,RN), which are approximately A-harmonic in a certain sense by
A-harmonic functions h ∈ W1,2(B,RN ), in both the L2-topology and in the weak
topology of W1,2. Here h ∈ W1,2(B,RN) is called A-harmonic on B if there holds

∫
B

A(Dh, Dϕ) dx = 0 for any ϕ ∈ C1
0(B,RN ).
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In the situations considered in the above-mentioned papers [15] and [17] the
required approximate A-harmonicity of (F , ω)-minimizing functions u ∈
W1,p(U,RN ) is a simple consequence of the minimizing property. A comparison
argument involving u and the A-harmonic approximation h implies an estimate (in
some sense an L2-excess-improvement),which when combined with Caccioppoli’s
inequality yields the desired excess-improvement estimate.

In the present article we extend this approach to the case of quasi-convex
variational integrands of subquadratic growth fullfilling the weaker growth as-
sumption (2). The main result then reads as follows:

Theorem. Suppose f is a strictly quasi-convex function of class C2 satisfying
the subquadratic growth condition (2). Suppose further that u ∈ W1,p(U,RN )

is (F , ω)-minimizing where the modulus ω : [0,∞) → [0,∞) determining the
almost minimality property is a non-decreasing bounded function such that
limρ↓0 ω(ρ) = ω(0) = 0, ρ �→ ρ−2βω(ρ) is non-increasing for some β ∈ (0, 1),
and which satisfies the Dini condition (5). Then there exists an open subset U0 ⊂ U
of full Lebesgue measure such that u is of class C1

loc(U0,R
N ). Moreover, in a neigh-

bourhood of any point x0 ∈ U0 the derivative Du of u has modulus of continuity
given by ρ �→ ρα + Ω(ρ) for any α ∈ (β, 1).

The common feature in all the cases discussed above is the fact that one is in
a situation where the considered maps g : B → R

N admit a bound
∫

B |Dg|2 dx ≤ 1
for the L2-norm of the gradient. In the subquadratic case we are dealing with
functions belonging to the Sobolev space W1,p with 1 < p < 2, and hence
one only has a bound for

∫
B |Dg|p dx, and this causes several problems. The main

problem is to establish a suitable version of the A-harmonic approximation lemma.
For p ≥ 2 it is straightforward to adapt the standard A-harmonic approximation
lemma by utilizing L2-theory combined with the (standard) Sobolev inequality.
For p < 2 we obviously do not have access to L2-theory for functions in W1,p,
and so we have to generalize the approximation lemma directly. The formulation
and the proof of the L p-version (see Section 7) are much more involved, and the
proof requires the following Sobolev–Poincaré-type inequality:

(∫
−

Bρ(x0)

∣∣∣∣V
(

u − ux0,ρ

ρ

)∣∣∣∣
2n

n−p

dx

) n−p
2n

≤ c(n, N, p)

(∫
−

Bρ(x0)

|V (Du)|2 dx

) 1
2

.

We prove this inequality in Section 4. A weaker version of this Sobolev–Poincaré-
type inequality has been proved in [11]. There the authors need to increase the
radius of the ball on the right-hand side; we note that such a weaker version is not
sufficient to establish our desired approximation lemma.

Having proven the A-harmonic approximation lemma, the other steps in the
above-sketched strategy are fairly simply adaptable to the current setting. Firstly, we
prove a Caccioppoli-type inequality for (F , ω)-minimizing functions u by suitably
modifying the arguments from the case p ≥ 2 (see Lemma 3 in Section 5). Sec-
ondly we show that (F , ω)-minimizing functions are approximately A-harmonic,
where A results from “freezing the coefficients”. Finally we compare u with the
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A-harmonic approximation to obtain – via our Caccioppoli-type inequality – the
desired excess improvement. We note that all these steps have to be performed by
using the excess function Φ from (7) and its L2-counterpart

(∫
−

Bρ(x0)

∣∣∣∣V
(

u − ξ − (Du)x0 ,ρ(x − x0)

ρ

)∣∣∣∣
2

dx

)1/2

,

where ξ ∈ RN .

2. Notation and statement of the result

Throughout the paper we consider functionals of the form

F (u) =
∫

U
f(Du) dx, (8)

where U is a domain in Rn and f : Hom(Rn,RN ) → R satisfies the following
structure conditions:

(H1) the function f is of class C2 and there exists p ∈ (1, 2) such that for some
constant L ≥ 0 and all A ∈ Hom(Rn,RN ) we have

| f(A)| ≤ L(1 + |A|p) ;
(H2) the function f is (strictly) quasi-convex, i.e. there exists a constant λ > 0

such that∫
Bρ(x0)

(
f(A + Dϕ) − f(A)

)
dx ≥ λ

∫
Bρ(x0)

(
1 + |A|2 + |Dϕ|2) p−2

2 |Dϕ|2dx,

for any Bρ(x0) ⊂⊂ U , A ∈ Hom(Rn,RN ) and ϕ ∈ C1
0

(
Bρ(x0),R

N
)
.

Note that (H1) implies in particular that F is defined on W1,p(U,RN ).
We next remark that hypothesis (H2) implies that, for any function ϕ ∈

C1
0

(
Bρ(x0),R

N
)
, the non-negative function

I(t) =
∫

Ω

(
f(A + t Dϕ) − f(A) − λ

(
1 + |A|2 + |t Dϕ|2) p−2

2 |t Dϕ|2
)

dx

attains its absolute minimum at t = 0; hence I ′′(0) ≥ 0, which implies
∫

Ω

D2 f(A)(Dϕ, Dϕ) dx ≥ 2λ (1 + |A|2) p−2
2

∫
Ω

|Dϕ|2 dx.

This integral condition is equivalent to the strong Legendre–Hadamard condition
(see [29, 4.4.1, 4.4.3] or [20, 5.1.10]), i.e. for all η ∈ Rn , ξ ∈ RN we have

D2 f(A)(η ⊗ ξ, η ⊗ ξ) ≥ 2λ(1 + |A|2) p−2
2 |η|2|ξ|2 . (9)
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Let us remark that we do not assume an explicit growth condition for the second
derivatives of f . For our purposes it is sufficient that, for any given constant M > 0,
there exists a constant KM < ∞ such that there holds

sup
|A|≤M

A∈Hom(Rn ,RN )

|D2 f(A)| ≤ KM. (10)

Since f is quasi-convex and satisfies the growth condition from (H1) it is
well known (see [11, Remark 3.1]) that there exist a constant c of the form c =
c(n, N, p) · L such that the first derivatives D f of f satisfy the growth condition

|D f(A)| ≤ c (1 + |A|p−1). (11)

Finally, we note that hypothesis (H1) implies the existence of a modulus of con-
tinuity of D2 f on compact subsets of Hom(Rn,RN ). To be more precise: cor-
responding to M > 0 there exists a monotone non-decreasing, concave function
νM : [0,∞) → [0,∞) continuous at 0 such that νM(0) = 0 and

|D2 f(A) − D2 f(B)| ≤ νM(|A − B|), (12)

for any A, B ∈ Hom(Rn,RN ) with |A| ≤ M + 1, |B| ≤ M + 1. (We work with
M + 1 instead of M due to the fact that we apply (12) to matrices A, B with
|A| ≤ M and |A − B| ≤ 1.)

Now we are in the position to define precisely the notion of an almost minimizer.

Definition 1. Consider a functional F as in (8) defined on the Sobolev space
W1,p(U,RN ), 1 < p < 2, U a domain in Rn, and a function ω : [0,∞) → [0,∞).
A function u ∈ W1,p(U,RN ) is called (F , ω)-minimizing at x0 in U if, for all
Bρ(x0) ⊂⊂ U, there holds

F (u; Bρ(x0)) ≤ F (u + ϕ; Bρ(x0)) + ω(ρ)

∫
Bρ(x0)

(
1 + |Du|p + |Dϕ|p)dx, (13)

for all ϕ ∈ C1
0

(
Bρ(x0),R

N
)
. Here F (v; Bρ(x0)) = ∫

Bρ(x0)
f(Dv) dx. A function

u ∈ W1,p(U,RN ) is called an (F , ω)-minimizer if u is (F , ω)-minimizing at every
point x0 in U.

