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1. Introduction

Function spaces of generalised smoothness have been introduced and considered
by several authors, in particular since the middle of the seventies up to the end of
the eighties, with different starting points and in different contexts.

The Steklov Mathematical Institute in Moscow was the starting point for many
contributions to the topic. M.L. Goldman and G.A. Kalyabin developed indepen-
dently an approach via the approximation by series of entire analytic functions and
coverings, see for example [Go79], [Go80], [Ka77a] and [Ka80]. Another approach
is due to M.L. Goldman, see [Go84a], who gave a systematic treatment based on
differences and moduli of the continuity of those type of spaces. His setting has
P.L. Ul’yanov (1968) and A.S. Dzhafarov (1965) as forerunners.

In both cases mentioned above, the spaces consist of functions belonging to L p

with additional smoothness properties.
Many remarkable and final results were obtained, for example results concern-

ing embeddings in different kinds of spaces of smoothness level zero, equivalent
norms, trace theorems and estimates of capacities. The survey [KaLi87], the sup-
plement in [Tr86], or [KuNi88, Chap. 5 §4] cover, in particular, the literature up to
the end of the eighties in this direction.

In our work we will take up some basic ideas from the above settings but now
from the standpoint of a Fourier analytic characterisation. This allows us to obtain
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the description of the full scale of spaces, including spaces of negative smoothness
and duality results.

Further, spaces of generalised smoothness defined on ideal spaces E as basic
spaces, instead of L p, were considered in [Go86], [Go92], [Ne88], and in [Ne89].

Moreover, at the end of the eighties C. Merucci, see [Me83], F. Cobos and
D.L. Fernandez, see [CoFe86], investigated some classes of function spaces of
generalised smoothness. More precisely they characterised interpolation spaces
between L p and Wk

p which were obtained with respect to a generalised real inter-
polation method.

We have noticed an increasing interest in spaces of generalised smoothness
in the last years. First of all, this interest is in connection with embeddings,
limiting embeddings and entropy numbers. We mention here the papers [Le98],
[EGO97], [EdHa99], [OpTr00] where such problems were considered. Further-
more, in [Bu99] function spaces of generalised smoothness are investigated in
order to characterise properties of bounded extension operators from Wl

p(Ω) into
function spaces on Rn for arbitrary bounded open domains Ω with ∂Ω ∈ Lip γ ,
0 < γ � 1.

Additionally, in connection with generalised d-sets and h-sets (special fractals)
those spaces appeared in a natural way in [EdTr98], [EdTr99], [Mo99], [Mo01],
and in [Br02].

We would like to point out that function spaces of a variable and generalised
order of smoothness play a key role in other mathematical fields such as probability
theory and the theory of stochastic processes.

At least since the publication of M. Fukushima’s work, see [Fu71], on Dirich-
let forms and Markov processes, the (functional) analytic approach to stochastic
processes turned into the centre of probabilists interest. More precisely, the point
of view based on the relation of Fourier analysis and Markov processes, a sub-
ject which was first taken up by P. Lévy and by S. Bochner when discussing
stochastically continuous processes with stationary and independent increments,
is at present an area of intensive development, see the books of N. Jacob [Ja96],
[Ja01], and the references therein.

In the problem of construction and investigation of Lévy and special Markov
processes, function spaces of generalised smoothness of Bessel potential type
appear in a natural way.

The key observation is that every Lévy process (Yt)t�0 with state spaceRn and
related to a translation invariant symmetric Dirichlet form is completely determined
by one and only one function ψ : Rn → C, which is defined by the relation

E(eiYt ·ξ ) = e−tψ(ξ).

The function ψ, called the characteristic exponent of (Yt)t�0, is a continuous
negative definite function and contains all the information about (Yt)t�0. By the
exact characterisation of the domain of definition of the related semigroup one can
get information about the process.

Furthermore, as a matter of fact every reasonable Feller process with state
space Rn is characterised by a family (parametrised by Rn) of continuous negative
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definite functions. More precisely, following [Ja98], see also [Sc98b], for the Feller
process ((Xt)t�0, Px)x∈Rn one finds that

−q(x, ξ) = lim
t↓0

Ex
(
ei(Xt−x)·ξ )− 1

t

is the symbol of the generator of the semigroup

Ttu(x) = Ex(u(Xt))

associated with ((Xt)t�0, Px)x∈Rn , i.e. on C∞
0 (Rn) we have

Au(x) = −q(x, D)u(x) = −(2π)−n/2
∫

Rn
eix·ξ q(x, ξ) û(ξ) dξ. (1.1)

Moreover, ξ �→ q(x, ξ) is for each x ∈ Rn a continuous negative definite function.
This result complements a theorem of Ph. Courrège, see [Co66], which states that
on C∞

0 (Rn) the generator of a Feller semigroup necessarily has the structure (1.1).
Now, assuming for example that q(x, ξ) ∼ ψ(ξ), where ψ : Rn → R is a fixed

continuous negative definite function (independent of x), one should expect that
the operator q(x, D) behaves up to a perturbation like ψ(D). Hence the scales of
spaces associated with ψ should play for q(x, D) the same role as Sobolev or Besov
and Triebel–Lizorkin spaces do for elliptic operators in the classical situation, i.e.
for operators with symbol q(x, ξ) ∼ |ξ|2m .

This topic was discussed in [FJS01a] and [FJS01b] where the role played by
some generalised Bessel potential spaces, which are domains of definition for
L p-generators of sub-Markovian semigroups, is pointed out. In particular the ob-
taining of embedding theorems for those spaces was a central point in that investi-
gation.

The aim of this paper is twofold. The first is to give a unified approach on
function spaces of generalised smoothness and the second one is to characterise
these spaces in terms of new tools such as local means and atoms.

Our approach has as background the Fourier-analytic characterisation of func-
tion spaces based on a suitable resolution of unity on the Fourier side and a suitable
weighted summation of the resulting parts.

Any temperate distribution f ∈ S′(Rn) is decomposed in a sum of entire ana-
lytic functions (ϕ j f̂ )∨. This decomposition in the Fourier-image is in the classical
case usually related to the symbol of the Laplacian and to the sequence 2 j . Then
this sequence of entire analytic functions (ϕ j f̂ )∨ is considered in L p and after-
wards in a weighted lq space with weight sequence 2s j in the case of Bs

p,q(R
n),

and vice-versa for Fs
p,q(R

n). These two scales Bs
p,q(R

n) and Fs
p,q(R

n) contain, as
special cases, many well-known spaces such as Hölder–Zygmund spaces, Sobolev
spaces, fractional Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces and
spaces of BMO-type.

To extend the classical construction to the case of generalised smoothness we
replace the sequences 2 j and 2s j by two sequences N and σ . The first is strongly
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increasing and determines the decomposition on the Fourier side. The second
one is the weight sequence for lq and is, together with its inverse, of bounded
growth.

We show that such a construction is suitable and covers many classes of function
spaces of generalised smoothness known so far in the literature. Furthermore we
give a comprehensive study of those spaces including Littlewood–Paley theorems,
existence of a lift operator and duality. A main point is also an equivalent char-
acterisation of some generalised Bessel potential spaces – introduced in [FJS01a]
and [FJS01b] in connection with the problem of constructing Markov processes –
in our context as function spaces of generalised smoothness.

In the eighties and nineties new far-reaching tools for classical spaces Bs
p,q(R

n)

and Fs
p,q(R

n) have been developed. The key words are maximal functions, local
means, atomic and, most recently, quarkonial decompositions.

First, under some mild restrictions on the sequence N determining the decom-
position on the Fourier side, we prove a general characterisation of these spaces
in terms of maximal functions and local means, which essentially generalises the
characterisation from [BPT96] and [BPT97] of H.-Q. Bui, M. Paluszyński, and
M. Taibleson (which complemented some earlier results of J. Peetre, see [Pe75],
and H. Triebel, see [Tr88] and [Tr92]). This result (see the precise formulation in
Theorem 4.3.4) is of independent interest but it played the key role in proving the
central result of this paper, the atomic decomposition theorem.

Entire analytic functions may be considered as building blocks for the spaces
Bs

p,q(R
n) and Fs

p,q(R
n) in the sense described above or in the sense of approxima-

tion theory.
However there is a well known other type of decomposition in simple building

blocks, the so-called atoms. They have a history of some twenty years and in [Tr92,
Sect. 1.9] a historical report was given on this topic; we do not repeat it here. We
only want to mention that the (smooth) atoms in Bs

pq(R
n) and Fs

pq(R
n) spaces as

they were defined by M. Frazier and B. Jawerth in [FrJa85], [FrJa90] (cf. also
[FJW91]), proved to be a powerful tool in the theory of function spaces. We also
wish to emphasise that there exist many other types of atomic decompositions
in such spaces but we will not discuss this point here. More information about
this subject is given in [FrJa90], [Tr92] and [AdHe96] where one can find many
modifications and applications as well as comprehensive references extending the
subject.

We conclude our work by obtaining a decomposition theorem which extends
the atomic decomposition theorem of M. Frazier and B. Jawerth, see [FrJa85] and
[FrJa90], to the function spaces Bσ,N

p,q (Rn) and Fσ,N
p,q (Rn).

Consequently, the study of function spaces can be done with the help of some
sequence spaces in an analogous way as it is done in the classical (isotropic) case
in the above cited works of M. Frazier, B. Jawerth and H. Triebel.

In a forthcoming paper we will use the atomic decomposition theorem in
the study of mapping properties for pseudo-differential operators on some func-
tion spaces of generalised smoothness. In particular this will allow us to discuss
conditions under which pseudo-differential operators are generators of L p-sub-
Markovian semigroups.
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Briefly here is the organisation and contents of this paper.
We tried to make our exposition as self-contained as possible so that Sec-

tion 2 has a preparatory character. We set up notation and introduce the sequences
determining the generalised smoothness.

The first sequence is a so-called strongly increasing sequence N = (N j ) j∈N0

(an almost increasing sequence such that, additionally, there exists a natural number
κ0 with 2N j � Nk for all j and all k with j + κ0 � k, see the precise formulation
in Definition 2.2.1) which generalises the sequence (2 j) j∈N0 and induces a decom-
position in Rn in the sets ΩN

j = {ξ ∈ Rn : |ξ| � N j+κ0} for j = 0, 1, ..., κ0 − 1
and ΩN

j = {ξ ∈ Rn : N j−κ0 � |ξ| � N j+κ0} for j � κ0. To this decomposition of
R

n there is associated a family (ϕN
j ) j∈N0 of compactly supported smooth functions

which extends the classical partition of unity. We then have a decomposition of any
tempered distribution f into a series of entire analytic functions f j = (ϕN

j f̂ )∨ like
in the classical case.

Secondly, we will consider a so-called admissible sequence σ = (σ j) j∈N0 (i.e.
it satisfies d0 σ j � σ j+1 � d1 σ j for any j ∈ N0) which generalises the sequence
(2 js) j∈N0 and which is a smoothness weight for the different functions f j . We
want to point out that an admissible sequence σ is considerably more general
than (2 js) j∈N0 or than (2 jsΨ(2− j)) j∈N0 (for monotone functions Ψ on (0, 1] with
Ψ(2− j) ∼ Ψ(2−2 j)), see Example 2.2.7.

In Section 3, for given sequences N and σ and for 1 < p < ∞, 1� q �∞,
Besov, respectively Triebel–Lizorkin, spaces of generalised smoothness are de-
fined as the collection of all tempered distributions f such that ‖ f | Bσ,N

p,q ‖ =
‖σ j(ϕ

N
j f̂ )∨ | lq(L p)‖, respectively ‖ f | Fσ,N

p,q ‖ = ‖σ j(ϕ
N
j f̂ )∨ | L p(lq)‖, is finite,

see Definition 3.1.2.
To show that the definition of the spaces is consistent, one has to use the classical

Fourier-multiplier theorem of the Michlin–Hörmander type (for convenience we
recall it in Proposition 3.1.1). It is easy to show that standard properties in the
classical situation, such as the density of test functions S (for appropriate values
of the parameters) are still true.

Then we prove a theorem of Littlewood–Paley type: Fσ0,N
p,2 = L p for any

strongly increasing sequence N (here σ0 denotes the sequence with all terms equal
to 1), we prove embeddings on the level of zero-smoothness, we show the existence
of a lift operator between spaces Bσ,N

p,q and Bβ,N
p,q (and also for F-spaces) and finally

we prove a duality result.
In particular in Subsection 3.1.2 we study some special classes of function

spaces of generalised smoothness, those in which the strongly increasing sequence
N = (N j ) j∈N0 is obtained from a smooth, given, so-called admissible function
(see Definition 3.1.11) in a canonical way. In particular the considerations in this
subsection allow us to treat some Bessel potential spaces introduced in [FJS01a]
and [FJS01b] (which appear in the context of Markov processes).

To extend the definition of the spaces of generalised smoothness to p = ∞,
p = 1 and 0 < p < 1, an additional assumption on the sequence N is necessary,
namely that sequence N has to be not only strongly increasing but also of bounded
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growth. The reason is that we have to use in these cases another Fourier-multiplier
theorem than before. A brief discussion is contained in Subsection 3.2.

Subsection 3.3 illustrates how our approach covers many classes of function
spaces of generalised smoothness known up to now in the literature.

Simultaneously, due to the flexibility of the admissible sequence σ , this covering
is a strict one.

Finally, Section 4 contains the main results of this work. Under the assumption
that the sequence N = (N j ) j∈N0 satisfies λ0 N j � N j+1 � λ1 N j+1 for any j ∈ N0,
with some constants 1 < λ0 � λ1, we prove the characterisation with local means
and the atomic decomposition theorem.

The theorem on local means (Theorem 4.3.4) is highly technical and its proof
required (compared with the classical situation) new techniques and ideas. We
summarised the basic ideas of the proof in Subsection 4.3.4.

Roughly speaking, the atomic decomposition theorem states that, for any
g ∈ Bσ,N

p,q (Rn), it is possible to find a decomposition (convergence in S′(Rn))

g =
∞∑

ν=0

∑

m∈Zn

λνm ρνm,

where ρνm are the N-atoms and λ = {λνm : ν ∈ N0 , m ∈ Zn} belongs to an
appropriate sequence space bp,q, such that

∥∥g
∣∣ Bσ,N

p,q (Rn)
∥∥ ∼ inf ‖λ | bp,q‖,

where the infimum is taken over all admissible representations of g and

‖λ | bp,q‖ =
⎛

⎝
∞∑

ν=0

(
∑

m∈Zn

|λνm |p

)q/p
⎞

⎠

1/q

(with the usual modification if p = ∞ and/or q = ∞), and a corresponding
assertion for Fσ,N

p,q (Rn) spaces. The precise formulation is given in Theorem 4.4.3.

Finally we would like to mention that it is to be expected that our main results
have an anisotropic counterpart but, due to the technical complications, no attempt
in this direction has been made here.

Acknowledgements. It is a pleasure to give our warm thanks to Professor Niels Jacob for
fruitful discussions and encouragement.

We also thank Michele Bricchi for his comments on a preliminary version ([FaLe01])
of this paper.

2. Preliminaries

2.1. Notation

LetN be the collection of all natural numbers andN0 = N∪{0}. LetRn be Euclidean
n-space, where n ∈ N; as usual R = R1. For x ∈ Rn let 〈x〉 = (1 + |x|2)1/2.
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If α = (α1, ..., αn) ∈ Nn
0 is a multi-index its length is |α| = α1 + ... + αn ,

the derivatives Dα have the usual meaning and if x = (x1, ..., xn) ∈ Rn then
xα = xα1

1 · · · xαn
n .

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing
infinitely differentiable functions on Rn equipped with the usual topology. By
S′(Rn) we denote its topological dual, the space of all tempered distributions onRn .
If ϕ ∈ S(Rn) then

ϕ̂(ξ) = F ϕ(ξ) = (2π)−
n
2

∫

Rn
e−ixξϕ(x) dx

and ϕ̌ = F −1ϕ are, respectively, the Fourier and inverse Fourier transform of ϕ.
One extends F and F −1 in the usual way from S(Rn) to S′(Rn). For ϕ ∈ S(Rn)

and f ∈ S′(Rn) we will use the notation ϕ(D) f(x) = [F −1 (ϕF f )](x), where this
is the extension of

ϕ(D)ψ(x) = (2π)−n
∫

Rn

∫

Rn
ei(x−y)ξϕ(ξ)ψ(y) dy dξ, ψ ∈ S(Rn)

to elements f ∈ S′(Rn).

Furthermore, L p(R
n) with 0 < p � ∞, is the standard quasi-Banach space

with respect to the Lebesgue measure, quasi-normed by

‖ f | L p(R
n)‖ =

(∫

Rn
| f(x)|pdx

)1/p

,

with the obvious modification if p = ∞.

We adopt here and in the sequel the following convention: if there is no danger
of confusion we omit Rn in S(Rn) and in the other spaces below.

Let 0 < q �∞, then lq is the set of all sequences (ak)k∈N0 of complex numbers
such that

‖(ak)k∈N0 | lq‖ =
( ∞∑

k=0

|ak|q
)1/q

< ∞,

with the obvious modification if q = ∞.
Let 0 < p �∞ and 0 < q �∞. If ( fk)k∈N0 is a sequence of complex-valued

Lebesgue measurable functions on Rn , then

‖( fk)k∈N0 | lq(L p)‖ =
( ∞∑

k=0

(∫

Rn
| fk(x)|pdx

)q/p
)1/q

and

‖( fk)k∈N0 | L p(lq)‖ =
⎛

⎝
∫

Rn

( ∞∑

k=0

| fk(x)|q
)p/q

dx

⎞

⎠

1/p

,

again with obvious modifications if p = ∞ and/or q = ∞.
The equivalence ak ∼ bk or ϕ(x) ∼ ψ(x) means that there are two positive

constants c1 and c2 such that c1ak � bk � c2ak or c1ϕ(x) � ψ(x) � c2ϕ(x), for
all admissible values of the discrete variable k or of the continuous variable x.

All unimportant positive constants are denoted with c, occasionally with addi-
tional subscripts within the same formulae.
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2.2. Sequences

Definition 2.2.1. A sequence γ = (γ j) j∈N0 of positive real numbers is called:

(i) almost increasing if there is a positive constant d0 such that

d0γ j � γk for all j and k with 0 � j � k;

(ii) strongly increasing if it is almost increasing and, in addition, there is a natural
number κ0 such that

2γ j � γk for all j and k with j + κ0 � k;

(iii) of bounded growth if there are a positive constant d1 and a number J0 ∈ N0

such that

γ j+1 � d1γ j for any j � J0.

Remark 2.2.2. It is easy to see that each sequence γ = (γ j) j∈N0 , with the property
that there is a constant λ0 > 1 such that

λ0γ j � γ j+1 for all j ∈ N, (2.1)

is strongly increasing in the sense of the above definition. However, not every
strongly increasing sequence satisfies property (2.1).

Example 2.2.3. The sequence γ = (γ j) j∈N0 with γ j = 2 jδ(1 + j)b, where δ > 0,
b ∈ R, is strongly increasing and of bounded growth, whereas γ = (γ j) j∈N0 with
γ j = j! is strongly increasing but not of bounded growth. Finally, the sequence
γ = (γ j) j∈N0 , with γ j = j , is not strongly increasing, but of bounded growth.

As it was already mentioned in the Introduction, in the function spaces we will
consider in this work we will have two parameters determining the generalised
smoothness.