We impose the following conditions on the function ω which characterizes the
almost minimality:

(F1) ω(ρ) is a non-decreasing function of ρ with limρ↓0 ω(ρ) = ω(0) = 0 and
ω(ρ) ≤ 1 for all ρ;

(F2) ω(ρ)/ρ2β is a non-increasing function of ρ > 0 for some β ∈ (0, 1);

(F3) Ω(r) =
∫ r

0

√
ω(ρ)

ρ
dρ is finite for some r > 0.

The main result of our paper is the following:
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Theorem 1. Consider p ∈ (1, 2), a domain U in Rn with n ≥ 2, a function ω

satisfying (F1)–(F3) and a function f : Hom(Rn,RN ) → R which satisfies (H1)
and (H2). Further let F be the functional on W1,p(U,RN ) given by F (u) =∫

U f(Du) dx and u ∈ W1,p(U,RN ) be (F , ω)-minimizing on U. Then there exists
a relatively closed subset Sing u of U such that

u ∈ C1(U \ Sing u ,RN ) .

Furthermore Sing u ⊂ Σ1 ∪ Σ2, where

Σ1 =
{

x0 ∈ U : lim inf
ρ↓0

∫
−

Bρ(x0)

|Du − (Du)x0 ,ρ|pdx > 0

}
, and

Σ2 =
{

x0 ∈ U : lim sup
ρ↓0

|(Du)x0 ,ρ| = ∞
}

;

in particular Ln(Sing u) = 0.
In addition, in a neighbourhood of any x0 ∈ U \ Sing u and for any α ∈ (β, 1)

the derivative Du of u has modulus of continuity given by ρ �→ ρα + Ω(ρ). ��
We close the section with a remark on notation. The various constants c appear-

ing in the proofs and statements will depend on a number of structural parameters,
and these dependencies will be indicated in the text or by self-explanatory nota-
tion without giving the explicit form of the constant in every case. Moreover, the
constants c may change from line to line. We also assume, unless otherwise stated,
that all constants appearing satisfy c ≥ 1.

3. Preliminaries

Throughout the paper we shall use the functions V=Vp : Rk → R
k and W=Wp :

R
k → R

k defined by

V(ξ) = ξ

(1 + |ξ|2) 2−p
4

, W(ξ) = ξ√
1 + |ξ|2−p

, (14)

for each ξ ∈ Rk and for any p > 1. From the elementary inequality ‖x‖ 2
2−p

≤
‖x‖1 ≤ 21− 2−p

2 ‖x‖ 2
2−p

applied to the vector x = (1, |ξ|2−p) ∈ R2 we deduce that

(1 + |ξ|2) 2−p
2 ≤ 1 + |ξ|2−p ≤ 2p/2(1 + |ξ|2) 2−p

2 ,

which immediately yields

|W(ξ)| ≤ |V(ξ)| ≤ c(p) |W(ξ)|. (15)

The purpose of introducing W is the fact that – in contrast to |V |2/p – the function
|W |2/p is a convex function on Rk . This can easily be shown as follows: firstly
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a direct computation yields that t �→ W2/p(t) = t2/p(1 + t2−p)−1/p is convex and
monotone increasing on [0,∞) with W2/p(0) = 0; secondly we have

∣∣∣W( ξ+η

2

)∣∣∣2/p = W
( |ξ+η|

2

)2/p ≤ W
( |ξ|+|η|

2

)2/p

≤ W(|ξ|)2/p + W(|η|)2/p

2
= |W(ξ)|2/p + |W(η)|2/p

2
,

for any ξ, η ∈ Rk.
We use a number of properties of V = Vp which can be found in [11,

Lemma 2.1].

Lemma 1. Let p ∈ (1, 2) and V, W : Rk → R
k be the functions defined in (14).

Then for any ξ, η ∈ Rk and t > 0 there holds:

(i) 1√
2

min(|ξ|, |ξ| p
2 ) ≤ |V(ξ)| ≤ min(|ξ|, |ξ| p

2 );

(ii) |V(tξ)| ≤ max(t, t
p
2 ) |V(ξ)|;

(iii) |V(ξ + η)| ≤ c(p) (|V(ξ)| + |V(η)|);
(iv) p

2 |ξ − η| ≤ |V(ξ)−V(η)|
(1+|ξ|2+|η|2)

p−2
4

≤ c(k, p) |ξ − η|;
(v) |V(ξ) − V(η)| ≤ c(k, p) |V(ξ − η)|;

(vi) |V(ξ − η)| ≤ c(p, M) |V(ξ) − V(η)| for all η with |η| ≤ M.

The inequalities (i) – (iii) also hold if we replace V by W.

Proof. The assertions for V are taken from [11, Lemma 2.1]. The analogous
inequalities for W are easy to derive in the case of (i) and (ii); the estimate in (iii)
follows from the corresponding estimate for V and (15). ��

For later purposes we state the following two simple estimates which can easily
be deduced from Lemma 1 (i) and (vi). For ξ, η ∈ Rk with |η| ≤ M we have for
|ξ − η| ≤ 1 the estimate

|ξ − η|2 ≤ c(p, M) |V(ξ) − V(η)|2, (16)

while for |ξ − η| > 1 we have

|ξ − η|p ≤ c(p, M) |V(ξ) − V(η)|2 . (17)

The next lemma is a more general version of [11, Lemma 2.7], which itself is
an extension of [21, Lemma 3.1, Chap. V]. The proof in [21] can easily be adapted
to the present situation by replacing the condition of homogenity by Lemma 1 (ii).

Lemma 2. Let 0 ≤ ϑ < 1, a, b ≥ 0, v ∈ L p(Bρ(x0)) and g be a non-negative
bounded function satisfying

g(t) ≤ ϑg(s) + a
∫

Bρ(x0)

∣∣V ( v
s−t

)∣∣2 dx + b,

for all ρ/2 ≤ t < s ≤ ρ. Then there exists a constant c = c(ϑ) such that

g(ρ/2) ≤ c(ϑ)

(
a
∫

Bρ(x0)

|V( v
ρ
)|2dx + b

)
.

��
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4. A Sobolev–Poincaré-type inequality in the subquadratic case

In this section we consider functions in u ∈ W1,p
(
Bρ(x0),R

N
)

in the subquadratic
case 1 < p < 2 and prove an inequality of Sobolev–Poincaré-type which is
appropiate to our situation. An analogous Poincaré-type inequality can be found
in [9, Proposition 7.6]. A weaker version of this Sobolev–Poincaré-type inequality
was proved in [11, Theorem 2.4] (see the comments in Section 1).

Theorem 2 (Sobolev–Poincaré-type inequality). Let p ∈ (1, 2), Bρ(x0) ⊂ Rn

with n ≥ 2, and set p
 = 2n
n−p . Moreover, let V and W be the functions defined

in (14). Then the following inequality holds:

(∫
−

Bρ(x0)

∣∣∣∣W
(

u − ux0,ρ

ρ

)∣∣∣∣
p


dx

) 1
p


≤ cs

(∫
−

Bρ(x0)

|W(Du)|2dx

) 1
2

,

for any u ∈ W1,p
(
Bρ(x0),R

N
)
; here the constant cs depends only on n, N, and p.

Furthermore, the analogous inequality holds if we replace W by V.

Proof. Similarly to the proof of [23, Lemma 7.16] we have for x ∈ Bρ(x0) (since
|x − y| ≤ 2ρ for x, y ∈ Bρ(x0) ):

|u(x) − ux0 ,ρ|
2ρ

≤
∫
−

Bρ(x0)

∫
−

|x−y|

0
|Du(x + rω) ω| drdy ,

where here ω = y−x
|y−x| .

Since t �→ W2/p(t) is non-decreasing and convex (see the beginning of Sec-
tion 3) we apply W2/p to both sides of the previous inequality and obtain by
Jensen’s inequality and recalling W(0) = 0:

W2/p

( |u − ux0,ρ|
2ρ

)
≤
∫
−

Bρ(x0)

∫
−

|x−y|

0
W2/p(|Du(x + rω) ω|)drdy

≤ (2ρ)n−1

(n − 1)Ln(Bρ(x0))

∫
Rn

|x − y|1−n W̃2/p(|Du(y)|)dy,

where we define

W̃(|Du(x)|) =
{

0 : x �∈ Bρ(x0)

W(|Du(x)|) : x ∈ Bρ(x0).

Then [32, Theorem 2.8.4] applied with f = W̃2/p(|Du|), α = 1 (note that
W̃2/p(|Du|) ∈ L p(Rn) since W2/p(|Du|) ∈ L p(Bρ(x0)) by Lemma 1 (i)) yields
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(∫
Bρ(x0)

∣∣∣∣W
(

u − ux0,ρ

2ρ

)∣∣∣∣
2n

n−p

dx

) n−p
n p

=
(∫

Bρ(x0)

W2/p

( |u − ux0,ρ|
2ρ

) n p
n−p

dx

) n−p
n p

≤ c

ρ

(∫
Rn

(∫
Rn

|x − y|1−nW̃2/p(|Du(y)|)dy

) n p
n−p

dx

) n−p
n p

≤ c

ρ

(∫
Rn

(
W̃2/p(|Du(x)|)

)p
dx

) 1
p

= c

ρ

(∫
Bρ(x0)

|W(Du(x))|2dx

) 1
p

,

where the constant c depends on n, N, and p only. Since 1
ρ

= ρ
n−p

p ρ
− n

p and

|W(ξ/2)| ≥ 1
2 |W(ξ)| by Lemma 1 (ii), we obtain the assertion of the theorem, first

for W , and then also for V by (15). ��

5. A Caccioppoli inequality

The first step in proving a regularity theorem for (F , ω)-minimizing functions is
to establish a suitable Caccioppoli inequality. Typically, such an inequality is used
to prove higher integrability via Gehring’s lemma (in a version due to Giaquinta
and Modica [21]). Since we do not use the blow-up technique for proving regu-
larity we need only a very weak version of the Caccioppoli inequality; this means
that the constant cc in Caccioppoli’s inequality for the function Bρ(x0) � x �→
u(x) − ξ − A(x − x0), where ξ ∈ RN and A ∈ Hom(Rn,RN ) is allowed to depend
on a bound M > 0 of the matrix A. Throughout this section we consider functionals
F of the form F (u) = ∫U f(Du) dx, and we assume that the integrand f satisfies
the hypotheses (H1), (H2). Moreover, we assume that the function ω from the
(F , ω)-minimality condition satisfies hypothesis (F1). For the convenience of the
reader we recall from Section 2, (10) the definition of KM : for M > 0 there exists
KM < ∞ such that |D2 f(A)| ≤ KM , for any A ∈ Hom(Rn,RN ) with |A| ≤ M.

Lemma 3 (Caccioppoli inequality). Let M > 0. Then there exist constants cc =
cc(n, N, p, L, λ, M, KM+1 ) and ρ0 = ρ0(n, N, p, λ, M, ω(·)) such that for every
ball Bρ(x0) ⊂⊂ U with ρ ≤ ρ0, ξ ∈ RN , A ∈ Hom(Rn,RN ) with |A| ≤ M and
every u ∈ W1,p(U,RN ) which is (F , ω)-minimizing in U, there holds:

∫
−

Bρ/2(x0)

|V(Du − A)|2 dx ≤ cc

[∫
−

Bρ(x0)

∣∣∣V
(

u−ξ−A(x−x0 )

ρ

)∣∣∣2 dx + ω(ρ)

]
.
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Proof. Although the proof is close to the proof of similar inequalities given in [19,
Lemma 3.1, 5.1] in the case p ≥ 2 (see also [15, Lemma 3.2], [17, Lemma 1]),
and [1, proof of Lemma II.5], [22, Proposition 4.1], [10, proof of Lemma 2.7] and
[11, proof of Lemma 2.8] in the case 1 < p < 2, we give the arguments for the
convenience of the reader.

Let Bρ(x0) ⊂⊂ U . We choose ρ/2 ≤ t < s ≤ ρ and a standard cut-off function
η ∈ C1

0(Bρ(x0), [0, 1]) with η ≡ 1 on Bt(x0), η ≡ 0 outside Bs(x0), and which
satisfies |∇η| ≤ 2

s−t . For ξ ∈ RN and A ∈ Hom(Rn,RN ) we abbreviate

v = u − ξ − A(x − x0), ϕ = η v, and ψ = (1 − η) v .

Then

Dϕ + Dψ = Dv = Du − A , (18)

and further there holds

|Dϕ|p ≤ c(p)
(|Dv|p + ∣∣ v

s−t

∣∣p) and |Dψ|p ≤ c(p)
(|Dv|p + ∣∣ v

s−t

∣∣p) . (19)

Using hypothesis (H2) and (18) we obtain

λ

∫
Bs(x0)

(1 + |A|2 + |Dϕ|2) p−2
2 |Dϕ|2dx ≤ I + II + III , (20)

where

I =
∫

Bs(x0)

[ f(Du − Dψ) − f(Du)] dx ,

II =
∫

Bs(x0)

[ f(Du) − f(Du − Dϕ)] dx , and

III =
∫

Bs(x0)

[ f(A + Dψ) − f(A)] dx .

To estimate I + III we note that

I + III =
∫

Bs(x0)

∫ 1

0
[D f(A + τDψ) − D f(Du − τDψ)]dτDψ dx

=
∫

Bs(x0)

∫ 1

0
(D f(A + τDψ) − D f(A)) dτDψ dx

+
∫

Bs(x0)

∫ 1

0
(D f(A) − D f(A + Dv − τDψ)) dτDψ dx

= I ′ + III ′ ,

with the obvious labelling. On Bs(x0) ∩ {|Dψ| > 1} we use (11) and the fact that
|A| ≤ M to deduce the following estimate for the integrand in I ′:

|D f(A + τDψ) − D f(A)||Dψ| ≤ c |Dψ|p ,
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where the constant c depends only on n, N, p, L, and M. On the other hand,
on Bs(x0) ∩ {|Dψ| ≤ 1} we use the bound for the second derivative D2 f of f ,
i.e. (10) with M replaced by M + 1, to infer

|D f(A + τDψ) − D f(A)||Dψ| ≤ KM+1 |Dψ|2,
where KM+1 = sup|A|≤M+1 |D2 f(A)|. Using the last two estimates, we obtain

|I ′| ≤ c
∫

Bs(x0)∩{|Dψ|>1}
|Dψ|pdx + KM+1

∫
Bs(x0)∩{|Dψ|≤1}

|Dψ|2dx , (21)

where c = c(n, N, p, L, M). In view of Lemma 1 (i) we infer

|I ′| ≤ c
∫

Bs(x0)

|V(Dψ)|2dx ,

where c depends on n, N, p, L, M, and KM+1 only. Using Lemma 1 (i), (ii) and
(iii) we estimate V(Dψ) as follows:

|V(Dψ)| = |V((1 − η)Dv − ∇η ⊗ v)|
≤ c(p) [|V((1 − η)Dv)| + |V(∇η ⊗ v)|]
≤ c(p)

[
|V(Dv)| + min

{∣∣ 2v
s−t

∣∣ ,
∣∣ 2v

s−t

∣∣ p
2
}]

≤ c(p)
[|V(Dv)| + ∣∣V ( v

s−t

)∣∣] .