First we will deal with a sequence N = (N j) j∈N0 which will be strongly
increasing in the next section and additionally of bounded growth in the main
theorems of this work (local means and atomic decompositions).

Secondly, we will consider a sequence σ = (σ j) j∈N0 which can be considered
as a smoothness weight on the different functions f j , which are the result of the
decomposition on the Fourier side. This sequence will fulfill

d0 σ j � σ j+1 � d1 σ j for all j ∈ N, (2.2)

with two positive constants d0 and d1. In other words, both (σ j) j∈N0 and (σ−1
j ) j∈N0

are of bounded growth.
Sequences σ satisfying (2.2) will be called admissible sequences.
To illustrate the flexibility of the last condition we give some examples:
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Example 2.2.4. The sequence σ = (σ j) j∈N0 ,

σ j = 2 js(1 + j)b(1 + log (1 + j))c, (2.3)

with arbitrary fixed real numbers s, b and c, is the standard example of an admissible
sequence and it can be considered in some sense as a model sequence. However,
as it is shown in the next examples, the general definition also includes other
sequences, which cannot be reduced to the one above or to a similar one.

For any s ∈ R we will denote

σ s = (2 js) j∈N0 . (2.4)

Of course, σ s is a special case of (2.3) with b = 0 and c = 0. In particular σ0 will
denote the sequence with all terms equal with 1.

Example 2.2.5. Let s ∈ R be fixed and

σ j = 2 jsΨ(2− j), j ∈ N0,

where Ψ is a positive monotone function on (0, 1] and there are positive constants
b0 and b1 such that, for all j ∈ N0,

b0 Ψ(2− j) � Ψ(2−2 j) � b1 Ψ(2− j).

Then it is easy to see that σ is an admissible sequence.
This example goes back to [EdTr99] and gives a qualitative description of the

model case in Example 2.2.4 with fixed main order 2 js.

Example 2.2.6. Let ( jl)l∈N0 be a strongly increasing sequence of natural numbers,
defined recursively by

j0 = 0, j1 = 1, j2l = 2 j2l−1 − j2l−2, j2l+1 = 2 j2l, l ∈ N.

The sequence (σ j) j∈N0 is defined by

σ j =
{

2 j2l if j2l � j < j2l+1

2 j2l 4( j− j2l+1) if j2l+1 � j < j2l+2.

Then σ is an admissible sequence. Moreover, the sequence (σ j) j∈N0 oscillates
between ( j) j∈N0 and (2 j) j∈N0 , i.e.

j � σ j � 2 j,

and there exist infinitely many j ′ and j ′′ such that σ j ′ = j ′ and σ j ′′ = 2 j ′′ ,
respectively.

Example 2.2.7. Let s ∈ R be fixed and (σ j) j∈N0 be the above sequence. If

τ j = 2 js σ j ,
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then τ is admissible. (τ j) j∈N0 oscillates between ( j 2 js) j∈N0 and (2 j(s+1)) j∈N0 ,
i.e.

j 2 js � τ j � 2 j(s+1)

and, again, infinitely many τ j equal the left-hand side or the right-hand side of the
above double inequality.

Remark 2.2.8. We would like to point out that the last two examples, which are
due to G.A. Kalyabin, show that an admissible sequence does not have necessarily
a fixed main order. Consequently the class of admissible sequences is larger than
the class described in Example 2.2.5.

2.3. Decompositions

For a fixed strongly increasing sequence N = (N j ) j∈N0 and a fixed J ∈ N we
define the associate covering ΩN,J = (Ω

N,J
j ) j∈N0 of Rn by

Ω
N,J
j = {ξ ∈ Rn : |ξ| � N j+Jκ0

}
if j = 0, 1, ..., Jκ0 − 1, (2.5)

and

Ω
N,J
j = {ξ ∈ Rn : N j−Jκ0 � |ξ| � N j+Jκ0

}
if j = Jκ0, Jκ0 + 1, ... . (2.6)

From the above definition it is obvious that each Ω
N,J
j has a non-empty intersection

with at most 2(J + L + 1)κ0 different sets Ω
N,L
k from a covering associated to the

same sequence N = (N j ) j∈N0 .
For a fixed strongly increasing sequence N = (N j) j∈N0 , a fixed J ∈ N, and for

the associated covering ΩN,J = (Ω
N,J
j ) j∈N0 of Rn , let ΦN,J be the collection of

all function systems ϕN,J = (ϕ
N,J
j ) j∈N0 such that:

(i) ϕ
N,J
j ∈ C∞

0 (Rn) and ϕ
N,J
j (ξ) � 0 if ξ ∈ Rn for any j ∈ N0; (2.7)

(ii) supp ϕ
N,J
j ⊂ Ω

N,J
j ; (2.8)

(iii) for any γ ∈ Nn
0 there exists a constant cγ > 0 such that for any j ∈ N0

∣∣Dγ ϕ
N,J
j (ξ)

∣∣ � cγ 〈ξ〉−γ for any ξ ∈ Rn; (2.9)

(iv) there exists a constant cϕ > 0 such that

0 <

∞∑

j=0

ϕ
N,J
j (ξ) = cϕ < ∞ for any ξ ∈ Rn. (2.10)

By the relatively free choice of the sequence (N j) j∈N0 the construction of func-
tion systems (ϕ j) j∈N0 satisfying properties (2.7)–(2.10) is a little more complicated
as in the classical case. We give a complete description in the following examples.
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Example 2.3.1. Let ρ∈C∞
0 (R) with ρ(t)=1 if |t|�1, supp ρ ⊂ {t ∈ R : |t|�2},

and decreasing for t � 0.

A. Let
ϕ

N,J
j (ξ) = ρ

(
N−1

j |ξ|) j = 0, 1, . . . , Jκ0 − 1

or

ϕ
N,J
Jκ0−1(ξ) =

Jκ0−1∑

k=0

ρ
(
N−1

k |ξ|), ϕ
N,J
j ≡ 0 if j = 0, 1, ..., Jκ0 − 2,

and
ϕ

N,J
j (ξ) = ρ

(
N−1

j |ξ|)− ρ
(
N−1

j−Jκ0
|ξ|) for any j � Jκ0.

Then it is easy to see that the system ϕN,J = (ϕ
N,J
j ) j∈N0 satisfies (2.7)–(2.10) with

cϕ = κ0 J .

B. Let also

ψN
k (ξ) =

(2J+1)κ0∑

r=−(2J+1)κ0

ϕ
N,J
k+r (ξ) with ϕ−(2J+1)κ0 = · · · = ϕ−1 = 0.

Then (ψN
k )k∈N0 is a function system which satisfies properties (i)–(iii) from above

with respect to the covering ΩN,3J+2 . This system has the useful property

ψN
k (ξ) = cϕ on supp ϕ

N,J
k .

Moreover, if we define

ψ̃N
0 (ξ) = ψN

0 (ξ) +
(2J+1)κ0−1∑

r=0

((2J + 1)κ0 − r) ϕN,J
r (ξ)

then we have

ψ̃N
0 (ξ) +

∞∑

k=1

ψN
k (ξ) = cψ = [(4J + 2)κ0 + 1]cϕ.

Remark 2.3.2. It is easy to see that if (ϕ
N,J
j ) j∈N0 fulfills (2.7)–(2.9) then for any

multi-index α there is a constant cα > 0 such that
∞∑

j=0

∣∣Dαϕ
N,J
j (ξ)

∣∣ � [(2J + 1)κ0] cα 〈ξ〉−|α|, for any ξ ∈ Rn .

In particular, the last inequality implies

sup

⎛

⎜⎜
⎝R2|α|−n

∫

R
2 �|ξ|�2R

∞∑

j=0

∣∣Dαϕ
N,J
j (ξ)

∣∣2 dξ

⎞

⎟⎟
⎠

1/2

< ∞, (2.11)

where the supremum is taken over all R > 0 and all multi-indices α with 0 � |α| �
1 + [ n

2

]
.

The same is true for the system (ψ
N,3J+2
k )k∈N0 in the previous example.



12 W. Farkas, H.-G. Leopold

3. Function spaces of generalised smoothness

3.1. The case 1 < p < ∞

3.1.1. Definition and basic facts. For the definition of function spaces of gen-
eralised smoothness of Besov and Triebel–Lizorkin type for 1 < p < ∞, the
main tool is the following classical Fourier-multiplier theorem of the Michlin–
Hörmander type.

For a system (mk, j)k, j∈N0 ⊂ L∞(Rn) let

M = sup

⎛

⎜⎜
⎝R2|α|−n

∫

R
2�|ξ|�2R

∞∑

k, j=0

|Dαmk, j(ξ)|2 dξ

⎞

⎟⎟
⎠

1/2

,

where the supremum is taken over all R > 0 and all multi-indices α with 0 � |α| �
1 + [ n

2

]
.

Proposition 3.1.1. Let 1 < p < ∞ and 1 < q < ∞. Let f = ( f j) j∈N0 be a system
of measurable functions in Rn.

(i) (General case) There exists a positive constant c such that
∥∥∥∥∥∥

⎛

⎝
∞∑

j=0

mk, j(D) f j

⎞

⎠

k∈N0

∣∣ L p(l2)

∥∥∥∥∥∥
� c M · ‖( f j) j∈N0 | L p(l2)‖, (3.1)

for all systems (mk, j)k, j∈N0 ⊂ L∞(Rn).
(ii) (Diagonal case) There exist a positive constant c such that

∥∥∥
(
m j, j(D) f j

)
j∈N0

∣∣ L p(lq)

∥∥∥ � c M · ‖( f j) j∈N0 | L p(lq)‖, (3.2)

for all systems (mk, j)k, j∈N0 ⊂ L∞(Rn) with mk, j ≡ 0 if k �= j .

A proof of the above result can be found in [Tr78, Theorem 2.2.4]. The first
part is contained also in [Tr83, Equation 2.5.6/(1)].

In analogy to the classical case we introduce now function spaces of generalised
smoothness of the Besov and Triebel–Lizorkin type.

Definition 3.1.2. Let N = (N j) j∈N0 be a strongly increasing sequence, not neces-
sarily of bounded growth, let J ∈ N, and let (ϕ

N,J
j ) j∈N0 ∈ ΦN,J . Let (σ j) j∈N0 be

an admissible sequence.

(i) Let 1 < p < ∞, 1 � q �∞. Then the Besov space of generalised smoothness
is

Bσ,N
p,q =

{
f ∈ S′ : ∥∥ f

∣∣ Bσ,N
p,q

∥∥ = ∥∥(σ j ϕ
N,J
j (D) f

)
j∈N0

∣∣ lq(L p)
∥∥ < ∞

}
.
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(ii) Let 1 < p < ∞, 1 < q < ∞. Then the Triebel–Lizorkin space of generalised
smoothness is

Fσ,N
p,q =

{
f ∈ S′ : ∥∥ f

∣∣ Fσ,N
p,q

∥∥ = ∥∥(σ j ϕ
N,J
j (D) f(·)) j∈N0

∣∣ L p(lq)
∥∥ < ∞

}
.

(3.3)

Note that if N j = 2 j and σ = σ s = (2 js) j∈N0 (recall notation (2.4) with s real),
then the above spaces coincide with the usual function spaces Bs

p,q and Fs
p,q onRn ,

respectively, systematically treated in the books of H. Triebel, see [Tr78], [Tr83],
[Tr92] and [Tr01] and the references therein.

For sequences (σ j) j∈N0 with (σ−1
j ) j∈N0 ∈ lq′ , where q′ = q/(q − 1),

G.A. Kalyabin gave in [Ka80] a similar characterisation for such spaces, defined
initially by approximation; for more details see Section 3.3.

Remark 3.1.3. Both Bσ,N
p,q and Fσ,N

p,q are Banach spaces which are independent of

the choice of the system (ϕ
N,J
j ) j∈N0 , in the sense of equivalent norms (and this is

the reason why we may omit in our notation the subscript (ϕ
N,J
j ) j∈N0 ).

This can be shown in the standard way; compare for example [Tr78, Theo-
rem 2.3.2] or [Tr83, Proposition 2.3.2/1].

Let us consider two different function systems (ϕ
N,J
j ) j∈N0 and (̃ϕ

N,L
j ) j∈N0 re-

lated to the same strongly increasing sequence N.
Clearly for a fixed j0 ∈ N0 the intersection supp ϕ

N,J
j0

∩supp ϕ̃
N,L
k is non-empty

at most for k in between j0 − (L + J + 1)κ0 and j0 + (L + J + 1)κ0.
The desired equivalence result is a simple consequence of the second part of

Proposition 3.1.1, (diagonal case – mk, j = 0 if k �= j) which is based on (2.11). In
the case of Besov spaces, we use a scalar version – the classical Michlin–Hörmander
Fourier-multiplier theorem for L p spaces.

As in the classical case, compare [Tr78, Theorem 2.3.2] or [Tr83, Proposi-
tion 2.3.3], the embeddings S ↪→ Bσ,N

p,q ↪→ S′ and S ↪→ Fσ,N
p,q ↪→ S′ hold true for

all admissible values of the parameters and sequences. If q < ∞ then S is dense
in Bσ,N

p,q and in Fσ,N
p,q .

Moreover, it is clear that Bσ,N
p,p = Fσ,N

p,p .

If the sequences (σ j) j∈N0 have additionally the property (σ−1
j ) j∈N0 ∈ lq′ , then

all elements of Bσ,N
p,q and of Fσ,N

p,q are at least functions in L p.
In this case many different results are already known from the works of

G.A. Kalyabin and M.L. Goldman. We mention here only one final and remarkable
embedding result, proved first in [Ka81].

Proposition 3.1.4. Let 1 < p < ∞ and 1 < q < ∞. Let also N = (N j) j∈N0 be
a strongly increasing sequence and let (σ j) j∈N0 be an admissible sequence with
(σ−1

j ) j∈N0 ∈ lq′ . Then the following assertions are equivalent:
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(i) Fσ,N
p,q is embedded into C(Rn), (Bσ,N

p,q is embedded into C(Rn) );

(ii) Fσ,N
p,q is a multiplication algebra, (Bσ,N

p,q is a multiplication algebra);

(iii) (σ−1
j Nn/p

j ) j∈N0 ∈ l p′ , ((σ−1
j Nn/p

j ) j∈N0 ∈ lq′ );
respectively.

For embeddings into Lq-spaces, but also into Lorentz and Orlicz spaces we refer
to [Go84a], [Go84b], [Go85], or to [Go92] for embeddings in a more complicated
context.

Because the Fourier analytic approach allows us to consider also spaces of
non-positive smoothness, we can obtain, and this is done in the rest of the section,
results similar to those in the classical case.

A Littlewood–Paley-type theorem

Theorem 3.1.5. Let 1 < p < ∞ and N = (N j) j∈N0 be a strongly increasing
sequence. Recall σ0 denotes the sequence with all terms equal 1. Then

Fσ0,N
p,2 = L p.

Proof. The proof is similar to that from [Tr83, Theorem 2.5.6] and it is based on
the first part of Proposition 3.1.1 so that we will only sketch it.

If f ∈ L p we take, for any k ∈ N0, the function mk,0 = ϕ
N,J
k and mk, j = 0 if

j � 1. We apply (3.1) with f0 = f and f j = 0 if j � 1, and get f ∈ Fσ0,N
p,2 and

‖ f | Fσ0,N
p,2 ‖ � c ‖ f | L p‖.

To prove the reverse inequality, let f ∈ Fσ0,N
p,2 and let, for any k ∈ N0 as in

Example 2.3.1,

ψN
k (ξ) =

(2J+1)κ0∑

r=−(2J+1)κ0

ϕ
N,J
k+r (ξ) with ϕ−(2J+1)κ0 = .... = ϕ−1 = 0.

Clearly ψN
k (ξ) = cϕ if ξ ∈ supp ϕ

N,J
k . Taking, for any j ∈ N0, the function

m0, j = ψ
N,J
j and mk, j = 0 if k � 1, we apply (3.1) with f j = ϕ

N,J
j (D) f and get

(cϕ)
−2‖ f |L p‖ =

∥∥∥∥

(
δk,0

∞∑

j=0

ψN
j (D) ϕ

N,J
j (D) f

)

k∈N0

∣∣∣∣ L p(l2)

∥∥∥∥

� c
∥∥(ϕN,J

j (D) f
)

j∈N0

∣∣ L p(l2)
∥∥,

and consequently ‖ f | L p‖ � c ‖ f | Fσ0,N
p,2 ‖, which proves the reverse inclusion. ��

Corollary 3.1.6. If N = (N j ) j∈N0 is a strongly increasing sequence then Bσ0,N
2,2= L2.

This can also be proved directly using the definition of the space Bσ0,N
2,2 .
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Embeddings on the level of zero-smoothness

On the level of zero-smoothness we have the following embeddings with respect
to the usual Besov spaces B0

p,1 and B0
p,∞.

Theorem 3.1.7. Let N = (N j ) j∈N0 be a strongly increasing sequence and let
1 < p < ∞.

(i) Then

L p ↪→ Bσ0,N
p,∞ ↪→ B0

p,∞ and B0
p,1 ↪→ Bσ0,N

p,1 ↪→ L p.

(ii) If, in addition, the sequence N = (N j ) j∈N0 is of bounded growth then, for any
1 � q �∞,

Bσ0,N
p,q = B0

p,q.

Proof. Although the proof is in some sense straightforward, we will give a short
outline. The main point is, that we compare here decompositions with respect to
different sequences (N j ) j∈N0 and (2k)k∈N0 .

We can assume that the parameter J in the definition of the coverings equals
1 in both cases. Let (ϕN

j ) j∈N0 be a function system belonging to the covering
associated to (N j) j∈N0 and (ψk)k∈N0 a system belonging to the covering associated
to (2k)k∈N0 , respectively. If k0 is fixed, then

supp ϕN
j ∩ supp ψk0 �= ∅

at most for 4κ0 + 1 indices j .
On the other hand, fixing j0, we find out that

supp ϕN
j0

∩ supp ψk �= ∅
is possible in general for all indices k in between log(N j0−κ0/2) and log(2 N j0+κ0).

This means, the number of indices can increase and tends to infinity, if log
(
4

N j0+κ0
N j0−κ0

)

is not bounded.
Now let f ∈ L p. Then by the scalar Fourier-multiplier theorem in L p we have

∥∥ f
∣∣Bσ0,N

p,∞
∥∥ = sup

j∈N0

∥∥ϕN
j (D) f

∣∣ L p

∥∥

� sup
j∈N0

∥∥ϕN
j (D)

∣∣L(L p)
∥∥ ‖ f | L p‖ � c ‖ f | L p‖,

where L(L p) is the space of linear bounded operators from L p into itself.

If f ∈ Bσ0,N
p,q , then

∥∥ f
∣∣ B0

p,∞
∥∥ = sup

k∈N0

‖ψk(D) f | L p‖ = (cϕ)
−1 sup

k∈N0

∥∥∥∥ψk(D)

∞∑

j=0

ϕN
j (D) f

∣∣ L p

∥∥∥∥

= (cϕ)
−1 sup

k∈N0

∥∥∥∥ψk(D)

j(k)+4κ0∑

j= j(k)

ϕN
j (D) f

∣∣ L p

∥∥∥∥

� c sup
k∈N0

‖ψk(D) | L(L p)‖ (4κ0 + 1) sup
j∈N0

∥∥ϕN
j (D) f

∣∣ L p

∥∥

� c′ ∥∥ f
∣∣Bσ0,N

p,∞
∥∥.
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We omit the proof of the second inclusion in (i).
To prove the second part, we recall that, if the sequence (N j) j∈N0 is of bounded

growth, then we have
N j0+κ0

N j0−κ0

�
(
d(N)

1

)2κ0 .