In view of the previous estimate we conclude, noting that Dψ ≡ 0 on Bt(x0),

|I ′| ≤ c
∫

Bs(x0)\Bt (x0)

[
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2] dx , (22)

where c depends on the same quantities as before, i.e. on n, N, p, L, M, and KM+1.
The second term III ′ is estimated similarly. Firstly, on the set Bs(x0)∩{|Dv|+

|Dψ| > 1} we use (11) to bound the integrand in III ′ from above by

|D f(A) − D f(A + Dv − τDψ)||Dψ| ≤ c (|Dv| + |Dψ|)p−1 |Dψ| ,
where c = c(n, N, p, L, M). Secondly, on the complement Bs(x0)∩{|Dv|+ |Dψ|
≤ 1} we use (10) to bound the second derivatives D2 f (note that |A+Dv−τDψ| ≤
M + 1 in this case) and obtain:

|D f(A) − D f(A + Dv − τDψ)||Dψ| ≤ KM+1(|Dv| + |Dψ|)|Dψ| .
Using again Lemma 1 we deduce:

|III ′| ≤ c
∫

Bs(x0)\Bt (x0))∩{|Dv|+|Dψ|>1}
[|Dv| + |Dψ|]p dx

+ KM+1

∫
Bs(x0)\Bt (x0))∩{|Dv|+|Dψ|≤1}

[|Dv| + |Dψ|]2 dx

≤ c
∫

Bs(x0)\Bt (x0)

|V(|Dv| + |Dψ|)|2dx

≤ c
∫

Bs(x0)\Bt (x0)

|V(Dv)|2 + |V(Dψ)|2dx

≤ c
∫

Bs(x0)\Bt (x0)

(
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2) dx, (23)
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where the constant c depends on the same quantities as the constant in (22), namely
on n, N, p, L, M, and KM+1.

To estimate II we use the (F , ω)-minimality of u, i.e. (13), to conclude

|II | ≤ ω(s)
∫

Bs(x0)

(1 + |Du|p + |Dϕ|p) dx

≤ ω(s)
∫

Bs(x0)

(1 + 2p−1M p + 2p−1|Dv|p + |Dϕ|p) dx

≤ c(p, M) αnω(s) sn + c(p) ω(s)
∫

Bs(x0)

(|Dv| + |Dϕ|)p dx.

To estimate the second term of the right-hand side of this inequality we argue simil-
iarly as above, i.e. we split the domain of integration into two parts Bs(x0)∩{|Dv|+
|Dϕ| ≤ 1} and Bs(x0) ∩ {|Dv| + |Dϕ| > 1}. On the set where |Dv| + |Dϕ| ≤ 1
we trivially find

ω(s)
∫

Bs(x0)∩{|Dv|+|Dϕ|≤1}
(|Dv| + |Dϕ|)p dx ≤ αnω(s) sn ,

whereas on Bs(x0) ∩ {|Dv| + |Dϕ| > 1} we argue similarly to (23), using (19) to
estimate |Dϕ|p, and obtain:

ω(s)
∫

Bs(x0)∩{|Dv|+|Dϕ|>1}
(|Dv| + |Dϕ|)p dx

≤ c(p) ω(s)
∫

Bs(x0)

[
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2] dx.

Thus we have established:

|II | ≤ c(p, M) αnω(s) sn + c(p) ω(s)
∫

Bs(x0)

[
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2] dx. (24)

Finally, on Bt(x0) we use Lemma 1 (iv) and (vi) to bound the integrand of the
left-hand side of (20) from below:

λ(1 + |A|2 + |Dϕ|2) p−2
2 |Dϕ|2 = λ(1 + |A|2 + |Dv|2) p−2

2 |Dv|2
≥ c(p) λ (1 + |A|2 + |Du|2) p−2

2 |Du − A|2
≥ c(n, N, p, λ) |V(Du) − V(A)|2
≥ c(n, N, p, λ, M) |V(Dv)|2 .

Using this in (20) together with the estimates (22), (23), and (24) we finally arrive
at:

c
∫

Bt (x0)

|V(Dv)|2dx ≤ c̃

(∫
Bs(x0)\Bt(x0)

(
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2) dx + ω(s) sn

)

+ ĉ ω(s)
∫

Bs(x0)

(
|V(Dv)|2 + ∣∣V ( v

s−t

)∣∣2) dx,
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where the constants c, c̃, and ĉ have the following dependencies: c = c(n, N,

p, λ, M), c̃ = c̃(n, N, p, L, M, KM+1), ĉ = ĉ(p). Now, we choose ρ0 = ρ0(n, N,

p, λ, M) such that ĉ ω(ρ0) ≤ c
2 ; this choice of ρ0 is possible in view of our

hypothesis (F1) on ω. “Filling the hole” yields, with ϑ = 2̃c
c+2̃c < 1:

∫
Bt (x0)

|V(Dv)|2dx ≤ ϑ

∫
Bs(x0)

|V(Dv)|2dx

+ c

[∫
Bρ(x0)

∣∣V ( v
s−t

)∣∣2 dx + ω(s) sn

]
,

for a constant c = c(n, N, p, L, λ, M, KM+1 ). The proof is now completed by
applying Lemma 2. ��

6. Approximate harmonicity

For a ball Bρ(x0) ⊂⊂ U , a function u ∈ W1,p
(
Bρ(x0),R

N
)
, a vector ξ ∈ RN , and

a linear function A ∈ Hom(Rn,RN ) we define

Φ(x0, ρ, A) =
(∫

−
Bρ(x0)

|V(Du) − V(A)|2 dx

) 1
2

. (25)

Lemma 4 (Approximate A-harmonicity). For any M > 0 there exists a constant
ce = ce(n, N, p, L, M, KM+2) such that for every u ∈ W1,p(U,RN ) that is (F , ω)-
minimizing in U, every ball Bρ(x0) ⊂⊂ U and every A ∈ Hom(Rn,RN ) with
|A| ≤ M we have:∣∣∣∣∣

∫
−

Bρ(x0)

D2 f(A)(Du − A, Dϕ)dx

∣∣∣∣∣
≤ ce

(√
νM(Φ)Φ + Φ2) +√ω(ρ)

)
sup

Bρ(x0)

|Dϕ|,

for all ϕ ∈ C1
0(Bρ(x0),R

N ). Here we have abbreviated Φ(x0, ρ, A) by Φ.

Proof. We write Bρ for Bρ(x0). We assume initially that |Dϕ| ≤ 1. For 0 < s ≤ 1
we use the (F , ω)-minimality of u to deduce (see [15, inequality (4.4)])∫

Bρ

D2 f(A)(Du − A, Dϕ) dx

≥ 1

s

[ ∫
Bρ

∫ s

0

(
D f(Du) − D f(Du + τDϕ)

)
Dϕ dτ dx

+ s
∫

Bρ

∫ 1

0

(
D2 f(A) − D2 f(A + τ(Du − A))

)
(Du − A, Dϕ) dτ dx

− ω(ρ)

∫
Bρ

(1 + |Du|p + sp)dx

]

=
∫

Bρ

(I + II + III ) dx,
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with the obvious labelling. To estimate I , II and III we distinguish the cases
|Du − A| ≤ 1, |Du − A| > 1. In the case that |Du − A| ≤ 1 we use (16) and obtain

|Du − A|2 ≤ c |V(Du) − V(A)|2 , (26)

while in the case |Du − A| > 1 we infer from (17)

|Du − A|p ≤ c |V(Du) − V(A)|2 ; (27)

note that the constants in (26) and (27) depend only on p and M.

Estimate for I: Since |D2 f(B)| ≤ KM+2 on {B ∈ Hom(Rn,RN ) : |B| ≤ M + 2},
on the set Bρ ∩ {|Du − A| ≤ 1} we have the bound:

|I | = 1

s

∣∣∣∣
∫ s

0

∫ 1

0
D2 f(Du + στDϕ)(τDϕ, Dϕ) dσ dτ

∣∣∣∣ ≤ s

2
KM+2.

In the case Bρ ∩ {|Du − A| > 1} we use (11) and (27) to deduce:

|I | ≤ c |Du − A|p ≤ c |V(Du) − V(A)|2 ,

where c = c(n, N, p, L, M).