Consequently for these sequences there are finite universal upper bounds for the
cardinality of indices k such that suppψk and supp ϕN

j0
can have a non-empty

intersection. So we get

∥∥ f
∣∣ Bσ0,N

p,q

∥∥q =
∞∑

j=0

∥∥ϕN
j (D) f

∣∣ L p

∥∥q

� (cψ)−1
∞∑

j=0

∥∥∥∥ϕ
N
j (D)

k( j)+K∑

k=k( j)

ψk(D) f
∣∣ L p

∥∥∥∥

q

� c sup
j∈N0

∥∥ϕN
j (D)

∣∣L(L p)
∥∥

∞∑

j=0

k( j)+K∑

k=k( j)

‖ψk(D) f | L p‖q

� c′ ∥∥ f
∣∣ B0

p,q

∥∥q
,

where the constants c and c′ depend, of course, on K, κ0 and q. The main point is,
that each ψk(D) f can appear at most 4κ0 + 1 times.

The reverse estimate can be proved in the same way, changing the roles of the
function systems and of K and 4κ0 + 1, respectively. ��
Remark 3.1.8. The results stated in the above theorem are sharp.

To see this, we will show that if the sequence N is N j = j! (for any j) then we
have, even in the case p = 2,

Bσ0,N
2,∞ ↪→ B0

2,∞ and Bσ0,N
2,∞ �= B0

2,∞.

To prove this, again let (ψk)k∈N0 be a system belonging to the covering as-
sociated to (2k)k∈N0 – as in Example 2.3.1.A. defined by ψk(ξ) = ρ(2−k|ξ|) −
ρ(2−k+1|ξ|), where ρ ∈ C∞

0 (R) with ρ(t) = 1 if |t| < 1 and ρ(t) = 0 if |t| � 2.
Consequently, the special sequence leads to ψk(ξ) = ψ1(2−k+1ξ) for k � 1.
Let u be such that

û(ξ) =
∞∑

k=0

2−k n
2 ψk(ξ).

We will show that

u ∈ B0
2,∞ and u /∈ Bσ0,N

2,∞ . (3.4)

One has, for any k ∈ N0,

‖ψk(D)u | L2‖ = ‖ψkû | L2‖ =
∥∥∥∥

k+1∑

j=k−1

2− j n
2 ψk ψ j

∣∣ L2

∥∥∥∥

� c · 2−k n
2 ‖ψk | L2‖ (3.5)
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(with appropriate changes if k = 0). Since

‖ψk | L2‖2 =
∫

Rn
|ψ1(2

−k+1ξ)|2 dξ = 2(k−1)n
∫

Rn
|ψ1(ξ)|2 dξ = cρ 2kn,

we get that there exists a constant C > 0 with

sup
k∈N0

‖ψk(D)u | L2‖ = ∥∥u
∣∣ B0

2,∞
∥∥ � C

and this proves the first part in (3.4). Now we will show that u /∈ Bσ0,N
2,∞ .

Let (χN
k )k∈N0 be a function system belonging to the covering associated to

(k!)k∈N0 as in Example 2.3.1.B. That is, we have additionally

χN
k (ξ) = 1 on Ak = {ξ ∈ Rn : (k − 1)! < |ξ| < (k + 1)! }

and
supp χN

k ⊂ {ξ : (k − 5)! < |ξ| < (k + 5)! }.
Clearly this system gives an equivalent norm in Bσ0,N

2,∞ , too. We have

∥∥χN
k (D)u

∣∣ L2

∥∥2 = ∥∥χN
k û
∣∣ L2

∥∥2 =
∫

Rn

∣∣∣∣χ
N
k (ξ) ·

∞∑

j=0

2− j n
2 ψ j(ξ)

∣∣∣∣

2

dξ

�
∫

Ak

∣∣∣∣

∞∑

j=0

2− j n
2 ψ j(ξ)

∣∣∣∣

2

dξ �
∞∑

l=0

2−2ln
∫

Ak

|ψ2l(ξ)|2 dξ;

we consider only even indices since supp ψ2l ∩ supp ψ2(l+1) = ∅. Now we deter-
mine the number of indices l such that supp ψ2l ⊂ Ak = {ξ ∈ Rn : (k − 1)! <

|ξ| < (k + 1)! }. Let l0 be fixed in such a way that

22(l0−1)−1 < (k − 1)! < 22l0−1; (3.6)

in particular this implies supp ψ2l0 ⊂ {ξ ∈ Rn : (k − 1)! < |ξ| < (k + 1)! } if
k � 4 and L is fixed such that

22(l0+L)+1 < (k + 1)! < 22(l0+L+1)+1. (3.7)

Then L + 1 is the cardinality of those l such that suppψ2l ⊂ {ξ ∈ Rn : (k − 1)! <

|ξ| < (k + 1)! } is guaranteed. Using (3.6) and (3.7) it is easy to see that we get

log k + log(k + 1) < 2L + 6.

For any l in between l0 and l0 + L we have
∫

Ak

|ψ2l(ξ)|2 dξ = ‖ψ2l | L2‖2 = cρ 22ln,

and this leads to

∥∥χN
k (D)u

∣∣ L2

∥∥2 �
l0+L∑

l=l0

cρ � cρ (L + 1) � cρ (log k − 2),



18 W. Farkas, H.-G. Leopold

and consequently to
∥∥u
∣∣ Bσ0,N

2,∞
∥∥ = sup

k∈N0

∥∥χN
k (D)u

∣∣ L2
∥∥ = ∞,

which proves our statement.

Existence of a lift operator

In the next theorem we show the existence of a lift operator between the spaces of
Bσ,N

p,q and Fσ,N
p,q type.

Theorem 3.1.9. Let (σ j) j∈N0 and (β j) j∈N0 be two admissible sequences and let
(ϕ

N,J
j ) j∈N0 be a function system associated to the strongly increasing sequence

(N j) j∈N0 .
Then the operator µ(D), defined by the symbol

µ(ξ) =
∞∑

j=0

σ j β−1
j ϕ

N,J
j (ξ),

defines, for all parameters 1 < p < ∞ and 1 � q �∞, an isomorphism between

Bσ,N
p,q and Bβ,N

p,q , respectively, between Fσ,N
p,q and Fβ,N

p,q .

Proof. The symbol is well defined and smooth, because, for fixed ξ , at most
(4J + 2)κ0 terms in the infinite sum are not zero.

It is easy to see that, due to the construction and the properties of the sequences
σ and β on supp ϕ

N,J
k , one has

∣∣χsupp ϕ
N,J
k

(ξ) Dαµ(ξ)
∣∣ � max

|r|�(2J+1)κ0

(
σk+rβ

−1
k+r

) 〈ξ〉−|α| � c σk β−1
k 〈ξ〉−|α| (3.8)

and

c′ σk β−1
k � min

|r|�(2J+1)κ0

(
σk+rβ

−1
k+r

)
� |χsupp ϕ

N,J
k

(ξ) µ(ξ)|. (3.9)

The rest of the proof is a standard application of Definition 3.1.2 of the spaces Bσ,N
p,q

and Fσ,N
p,q using the inequalities (3.8) and (3.9). ��

Duality

In the following theorem we determine the dual spaces of Bσ,N
p,q and Fσ,N

p,q . The
previous results – see the end of Remark 3.1.3 – give the possibility of interpreting
the dual spaces (Bσ,N

p,q )′ and (Fσ,N
p,q )′ as subspaces of S′. Furthermore, because

S is dense in these spaces if q < ∞, f belongs to (Fσ,N
p,q )′ ↪→ S′ (similar for

(Bσ,N
p,q )′ ↪→ S′), if, and only if, there is a number c such that, for all ψ ∈ S,

| < f, ψ > | � c
∥∥ψ
∣∣ Fσ,N

p,q

∥∥. (3.10)

For an admissible sequence σ = (σ j) j∈N0 we denote 1/σ = (1/σ j) j∈N0 . Clearly
1/σ is also admissible.
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Theorem 3.1.10. Let N = (N j ) j∈N0 be a strongly increasing sequence and
(σ j) j∈N0 be an admissible sequence. Furthermore, let 1 < p < ∞, 1 � q < ∞
and let p′ and q′ denote their conjugates.

Then (
Bσ,N

p,q

)′ = B1/σ,N
p′,q′ and

(
Fσ,N

p,q

)′ = F1/σ,N
p′,q′ .

Proof. The proof follows essentially that of [Tr83, Theorem 2.11.2]. First we prove

F1/σ,N
p′,q′ ↪→ (

Fσ,N
p,q

)′
. (3.11)

Let f ∈ F1/σ,N
p′,q′ and let (ϕ

N,J
j ) j∈N0 and (ψN

k )k∈N0 be the systems from Ex-
ample 2.3.1, that is

ψN
k (ξ) =

(2J+1)κ0∑

r=−(2J+1)κ0

ϕ
N,J
k+r (ξ) and ψN

k (ξ) = cϕ on supp ϕ
N,J
k .

Then

(cϕ)
2 f =

∞∑

k=0

ϕ
N,J
k (D)ψN

k (D) f in S′

and ∥∥(σ−1
k ψN

k (D) f
)

k∈N0

∣∣ L p′ (lq′)
∥∥ � c

∥∥ f
∣∣ F1/σ,N

p′,q′
∥∥.

If ψ ∈ S, we have

(cϕ)
2 | < f, ψ > |

=
∣∣∣∣

∞∑

k=0

(2J+1)κ0∑

r=−(2J+1)κ0

< ψN
k (D) f, c−1

ϕ F ϕ
N,J
k (ξ)ϕ

N,J
k+r (ξ)F

−1ψ >

∣∣∣∣

� c
(2J+1)κ0∑

r=−(2J+1)κ0

∥∥(σ−1
k ψN

k (D) f
)

k∈N0

∣∣ L p′(lq′ )
∥∥×

×∥∥(σkF ϕ
N,J
k (ξ)ϕ

N,J
k+r (ξ)F

−1ψ
)

k∈N0

∣∣ L p(lq)
∥∥

� c′ ∥∥ f
∣∣ F1/σ,N

p′,q′
∥∥ ∥∥ψ

∣∣ Fσ,N
p,q

∥∥.

In view of (3.10) this proves (3.11).
We will prove the reverse embedding. Because, for f ∈ Fσ,N

p,q , the mapping

f �→ (
σ jϕ

N,J
j (D) f

)
j∈N0

is a one-to-one mapping onto a subspace of L p(lq), every functional g ∈ (Fσ,N
p,q )′

can be interpreted as a functional on that subspace. By the Hahn–Banach theorem,
g can be extended to a continuous linear functional ḡ on the whole space L p(lq),
where the norm is preserved. But the representation of these linear functionals is
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well known. Proposition 2.11.1 in [Tr83] gives an exact characterisation and yields
to

< ḡ, f > =
∞∑

j=0

∫

Rn
σ−1

j g j(x)σ j f j(x) dx,

for every f = (σ j f j) j∈N0 ∈ L p(lq), where (σ−1
j g j) j∈N0 ∈ L p′(lq′ ) and

∥∥g
∣∣ (Fσ,N

p,q

)′∥∥ = ‖ḡ | (L p(lq))
′‖ = ∥∥(σ−1

j g j
)

j∈N0

∣∣ L p′(lq′ )
∥∥.

If again ψ ∈ S, this gives, with ψ �→ (σ jϕ
N,J
j (D)ψ) j∈N0 ,

cϕ < ḡ, ψ > =
∞∑

j=0

∫

Rn
g j(x)

(
ϕ

N,J
j (D)ψ

)
(x)dx =<

∞∑

j=0

(
F ϕ

N,J
j (ξ)F −1g j

)
, ψ >.

So we obtain

∥∥g
∣∣ F1/σ,N

p′,q′
∥∥ =

∥∥∥∥

(
σ−1

k ϕ
N,J
k (D)

∞∑

j=0

(
F ϕ

N,J
j (ξ)F −1g j

))

k∈N0

∣∣ L p′(lq′ )

∥∥∥∥

� c
(2J+1)κ0∑

r=−(2J+1)κ0

∥∥(σ−1
k ϕ

N,J
k (D)

(
F ϕ

N,J
k+r (ξ)F

−1gk+r
))

k∈N0

∣∣ L p′(lq′
)∥∥

�
∥∥(σ−1

k gk
)

k∈N0

∣∣ L p′(lq′ )
∥∥

�
∥∥g
∣∣ (Fσ,N

p,q

)′∥∥.

The last estimate follows again by the second part of the Proposition 3.1.1 and the
property of the sequence (σ j) j∈N0 .

In the case of Besov spaces the proof can be given in a similar way. ��

3.1.2. Special classes: function spaces of generalised smoothness associated to
an admissible symbol. In the previous subsection we have introduced and consid-
ered function spaces of generalised smoothness associated to a general strongly
increasing sequence N and to an admissible sequence σ .

In recent years there has been an increasing interest in investigating function
spaces of general smoothness for which the strongly increasing sequence N is as-
sociated (in a canonical way) to a fixed smooth function satisfying some reasonable
conditions; we will call those smooth functions admissible symbols.

Definition 3.1.11. Let A be the class of all non-negative functions a : Rn → R of
class C∞ with the following properties:

(i) lim|ξ|→∞ a(ξ) = ∞;

(ii) a is almost increasing in |ξ|, i.e. there exists a constant δ0 � 1, and an R > 0
such that a(ξ) � δ0 a(η) if R � |ξ| � |η|;
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(iii) there exists an m > 0 such that ξ �→ a(ξ)|ξ|−m is almost decreasing in |ξ|,
i.e. there exists a constant δm, 0 < δm � 1, and an R > 0 such that

a(ξ) |ξ|−m � δm a(η) |η|−m if R � |ξ| � |η|;
(iv) for every multi-index α ∈ Nn

0 there exists some cα > 0 such that

|Dαa(ξ)| � cα a(ξ) 〈ξ〉−|α| if |ξ| � R. (3.12)

The functions a from A are called admissible symbols.

Clearly the functions ξ �→ |ξ|2 and ξ �→ 1 + |ξ|2 are admissible symbols.
It is easy to give further examples with the help of Bernstein functions; compare

Corollary 3.1.14 below.

Recall that an arbitrarily often differentiable function f : (0,∞) → R with
continuous extension to [0,∞) is called a Bernstein function if f(t) � 0 for all
t > 0 and (−1)k f (k)(t) � 0 for all t > 0 and all k ∈ N.

For any Bernstein function f : (0,∞) → (0,∞) one has, for any j ∈ N,

| f ( j)(t)| � j!
t j

f(t), t > 0. (3.13)

In particular, for j = 1 we have

0 � f ′(t) � f(t)

t
for t > 0. (3.14)

For more information on Bernstein functions the reader is referred to [Sc94],
[Sc98a] or [Ja01]. Here we will restrict ourselves only to some examples.

Example 3.1.12. The function t �→ c, c � 0, is a Bernstein function as well as
the function t �→ bt, b � 0. Moreover, f(t) = 1 − e−rt , with fixed r � 0, is also
obviously a Bernstein function.

For � ∈ [0, 1] the function f�(t) = t� is a Bernstein function.
The function f(t) = log(1 + t) is also a Bernstein function.
For m > 0 the function f(t) = √

t + m2 − m is a Bernstein function.
The functions f(t) = √

t log(1 + √
t), f(t) = √

t(1 − exp(−4
√

t)), f(t) =√
t log(1+coth

√
t) and f(t) = t

t+λ
, with λ > 0, are further examples of Bernstein

functions.

Lemma 3.1.13. If f is a Bernstein function and a : Rn → R is a non-negative
function satisfying (3.12) then b(ξ) = f(a(ξ)) satisfies (3.12).

Proof. To show (3.12) for the function b let us recall that for the arbitrarily often
differentiable functions f : (0,∞) → (0,∞) and a : Rn → (0,∞) and for any
α ∈ Nn

0 one has

Dα( f ◦ a) =
|α|∑

j=1

f ( j)(a(·))
∑ α!

δβ!δγ ! · . . . · δω!
(Dβa(·)

β!
)δβ · . . . ·

(Dωa(·)
ω!

)δω
,

(3.15)
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where the second sum extends over all pairwise different multi-indices 0 �=
β, γ, . . . , ω ∈ Nn

0 and all δβ, δγ , . . . , δω ∈ N such that δββ + δγ γ +· · ·+ δωω = α

and δβ + δγ + · · · + δω = j .
Using (3.13) and the fact that a satisfies (3.12), we get, for any α ∈ Nn

0,

|Dαb(ξ)| �
|α|∑

j=1

j!
a(ξ) j

f(a(ξ))
∑ α!

δβ!δγ ! · . . . · δω!
∣∣∣

Dβa(ξ)

β!
∣∣∣
δβ · . . . ·

∣∣∣
Dωa(ξ)

ω!
∣∣∣
δω

� cα

|α|∑

j=1

j!
a(ξ) j

f(a(ξ))
∏

β

a(ξ)δβ 〈ξ〉−δβ |β|

� c′
α f(a(ξ)) (1 + |ξ|2)− |α|

2 ;
and this completes the proof. For a similar calculation one can see also [JaSc96]. ��

The next corollary is a simple consequence of the above lemma, of the mono-
tonicity of Bernstein functions, and of property (3.14).

Corollary 3.1.14. For any Bernstein function f with lim
t→∞ f(t) = ∞ the function

b(ξ) = f(1 + |ξ|2) is an admissible symbol.
If, in addition, f ∈ C∞([0,∞)) then the function b(ξ) = f(|ξ|2) is also an

admissible symbol.

As a simple consequence we obtain:

Example 3.1.15. The functions

a(ξ) = 〈ξ〉2�, � ∈ [0, 1],
a(ξ) = log(1 + |ξ|2),
a(ξ) =

√
|ξ|2 + m2 − m, m > 0,

a(ξ) = 〈ξ〉 log(1 + 〈ξ〉),
a(ξ) = 〈ξ〉 (1 − exp(−4〈ξ〉)),
a(ξ) = 〈ξ〉 log(1 + coth〈ξ〉),

are admissible symbols.

Note that if f , g are two Bernstein functions then obviously f ◦ g is also
a Bernstein function.

Consequently, using Corollary 3.1.14 we obtain many non-trivial examples of
admissible symbols a of the form f(|ξ|2) or f(1+|ξ|2), with f a Bernstein function
satisfying lim

t→∞ f(t) = ∞.

Remark 3.1.16. Properties (i) and (iv) from Definition 3.1.11 guarantee the hypo-
ellipticity of the function a.

If δ0 = 1 then the function a is radial symmetric and increasing. Moreover, if
δm = 1 then a is radial symmetric, too.
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We want to point out that the class A is larger than the class S∗(m, m ′, 0)

considered in [Le90]. For S∗(m, m ′; 0) it was additionally required that there exists
an m ′ > 0, such that a(ξ) |ξ|−m′

is almost increasing in |ξ|. Now the case m ′ = 0
and examples as a(ξ) = (log〈ξ〉)b, with some positive b > 0, are also included.

Lemma 3.1.17. For a function a ∈ A let

Na
j = sup{|ξ| : a(ξ) � 2 j}, for any j ∈ N0. (3.16)

The sequence Na = (Na
j ) j∈N0 is a strongly increasing sequence in the sense of

Definition 2.2.1.