Estimate for II: On Bρ ∩ {|Du − A| ≤ 1} we have |A + τ(Du − A)| ≤ M + 1.
We then use (12), (10), (26) to obtain:

|II | ≤ √2 KM+1

√
νM(|Du − A|) |Du − A|

≤ c
√

νM(|V(Du) − V(A)|) |V(Du) − V(A)| ,
where the constant c depends only on p, M, and KM+1. On the set Bρ ∩ {|Du − A|
> 1} we use (11), (10) and (27) to infer:

|II | = ∣∣D2 f(A)(Du − A, Dϕ) + D f(A)Dϕ − D f(Du)Dϕ
∣∣

≤ c |Du − A|p ≤ c |V(Du) − V(A)|2 ,

where c = c(n, N, p, L, M, KM ).

Estimate for III: Here we see on Bρ ∩ {|Du − A| ≤ 1}:

|III | ≤ c
ω(ρ)

s
,

while on Bρ ∩ {|Du − A| > 1} there holds, using (26):

|III | ≤ c
ω(ρ)

s
|Du − A|p ≤ c

ω(ρ)

s
|V(Du) − V(A)|2 .

In each case the constant depends only on p and M.

Combining the estimates for I , II , and III , applying Hölder’s and Jensen’s
inequalities and recalling the fact that ω(ρ) ≤ 1 (see (F1)), and choosing s =√

ω(ρ) we finally arrive at:∫
−

Bρ

D2 f(A)(Du − A, Dϕ) dx ≥ − ce

(√
νM(Φ)Φ + Φ2 +√ω(ρ)

)
,

where the constant ce depends only on n, N, p, L, M, KM+2 .
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The correspondingestimate for
∫−Bρ

D2 f(A)(Du−A, Dϕ) dx from above can be
shown completely analogously. This proves the lemma for |Dϕ| ≤ 1, and rescaling
yields the general result. ��

7. A-harmonic approximation

In this section we present the A-harmonic approximation lemma, and refer the
reader to the introduction for further comments and references concerning the
origins of this kind of lemma.

The first result we need is a simple consequence of the a priori estimates for
solutions of linear elliptic sytems of second order with constant coefficients (see
[11, Proposition 2.10] for a similar result). Note that for the proof of the A-harmonic
approximation lemma we require only the result concerning smoothness, but the
a priori estimate (29) will be needed in Section 8.

Lemma 5. Let h ∈ W1,1
(
Bρ(x0),R

N
)

be such that
∫

Bρ(x0)

A(Dh, Dϕ) dx = 0, (28)

for any ϕ ∈ C1
0

(
Bρ(x0),R

N
)
, where A ∈ Hom(Rn,RN ) is elliptic in the sense

of Legendre–Hadamard with ellipticity constant κ and upper bound K. Then h ∈
C∞(Bρ(x0),R

N
)

and

ρ sup
Bρ/2(x0)

|D2h| + sup
Bρ/2(x0)

|Dh| ≤ ca

∫
−

Bρ(x0)

|Dh| dx, (29)

where the constant ca depends only on n, N, κ and K.

Proof. Let v ∈ W1,2
(
Bρ(x0),R

N
)

be a weak solution of (28). From [11, proof of
Proposition 2.10] we infer that

sup
Bρ/2

|v| ≤ c
∫
−

Bρ

|v| dx ,

where the constant c depends only on n, N, κ and K .
For 0 < r < ρ set τ = r/ρ. Then for any ε > 0 we can find x∗ ∈ Br such that

(noting that B (1−τ)ρ
2

(x∗) ⊂ Bρ):

sup
Br

|v| = sup
Bτρ

|v| ≤ ε + |v(x∗)| ≤ ε + sup
B (1−τ)ρ

4
(x∗)

|v| ≤ ε + c
∫
−

B (1−τ)ρ
2

(x∗)

|v| dx

≤ ε + c
2n

(1 − τ)n

∫
−

Bρ

|v| dx = ε + 2n c
(

ρ

ρ−r

)n
∫
−

Bρ

|v| dx .

Since ε > 0 was arbitrary, considering ε ↘ 0 yields, for Dv and D2v:

sup
Br

|D2v| ≤ c
(

ρ

ρ−r

)n
∫
−

Bρ

|D2v| dx, sup
Br

|Dv| ≤ c
(

ρ

ρ−r

)n
∫
−

Bρ

|Dv| dx, (30)
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where the constant c depends only on n, N, κ and K . Combining (30) with Cacciop-
poli’s inequality for solutions of linear elliptic systems with constant coefficients
we derive:

sup
Bρ/2

|D2v| ≤ c
∫
−

B 3
5 ρ

|D2v| dx ≤ c

(∫
−

B 3
5 ρ

|D2v|2 dx

) 1
2

≤ c

ρ

(∫
−

B 4
5 ρ

|Dv|2 dx

) 1
2 ≤ c

ρ

(∫
−

B 4
5 ρ

|Dv| dx

) 1
2
(

sup
B 4

5 ρ

|Dv|
) 1

2

≤ c

ρ

∫
−

Bρ

|Dv| dx,

where the constant c has the same dependencies as above. This estimate together
with (30) yields (29) for v ∈ W1,2, and a standard approximation argument (see
[11, proof of Proposition 2.10, Step 2]) yields the desired a priori estimate for
general v in W1,1. ��

The next result, the A-harmonic approximation lemma, is, as discussed in the
introduction, the key ingredient in proving our regularity result.

Lemma 6. Let κ, K be positive constants. Then for any ε > 0 there exist δ =
δ(n, N, κ, K, ε) ∈ (0, 1] with the following property: for any bilinear form A on
Hom(Rn,RN ) which is elliptic in the sense of Legendre–Hadamard with ellipticity
constant κ and upper bound K, for any v ∈ W1,p

(
Bρ(x0),R

N
)

satisfying

∫
−

Bρ(x0)

|W(Dv)|2 dx ≤ γ 2 ≤ 1 and

∫
−

Bρ(x0)

A(Dv, Dϕ) dx ≤ γ δ sup
Bρ(x0)

|Dϕ| for all ϕ ∈ C1
0

(
Bρ(x0),R

N
)
,

there exists an A-harmonic function h satisfying
∫
−

Bρ(x0)

|W(Dh)|2 dx ≤ 1 and
∫
−

Bρ(x0)

|W( v−γh
ρ

)|2 dx ≤ γ 2ε .

Here a function h is termed A-harmonic if it satisfies
∫

Bρ(x0)
A(Dh, Dϕ) dx = 0,

for all ϕ ∈ C1
0

(
Bρ,R

N
)
.

Proof. We assume that x0 = 0 and ρ = 1. The general case follows by rescaling v

via x �→ ρ · v ((x − x0)/ρ).
If the conclusion of the lemma was false, we could find ε > 0 and sequences

{Ak} of bilinear forms with uniform ellipticity bound κ and uniform upper bound K ,
{gk} with gk ∈ W1,p(B,RN) and {γk} with γk ∈ (0, 1] such that
∫
−

B
|W(Dgk)|2 dx ≤ γ 2

k ≤ 1 and

∣∣∣∣
∫
−

B
Ak(Dgk, Dϕ)dx

∣∣∣∣ ≤ γk
1

k
sup

B
|Dϕ|, (31)
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for all ϕ ∈ C1
0(B,RN ), but

∫
−

B
|W(gk − γkh)|2dx > γ 2

k ε for all h ∈ Hk, (32)

where here

Hk = { f ∈ W1,p(B,RN) : f is Ak-harmonic on B and
∫−B|W(D f )|2dx ≤ 1

}
.

Without loss of generality we can assume that
∫−Bgk dx = 0; otherwise we

replace gk by gk − ∫−Bgk dx. Furthermore, passing to a subsequence we can assume
that {γk} is monotone.

By Lemma 1 (i) we see
∫
−

B
|Dgk|p dx = 1

Ln(B)

(∫
B∩{|Dgk |≤1}

|Dgk|pdx +
∫

B∩{|Dgk |>1}
|Dgk|pdx

)

≤ c(p)

(∫
−

B
|W(Dgk)|pdx +

∫
−

B
|W(Dgk)|2dx

)

≤ c(p)
(
γ

p
k + γ 2

k

)
.

Hence, passing to a further subsequence (also labelled with k) we obtain the
existence of g ∈ W1,p(B,RN ) and A ∈ Hom(Rn,RN ) such that there holds:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gk
γk

→ g weakly in W1,p(B,RN),

gk
γk

→ g strongly in L p(B,RN),

gk
γk

→ g a.e. on B,

Ak → A in Hom(Rn,RN ).

(33)

Using the lower semicontinuity of u �→ ∫
B |W(Du)|2dx with respect to weak

convergence in W1,p(B,RN ) (which follows from the convexity of ξ �→ |W(ξ)|2,
which in turn follows from the convexity of ξ �→ |W(ξ)|2/p, and Lemma 1 (i); see
e.g. [12, Chapter 4, Theorem 2.3]) we obtain:
∫
−

B
|W(Dg)|2dx≤ lim inf

k→∞

∫
−

B

∣∣W( Dgk
γk

)∣∣2dx≤ lim inf
k→∞ γ−2

k

∫
−

B
|W(Dgk)|2dx≤1 , (34)

where in the second-last inequality we have used Lemma 1 (ii). For ϕ ∈ C1
0(B,RN )

we have∫
B

A(Dg, Dϕ) dx

=
∫

B
A
(
Dg − Dgk

γk
, Dϕ

)
dx +

∫
B
(A − Ak)

( Dgk
γk

, Dϕ
)
dx +

∫
B

Ak
( Dgk

γk
, Dϕ

)
dx .

Passing to the limit k → ∞ we see that the first term on the right-hand side
converges to 0 due to the weak convergence of gk

γk
to g (see (33)); the same holds

for the second term in view of the uniform bound of Dgk
γk

in L p and the convergence
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of the Ak’s (see (33)); and the third term vanishes in the limit k → ∞ via (31).
This shows that the weak limit g is A-harmonic on B, i.e.∫

−
B

A(Dg, Dϕ) dx = 0 for all ϕ ∈ C1
0(B,RN). (35)

Therefore, by Lemma 5, we see that g is smooth on the open ball B.
For fixed 1

2 ≤ ρ < 1 (to be specified later) let vk ∈ W1,2(Bρ,R
N ) denote the

unique solution of the Dirichlet problem∫
−

Bρ

Ak(Dvk, Dϕ)dx = 0 for all ϕ ∈ C1
0

(
Bρ,R

N
)
, vk = g on ∂Bρ. (36)

Using the strong Legendre–Hadamard condition with uniform ellipticity bound
κ for each Ak, the Ak-harmonicity of vk on Bρ, the A-harmonicity of g, the
smoothness of g on Bρ, and Hölder’s inequality we see that

κ

∫
−

Bρ

|Dvk − Dg|2dx ≤
∫
−

Bρ

Ak(Dvk − Dg, Dvk − Dg) dx

= −
∫
−

Bρ

Ak(Dg, Dvk − Dg) dx

=
∫
−

Bρ

(A − Ak)(Dg, Dvk − Dg) dx

≤ |A − Ak| sup
Bρ

|Dg|
(∫

−
Bρ

|Dvk − Dg|2 dx

)1/2

.

Therefore we conclude:

lim
k→∞

∫
−

Bρ

|Dvk − Dg|2dx = 0 . (37)

Since vk − g ∈ W1,2
0

(
Bρ,R

N
)

this implies, via Poincaré’s inequality:

vk → g strongly in W1,2(Bρ,R
N
)
. (38)

We now define, for y ∈ B:

ṽk(y) = vk(ρy) ,

g̃(y) = g(ρy) ,

bk = max

{
1,

[∫
−

B
|W(Dṽk)|2dx

]1/p
}

, and

v̂k = ṽk/bk .

Note in particular that there holds v̂k ∈ Hk .
We now show that we can choose ρ ∈ (1/2, 1) sufficiently close to 1 such that∫

−
B

|W(gk − γk̂vk)|2dx < 1
2 ε γ 2

k , (39)
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for k sufficiently large. This would contradict (32) and would prove the assertion
of the lemma.

Writing p
 for the W-Sobolev–Poincaré conjugate from Theorem 2, i.e.
p
 = 2n

n−p , we note that there holds p
 > 2. Hence we can write 1
2 as a con-

vex combination of 1 and 1
p
 , i.e. there exists t ∈ (0, 1) such that

1 = 2t + 2(1 − t)

p

.

Therefore, we can estimate, via Hölder’s inequality:∫
−

B
|W(gk − γk̂vk)|2dx

=
∫
−

B
|W(gk − γk̂vk)|2t |W(gk − γk̂vk)|2(1−t)dx

≤
(∫

−
B

|W(gk − γk̂vk)|dx

)2t (∫
−

B
|W(gk − γk̂vk)|p


dx

) 2(1−t)
p


. (40)

In the following we estimate both factors on the right-hand side of (40) seperately.
Using Lemma 1 (i) we see that

(∫
−

B
|W(gk − γk̂vk)| dx

)2t

≤ γ 2t
k

(∫
−

B

∣∣̂vk − gk
γk

∣∣dx

)2t

≤ γ 2t
k

(∫
−

B
|̂vk − ṽk| dx +

∫
−

B

∣∣̃vk − gk
γk

∣∣dx

)2t

= γ 2t
k [Ik + IIk]2t , (41)

with the obvious definition for Ik and IIk .
To estimate Ik in (41) we note that Lemma 1 (ii) and (38), i.e. the strong

convergence of vk to g in W1,2
(
Bρ,R

N
)
, imply∫

B
|W(D̃vk)|2dx ≤ ρp−n

∫
Bρ

|W(Dvk)|2dx → ρp−n
∫

Bρ

|W(Dg)|2dx,

as k → ∞. Hence, in view of (34) we find:

lim sup
k→∞

∫
−

B
|W(D̃vk)|2dx ≤ ρp−n and hence lim sup

k→∞
bk ≤ ρ

p−n
p .

Noting that
∫−Bg dx = 0, bk ≥ 1, and applying Poincaré’s inequality to g on B we

deduce, in view of (38),

Ik = bk−1
bk

∫
−

B
|̃vk| dx ≤ (bk − 1)

∫
−

B
|̃vk| dx = (bk − 1)

∫
−

Bρ

|vk| dx

≤ (bk − 1)

∫
−

Bρ

|vk − g| dx + c (bk − 1)

∫
−

B
|Dg| dx

≤ o(1) + c (bk − 1)

∫
−

B
|Dg| dx ,

where c = c(n, N).
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Distinguishing the cases |Dg| ≤ 1 and |Dg| > 1 and using Lemma 1 (i) as
well as (34) we find

∫
−

B
|Dg| dx ≤ 2

√
2

(∫
−

B
|W(Dg)|2 dx

) 1
2 ≤ 2

√
2 , (42)

which, combined with the second-last inequality, implies

lim sup
k→∞

Ik ≤ c
(
ρ

p−n
p − 1

)
, (43)

where the constant c depends only on n and N.
The second term IIk on the right-hand side of (41) is estimated as follows:

IIk ≤
∫
−

B
|̃vk − g̃| dx +

∫
−

B
|̃g − g| dx +

∫
−

B

∣∣g − gk
γk

∣∣ dx

= o(1) +
∫
−

B
|̃g − g| dx .