Proof. It is clear from (3.16) that Na = (Na
j ) j∈N0 is increasing. Let us sketch the

proof of the existence of a constant κ0 ∈ N such that 2Na
j � Na

k , for any j and k
such that j + κ0 � k.

For simplicity let us denote Na
j = N j , for any j ∈ N. From the definition of

the numbers N j it follows that there exists an ξ0 with

N j

2
� |ξ0| � N j and a(ξ0) � 2 j .

Due to the properties of the function a it is clear that the function t �→ a(tξ0) is
a one-dimensional continuous function with lim

t→∞ a(tξ0) = ∞. Consequently, for

κ0 ∈ N, there exists a t0 > 1 with

a(t0ξ0) = 2 j− 1
2 +κ0 .

Then taking η0 = t0ξ0 one has |η0| = t0|ξ0| > |ξ0| and

|η0| � N j+κ0 = sup{|η| : a(η) � 2 j+κ0}.
Now applying property (iii) from Definition 3.1.11 we have

2 j

(N j/2)m
� a(ξ0)

|ξ0|m � δm
a(η0)

|η0|m � δm
2 j− 1

2 +κ0

Nm
j+κ0

,

for sufficiently large j (depending on R in property (iii)) and arbitrary κ0 ∈ N.
Consequently,

N j+κ0 �
1

2

(
δm 2κ0− 1

2

)1/m
N j

and using the fact that (N j) j∈N is increasing we have Nk � N j+κ0 � 2 N j if
k � j + κ0, for a fixed large enough κ0.

This completes the proof that (N j) j∈N0 is strongly increasing. ��
Remark 3.1.18. Given an admissible function a ∈ A we can define, for any r > 0,

Na,r
j = sup{|ξ| : a(ξ) � 2 jr}, for any j ∈ N0. (3.17)

Using the same technique as above it is easy to see that Na,r = (Na,r
j ) j∈N0 is again

a strongly increasing sequence.
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Lemma 3.1.19. If a : Rn → R satisfies (3.12) then for any real number m the
function b(ξ) = (1 + a(ξ))m also satisfies (3.12).

Proof. Applying (3.15) with f(t) = tm and 1 + a(·) instead of a(·), and using the
assumption on a, we get, for any α ∈ Nn

0,

|Dαb(ξ)| �
|α|∑

j=1

c j (1 + a(ξ))m− j

×
∑ α!

δβ!δγ ! · . . . · δω!
∣∣∣

Dβ(1 + a(ξ))

β!
∣∣∣
δβ · . . . ·

∣∣∣
Dω(1 + a(ξ))

ω!
∣∣∣
δω

�
|α|∑

j=1

c j (1 + a(ξ))m− j cα

∏

β

(1 + a(ξ))δβ 〈ξ〉−δβ |β|

� c′
α (1 + a(ξ))m 〈ξ〉−|α|;

and this shows that b also satisfies (3.12). ��
The next result generalises the Littlewood–Paley-type Theorem 3.1.5. Recall

the notation σ s = (2 js) j∈N0 .

Theorem 3.1.20. Let a ∈ A be an admissible symbol, let r > 0 and let N = Na,r ,
the strongly increasing sequence associated to a and r, see (3.17). Let 1 < p < ∞
and 1 < q < ∞.

Then, for any real number s, we have

∥∥(id +a(D))s/r u
∣∣ Fσ0,Na,r

p,q

∥∥ ∼ ∥∥u
∣∣ Fσs ,Na,r

p,q

∥∥

and the corresponding assertion for B-spaces.

Proof. We will give here the proof for F-spaces since the proof for B-spaces is
essentially similar but simpler.

Using Lemma 3.1.19 and the construction of the strongly increasing sequence
N = (Na,r

j ) j∈N0 , we get, for any multi-index α,

Dα
(

2− js(1 + a(ξ))s/r χsupp ϕ
N,J
j

(ξ)
)
� cα 2− js(1 + a(ξ))s/r〈ξ〉−αχsupp ϕ

N,J
j

(ξ)

� c′
α 〈ξ〉−α,

since (1 + a(ξ))s/r ∼ 2 js on supp ϕ
N,J
j ⊂ {ξ ∈ Rn : N j−Jκ0 � |ξ| � N j+Jκ0}.

Consequently we may apply Proposition 3.1.1, diagonal case – see (3.2), and get

∥∥(id +a(D))s/ru
∣∣ Fσ0,N

p,q

∥∥ = ∥∥F −1[ϕN,J
j (ξ)(1 + a(ξ))s/rF u

] ∣∣ L p(lq)
∥∥

= ∥∥F −1[2− js (1 + a(ξ))s/r 2 js ϕ
N,J
j (ξ)F u

] ∣∣ L p(lq)
∥∥

� c
∥∥2 js ϕ

N,J
j (D)u

∣∣ L p(lq)
∥∥

= c
∥∥u
∣∣ Fσs ,N

p,q

∥∥.
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For the reverse inequality note that

Dα

(
2 js(1 + a(ξ))−s/r χsupp ϕ

N,J
j

(ξ)

)
� cα 2 js(1 + a(ξ))−s/r〈ξ〉−αχsupp ϕ

N,J
j

(ξ)

� c′
α 〈ξ〉−α,

since (1 + a(ξ))−s/r ∼ 2− js on supp ϕ
N,J
j ⊂ {ξ ∈ Rn : N j−Jκ0 � |ξ| � N j+Jκ0}.

Consequently we may apply again Proposition 3.1.1, diagonal case – see (3.2), and
get
∥∥u
∣∣ Fσs ,N

p,q

∥∥ = ∥∥2 js ϕ
N,J
j (D)u

∣∣ L p(lq)
∥∥

= ∥∥F −1[2 js (1 + a(ξ))−s/r ϕ
N,J
j (ξ) (1 + a(ξ))s/rF u

] ∣∣ L p(lq)
∥∥

� c
∥∥F −1[ϕN,J

j (ξ)(1 + a(ξ))s/rF u
] ∣∣ L p(lq)

∥∥

= c
∥∥(id +a(D))s/ru

∣∣ Fσ0,N
p,q

∥∥,

which completes the proof. ��
As a simple consequence of the above theorem and of Theorem 3.1.5 we get:

Corollary 3.1.21. Let a ∈ A be an admissible symbol, and let N = Na,2,
the strongly increasing sequence associated to a and to r = 2, see (3.17). Let
1 < p < ∞.

Then, for any real number s, we have

∥∥(id +a(D))s/2u
∣∣ L p

∥∥ ∼ ∥∥u
∣∣ Fσs ,Na,2

p,2

∥∥.

Remark 3.1.22. Note that if s > 0 a similar result as stated in Corollary 3.1.21 was
mentioned in [Ka79].

3.2. The cases 0 < p � 1 and p = ∞
To extend the definition of the spaces of generalised smoothness to p = ∞, p = 1
and 0 < p < 1, an additional assumption on the sequence N is necessary. The
reason is, that we can not use in these cases the previous Fourier-multiplier theorem
(Proposition 3.1.1).

A substitute of it is a Fourier-multiplier theorem which was proved in spaces
of entire analytic functions by the help of maximal functions.

Proposition 3.2.1. Let 0 < p < ∞, 0 < q �∞. For every j ∈ N0, let R j > 0 be
a given number, let Ω j = {ξ ∈ Rn : |ξ| � R j} and let Ω = (Ω j) j∈N0 .

If 0 < t < min (p, q) then there exists a constant c > 0 such that
∥∥∥∥∥

(
sup
z∈Rn

| f j(· − z)|
1 + |R jz|n/t

)

j∈N0

∣∣ L p(lq)

∥∥∥∥∥
� c‖ f | L p(lq)‖,

for all f = ( f j) j∈N0 ∈ L p(lq) such that supp F f j ⊂ Ω j , for all j ∈ N0.
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This result was proved in [Tr83, Theorem 1.6.2] and was the main tool in the
proof of the following Fourier-multiplier theorem [Tr83, Theorem 1.6.3]:

Proposition 3.2.2. Let 0 < p < ∞, 0 < q � ∞. Let (Ω j) j∈N0 be a sequence of
compact subsets of Rn and d j > 0 be the diameter of Ω j .

If t > n/2 + n/ min (p, q), then there exists a constant c > 0 such that

‖(M j (D) f j) j∈N0 | L p(lq)‖ � c sup
j∈N0

∥∥M j(d j · )
∣∣ Ht

2

∥∥ · ‖( f j) j∈N0 | L p(lq)‖

holds for all systems ( f j) j∈N0 ∈ L p(lq) with supp F f j ⊂ Ω j for all j, and all
sequences (M j) j∈N0 ⊂ Ht

2, where Ht
2 is the standard Bessel potential space of

smoothness t.

Let (ϕ
N,J
j ) j∈N0 be a usual system associated to a strongly increasing sequence

N = (N j) j∈N0 . Then an easy computation shows that for an integer L we have

∥∥ϕN,J
j (2N j+Jκ0 · ) ∣∣W L

2

∥∥ � c
(
2N j+Jκ0 N−1

j−Jκ0

)L
(3.18)

but unfortunately the right-hand side is – in general – not uniformly bounded with
respect to j . This happens only if the sequence (N j) j∈N0 is additionally of bounded
growth.

Assuming N is of bounded growth with N j+1 � λ1 N j the right-hand side of
(3.18) can be estimated for arbitrary j by c λ

2Jκ0
1 .

With this preparation we extend the definition of the spaces Bσ,N
p,q and Fσ,N

p,q to
all 0 < p �∞ and 0 < p < ∞, respectively.

Definition 3.2.3. Let (N j ) j∈N0 be a strongly increasing sequence and of bounded
growth. Let J ∈ N, let (ϕ

N,J
j ) j∈N0 ∈ ΦN,J , and let (σ j) j∈N0 be an admissible

sequence.

(i) Let 0 < p �∞ and 0 < q �∞. The Besov space of generalised smoothness
is

Bσ,N
p,q =

{
f ∈ S′ : ∥∥ f

∣∣ Bσ,N
p,q

∥∥ = ∥∥(σ j ϕ
N,J
j (D) f

)
j∈N0

∣∣ lq(L p)
∥∥ < ∞

}
.

(ii) Let 0 < p < ∞ and 0 < q � ∞. The Triebel–Lizorkin space of generalised
smoothness is

Fσ,N
p,q =

{
f ∈ S′ : ∥∥ f

∣∣ Fσ,N
p,q

∥∥ =
∥∥
∥
(
σ j ϕ

N,J
j (D) f

)
j∈N0

∣∣ L p(lq)

∥∥
∥ < ∞

}
.

Of course, it can be easily shown that all standard results (independence of the
system (ϕ j) j∈N0 , density of S, embeddings, lift-operator, etc.) extend to the whole
scale of spaces considered in the above definition; compare [Tr83, Sect. 2.3] or
[Tr86, Sect. 2.3].

In Section 4 we will consider strongly increasing sequences N which are of
bounded growth so we will be able to deal with all admissible parameters in
Definition 3.2.3 of the spaces Bσ,N

p,q and Fσ,N
p,q .
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3.3. Examples and comparison with other classes

As we have have already mentioned, if N j = 2 j and σ = (2 js) j∈N0 , then Bσ,N
p,q and

Fσ,N
p,q are the classical Besov and Triebel–Lizorkin spaces Bs

p,q and Fs
p,q .

It is the aim of this subsection to show that the function spaces considered so far
in this work cover many other classes of function spaces of generalised smoothness
known in the literature.

For simplicity we will restrict ourselves in this part to function spaces of Besov
type. The scale of F-spaces is usually defined in most of the cases in a natural way
but we will not go into details.

• In the middle of the seventies M.L. Goldman and G.A. Kalyabin introduced
and investigated, independently, function spaces of generalised smoothness. These
spaces are defined on the basis of expansions in series of entire functions, and are
connected with a general covering method – see [Go79], [Ka79], [Ka80], [Go80]
or [Go89].

Let 1 < p < ∞, 1 � q �∞, let (N j ) j∈N0 be strongly increasing, let (α j) j∈N0

be of bounded growth and (α−1
j ) j∈N0 ∈ lq′ . Then let Bα,N

p,q (Rn) be the collection of
all f ∈ L p such that

f =
∞∑

j=1

f j in L p,

with supp(F f j) ⊂ {ξ ∈ Rn : |ξ| � N j} and ‖(α j f j) j∈N0 | lq(L p)‖ < ∞.

By a standardisation result [Ka77b], Bα,N
p,q (Rn) can be identified with a space

Bβ,M
p,q (Rn), where β = (β j) j∈N0 almost strongly increasing and of bounded growth

(and therefore an admissible sequence), and where the sequence M = (M j) j∈N0 is
determined by the sequences β, α and N via

Mk = Nκ(k) with κ(k) = min

⎧
⎨

⎩
m :

∞∑

j=m

α
−q′
j � β

−q′
k

⎫
⎬

⎭
.

A simple calculation shows that both ‖ f | Bα,N
p,q ‖ and ‖ f | Bβ,M

p,q ‖ are equivalent to

∥∥ f
∣∣ Bβ,M

p,q

∥∥ = ∥∥(βk ϕ
M,K
k (D) f

)
k∈N0

∣∣ lq(L p)
∥∥,

where (ϕ
M,K
k )k∈N0 is a system from Section 2.3 associated to the covering defined

by the sequence (Mk)k∈N0 above. Consequently, the above spaces are a subclass of
Besov spaces of generalised smoothness as introduced in Section 3.1.

Thus, in this way function spaces with ‘positive’ generalised smoothness, whose
elements are at least L p-functions, can be described.

Many results are known for the spaces Bα,N
p,q , for example, embedding theo-

rems – see [Ka81], [Go80], [Go84b], [Go85] or [Go92]; trace theorems – see
[Ka78], [Ka79], [Go79], [Go80]; and characterisations by differences and moduli
of continuity – see [Go76], [Ka77b], [Ka80].

The last one leads to the following characterisation or definition, often used by
M.L. Goldman.
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Let λ : (0, 1) → R
+ be a non-decreasing, continuous function with lim

t↓0
λ(t)

= 0, M ∈ N and 1 � p , q �∞. Let

Bλ
p,q(R

n) =
{

f ∈ L p :
(∫ 1

0

(
ωM

p ( f, t)

λ(t)

)q dλ(t)

λ(t)

)1/q

< ∞
}

,

where
ωM

p ( f, t) = sup
|h|<t

∥
∥∆M

h u(·) ∣∣ L p

∥
∥

and ∆M
h = ∆1

h∆
M−1
h , where ∆1

hu(x) = u(x + h) − u(x).
If, in addition, t �→ λ(t)t−M is increasing and t �→ λ(t)t−δ is almost decreasing

then
Bλ

p,q(R
n) = Bα,N

p,q (Rn),

with α j = 2 j , N j = h−1
j , λ(h j) = 2− jλ(1), compare [Go76], [KaLi87, Theo-

rem 8.2] or, for a similar form, see [Ka80].

• In [Tr77, Chap. 2] a general covering method was also introduced and used
to define and investigate general function spaces of Besov–Hardy–Sobolev type,
Bs(x)

p,q and Fs(x)
p,q on Rn. This approach was used also in [Go80]. It contains isotropic

spaces, anisotropic spaces, spaces with dominating mixed derivatives and some
others. In the case of the usual weight sequence (2 j) j∈N0 all these special spaces
were studied in detail in [ScTr87], [Tr83], [Tr92]. However the general approach
was not developed further in its full generality.

• Other function spaces of generalised smoothness appear as a result of real inter-
polation with a function parameter – see [Me83] and [CoFe86]. In these papers,
a function ψ : R+ → R

+ belongs to the class B if ψ is continuous, ψ(1) = 1 and,
for all t ∈ (0,∞), holds

ψ̄(t) = sup
s>0

ψ(ts)

ψ(s)
< ∞.

Let 1 < p, q < ∞, let ψ ∈ B and let (ϕ j) j∈N0 the usual resolution of unity,

associated to the symbol |ξ|2 of the Laplacian and to the sequence N |·|2 ,2
j = 2 j .

Then

Bψ
p,q(R

n) =
{

u ∈ S′ :
( ∞∑

j=0

ψ(2 j)q‖ϕ j(D)u | L p‖q

)1/q

< ∞
}
.

One has the following interpolation result:

(
L p(R

n), Wk
p(R

n)
)
ρ1,q = Bρ

p,q(R
n) where ρ(t) = (ρ1(t

−k)
)−1

.

Here ψ(t) = ts log (1 + t)b with s < 0 is now an admissible function too, related to
the sequence α j = 2 js jb which does not fulfil (α−1

j ) j∈N0 ∈ lq′ . On the other hand,
the decomposition is always fixed by the sequence (N j ) j∈N0 = (2 j) j∈N0 .
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With σ j = ψ(2 j), we have

ψ̄(1/2)σ j � σ j+1 � ψ̄(2)σ j,

which means (σ j) j∈N0 is an admissible sequence and consequently these spaces
are covered by Definition 3.1.2.

• Generalising fractal d-sets to (d, Ψ)-sets, D.E. Edmunds and H. Triebel considered
in [EdTr98] and [EdTr99] function spaces of generalised smoothness, related to
Example 2.2.5.

Let Ψ be a positive monotone function on the interval (0, 1] such that there are
some positive constants b0 and b1 with b0Ψ(2− j) � Ψ(2−2 j) � b1Ψ(2− j), for any
j ∈ N0. Then

B(s,Ψ)
p,q =

{
u ∈ S′ : ∥∥u

∣∣ B(s,Ψ)
p,q

∥∥ =
( ∞∑

j=0

(2 jsΨ(2− j))q ‖ϕ j(D)u | L p‖q

)1/q

< ∞
}

(modification if q = ∞). Here (ϕ j) j∈N0 is again the usual resolution of unity
associated to the sequence N j = 2 j .

Including the F-spaces an extensive study of these scales of spaces – embed-
dings, lifting properties, subatomic decompositions, local means, function spaces
on fractals, entropy numbers and applications – was done by S. Moura in [Mo99]
and [Mo01].

Again σ j = 2 jsΨ(2− j) is an admissible sequence and N j = 2 j is strongly
increasing and of bounded growth. So, for all admissible parameters p, q, these
spaces are covered by Definition 3.2.3, too.

• In [OpTr00] generalised smoothness of ‘logarithmic’ order was used to describe
general embeddings of Pohozhaev–Trudinger type. The spaces under consideration
in [OpTr00] are defined as

Hσ,α(L p)(R
n) = {u : u ∈ L p and u = gσ,α ∗ f, f ∈ L p},

with F gσ,α(ξ) = (1 + |ξ|2)−σ/2(1 + log (1 + |ξ|2))−α, σ � 0, α real.
Similarly they defined spaces Hσ,α(L p,r(log L)β)(Rn), where L p is replaced

by some suitable Lorentz–Zygmund space.
The first case is again covered by our definition, compare Theorem 3.1.20 and

Corollary 3.1.21 with a(ξ) = F gσ,α(ξ).

• Motivated by the problem of constructing Markov processes starting in every point
fromRn in [FJS01a] and [FJS01b], Bessel potential spaces Hψ,s

p (Rn) associated to
a continuous negative definite function ψ : Rn → R were introduced and studied
(embeddings, interpolation, etc). Note that all examples of admissible functions
from Example 3.1.15 are continuous negative definite functions.

For 1 < p < ∞ and s � 0 the space Hψ,s
p (Rn) is the collection of all f ∈ L p

such that
∥∥ f
∣∣ Hψ,s

p (Rn)
∥∥ = ∥∥(id +ψ(D))

s
2 f
∣∣ L p

∥∥ < ∞, (3.19)
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whereas if s < 0 the space Hψ,s
p (Rn) is the closure of test functions in the above

norm.
We want to point out here that the spaces Hψ,s

p (Rn) can be regarded, at least
for a class of continuous negative definite functions ψ, as function spaces of
generalised smoothness of type Fσs ,N

p,q . Indeed, considering the continuous negative
definite function ψ : Rn → R of the form ψ(ξ) = f(1 + |ξ|2) or ψ(ξ) = f(|ξ|2),
respectively, where f is a Bernstein function with lim

t→∞ f(t) = ∞, then ψ is an

admissible symbol in the sense of Definition 3.1.11 and we have only to apply
Corollary 3.1.21 to see that

Hψ,s
p = Fσs ,Nψ,2

p,2 .

4. Local means and atomic decompositions

4.1. Preliminaries

Assumption 4.1.1. Throughout the whole section we will assume N = (N j ) j∈N0 is
a sequence of real positive numbers such that there exist two numbers 1 < λ0 � λ1

with

λ0 N j � N j+1 � λ1 N j , for any j ∈ N0. (4.1)

In particular N is strongly increasing and of bounded growth.
Note that the first inequality in (4.1) implies in particular N0 < N1 < N2....

However we would like to point out that the condition λ0 > 1 is a stronger
restriction and it plays a key role in all the following considerations.

Remark 4.1.2. Nevertheless, the assumption concerning λ0 is not restrictive with
regard to the function spaces we are interested in. Indeed, let (M j) j∈N0 be strongly
increasing and of bounded growth and let (β j) j∈N0 be an admissible sequence.
Defining

N j = M jκ0 and σ j = β jκ0

it is easy to see that the sequence (N j) j∈N0 satisfies (4.1) with λ0 = 2 and

Bβ,M
p,q = Bσ,N

p,q and Fβ,M
p,q = Fσ,N

p,q .

This observation is similar to that in [Ka88, Remark 1].

Assumption 4.1.3. To avoid technical complications we will assume

N1 � λ1. (4.2)

We should note that there is no loss of generality in assuming (4.2). Indeed,
since λ0 > 1, there exists an m ∈ N such that λm

0 N0 � λ1. Let

m1 = min
{
m ∈ N : λm

0 N0 � λ1
}

and so Nm1 � λ
m1
0 N0 � λ1. If we would not have N1 � λ1 then in all considerations

below one has to replace N1 with Nm1 .
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Assumption 4.1.4. We will always denote σ = (σ j) j∈N0 an admissible sequence,
this means that there are two constants 0 < d0 � d1 < ∞ such that

d0 σ j � σ j+1 � d1σ j for any j ∈ N0. (4.3)

Under the above conditions on the sequences N and σ , the aim of this section
is to give equivalent quasi-norms for the spaces Bσ,N

p,q (0 < p, q � ∞) and Fσ,N
p,q

(0 < p < ∞, 0 < q �∞) in terms of maximal functions, local means, and atomic
decompositions.

4.2. Equivalent quasi-norms

Let N = (N j) j∈N0 be an admissible sequence of positive numbers satisfying (4.1)
with λ0 > 1. Then there exists an natural number l0 = l0(λ0, λ1) with

λ
l0
0 > λ1. (4.4)

We choose an l0 > 1 satisfying (4.4) and fix it from now on.
Let µ0, µ ∈ S be two positive functions on Rn such that

µ0(ξ) = 1 if |ξ| � N1 and supp µ0 ⊂ {ξ ∈ Rn : |ξ| � λ0 N1} (4.5)

and

µ(ξ) = 1 if
1

λ1
� |ξ| � λ1 and supp µ ⊂

{
ξ ∈ Rn : 1

λ
l0
0

� |ξ| � λ
l0
0

}
.

(4.6)

For any j � 1 we define

µ j(ξ) = µ
(
N−1

j ξ
)
, ξ ∈ Rn. (4.7)

Remark 4.2.1. Using (4.1) it is easy to see that we have

supp µ j ⊂ {ξ ∈ Rn : N j−l0 � |ξ| � N j+l0

}
for any j � 1.

This shows that for each fixed j0 ∈ N the set supp µ j0 has a non-empty intersection
with at most 4l0 + 1 different supports of the functions µ j .

Moreover, a simple computation shows that for any multi-index α there is
a constant cα (depending on µ but not on j) such that

∣∣Dαµ j(ξ)
∣∣ � cα 〈ξ〉−|α| for any ξ ∈ Rn and any j ∈ N.

Note that the family (µ j) j∈N0 does not – in general – satisfy a condition of type
(2.10) – resolution of “unity”. However, we have a counterpart of (2.10) which
reads as follows:

µ0(ξ) +
∞∑

j=1

µ j(ξ) � 1 for any ξ ∈ Rn. (4.8)

Indeed, the sum in (4.8) is finite and each function µ j , j ∈ N0, is positive. If now
|ξ| � N1 then µ0(ξ) = 1; if there is a j0 � 2 such that N j0−1 � |ξ| � N j0+1 then
it follows that 1

λ1
N j0 � |ξ| � λ1 N j0 and this implies µ j0(ξ) = 1.



32 W. Farkas, H.-G. Leopold

Theorem 4.2.2. Under the above assumptions on the sequences (N j) j∈N0 , (σ j) j∈N0

and on the functions µ0 and µ, we have:

(i) Let 0 < p � ∞ and 0 < q � ∞. Then f ∈ S′(Rn) belongs to Bσ,N
p,q if, and

only if,

∥∥ f
∣∣ Bσ,N

p,q

∥∥
µ

= ‖µ0(D) f | L p‖ +
⎛

⎝
∞∑

j=1

σ
q
j ‖µ j(D) f | L p‖q

⎞

⎠

1/q

< ∞

(with the usual modification if q = ∞). Moreover, ‖· | Bσ,N
p,q ‖µ is an equivalent

quasi-norm in Bσ,N
p,q .

(ii) Let 0 < p < ∞ and 0 < q � ∞. Then f ∈ S′(Rn) belongs to Fσ,N
p,q if, and

only if,

∥∥ f
∣∣ Fσ,N

p,q

∥∥
µ

= ‖µ0(D) f | L p‖ +

∥∥∥∥∥∥∥

⎛

⎝
∞∑

j=1

σ
q
j |µ j(D) f(·)|q

⎞

⎠

1/q

| L p

∥∥∥∥∥∥∥
< ∞

(4.9)

(with the usual modification if q = ∞). Moreover, ‖· | Fσ,N
p,q ‖µ is an equivalent

quasi-norm in Fσ,N
p,q .

Proof. We will indicate the proof in the more complicated case of F-spaces. To do
this we will apply Proposition 3.2.2.

Let (ϕN
j ) j∈N0 be a smooth partition of unity satisfying (2.7)–(2.10), with cϕ = 1,

and let ‖ f | Fσ,N
p,q ‖ϕ be the quasi-norm from Definition 3.2.3.

Choose t > n
2 + n

min(p,q)
, an integer. Since for any j ∈ N0 clearly µ j(ξ) = 1 on

supp ϕN
j we get, applying Proposition 3.2.2,

∥∥ f
∣∣ Fσ,N

p,q

∥∥
ϕ

= ∥∥σ jF
−1[ϕN

j µ j F f
] ∣∣ L p(lq)

∥∥

= ∥∥F −1ϕN
j F

(
σ j F

−1[µ jF f
]) ∣∣ L p(lq)

∥∥

� c sup
j∈N0

∥∥ϕN
j (2N j+l0 ·)

∣∣ Ht
2

∥∥ · ∥∥ f
∣∣ Fσ,N

p,q

∥∥
µ

� c′ · ∥∥ f
∣∣ Fσ,N

p,q

∥∥
µ
, (4.10)

where ‖ f | Fσ,N
p,q ‖µ is the quasi-norm from (4.9) and we have used the fact that for

any α with |α| � t there exists a constant cα > 0 with
∥∥DαϕN

j (N j+1·)
∣∣ L2

∥∥ � cα for any j ∈ N0,

as a simple consequence of properties (2.8) and (2.9).
To prove the reverse inequality we note that, due to the support properties of

the functions µ j , we have, for any j ∈ N0,

µ j =
2l0∑

k=−2l0

µ jϕ
N
j+k,
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where ϕN
−2l0

= ϕN
−2l0+1 = · · · = ϕN

−1 = 0. Then again one has to apply Proposi-
tion 3.2.2 and to make appropriate changes in (4.10).

Consequently, ‖ f | Fσ,N
p,q ‖ϕ and ‖ f | Fσ,N

p,q ‖µ are equivalent. ��

4.3. Maximal functions and local means

4.3.1. Some preparatory results. Before stating the main result of this subsection,
see Theorem 4.3.4 below, we have to give some auxiliary results.

For any smooth function µ and for any t > 0 we will use the notation

µt(x) = t−nµ(t−1x). (4.11)

The next lemma will play a key role in our further considerations.

Lemma 4.3.1. Let M � −1 be an integer and

SM = {µ ∈ S : Dαµ̂(0) = 0 for any |α| � M}.
For any L > 0 there exists a constant CL > 0 such that

sup
z∈Rn

|(µt ∗ η)(z)|(1 + |z|)L � CL · tM+1 · max
M+1�|β|�max(M+1,L+1)

∥∥Dβµ̂
∣∣ L∞

∥∥ ·

· max
|γ |�L+1

∫

Rn
(1 + |ξ|)M+1|Dγ η̂(ξ)| dξ, (4.12)

for any t ∈ (0, 1], for any µ ∈ SM and any η ∈ S.

Proof. By elementary properties of the Fourier transform it is easy to show that,
for any L > 0, there exists a constant cL such that, for any g ∈ S,

sup
z∈Rn

|g(z)|(1 + |z|)L � cL · max
|α|�L+1

‖Dα ĝ | L1‖. (4.13)

Taking t ∈ (0, 1], µ ∈ SM and η ∈ S and inserting g = µt ∗ η in (4.13) we have,
in particular,

sup
z∈Rn

|(µt ∗ η)(z)| � cL · max
|α|�L+1

∥∥Dαµ̂t ∗ η | L1

∥∥. (4.14)

Applying Leibniz’s product rule for differentiation we have
∣∣Dα[µ̂t ∗ η(ξ)]∣∣ � cα

∑

|δ|+|γ |=|α|
|Dδ[µ̂(tξ)]| · |Dγ η̂(ξ)|

= cα

∑

|δ|+|γ |=α

t|δ| · |(Dδµ̂)(tξ)| · |Dγ η̂(ξ)|. (4.15)

Fix now δ � α. Recall Dαµ̂(0) = 0 for any |α| � M. Then for any δ with |δ| � M
we have, by Taylor’s expansion theorem (with some positive constant cδ),

|(Dδµ̂)(tξ)| � cδ max
|β|=M+1

∥∥Dβµ̂
∣∣ L∞

∥∥ · (t|ξ|)M−|δ|+1
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and so

t|δ| · |(Dδµ̂)(tξ)| � cδt
M+1

(
max

|β|=M+1

∥∥Dβµ̂
∣∣ L∞

∥∥
)

· (1 + |ξ|)M+1 (4.16)

for any |δ| � M.

We have now to distinguish if M � L or not.
If M � L then clearly the desired estimate (4.12) is a simple consequence of

(4.14) using (4.15) and (4.16).
If M < L then for a multi-index δ � α it might happen that M+1 � |δ| � L+1.

Then for any such δ we have (recall 0 < t � 1)

t|δ| · |(Dδµ̂)(tξ)| � cδ · tM+1 · max
M+1�|β|�L+1

∥∥Dβµ̂
∣∣ L∞

∥∥. (4.17)

Using (4.16) and (4.17) in (4.15), the inequality (4.12) follows again from (4.14). ��
Another result which we will use is the following:

Lemma 4.3.2. Let 0 < p, q � ∞, ρ > 0. For any sequence (g j) j∈N0 of non-
negative measurable functions, denote

G j(x) =
∞∑

m=0

2−| j−m|ρgm(x), x ∈ Rn.

Then there exist some positive constants c1 = c(q, �) and c2 = c2(p, q, �) such
that

‖(G j) j∈N0 | L p(lq)‖ � c1 ‖(g j) j∈N0 | L p(lq)‖
and

‖(G j) j∈N0 | lq(L p)‖ � c2 ‖(g j) j∈N0 | lq(L p)‖.
The above lemma is well known and widely used. A proof can be found, for

example, in [Ry99, Lemma 2]. We do not go into further details.

Let again (N j ) j∈N0 be a sequence satisfying (4.1) with λ0 > 1. We will also
need:

Lemma 4.3.3. Let 0 < � � 1 and (b j) j∈N0 , (a j) j∈N0 be two sequences taking
values in (0,∞], respectively (0,∞). Assume that, for some A0 > 0,

lim
j→∞ a j N−A0

j exists in R, (4.18)

and that, for any A > 0, there is a positive constant CA such that

a j � CA

∞∑

l= j

(
N j N−1

l

)A
bla

1−�

l , j ∈ N0. (4.19)

Then, for any A > 0, we have

a�

j � CA

∞∑

l= j

(
N j N−1

l

)A�
bl, j ∈ N0, (4.20)

with the same constant CA.



Characterisations of function spaces of generalised smoothness 35

Proof. For any j ∈ N0 put D j,A = supm� j

(
(N j N−1

m )Aam
)
. By (4.19) we have

D j,A � sup
m� j

((
N j N−1

m

)A · CA ·
∞∑

l=m

(
Nm N−1

l

)A
bla

1−�

l

)

� CA ·
∞∑

l= j

(
N j N−1

l

)A
bla

1−�

l � CA ·
∞∑

l= j

(
N j N−1

l

)A�
bl (D j,A)1−�.

Consequently

a�

j � (D j,A)� � CA ·
∞∑

l= j

(
N j N−1

l

)A�
bl, (4.21)

provided that D j,A is finite, which is satisfied by (4.18) at least for A � A0. Thus
we have proved (4.20) for A � A0 and therefore also for A < A0 with constant
CA0 since the right-hand side of (4.20) decreases as A increases.

Now let A < A0 and assume that the right-hand side of (4.20) is finite (other-
wise there is nothing to prove). By (4.20) with constant CA0 , for m � j ,

(
N j N−1

m

)A
am �

(
N j N−1

m

)A · C1/�

A0

( ∞∑

l=m

(
Nm N−1

l

)A�
bl

)1/�

� C1/�

A0

( ∞∑

l=m

(
N j N−1

m

)A�
bl

)1/�

;

hence D j,A < ∞, and we can use (4.21) which gives the desired estimate with
constant CA. ��

4.3.2. The theorem: equivalent quasi-norms based on maximal functions and local
means. We are now prepared for the main result of this subsection.

Let k0 and k ∈ S, let K � −1 be an integer such that

|k̂0(ξ)| > 0 for |ξ| � N1, (4.22)

|̂k(ξ)| > 0 for
1

λ1
� |ξ| � λ1, (4.23)

and
∫

Rn
xαk(x) dx = 0 for any |α| � K. (4.24)

Here (4.22) and (4.23) are Tauberian conditions, while (4.24) (which is in fact
Dα̂k(0) = 0 for any |α| � K ) are moment conditions on k.

For any r > 0, f ∈ S′, and any x ∈ Rn , let

(k∗
0 f )r(x) = sup

z∈Rn

|(k0 ∗ f )(z)|
(1 + |x − z|)r

, (4.25)
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and for j � 1

(k∗
N−1

j
f )r(x) = sup

z∈Rn

|(kN−1
j

∗ f )(z)|
(1 + N j |x − z|)r

(4.26)

(J. Peetre’s maximal functions); we recall the notation kN−1
j

(x) = Nn
j k(N j x) –

see (4.11).

Theorem 4.3.4. Let (N j ) j∈N0 be an admissible sequence with λ0 > 1 and (σ j) j∈N0

be an admissible sequence.
Let

K > −1 + log2 d1

log2 λ0
, (4.27)

and let k0 and k functions from S which satisfy conditions (4.22)–(4.24) from above.
Let 0 < p < ∞, respectively 0 < p �∞, let 0 < q �∞, and let r > n

min(p,q)
,

respectively r > n
p .

Then there exist two constants c, c′ > 0 such that, for all f ∈ S′,

‖(k∗
0 f )r | L p‖ +

∥∥∥
(
σ j(k

∗
N−1

j
f )r

)

j∈N
∣∣ L p(lq)

∥∥∥ � c
∥∥ f
∣∣ Fσ,N

p,q

∥∥ (4.28)

and

∥∥ f
∣∣ Fσ,N

p,q

∥∥ � c′
(
‖(k0 ∗ f | L p‖ +

∥∥∥
(
σ j(kN−1

j
∗ f )

)

j∈N
∣∣ L p(lq)

∥∥∥
)
, (4.29)

respectively

‖(k∗
0 f )r | L p‖ +

∥∥∥
(
σ j(k

∗
N−1

j
f )r

)

j∈N
∣∣ lq(L p)

∥∥∥ � c
∥∥ f
∣∣ Bσ,N

p,q

∥∥ (4.30)

and

∥∥ f
∣∣ Bσ,N

p,q

∥∥ � c′
(
‖(k0 ∗ f | L p‖ +

∥∥∥
(
σ j(kN−1

j
∗ f )

)

j∈N
∣∣ lq(L p)

∥∥∥
)
. (4.31)

Remark 4.3.5. Note that the above inequalities are valid for all f ∈ S′.
It is easy to see that, for any x ∈ Rn and any f ∈ S′, we have |(kN−1

j
∗ f )(x)| �

(k∗
N−1

j
f )r(x). This shows that the right-hand side in (4.29) is less than the left-hand

side in (4.28).
Consequently the left-hand side in (4.28) and the right-hand side in (4.29) are

equivalent quasi-norms in Fσ,N
p,q .

Of course a corresponding assertion is valid for the spaces Bσ,N
p,q , now based on

(4.30) and (4.31).
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4.3.3. Proof of Theorem 4.3.4. We will present here the proof of the inequalities
(4.28) and (4.29). The inequalities (4.30) and (4.31) can be proved in a similar
manner interchanging the roles of the quasi-norms in L p and lq .

Step 1. Take any pair of functions θ0 and θ ∈ S such that

|θ̂0(ξ)| > 0 if |ξ| � N1,

and

|̂θ(ξ)| � C > 0 if
1

λ1
� |ξ| � λ1, (4.32)

and define, for any r > 0, the functions (θ∗
0 f )r and (θ∗

N−1
j

f )r as in (4.25) and

(4.26), where θN−1
j

(x) = Nn
j θ(N j x).

We will prove in this step that there is a constant c > 0 such that, for any
f ∈ S′,

‖(k∗
0 f )r | L p‖ +

∥∥∥
(
σ j(k

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥

� c

(
‖(θ∗

0 f )r | L p‖ +
∥∥∥
(
σ j(θ

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

. (4.33)

Take (ϕN
j ) j∈N0 , a fixed partition of unity associated to (N j) j∈N0 , that means

(ϕN
j ) j∈N0 has the properties (2.7)–(2.10) with cϕ = 1.
We define the functions ψ j ∈ C∞

0 (Rn), j ∈ N0, by

ψ̂0(ξ) = ϕN
0 (ξ)

θ̂0(ξ)
and ψ̂ j(ξ) = ϕN

j (ξ)

θ̂(N−1
j ξ)

for j ∈ N. (4.34)

Due to the properties of the functions θ0 and θ , the functions ψ̂0 and ψ̂ j are well
defined and it is easy to see that, for any j ∈ N, we have supp ψ̂ j ⊂ {ξ ∈ Rn :
N j−1 � |ξ| � N j+1}.