Here we have used (33) twice (i.e. the strong L2-convergence gk
γk

→ g as k → ∞).
Elementary calculus yields:

∫
B

|̃g − g| dx =
∫

B
|g(ρx) − g(x)| dx

=
∫

B

∣∣∣∣
∫ 1

0
Dg(tx + (1 − t)ρx) (1 − ρ)x dt

∣∣∣∣ dx

≤ (1 − ρ)

∫ 1

0
(t + (1 − t)ρ)1−n

∫
Bt+(1−t)ρ

|Dg(y)|dy dt

≤ (1 − ρ)ρ1−n
∫

B
|Dg(y)|dy .

Hence (42) implies:

lim sup
k→∞

IIk ≤ c(n) (1 − ρ) .

Combining the estimates for Ik and IIk , we arrive at:

lim sup
k→∞

[Ik + IIk] ≤ c(n, N)
(
ρ

n−p
p − ρ

)
. (44)

In order to estimate the second factor of the right-hand side of (40) we use
Lemma 1 (iii), the Sobolev–Poincaré-typeestimate from Theorem 2, (31), Jensen’s
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and Hölder’s inequality to deduce, writing (̂vk)B for
∫−Bv̂k dx,

(∫
−

B
|W(gk − γk̂vk)|p


dx

) 1
p


≤ c

[(∫
−

B
|W(gk − γk̂vk + γk (̂vk)B)|p


dx

) 1
p
 + |W(γk (̂vk)B)|

]

≤ c

[(∫
−

B
|W(D(gk − γk̂vk))|2dx

) 1
2 + |W(γk (̂vk)B)|

]

≤ c

[
γk +

(∫
−

B
|W(γk Dv̂k)|2dx

) 1
2 +

(∫
−

B
|W(γk̂vk)|2dx

) 1
2
]

, (45)

with a constant c = c(n, N, p). Using Lemma 1 (i) and (ii) (note bk ≥ 1, ρ < 1)
we obtain for the second term of the right-hand side of the previous inequality:

(∫
−

B
|W(γk Dv̂k)|2dx

) 1
2

≤ c

[(∫
−

B

∣∣W(γk
(
Dv̂k − Dg̃

bk

))∣∣2dx

) 1
2 +

(∫
−

B

∣∣W(γk
Dg̃
bk

)∣∣2dx

) 1
2
]

≤ c

bp/2
k

[
γkρ

(∫
−

Bρ

|Dvk − Dg|2dx

) 1
2 + ρ

p−n
2

(∫
−

B
|W(γk Dg)|2dx

) 1
2
]
, (46)

with a constant c = c(p). For the second term in (46) we now show the bound
∫
−

B
|W(γk Dg)|2dx ≤ 2γ 2

k . (47)

We first consider the case that γk is non-increasing. Then γk
γ�

≥ 1 for � > k. Using

the fact that γk
Dg�

γ�
converges weakly in L p(B,RN) to γk Dg, together with the

lower semicontinuity of the functional w �→ ∫
B |W(Dw)|2dx with respect to weak

convergence in W1,p(B,RN ) (see the derivation of (34)), Lemma 1 (ii) and (31)
we find:
∫
−

B
|W(γk Dg)|2dx ≤ lim inf

�→∞

∫
−

B

∣∣W(γk
Dg�

γ�

)∣∣2dx ≤ lim inf
�→∞ γ 2

k

∫−B|W(Dg�)|2dx

γ 2
�

≤ γ 2
k .

In the case that γk is non-decreasing, i.e. γk
γ�

≤ 1 for � > k, we note that we

have lim�→∞ γ� = γ ≤ 1. Estimating the integral
∫−B|W(γk Dg)|2dx similarly to

above (note that in this case we use Lemma 1 (ii) with 0 < t ≤ 1) we infer for k
sufficiently large that there holds

∫
−

B
|W(γk Dg)|2dx ≤ lim

�→∞
γ 2

k

γ
2−p
�

γ
2−p
k

= γ 2
k
γ 2−p

γ
2−p
k

≤ 2γ 2
k .
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Combining (46) and (47) we deduce:

(∫
−

B
|W(γk Dv̂k)|2dx

) 1
2 ≤ c γk

bp/2
k

[
ρ

(∫
−

Bρ

|Dvk − Dg|2dx

) 1
2 + ρ

p−n
2

]
, (48)

with a constant c = c(p).

The term
(∫−B|W(γk̂vk)|2dx

) 1
2 can be treated analogously; we only have to use

the Poincaré-type inequality for W which follows from Theorem 2 (by Hölder’s
inequality we can replace p
 by 2). We then obtain

(∫
−

B
|W(γk̂vk)|2dx

) 1
2 ≤ c γk

bp/2
k

[
ρ

(∫
−

Bρ

|vk − g|2dx

) 1
2 + ρ− n

2

]
,

where now the constant c depends on n, N and p.
Collecting terms we obtain from (45):

lim sup
k→∞

1

γk

(∫
−

B
|W(gk − γk̂vk)|p


dx

) 1
p
 ≤ c(n, N, p) .

Combining this with (44), (40) and (41) we can finally conclude

lim sup
k→∞

1

γ 2
k

∫
−

B
|W(gk − γk̂vk)|2dx ≤ c

(
ρ

n−p
p − ρ

)2t
,

where c has the same dependencies as above. Therefore we can choose ρ ∈ (1/2, 1)

sufficiently close to 1 such that (39) holds, thus providing the desired contradiction
to (32). This finishes the proof of the lemma. ��

8. Proof of Theorem 1

Let M > 0 be fixed. We consider a point x0 ∈ U such that |(Du)x0 ,ρ| ≤ M.
From (9) and (10) we conclude that A = D2 f((Du)x0 ,ρ) is elliptic in the sense

of Legendre–Hadamard with ellipticity constant κ = 2λ(1 + M2)
p−2

2 and upper
bound K = KM = sup|A|≤M |D2 f(A)|. Therefore we are in a position to apply

Lemma 4 and Lemma 6 with A = (Du)x0 ,ρ, κ and K .
For ϑ ∈ (0, 1/4] to be specified later we set ε = ϑn+4. With δ = δ(n, N, κ, K, ϑ)

∈ (0, 1] we denote the constant from Lemma 6 corresponding to the quantities n,
N, κ, K and the particular choice of ε = ϑn+4.

Throughout the rest of this section we use the abbreviation:

Φ(ρ) = Φ(x0, ρ, (Du)x0 ,ρ),

where Φ is given in (25). We also define

Γ(ρ) =
√

Φ2(ρ) + 4
ω(ρ)

δ2
, w = u − (Du)x0,ρ(x − x0) and γ = c1ceΓ(ρ),

where c1 stands for the constant c(p, M) from Lemma 1 (vi). From Lemma 4
we have the constant ce = ce(n, N, p, L, M, KM+2), from Lemma 5 the constant
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ca = ca(n, N, κ, K ), and finally from Lemma 3 the constant cc = cc(n, N, p, L, λ,

M, KM+1) and the radius ρ0 = ρ0(n, N, p, λ, M, ω(·)).
We next establish an initial excess-improvement estimate, assuming that the

excess Φ(ρ) is initially sufficiently small. The precise statement is:

Lemma 7 (Excess-improvement). Assume that the following smallness condi-
tions hold for some ρ ∈ (0, ρ0]:

2
√

2 caγ ≤ 1 ,
√

νM (Φ(ρ)) + Φ(ρ) ≤ δ/2 and ce ca Φ(ρ) ≤ 1 .

Then the following growth condition holds:

Φ2(ϑρ) ≤ c̃ ϑ2Φ2(ρ) + ĉω(ρ),

with constants c̃ = c̃(n, N, p, L, λ, M, KM+2) and ĉ = ĉ(n, N, p, L, λ, M,

KM+2, ϑ).

Proof. From the definition of w we find, using (15) and Lemma 1 (vi):∫
−

Bρ(x0)

|W(Dw)|2 dx ≤
∫
−

Bρ(x0)

|V(Dw)|2 dx ≤ c1 Φ2(ρ) ≤ γ 2.