Moreover, applying the rule of differentiation for a product of functions, using
(2.9) and (4.32) it follows that for any multi-index α there is a constant cα > 0
such that, for any j � 1,

|Dαψ̂ j(ξ)| � cα 〈ξ〉−|α| for any ξ ∈ Rn . (4.35)

From (4.34) clearly

1 = θ̂0(ξ)ψ̂0(ξ) +
∞∑

j=1

ψ̂ j(ξ) θ̂
(
N−1

j ξ
)
,

and so, for any f ∈ S′,

f = ψ0 ∗ θ0 ∗ f +
∞∑

m=1

ψm ∗ θN−1
m

∗ f.
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Consequently, we have, for any j � 1,

kN−1
j

∗ f = kN−1
j

∗ ψ0 ∗ θ0 ∗ f +
∞∑

m=1

kN−1
j

∗ ψm ∗ θN−1
m

∗ f. (4.36)

For a fixed m � 1 one has

|(kN−1
j

∗ ψm ∗ θN−1
m

∗ f )(y)|

�
∫

Rn
|(kN−1

j
∗ ψm)(z)| · |(θN−1

m
∗ f )(y − z)| dz

�
(
θ∗

N−1
m

f
)

r(y) ·
∫

Rn
|(kN−1

j
∗ ψm)(z)| · (1 + Nm |z|)r dz

= (θ∗
N−1

m
f
)

r(y) · I jm . (4.37)

We are going now to obtain convenient estimates from above for the integral
I jm in (4.37).

First, let m � j .
After a change of variables, inserting kN−1

j
(x) = Nn

j k(N j x) we have

I jm =
∫

Rn
|(kN−1

j
∗ ψm)(z)| · (1 + Nm |z|)r dz

= N−n
m

∫

Rn

∣∣(kN−1
j

∗ ψm)
(
N−1

m u
)∣∣ · (1 + |u|)r du

= N−n
m

∫

Rn

∣∣∣∣

∫

Rn
Nn

j N−n
m k
(
N j N−1

m u − N j N−1
m v
)
ψm
(
N−1

m v
)

dv

∣∣∣∣ · (1 + |u|)r du

= N−n
m

∫

Rn

∣∣∣
(

kN−1
j Nm

∗ ψm
(
N−1

m · )
)
(u)

∣∣∣ · (1 + |u|)r du,

where again kt(x) = t−nk(t−1x). It follows that for some positive constant c
(independent of j and m)

I jm � c N−n
m sup

u∈Rn

(∣∣(kN−1
j Nm

∗ ψm
(
N−1

m · ))(u)
∣∣ · (1 + |u|)r+n+1

)
.

We may apply Lemma 4.3.1 with t = N−1
j Nm � 1, µ = k ∈ SK (k has K moment

conditions), η = ψm(N−1
m ·); taking L = r + n + 1 we obtain (with some positive

constant c1)

I jm � c1 N−n
m

(
N−1

j Nm
)K+1

max
K+1�|β|�max(K+1,r+n+2)

∥∥Dβ k̂
∣∣ L∞

∥∥ ·

· max
|α|�r+n+2

∫

Rn
(1 + |ξ|)K+1

∣∣Dα
[
ψm
(
N−1

m · )]̂(ξ)∣∣ dξ

� c2 N−n
m

(
N−1

j Nm
)K+1

max
|α|�r+n+2

∫

Rn
(1 + |ξ|)K+1|Dα[ψ̂m(Nmξ)]| Nn

m dξ

= c2
(
N−1

j Nm
)K+1

max
|α|�r+n+2

∫

Rn
(1 + |ξ|)K+1 N |α|

m |(Dαψ̂m)(Nmξ)| dξ.
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Due to the localisation of the support of ψ̂m the last integral is in fact taken over
the set {ξ ∈ Rn : 1

λ1
� |ξ| � λ1}. Using (4.35) we get

I jm � c3
(
N−1

j Nm
)K+1

max
|α|�r+n+2

∫

1
λ1
�|ξ|�λ1

(1 + |ξ|)K+1 N |α|
m (1 + Nm |ξ|)−|α| dξ,

which is

I jm � c
(
N−1

j Nm
)K+1

, (4.38)

with some positive constant c > 0 independent of j and m.
Let now m > j .
Then, again making use of changing of variables, and inserting kN−1

j
(x) =

Nn
j k(N j x), we have

I jm =
∫

Rn
|(kN−1

j
∗ ψm)(z)|(1 + Nm |z|)r dz

�
(
N−1

j Nm
)r
∫

Rn
|(kN−1

j
∗ ψm)(z)|(1 + N j |z|)r dz

= (N−1
j Nm

)r
N−n

j

∫

Rn

∣∣∣∣

∫

Rn
kN−1

j

(
N−1

j u − v
)
ψm(v)dv

∣∣∣∣ (1 + |u|)r du

= (N−1
j Nm

)r
N−n

j

∫

Rn

∣∣∣∣

∫

Rn
ψm
(
N−1

j y
)

k(u − y) dy

∣∣∣∣ (1 + |u|)r du

= (N−1
j Nm

)r
N−n

j

∫

Rn

∣∣(ψm
(
N−1

j · ) ∗ k
)
(u)
∣∣ (1 + |u|)r du.

Consequently there exists a constant c > 0, independent of j and m, such that, for
any L � r + n + 1,

I jm � c
(
N j N−1

m

)−r
N−n

j · sup
u∈Rn

(∣∣(ψm
(
N−1

j · ) ∗ k
)
(u)
∣∣ (1 + |u|)L

)
. (4.39)

Again using Lemma 4.3.1 we define, for any m � 1, the function

ψ(m)(u) = ψm
(
N−1

m u
)
, u ∈ Rn .

Then ψ̂(m)(ξ) = Nn
m ψ̂m(Nmξ) and supp ψ̂(m) ⊂ {ξ : 1

λ1
� |ξ| � λ1} which

implies, in particular,

Dαψ̂(m)(0) = 0 for any multi-index α. (4.40)

Moreover, by (4.35) it follows that for any multi-index α, there is a constant cα

such that

|Dαψ̂(m)(ξ)| � cα Nn
m for any m � 1 and for any ξ ∈ Rn . (4.41)

Writing, as usual, ψ
(m)
t (x) = t−nψ(m)(t−1x) we have

(
ψm
(
N−1

j · ) ∗ k
)
(u) = (ψ(m)

(
Nm N−1

j · ) ∗ k
)
(u) = (N j N−1

m

)n (
ψ

(m)

N j N−1
m

∗ k
)
(u).
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So (4.39) becomes

I jm � c
(
N j N−1

m

)−r
N−n

j

(
N j N−1

m

)n · sup
u∈Rn

(∣∣(ψ(m)

N j N−1
m

∗ k
)
(u)
∣∣(1 + |u|)L

)
.

(4.42)

Since m > j we can use Lemma 4.3.1 with t = N j N−1
m , µ = ψ(m) ∈ SM (where

M can be chosen arbitrary large due to (4.40)) and η = k and obtain

sup
u∈Rn

(∣∣(ψ(m)

N j N−1
m

∗ k
)
(u)
∣∣(1 + |u|)L

)
� cL

(
N j N−1

m

)M+1 ·

max
M+1�|β|�max(M+1,L+1)

∥∥Dβψ̂(m)
∣∣ L∞

∥∥ · max
|α|�L+1

∫

Rn
(1 + |ξ|)M+1|Dα̂k(ξ)| dξ,

and using (4.41) we have, with a positive constant c′ > 0,

sup
u∈Rn

(∣∣(ψ(m)

N j N−1
m

∗ k
)
(u)
∣∣(1 + |u|)L

)
� c′ (N j N−1

m

)M+1
Nn

m . (4.43)

Inserting the last inequality in (4.42) we finally obtain

I jm � c
(
N j N−1

m

)−r
N−n

j

(
N j N−1

m

)n(
N j N−1

m

)M+1
Nn

m = c
(
N j N−1

m

)−r+M+1
.

(4.44)

Recall that by (4.40) we may choose M as large as we want. We choose M, an
integer of the form

M = −1 + 2r + s with a real s satisfying s log2 λ0 + log2 d0 > 0 (4.45)

(note that such an s exists due to the fact that λ0 > 1), and (4.44) can be written

I jm � c
(
N j N−1

m

)s+r
. (4.46)

Further, note that, for all x, y ∈ Rn ,

(θ∗
N−1

m
f )r(y) � (θ∗

N−1
m

f )r(x)(1 + Nm |x − y|)r

� (θ∗
N−1

m
f )r(x) · max

(
1, (N−1

j Nm
)r) · (1 + N j |x − y|)r .

Inserting the last inequality in (4.37), then dividing by (1 + N j |x − y|)r and using
the estimates (4.38) and (4.46) for I jm we have

sup
y∈Rn

|(kN−1
j

∗ ψm ∗ θN−1
m

∗ f )(y)|
(1 + N j |x − y|)r

� c (θ∗
N−1

m
f )r(x) · max

(
1,
(
N−1

j Nm
)r) ·

{(
N−1

j Nm
)K+1

if m � j
(
N j N−1

m

)s+r
if m > j

= c′ (θ∗
N−1

m
f )r(x) ·

{(
N−1

j Nm
)K+1

if m � j
(
N j N−1

m

)s
if m > j

. (4.47)
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Note that in the above computations we did not use moment conditions for the
function ψ̂1. So, replacing ψ1 and θ1 with ψ0 and θ0 we get the similar estimate

sup
y∈Rn

|(kN−1
j

∗ ψ0 ∗ θ0 ∗ f )(y)|
(1 + N j |x − y|)r

� c (θ∗
0 f )r(x)

(
N−1

j N0
)K+1

. (4.48)

Using now (4.47) and (4.48) in (4.36), after multiplying with σ j , we have

σ j(k
∗
N−1

j
f )r(x) � c (θ∗

0 f )r(x)σ j N−(K+1)
j

+ c′
∞∑

m=1

(θ∗
N−1

m
f )r(x) ·

{
σ j
(
N−1

j Nm
)K+1

if m � j

σ j
(
N j N−1

m

)s
if m > j

, (4.49)

with some positive constants c, c′ independent of j and m.
Let m < j . Then, after using (4.1) and (4.3) we have

σ j
(
N−1

j Nm
)K+1 � d j−m

1 σm · λ0
−( j−m)(K+1)

= σm · 2−( j−m)[− log2 d1+(K+1) log2 λ0].

Let now m � j . Again, using (4.1) and (4.3), we have

σ j
(
N j N−1

m

)s � d−(m− j)
0 σm · λ

−(m− j)s
0

= σm · 2−(m− j)(log2 d0+s log2 λ0).

Moreover,

σ j N−(K+1)
j � d j

1 σ0 · λ− j(K+1)

0 N−(K+1)
0 = σ0 N−(K+1)

0 2− j[− log2 d1+(K+1) log2 λ0].

Note that due to (4.45) and to our assumption on K , we have

� = min{− log2 d1 + (K + 1) log2 λ0 , s log2 λ0 + log2 d0} > 0.

Inserting the last two estimates in (4.49) we get, for all f ∈ S′, all x ∈ Rn and all
j ∈ N,

σ j(k
∗
N−1

j
f )r(x) � c σ0 (θ∗

0 f )r(x) 2− j� + c′
∞∑

m=1

σm (θ∗
N−1

m
f )r(x) · 2−| j−m|�.

Again for j = 1 we did not use moment conditions to obtain this estimate so we
can replace kN−1

1
with k0 and get

(k∗
0 f )r(x) � c (θ∗

0 f )r(x) + c′
∞∑

m=1

σm (θ∗
N−1

m
f )r(x) · 2−m�.

The estimate (4.33) follows now as a simple consequence of the elementary
Lemma 4.3.2.

Consequently we have finished the proof of the inequality (4.33).
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Step 2. Take again (ϕN
j ) j∈N0 a fixed partition of unity associated to (N j) j∈N0 , that

means (ϕN
j ) j∈N0 has the properties (2.7)–(2.10) with cϕ = 1.

For a fixed j ∈ N0 let

Φ j(ξ) =
j∑

m=0

ϕN
m (ξ).

Using the properties of the system (ϕN
j ) j∈N0 we have Φ j(ξ) = 1 if |ξ| < N j−1,

Φ j(ξ) = 0 if |ξ| > N j+1 and for any multi-index α there exists a constant cα

(independent of j) such that

|DαΦ j(ξ)| � cα 〈ξ〉−|α|.

Let us consider now the function Ψ j defined by

Ψ̂ j(ξ) = Φ j(ξ)

k̂0(N−1
j ξ)

, j ∈ N0. (4.50)

Note that, for |ξ| � N j+1 � λ1 N j , it follows that N−1
j |ξ| � λ1 � N1, and due to

the assumption (4.22) on k0, this shows that Ψ j is well defined.
Clearly one has supp Ψ̂ j ⊂ {ξ ∈ Rn : |ξ| � N j+1} since Φ j(ξ) = 0 if

|ξ| > N j+1.

Moreover, applying Leibniz’s rule for differentiation of a product we get that,
for any multi-index γ , there exists a constant cγ > 0 independent of j such that

|Dγ [Ψ̂ j(N jξ)]| �
∑

δ�γ

cγδ Dδ[Φ j(N jξ)] Dγ−δ

[
1

k̂0(ξ)

]
� cγ . (4.51)

From (4.50) we get that, for any f ∈ S′, we have

Ψ j ∗ Nn
j k0(N j ·) ∗ f = Φ̌ j ∗ f.

Later on we will use the notation (k0)N−1
j

(x) = Nn
j k0(N j x).

On the other hand, for a fixed j , we define, for any m � j + 1, the functions
ψm by

ψ̂m(ξ) = ϕN
m (ξ)

k̂
(
N−1

m ξ
) ,

in analogy to the first step, see (4.34), now with k instead of θ . Consequently we
have for any f ∈ S′ (and for a fixed j),

f = Ψ j ∗ (k0)N−1
j

∗ f +
∞∑

m= j+1

ψm ∗ kN−1
m

∗ f

and this implies

kN−1
j

∗ f = (Ψ j ∗ (k0)N−1
j

) ∗ (kN−1
j

∗ f ) +
∞∑

m= j+1

(kN−1
j

∗ ψm) ∗ (kN−1
m

∗ f ).

(4.52)
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Now (Ψ j∗(k0)N−1
j

)(z) = (k0∗Ψ j(N−1
j ·))(N j z) and we may apply Lemma 4.3.1

with t = 1, M = −1, µ = k0 and η = Ψ j(N−1
j ·). So, for any L > 0,

sup
z∈Rn

(
|(Ψ j ∗ (k0)N−1

j
)(z)| · (1 + N j |z|)L

)

= sup
z∈Rn

(∣∣(k0 ∗ Ψ j
(
N−1

j · ))(N j z)
∣∣ · (1 + N j |z|)L

)

� cL · 10 · max
0�|β|�max(0,L+1)

∥∥Dβ k̂0

∣∣ L∞
∥∥ · max

|γ |�L+1

∫

Rn

∣∣Dγ
[
Ψ j
(
N−1

j · )] (̂ξ)
∣∣ dξ

� c′ max
|γ |�L+1

Nn
j

∫

|ξ|�λ1

|Dγ [Ψ̂ j(N jξ)]| dξ

� c′′ Nn
j ,

where c′′ > 0 is independent of j and in the last two inequalities we have used
the properties of the function Ψ̂ j , in particular the localisation of its support and
(4.51). Consequently, for any L > 0 there is a positive constant CL > 0 such that

|(Ψ j ∗ (k0)N−1
j

)(z)| � CL

Nn
j

(1 + N j |z|)L
, z ∈ Rn. (4.53)

Writing, for any m � j + 1,

(kN−1
j

∗ ψm)(u) = (N j N−1
m

)n (
ψ

(m)

N j N−1
m

∗ k
)
(N j u),

where ψ(m) = ψm(N−1
m u), we get as in Step 1, compare (4.39) and (4.43), that for

any M and L there is a constant c > independent of j and m

|(kN−1
j

∗ ψm)(z)| � c
Nn

j

(
N j N−1

m

)M

(1 + N j |z|)L
, z ∈ Rn. (4.54)

Inserting the estimates (4.53) and (4.54) with r = L in (4.52) we get, for all f ∈ S′,
y ∈ Rn and j ∈ N,

|(kN−1
j

∗ f )(y)| � c
∫

Rn

Nn
j

(1 + N j |y − z|)r
|(kN−1

j
∗ f )(z)| dz

+c′
∞∑

m= j+1

∫

Rn

Nn
j

(
N j N−1

m

)M

(1 + N j |y − z|)r
|(kN−1

m
∗ f )(z)| dz

� C
∞∑

m= j

Nn
j

(
N j N−1

m

)M
∫

Rn

|(kN−1
m

∗ f )(z)|
(1 + N j |y − z|)r

dz. (4.55)

Fix now any � ∈ (0, 1]. We divide both sides of (4.55) by (1 + N j |x − y|)r , then,
on the left-hand side we take the supremum over y ∈ Rn and on the right hand-side
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we use the inequalities

(1 + N j |x − y|)(1 + N j |y − z|) � 1 + N j |x − z|, (4.56)

|(kN−1
m

∗ f )(z)| � |(kN−1
m

∗ f)(z)|� · [(k∗
N−1

m
f )r(x)]1−� · (1 + Nm |x − z|)r(1−�),

and
(1 + Nm |x − z|)r(1−�)

(1 + N j |x − z|)r
�

(
N−1

j Nm
)r

(1 + Nm |x − z|)r�
,

and get, for all f ∈ S′, all x ∈ Rn and all j ∈ N,

(k∗
N−1

j
f )r(x) � c

∞∑

m= j

(
N j N−1

m

)A
∫

Rn

Nn
m · |(kN−1

m
∗ f )(z)|�

(1 + Nm |x − z|)r�
dz · [(k∗

N−1
m

f )r(x)]1−�,

(4.57)

where A = M − r + n can be still taken arbitrary large.
Quite analogously one proves, for all f ∈ S′, the estimate

(k∗
0 f )r(x) � c

(∫

Rn

|(k0 ∗ f )(z)|�
(1 + |x − z|)r�

dz · [(k∗
0 f )r(x)]1−�

+
∞∑

m=1

N−A
m

∫

Rn

Nn
m · |(kN−1

m
∗ f )(z)|�

(1 + Nm |x − z|)r�
dz · [(k∗

0 f )r(x)]1−�

)
. (4.58)

At this moment we need Lemma 4.3.3. We fix x ∈ Rn and apply Lemma 4.3.3
with

am = (k∗
N−1

m
f )r(x), m ∈ N, a0 = (k∗

0 f )r(x),

bm =
∫

Rn

Nn
m |(kN−1

m
∗ f )(z)|�

(1 + Nm |x − z|)r�
dz, b0 =

∫

Rn

|(k0 ∗ f )(z)|
(1 + |x − z|)r�

dz.

The assumption (4.18) is satisfied with A0 equal to the order of the distribution
f ∈ S′. The estimates (4.57) and (4.58) take the form (4.19). Consequently (4.20)
is true and this means that, for every A > 0, there is a constant cA > 0 such that

(k∗
N−1

j
f )r(x)� � cA

∞∑

m= j

(
N j N−1

m

)A� ·
∫

Rn

Nn
m |(kN−1

m
∗ f )(z)|�

(1 + Nm |x − z|)r�
dz (4.59)

together with the corresponding estimate for (k∗
0 f )r(x). Note that cA in (4.59) is

independent of f ∈ S′, x ∈ Rn , j ∈ N and � ∈ (0, 1] because of Lemma 4.3.3.
Further note that (4.59) is also true for � > 1 with a simpler proof. It suffices

to take r + n instead of r, apply Hölder’s inequality in m and in z, and finally the
inequality (4.56). We omit the details.

It is possible to choose � so that

n

r
< � < min(p, q) (respectively

n

r
< � < p for Besov spaces).

We make such a choice and fix � for the rest of the proof.
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Now the function z �→ 1
(1+|z|)r� is in L1 and we may use the majorant property

for the Hardy–Littlewood maximal operator M, see E.M. Stein and G. Weiss
[StWe71, Chap. 2,(3.9)],

(
|g|� ∗ Nn

m

(1 + Nm | · |)r�

)
(x) �M(|g|�)(x) ·

∥∥∥∥
Nn

m

(1 + Nm | · |)r�
| L1

∥∥∥∥ .

It follows from (4.59) that

(k∗
N−1

j
f )r(x)� � c

∞∑

m= j

(
N j N−1

m

)A� · M
(|kN−1

m
∗ f |�)(x), (4.60)

together with the corresponding estimate for (k∗
0 f )r(x).

Again we use that, for m � j ,

N j N−1
m � λ

−(m− j)
0 = 2−(m− j) log2 λ0

and
σ j � d−(m− j)

0 σm = 2−(m− j) log2 d0,

and so (4.60) becomes (with some positive constant c)

σ
�

j (k∗
N−1

j
f )r(x)� � c

∞∑

m= j

2−(m− j)(A� log2 λ0+� log2 d0)σ�
m · M(|kN−1

m
∗ f |�)(x).

(4.61)

We can choose A > 0 large enough such that

ε = A� log2 λ0 + � log2 d0 > 0.

Now we apply Lemma 4.3.2 with

g j(x) = σ
�

j M
(|kN−1

j
∗ f |�)(x), j ∈ N, g0 = M

(|k0 ∗ f |�)

in L p/�(lq/�) and get, from (4.61),

‖(k∗
0)r | L p‖ +

∥∥∥
(
σ j (k∗

N−1
j

f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥

� c
(
‖M�(k0 ∗ f ) | L p‖ +

∥∥∥
(
σ j M�(kN−1

j
∗ f )

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)
,

where we used the notation M�(g) = M(|g|�)1/�.
By the maximal inequality of C. Fefferman and E.M. Stein, see [FeSt71], we

know that M� is a bounded operator

M� : L p(lq) → L p(lq), � < p < ∞, � < q �∞ (4.62)

(respectively M� : lq(L p) → lq(L p), � < p �∞, 0 < q �∞). Our choice
of � enables us to apply (4.62) and we obtain (with some positive constant C)
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‖(k∗
0 f )r | L p‖ +

∥∥∥
(
σ j (k

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥

� C
(
‖k0 ∗ f | L p‖ +

∥∥∥
(
σ j (kN−1

j
∗ f)

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

for any f ∈ S′. (4.63)

A corresponding inequality is obtained for the spaces lq(L p).

Step 3. Let µ0 and µ ∈ S be two positive functions on Rn satisfying (4.5) and
(4.6). Let

θ̂0 = µ0 and θ̂ = µ.

We have successively

‖(k∗
0 f )r | L p‖ +

∥∥∥
(
σ j(k

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥

� c

(
‖(θ∗

0 f )r | L p‖ +
∥∥∥
(
σ j(θ

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

� c1

(
‖θ0 ∗ f | L p‖ + ∥∥(σ j (θN−1

j
∗ f )

)
j∈N
∣∣ L p(lq)

∥∥
)

� c2
∥∥ f
∣∣ Fσ,N

p,q

∥∥,

where the first inequality is (4.33), see Step 1; the second inequality is (4.63) (with
θ0 and θ instead of k0 and k), see Step 2; and finally the last inequality is nothing
else than (4.9), see Theorem 4.2.2, since θ0 ∗ f = (µ0 f̂ )∨ and θN−1

j
∗ f = (µ j f̂ )∨.

Consequently we have proved (4.28).
Moreover,

∥∥ f
∣∣ Fσ,N

p,q

∥∥ � c

(
‖(θ∗

0 f )r | L p‖ +
∥∥∥
(
σ j(θ

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

� c1

(
‖(k∗

0 f )r | L p‖ +
∥∥∥
(
σ j(k

∗
N−1

j
f )r

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

� c2

(
‖(k0 ∗ f ) | L p‖ +

∥∥∥
(
σ j(kN−1

j
∗ f )

)

j∈N

∣∣∣ L p(lq)

∥∥∥
)

,

where the first inequality is an obvious consequence of (4.9), see Theorem 4.2.2,
the second inequality is (4.33), see Step 1, with the roles of k0 and k, respectively,
θ0 and θ interchanged, and finally the last inequality is (4.63), see Step 2.

Consequently we have proved (4.29), too. ��

4.3.4. Comments. We would like to point out that we used at several places the
fact that the sequence N is of bounded growth.

The above argument follows essentially H.-Q. Bui, M. Paluszyński and
M. Taibleson, see [BPT96] and [BPT97], and the simplified version of their papers
given by V. Rychkov in [Ry99]. However, due to the general structure of the
sequences (N j ) j∈N0 satisfying (4.1) we had to adapt some steps of their proof.

First, the key Lemma 4.3.1 is related to Lemma 2.1 in [BPT96] and to Lemma 1
in [Ry99] but we needed to indicate the dependence of µ and η of the factor that
multiplies tM+1.
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Secondly, the argument of Step 1 and the idea of proving (4.33) essentially go
back to J. Peetre, see [Pe75]. Compared with the classical situation (N j = 2 j for
any j ∈ N0) and with the proof in [Ry99], to estimate the integral I jm in (4.37)
for m > j we had to take into account that the functions ψm are not generated
from a single function ψ. This caused complications which were solved applying
Lemma 4.3.1 in the form which was stated.

As a third observation we point out, see Step 2, that in order to prove (4.63)
we had to introduce the function Φ j to obtain the equality (4.52). This allowed us
to avoid the dilation argument from [Ry99] which could not work in the case of
general sequences (N j) j∈N0 .

Finally, note that the above technique to prove the estimate (4.59) (if N j = 2 j

for any j ∈ N0) is due to J.-O. Strömberg and A. Torchinsky, see [StTo89, Chap. 5,
Theorem 2(a)].

Remark 4.3.6. Theorem 4.3.4 paves the way to the proof of the atomic decom-
position theorem, see next section, but it is of independent interest since it covers
the classical results of H.-Q. Bui, M. Paluszyński and M. Taibleson, see [BPT96]
and [BPT97], the theorem on local means from [Tr92, Theorem 2.4.6], and the
theorem on local means from [Mo99] and [Mo01]. We will return to this aspect
later on.

4.4. N-atoms and the atomic decomposition theorem

4.4.1. Preliminaries: N-atoms and sequence spaces. Recall that N = (N j ) j∈N0

is an admissible sequence with bounded growth which satisfies (4.1) with λ0 > 1.
Let Zn be the lattice of all points in Rn with integer-valued components.
If ν ∈ N0 and m = (m1, ..., mn) ∈ Zn we denote Qνm the cube inRn centred at

N−1
ν m = (N−1

ν m1, ..., N−1
ν mn) which has sides parallel to the axes and side length

N−1
ν .

If Qνm is such a cube in Rn and c > 0 then cQνm is the cube in Rn concentric
with Qνm and with side length cN−1

ν .

We are now prepared to introduce the N-atoms (associated to the sequence N).

Definition 4.4.1. (i) Let M ∈ R, c∗ > 1. A function ρ : Rn → C, for which
there exist all derivatives Dαρ if |α| � M (continuous if M � 0), is called an
1M-N-atom if

supp ρ ⊂ c∗Q0m for some m ∈ Zn, (4.64)

|Dαρ(x)| � 1 if |α| � M. (4.65)

(ii) Let σ = (σ j) j∈N0 be an admissible sequence, let 0 < p � ∞, M, L ∈ R,
c∗ > 1. A function ρ : Rn → C, for which there exist all derivatives Dαρ if
|α| � M (continuous if M � 0), is called an (σ, p)M,L-N-atom if

supp ρ ⊂ c∗ Qνm for some ν ∈ N , m ∈ Zn, (4.66)
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|Dαρ(x)| � σ−1
ν N

n
p +|α|

ν if |α| � M, (4.67)

∫

Rn
xγ ρ(x)dx = 0 if |γ | � L. (4.68)

If the atom ρ is located at Qνm (that means supp ρ ⊂ c∗Qνm with ν ∈ N0,
m ∈ Zn , c∗ > 1) then we will denote it by ρνm .

This concept generalises the smooth (isotropic) atoms from the works of M. Fra-
zier and B. Jawerth, [FrJa85] and [FrJa90], which correspond to Nν = 2ν and
σν = 2νs with real s.

We give some technical explanations.
The value of the number c∗ > 1 in (4.64) and (4.66) is unimportant. It simply
makes clear that at the level ν some controlled overlapping of the supports of ρνm

must be allowed.
The moment conditions (4.68) can be reformulated as Dγ ρ̂(0) = 0 if |γ | � L,

which shows that a sufficiently strong decay of ρ̂ at the origin is required. If L < 0
then (4.68) simply means that there are no moment conditions.

The reason for the normalising factor in (4.65) and (4.67) is that there exists
a constant c > 0 such that, for all these atoms, we have ‖ρ | Bσ,N

p,q ‖ � c and
‖ρ | Fσ,N

p,q ‖ � c. Hence, as in the classical case, atoms are normalised building
blocks satisfying some moment conditions.

Before we state the atomic decomposition theorem we have to introduce the
sequence spaces bp,q and f N

p,q .
If ν ∈ N0 , m ∈ Zn and Qνm is a cube as above let χνm be the characteristic

function of Qνm ; if 0 < p �∞ let

χ(p)
νm = Nn/p

ν χνm

(obvious modification if p = ∞) be the L p-normalised characteristic function of
Qνm .

Definition 4.4.2. Let 0 < p �∞, 0 < q �∞. Then:

(i) bp,q is the collection of all sequences λ = {λνm ∈ C : ν ∈ N0 , m ∈ Zn} such
that

‖λ | bp,q‖ =
⎛

⎝
∞∑

ν=0

(
∑

m∈Zn

|λνm |p

)q/p
⎞

⎠

1/q

(with the usual modification if p = ∞ and/or q = ∞) is finite;
(ii) f N

p,q is the collection of all sequences λ = {λνm ∈ C : ν ∈ N0 , m ∈ Zn} such
that

∥∥λ
∣∣ f N

p,q

∥∥ =
∥∥∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

∣∣λνmχ(p)
νm (·)∣∣q

)1/q
∣∣ L p

∥∥∥∥∥∥

(with the usual modification if p = ∞ and/or q = ∞) is finite.

One can easily see that bp,q and f N
p,q are quasi-Banach spaces and using

‖χ(p)
νm | L p‖ = 1 it is clear that, comparing ‖λ | bp,q‖ and ‖λ | f N

p,q‖, the roles
of the quasi-norms in L p and lq are interchanged.
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4.4.2. The atomic decomposition theorem. We are able now to state the main
result of this section.

Theorem 4.4.3. Let N = (N j) j∈N0 be an admissible sequence with λ0 > 1 in
(4.1) and let σ = (σ j) j∈N0 be an admissible sequence.

Let 0 < p < ∞, respectively 0 < p �∞, 0 < q �∞, and let M, L ∈ R such
that

M >
log2 d1

log2 λ0
(4.69)

and

L > −1 + n

(
log2 λ1

log2 λ0

1

min(1, p, q)
− 1
)

− log2 d0

log2 λ0
, (4.70)

respectively

L > −1 + n

(
log2 λ1

log2 λ0

1

min(1, p)
− 1

)
− log2 d0

log2 λ0
. (4.71)

Then g ∈ S′ belongs to Fσ,N
p,q , respectively to Bσ,N

p,q , if and only if, it can be
represented as

g =
∞∑

ν=0

∑

m∈Zn

λνmρνm, (4.72)

convergence being in S′, where ρνm are 1M-N-atoms (ν = 0) or (σ, p)M,L-N-atoms
(ν ∈ N) and λ ∈ f N

p,q, respectively λ ∈ bp,q, where λ = {λνm : ν ∈ N0 , m ∈ Zn}.
Furthermore, inf ‖λ | f N

p,q‖, respectively inf ‖λ | bp,q‖, where the infimum is taken
over all admissible representations (4.72), is an equivalent quasi-norm in Fσ,N

p,q ,
respectively Bσ,N

p,q .

The convergence in S′ can be obtained as a by-product of the proof using the
same method as in [Tr97, Theorem 13.7], compare also the discussion in [Tr01],
so we will not stress this point. We refer to the above theorem as to the atomic
decomposition theorem in function spaces of generalised smoothness.

Before giving the proof let us make here some remarks. The first part of the
proof, that one in which the atoms are constructed and where it is shown that the
decomposition (4.72) holds, is essentially based on a version of a resolution of
unity of Calderon type, cf. [FJW91, Lemma 5.12].

To prove the second part we will use the theorem on local means, see Theo-
rem 4.3.4, the technique of maximal functions and an inequality of Fefferman–Stein
type.

Remark 4.4.4. For spaces Bω
p,q of positive smoothness, defined in the spirit of

M.L. Goldman, see Section 3.3, an atomic decomposition in the sense of M. Frazier
and B. Jawerth was described by Yu.V. Netrusov in [Ne89]. There are no moment
conditions in his characterisation – in contrast to the case 0 < p � 1 in the above
theorem. The reason is that Yu.V. Netrusov defined the spaces Bω

p,q in a slightly
different way which insures a priori the embedding L p ↪→ Bω

p,q for all admissible
parameters 0 < p �∞.
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4.4.3. An auxiliary result: a partition of unity of Calderon type. We will need the
following:

Lemma 4.4.5. Let N = (N j ) j∈N0 be an admissible sequence with λ0 > 1 in (4.1)
and let (ΩN

j ) j∈N0 be the associated covering of Rn with J = κ0 = 1, see (2.5) and
(2.6).

Let also (ϕN
j ) j∈N0 ∈ ΦN be fixed with cϕ = 1 and L � 0 be also fixed.

Then there exist functions θ0, θ ∈ S with:

supp θ0, supp θ ⊂ {x ∈ Rn : |x| � 1}, (4.73)

|θ̂0(ξ)| � c0 > 0 if |ξ| � N1, (4.74)

|̂θ(ξ)| � c > 0 if
1

λ1
� |ξ| � λ1, (4.75)

∫

Rn
xγ θ(x)dx = 0 if |γ | � L, (4.76)

and

θ̂0(ξ)ψ̂0(ξ) +
∞∑

j=1

θ̂
(
N−1

j ξ
)
ψ̂ j(ξ) = 1, for all ξ ∈ Rn, (4.77)

where the functions ψ j ∈ S are defined by

ψ̂0(ξ) = ϕN
0 (ξ)

θ̂0(ξ)
and ψ̂ j(ξ) = ϕN

j (ξ)

θ̂
(
N−1

j ξ
) for j ∈ N. (4.78)

Let us mention that the difference to the classical result is due to the fact
that the functions ψ j are in general not obtained simply by dilation from a fixed
function ψ.

Proof. Recall (ϕN
j ) j∈N0 ∈ ΦN is fixed.

Let, as in [FrJa85, Theorem 2.6], Θ ∈ S be a real-valued radial function
satisfying

supp Θ ⊂ {x ∈ Rn : |x| � 1} and Θ̂(0) = 1.

Then, for some 1 > ε > 0, we have Θ̂(ξ) � 1/2 for all ξ satisfying |ξ| < ελ1.
Then

θ(x) = ε−n (−∆)L Θ
( x

ε

)

satisfies requirements (4.73)–(4.77).
Since θ̂(N−1

j ξ) � c > 0 for λ−1
1 N j � |ξ| � λ1 N j , using λ−1

1 N j � N j−1

and N j+1 � λ1 N j one has θ̂(N−1
j ξ) � c > 0 for any ξ ∈ supp ϕN

j ⊂ {ξ ∈ Rn :
N j−1 � |ξ| � N j+1}.
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Consequently, the functions ψ j are well defined for j � 1 and
∞∑

j=1

θ̂
(
N−1

j ξ
)
ψ̂ j(ξ) = 1 for any ξ ∈ Rn\ supp ϕN

0 .

Similarly one has to find θ0 with θ̂0(ξ) � c > 0 for any ξ ∈ supp ϕN
0 . Taking

a function Θ ∈ S such that Θ̂(ξ) � 1/2 for |ξ| � δN1 the function θ0 = δ−nΘ(x/δ)

satisfies the above mentioned requirement. Now one has to define the corresponding
function ψ0 and the proof is complete. ��
Remark 4.4.6. From the proof of the above lemma it is clear that for a given system
(ϕN

j ) j∈N0 ∈ ΦN and fixed functions θ0, θ ∈ S the associated system (ψ j) j∈N0 from
(4.78) satisfies

ψ̂ j(ξ) � 0 and supp ψ̂ j ⊂ {ξ ∈ Rn : N j−1 � |ξ| � N j+1} for any j � 1.

An easy application of Leibniz’s rule shows that, for any γ ∈ Nn
0, there is

a constant cγ > 0 (independent of j) such that

|Dγ ψ̂ j(ξ)| � cγ 〈ξ〉−|γ | for any ξ ∈ Rn.

Consequently, each function ψ̂ j is a Fourier multiplier in L p, as a simple application
of the scalar version of Proposition 3.1.1.

4.4.4. Proof of the atomic decomposition theorem.

Part I. Let g ∈ Fσ,N
p,q ; we use the method of M. Frazier, B. Jawerth and G. Weiss

from [FJW91, Theorem 5.11] to construct atoms and to decompose g as in (4.72).
Let θ0, θ , ψ0 and ψν functions in S satisfying (4.73)–(4.77).
Using θ̂(N−1

ν ξ) = Nn
ν [θ(Nν·)] (̂ξ) we have

g = θ0 ∗ ψ0 ∗ g +
∞∑

ν=1

θN−1
ν

∗ ψν ∗ g

and using the definition of the cubes Qνm we obtain the following equality in S′:

g(x) =
∑

m∈Zn

∫

Q0m

θ0(x − y)(ψ0 ∗ g)(y)dy

+
∞∑

ν=1

∑

m∈Zn

Nn
ν

∫

Qνm

θ(Nν(x − y))(ψν ∗ g)(y)dy.

We define, for every ν ∈ N and all m ∈ Zn ,

λνm = Cθ σν N
− n

p
ν sup

y∈Qνm

|(ψν ∗ g)(y)| , (4.79)

where Cθ = max
{

sup
|x|�1

|Dαθ(x)| : |α| � K
}
. Define also

ρνm(x) = 1

λνm
Nn

ν

∫

Qνm

θ(Nν(x − y))(ψν ∗ g)(y) dy, (4.80)

if λνm �= 0 and ρνm = 0 otherwise.
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Similarly we define, for every m ∈ Zn , the numbers λ0m and the functions ρ0m

taking in (4.79) and (4.80) ν = 0 and replacing ψ j and θ by ψ0 and θ0, respectively.