We infer from Lemma 4 and the smallness condition
√

νM (Φ(ρ)) + Φ(ρ) ≤ δ/2:∣∣∣∣∣
∫
−

Bρ(x0)

D2 f((Du)x0 ,ρ)(Dw, Dϕ) dx

∣∣∣∣∣
≤ ce

[√
νM (Φ(ρ))Φ(ρ) + Φ2(ρ) +√ω(ρ)

]
sup

Bρ(x0)

|Dϕ|

= γ

√
νM (Φ(ρ))Φ(ρ) + Φ2(ρ) + √

ω(ρ)

c1Γ(ρ)
sup

Bρ(x0)

|Dϕ|
≤ γ δ sup

Bρ(x0)

|Dϕ|.

Hence the hypotheses of Lemma 6 are fulfilled. Therefore we can find a function
h ∈ W1,p

(
Bρ(x0),R

N
)

which is D2 f((Du)x0 ,ρ)-harmonic such that∫
−

Bρ(x0)

|W(Dh)|2 dx ≤ 1 and
∫
−

Bρ(x0)

∣∣∣W(w−γh
ρ

)∣∣∣2 dx ≤ γ 2 ε = γ 2 ϑn+4.

(49)

With the help of Lemma 1 (iii) and (v) we deduce

Φ(ϑρ) =
∫
−

Bϑρ(x0)

|V(Du) − V((Du)x0,ϑρ)|2 dx

≤ c
∫
−

Bϑρ(x0)

|V(Du − (Du)x0 ,ϑρ)|2 dx

≤ c
∫
−

Bϑρ(x0)

|V(Du − (Du)x0 ,ρ − γ Dh(x0))|2 dx

+ c |V((Du)x0,ϑρ − (Du)x0,ρ − γ Dh(x0))|2, (50)

where the constant c depends only on n, N and p.
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We next estimate the right-hand side of (50). Decomposing Bϑρ(x0) into the set
with |Du−(Du)x0,ρ−γ Dh(x0)| ≤ 1 and that with |Du−(Du)x0,ρ−γ Dh(x0)| > 1,
than using Lemma 1 (i) and Hölder’s inequality we obtain:

|(Du)x0 ,ϑρ − (Du)x0 ,ρ − γ Dh(x0))| ≤
∫
−

Bϑρ(x0)

∣∣Du − (Du)x0 ,ρ − γ Dh(x0))
∣∣ dx

= √
2
(
I1/2 + I1/p) ,

where we have abbreviated

I =
∫
−

Bϑρ(x0)

∣∣V(Du − (Du)x0 ,ρ − γ Dh(x0))
∣∣2 dx.

Now, since |V(A)| = V(|A|) and t �→ V(t) is monotone increasing, we deduce
from (50), also using Lemma 1 (i) and (ii), that there holds:

Φ(ϑρ) ≤ c
(
I + V 2(I1/2 + I1/p)

) ≤ c (I + I2/p), (51)

where c depends only on n, N and p. Therefore it remains for us to estimate
the quantity I . By considering the cases |Dh| ≤ 1 and |Dh| > 1 seperately and
keeping in mind (49) we have (cf. (42)):∫

−
Bρ(x0)

|Dh| dx ≤ 2
√

2. (52)

Using the assumption |(Du)x0,ρ| ≤ M and Lemma 5, this shows:

|(Du)x0,ρ| + γ |Dh(x0)| ≤ M + γ |Dh(x0)| ≤ M + γ ca

∫
−

Bρ(x0)

|Dh| dx

≤ M + 2
√

2 caγ ≤ M + 1 .

Caccioppoli’s inequality (i.e. Lemma 3 applied on Bϑρ(x0) with γ h(x0), respec-
tively (Du)x0 ,ρ + γ Dh(x0), instead of ξ , respectively A; note that the constant cc

depends only on n, N, p, L, λ, M + 1 and KM+2) and Lemma 1 (iii) yield:

I ≤ cc

[∫
−

B2ϑρ(x0)

∣∣∣V
(

w−γ h(x0)−γDh(x0)(x−x0 )

2ϑρ

)∣∣∣2 dx + ω(2ϑρ)

]

≤ c

[∫
−

B2ϑρ(x0)

(∣∣∣V
(

w−γh
2ϑρ

)∣∣∣2 +
∣∣∣V
(
γ

h−h(x0)−Dh(x0)(x−x0 )

2ϑρ

)∣∣∣2
)

dx + ω(ρ)

]
,

where the constant c is given by c(p) · cc. To estimate the right-hand side we
use (15), Lemma 1 (ii) (note that 1

2ϑ
≥ 1), (49) and recall the choice ε = ϑn+4 to

infer: ∫
−

B2ϑρ(x0)

∣∣∣V
(

w−γh
2ϑρ

)∣∣∣2 dx ≤ c(p)

∫
−

B2ϑρ(x0)

∣∣∣W
(

w−γh
2ϑρ

)∣∣∣2 dx

≤ c(p)(2ϑ)−n
∫
−

Bρ(x0)

∣∣∣W
(

w−γh
2ϑρ

)∣∣∣2 dx

≤ c(p)(2ϑ)−n−2
∫
−

Bρ(x0)

∣∣∣W
(

w−γh
ρ

)∣∣∣2 dx

≤ c(p) 2−n−2ϑ−n−2γ 2ε = c(n, p)ϑ2γ 2.
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Using Lemma 1 (i), Taylor’s theorem applied to h on B2ϑρ(x0), Lemma 5 and (52)
we obtain:

∫
−

B2ϑρ(x0)

∣∣∣V
(
γ

h−h(x0)−Dh(x0)(x−x0 )

2ϑρ

)∣∣∣2 dx

≤ γ 2
∫
−

B2ϑρ(x0)

∣∣∣ h−h(x0)−Dh(x0)(x−x0)

2ϑρ

∣∣∣2 dx

≤ γ 2

4ϑ2ρ2
sup

B2ϑρ(x0)

|h(x) − h(x0) − Dh(x0)(x − x0)|2 ≤ 8 c2
aϑ

2γ 2.

Combining these estimates and keeping in mind the dependencies of the constants
as well as the definitions of γ and Γ we see:

I ≤ c̃ ϑ2Φ2(ρ) + ĉω(ρ),

where c̃ depends on n, N, p, L, λ, M and KM+2 and ĉ depends on the same
quantities and additionally on ϑ (the dependency from ϑ occurs due to the fact
that δ depends on ϑ). Inserting this into (51) we easily find (recalling also that
Φ(ρ) ≤ 1 and ω(ρ) ≤ 1):

Φ2(ϑρ) ≤ c̃ ϑ2Φ2(ρ) + ĉω(ρ),

where the constants c̃, ĉ have the same dependencies as above. This proves the
asserted estimate. ��

The assumptions of Lemma 7 are satisfied in points x0 ∈ U \(Σ1 ∪Σ2), and the
resultant excess improvement can be iterated by the use of the Dini condition (F3),
to yield an excess-decay estimate for Φ(r), i.e. we have

Φ(x0, r, (Du)r) ≤ const
[( r

ρ

)α

Φ(x0, ρ, (Du)ρ) +√ω(r)
]
,

for all 0 < r ≤ ρ and α with β < α < 1 (where β is the constant from (F2)) (cf.
[15, proof of Theorem 2.2, p. 683 ff.] and [11, proof of Theorem 3.2, p. 163]). The
regularity result then follows from the fact that this excess-decay estimate implies:

∫
−

Br (x)
|V(Du) − (V(Du))x,r |2 dx ≤

∫
−

Br (x)
|V(Du) − (V(Du)x,r)|2 dx

≤ const
[( r

ρ

)α

Φ(x0, ρ, (Du)ρ) +√ω(r)
]
,

for any x in a neighbourhood of x0. From this estimate we conclude (by Campana-
to’s characterization of Hölder continuous functions, cf. [7], [8]) that V(Du) has
the modulus of continuity ρ �→ ρα + Ω(ρ). By Lemma 1 (iv) this modulus of
continuity carries over to Du.
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