It is obvious that (4.72) is satisfied and it follows by straightforward cal-
culations, using the properties of the functions θ0, θ , ψ0 and ψ j , that ρ0m are
1M-N-atoms and that ρνm are (σ, p)M,L -N-atoms for ν ∈ N.

Finally, we will show that there exists a constant c > 0 such that ‖λ | f N
pq‖ �

c ‖g | Fσ,N
p,q ‖.

We have, for a fixed ν ∈ N,

∑

m∈Zn

λνmχ(p)
νm (x) = Cθ σν N

− n
p

ν

∑

m∈Zn

sup
y∈Qνm

|(ψν ∗ g)(y)| · N
n
p

ν χνm(x)

� c′ σν

(

sup
|z|�c N−1

ν

|(ψν ∗ g)(x − z)|
(1 + Nν|z|)r

(1 + Nν|z|)r

)

� c′′ σν (ψ∗
ν g)r(x),

since |x − y| � c N−1
ν for x, y ∈ Qνm and

∑

m∈Zn
χνm(x) = 1. Here r > n

min (p,q)
and

(ψ∗
ν g)r is the maximal function of J. Peetre, compare (4.26). It follows that

∞∑

ν=1

∑

m∈Zn

|λνm χ(p)
νm (·)|q � c

∞∑

ν=1

σq
ν (ψ∗

ν g)r(·)q, (4.81)

(with the usual modification if q = ∞) where c is a positive constant.

Now we have to use (4.81) and its counterpart for ν = 0 (which can be obtained
by a similar calculation) and get

∥∥λ
∣∣ f N

p,q

∥∥ � c

∥∥∥∥

( ∞∑

ν=0

σq
ν (ψ∗

ν g)r(·)q

)1/q ∣∣ L p

∥∥∥∥ � c′ ∥∥g
∣∣ Fσ,N

p,q

∥∥, (4.82)

(with the usual modification if q = ∞) and this completes the proof of the first
part of the theorem if we would be able to justify the last inequality in (4.82).

But the last inequality in (4.82) is nothing else than a simple application of
Proposition 3.2.1 taking in that theorem f = ( fν)ν∈N0 , where, for any ν ∈ N0,
the function fν is σν(ψν ∗ g) and the domain Ων is {ξ ∈ Rn : |ξ| � Nν+1} and
recalling the definition of the maximal functions from (4.25) and (4.26).

Part II. Reciprocally, assume now that g can be represented by (4.72), with M and
L satisfying (4.69) and (4.70), respectively. We will show that g ∈ Fσ,N

p,q and that
‖g | Fσ,N

p,q ‖ � c ‖λ | f N
pq‖ for some constant c > 0.

Let k0 and k be two functions in S such that supp k0, supp k ⊂ {x ∈ Rn :
|x| � 1} and |k̂0(ξ)| > 0 for |ξ| � N1, |̂k(ξ)| > 0 for 1

λ1
� |ξ| � λ1 and

∫

Rn
xαk(x) dx = 0 for any |α| � K. (4.83)
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Our intention is to apply Theorem 4.3.4. Let K be large enough such that
K � M − 1.

Temporarily let ν, j ∈ N0 , m ∈ Zn and x ∈ Rn be fixed; we start finding
convenient estimates for σ j (kN−1

j
∗ ρνm)(x).

Step II.1 Let j � ν and let again kN−1
j

(x) = Nn
j k(N j x). Then

σ j (kN−1
j

∗ ρνm)(x) = σ j

∫

|y|�1
k(y) ρνm

(
x − N−1

j y
)
dy.

Due to (4.66) the above integral is non-zero only if |x − N−1
j y − N−1

ν m| � c N−1
ν

which implies that x is located in some cQνm since
∣∣x − N−1

ν m
∣∣ �

∣∣x − N−1
j y − N−1

ν m
∣∣+ ∣∣N−1

j y
∣∣ � c N−1

ν + N−1
j � c′ N−1

ν .

According to (4.67) the derivatives Dαρνm exist if |α| � M so we can use Taylor’s
expansion theorem of order M for the function w �→ ρνm(w) on the set B(x, N−1

j )

(the ball centred at x and of radius N−1
j ).

Then we put w = x − N−1
j y and noting that if z ∈ B(x, N−1

j ) then z ∈ cQνm

we get the expansion

ρνm
(
x − N−1

j y
) =

∑

|α|�M−1

cα

(
x − N−1

j y − z
)α

Dαρνm(z) + RM(x, y), (4.84)

where

|RM(x, y)| � c max
|α|=M

(

N−|α|
j sup

z∈c′ Qνm

∣∣Dαρνm(z)
∣∣
)

� c′ N−M
j σ−1

ν N
n
p +M

ν χ̃νm(x)

= c′ σ−1
ν

(
N−1

j Nν

)M
χ̃(p)

νm (x), (4.85)

for some c, c′ > 0, where χ̃
(p)
νm is the p-normalised characteristic function of some

cube cQνm .
Recall that K is large enough such that K � M − 1; using the moment

conditions for the function k we obtain
∫
Rn (x − N−1

j y − z)α k(y)dy = 0 for all α

such that |α| � M − 1. Hence (4.84) and (4.85) yield
∣∣∣σ j (kN−1

j
∗ ρνm)(x)

∣∣∣ � c σ j σ
−1
ν

(
N−1

j Nν

)M
χ̃(p)

νm (x). (4.86)

Now using (4.3) and (4.1) we have, for j � ν,

σ j σ
−1
ν � d j−ν

1 = 2−( j−ν)(− log2 d1) and N−1
j Nν � λ

−( j−ν)

0 = 2−( j−ν) log2 λ0 .

Inserting the last estimates in (4.86) we get
∣∣∣σ j (kN−1

j
∗ ρνm)(x)

∣∣∣ � c 2−( j−ν)(− log2 d1+M log2 λ0) χ̃(p)
νm (x) = 2−( j−ν)δ χ̃(p)

νm (x),

(4.87)

for δ = − log2 d1 + M log2 λ0. Clearly δ > 0 since M satisfies the estimate (4.69).



54 W. Farkas, H.-G. Leopold

Step II.2 Let now j < ν. We chose K in (4.83) enough large such that, in addition,
K � L. Then

σ j (kN−1
j

∗ ρνm)(x) = σ j Nn
j

∫

Rn
k(N j y) ρνm(x − y)dy (4.88)

and, due to the support localisation of k, the above integration can be restricted to
the set {y ∈ Rn : |y| � N−1

j }.
We remark also that by our assumption on j and ν, and to the support localisation

for ρνm one has
∣∣x − N−1

ν m
∣∣ �

∣∣x − y − N−1
ν m

∣∣+ |y| � c N−1
ν + N−1

j � c′ N−1
j

and this implies that, if the above integral is non-zero, then x is located in some
cB jm , where B jm = {z ∈ Rn : |z − N−1

ν m| � N−1
j }.

Since k is a smooth function on Rn we may use Taylor’s expansion theorem
of order L for the function w �→ k(w) on the set B(zx, N j N−1

ν ) = {w ∈ Rn :
|w − zx | � N j N−1

ν }, where zx = z( j, ν, m, x) = N j(N−1
ν m − x).

After that we let w = N j y and get

k(N j y) =
∑

|α|�L

cα (N j y − zx)
α Dαk(zx) + RL(y, x), (4.89)

where
|RL(y, x)| � c

(
N j N−1

ν

)L+1

for some positive constant c since k is smooth and has compact support.
By the moment conditions (4.68) we have

∫
Rn (N j y − zx)

αρνm(x − y)dy = 0 if
|α| � L since we have chosen K � L; using (4.89) we may replace (4.88) by:

|σ j (kN−1
j

∗ ρνm)(x)| � σ j Nn
j

∫

|y|�N−1
j

|RL(y, x)| |ρνm(x − y)| dy

� c σ j Nn
j

(
N j N−1

ν

)(L+1)
∫

|y|�N−1
j

|ρνm(x − y)| dy.

Using (4.67) to estimate ρνm we get

|σ j (kN−1
j

∗ ρνm)(x)| � c σ j Nn
j

(
N j N−1

ν

)(L+1)
σ−1

ν N
n
p

ν

∫

|y|�N−1
j

χ̃νm(x − y) dy,

(4.90)

where χ̃νm is the characteristic function of some cube cQνm .
Let now χ jm be the characteristic function of the ball cB jm where x is located;

by a straightforward computation we have
∫

|y|�N−1
j

χ̃νm(x − y) dy � c N−n
ν χ jm(x). (4.91)
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Due to condition (4.70) on L we may choose an ω < min(1, p, q) such that

ω >
n log2 λ1

log2 d0 + (L + 1 + n) log2 λ0
. (4.92)

Denoting by Mχνm the Hardy–Littlewood maximal function of χνm we get

χ jm(·) � c
(
N−1

j Nν

) n
ω (Mχνm(·))1/ω . (4.93)

Finally, using (4.91) and (4.93), the estimate (4.90) becomes

|σ j (kN−1
j

∗ ρνm)(x)|
�c σ j Nn

j

(
N j N−1

ν

)(L+1)
σ−1

ν N−n
ν

(
N−1

j Nν

) n
ω
(
Mχ̃(p)

νm (x)
)1/ω

, (4.94)

where again χ̃
(p)
νm is the p-normalised characteristic function of some cube cQνm .

Now using (4.3) and (4.1) we have, for j < ν,

σ j σ−1
ν � d−(ν− j)

0 = 2−(ν− j)(log2 d0),

N j N−1
ν � λ

−(ν− j)
0 = 2−(ν− j) log2 λ0 and N−1

j Nν � λ
ν− j
1 = 2−(ν− j)(− log2 λ1)

so that (4.94) becomes

|σ j (kN−1
j

∗ ρνm)(x)|
� c 2−(ν− j) log2 d0 2−(ν− j)(L+1+n) log2 λ0 2−(ν− j) n

ω (− log2 λ1)
(
Mχ̃(p)

νm (x)
)1/ω

= c 2−(ν− j)ε (Mχ̃(p)
νm (x)

)1/ω
, (4.95)

where
ε = log2 d0 + (L + 1 + n) log2 λ0 − n

ω
log2 λ1 > 0,

due to our choice of ω, see (4.92).
Remark that the terms with j = 0 and/or ν = 0 can also be covered by the

technique in Steps II.1–2.

Step II.3 Using (4.87) and (4.95) we get, for 0 < q � 1,

∣∣∣∣σ j(kN−1
j

∗
∞∑

ν=0

∑

m∈Zn

λνmρνm)(x)

∣∣∣∣

q

� c
∑

ν� j

∑

m∈Zn

|λνm |q 2−δ( j−ν)q χ̃(p)q
νm (x) +

+ c′ ∑

ν> j

∑

m∈Zn

|λνm |q 2−ε(ν− j)q (Mχ̃(p)
νm (x)

)q/ω
,

with δ, ε > 0, with the usual modification if 1 < q �∞.
We sum over j , take the 1

q -th power and then the L p-quasi-norm and obtain
that ∥∥∥∥

( ∞∑

j=1

σ
q
j

∣∣∣∣

(
kN−1

j
∗

∞∑

ν=0

∑

m∈Zn

λνmρνm

)
(·)
∣∣∣∣

q)1/q

| L p

∥∥∥∥
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can be estimated from above by

c

∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

|λνm |q χ̃(p)
νm (·)q

)1/q ∣∣∣∣ L p

∥∥∥∥

+ c′
∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

|λνm |q (Mχ̃(p)
νm (·))q/ω

)1/q ∣∣∣∣ L p

∥∥∥∥, (4.96)

with the usual modification if q = ∞.
The first term of (4.96) is just what we want since χ̃

(p)
νm can be replaced by χ

(p)
νm .

With hνm = λνm χ
(p)
νm the second term of (4.96) can be written as

c′′
∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

Mhω
νm(·)q/ω

)ω/q ∣∣∣∣ L p/ω

∥∥∥∥

1
ω

(usual modification if q = ∞). Recall that 1 <
p
ω

< ∞ and 1 <
q
ω
� ∞ so that

we can apply the Fefferman–Stein inequality and again obtain what we want.
The term with j = 0 can be incorporated by the same technique. ��

4.4.5. Comments

Remark 4.4.7. Let d > 0 be given, let ν ∈ N0 and m ∈ Zn fixed and let us denote
by Rνm a cube with sides parallel to the axes, centred at xνm where

∣∣xνm − N−1
ν m

∣∣ � d N−1
ν , (4.97)

and with side length N−1
ν .

Then let c > 0 be chosen in dependence of d such that, for every choice of
ν ∈ N0 and all choices of xνm in (4.97), we have

⋃

m∈Zn

cRνm = Rn. (4.98)

It is clear from the previous proof that we may replace in Definition 4.4.1 the cube
Qνm by Rνm , with the number c being from (4.98).

A similar remark in the classical case (Nν = 2ν and σν = 2νs, s ∈ R) turned
out to be very useful in the work of H. Triebel and H. Winkelvoß, [TrWi96].

Remark 4.4.8. Let σ = (σ j) j∈N0 be an admissible sequence. A lower, respectively
a upper, index of the sequence σ , was introduced in [Br02] by

s(σ) = lim inf
j→∞ log

(
σ j+1

σ j

)
and s(σ) = lim sup

j→∞
log

(
σ j+1

σ j

)
; (4.99)

clearly, based on (4.3), the above numbers are finite and they satisfy s(σ) �
s(σ). Moreover, for any d∗

0 < 2s(σ) and for any d∗
1 > 2s(σ) there exists a natural

number J = J(d∗
0 , d∗

1) such that d∗
0 σ j � σ j+1 � d∗

1 σ j , for any j � J. Similar
considerations hold true (with obvious appropriate changes) for an admissible
sequence N = (N j) j∈N0 .

However a change of the sequences σ and N in the first J terms will not change
the spaces Bσ,N

p,q , respectively Fσ,N
p,q , up to equivalent quasi-norms.
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Based on the above remark and following the proofs in the previous sections,
it is clear that we may replace in the statements of the main results (local means
and atomic decomposition theorem) the numbers d0 and d1 by 2s(σ), respectively
2s(σ), and the numbers λ0 and λ1 by 2s(N), respectively 2s(N).

More precisely, the assumption λ0 > 1 in (4.1) has to be replaced by s(N) > 0
and in Theorem 4.3.4 (local means) condition (4.27) can be replaced by

K > −1 + s(σ)

s(N)
. (4.100)

Moreover, in Theorem 4.4.3 (atomic decomposition) one can replace condition
(4.69) by

M >
s(σ)

s(N)
, (4.101)

and condition (4.70), respectively (4.71), by

L > −1 + n

(
s(N)

s(N)

1

min(1, p, q)
− 1

)
− s(σ)

s(N)
, (4.102)

respectively

L > −1 + n

(
s(N)

s(N)

1

min(1, p)
− 1
)

− s(σ)

s(N)
. (4.103)

4.5. Examples

For people interested in concrete situations we would like to point out in this section
how our main results (the theorem on local means and the atomic decomposition
theorem) look in some special cases.

4.5.1. The classical case. As we have already mentioned several times in this
work, if N j = 2 j , and σ j = 2 js, s ∈ R, then the spaces Bσ,N

p,q and Fσ,N
p,q are the

classical spaces Bs
p,q and Fs

p,q .
Condition (4.1) is fulfilled with λ0 = λ1 = 2. Moreover, condition (4.3) is

fulfilled with d0 = d1 = 2s.
The restriction (4.27) in the theorem on local means is then K > −1 + s. Note

that if s < 0 there are no moment conditions needed. Theorem 4.3.4 coincides
with the result of H.-Q. Bui, M. Paluszyński and M. Taibleson as it was already
mentioned.

The restrictions (4.69), (4.70), respectively (4.71), and their counterparts, in
the atomic decomposition theorem are M > s and

L > −1 + n

(
1

min(1, p, q)
− 1

)
− s,

respectively

L > −1 + n

(
1

min(1, p)
− 1

)
− s,

which are essentially the restrictions from the works of M. Frazier and B. Jawerth,
cf. also the formulation in [Tr97].
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4.5.2. The spaces B(s,Ψ)
p,q and F(s,Ψ)

p,q . In Example 2.2.5 we mentioned that if s ∈ R
is fixed and

σ j = 2 jsΨ(2− j), j ∈ N0,

where Ψ is a positive monotone function on (0, 1] such that there are positive
constants b0 and b1 with

b0 Ψ(2− j) � Ψ(2−2 j) � b1 Ψ(2− j) for all j ∈ N0,

then σ is an admissible sequence with appropriate d0 = b′
0 2s and d1 = b′

1 2s in
(2.2).

If, in addition N j = 2 j then the spaces Bσ,N
p,q and Fσ,N

p,q are the spaces B(s,Ψ)
p,q and

F(s,Ψ)
p,q considered in [Mo99] and [Mo01].

Condition (4.1) is fulfilled with λ0 = λ1 = 2.
The restriction (4.27) in the theorem on local means is then K > −1 + s +

log2 b1.
The restrictions (4.69), (4.70), respectively (4.71), in the atomic decomposition

theorem are M > s + log2 b′
1 and

L > −1 + n

(
1

min(1, p, q)
− 1

)
− s − log2 b′

0,

respectively

L > −1 + n

(
1

min(1, p)
− 1

)
− s − log2 b′

0.

Our conditions concerning the constants K , L and M are slightly different (because
of the additional log-terms) from those in the atomic decomposition of S. Moura,
see [Mo01, Theorem 1.18], which was proved directly for the spaces B(s,Ψ)

p,q and
F(s,Ψ)

p,q themselves.

4.5.3. Function spaces associated to a continuous negative definite function.
We have already mentioned in the Introduction as well as in Section 3.3 that in
[FJS01a] and [FJS01b] Bessel potential spaces Hψ,s

p (Rn) associated to a continuous
negative definite function ψ : Rn → R were introduced and studied in the context
of constructing a Markov process starting in every point of Rn .

Recall (3.19) for the norm in Hψ,s
p (1 < p < ∞, s ∈ R).

In Section 3.3 we have noticed that considering the continuous negative definite
function ψ : Rn → R of the form ψ(ξ) = f(1 + |ξ|2), ξ ∈ Rn , where f is
a Bernstein function with lim

t→∞ f(t) = ∞, then the spaces Hψ,s
p (Rn) can be regarded

as function spaces of generalised smoothness.
More precisely, if ψ(ξ) = f(1 + |ξ|2) then Corollary 3.1.21 leads to

H f(1+| · |2),s
p = Fσs ,Nψ,2

p,2 ,

where, as usual, σ s = (2 js) j∈N0 and the sequence Nψ,2 = (Nψ,2
j ) j∈N0 is determined,

cf. (3.17), as follows

Nψ,2
j = sup

{|ξ| : f(1 + |ξ|2) � 22 j} for any j ∈ N0.
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For simplicity let N j = Nψ,2
j . Obviously (N j ) j∈N0 is increasing. Clearly, for

any j , there exists a ξ( j) such that |ξ( j)| = N j and consequently f(1 + N2
j ) =

f(1 + |ξ( j)|2) = 22 j .

• Each Bernstein function satisfies f(ct) � c f(t) for any c � 1 (see for example
[Ja01, Lemma 3.9.34]) so that f(4 · (1 + N2

j )) � 4 · f(1 + N2
j ) = 22( j+1) which

immediately implies 2 N j � N j+1. Consequently N = (N j) j∈N0 is strongly in-
creasing and satisfies the first inequality in (4.1) with λ0 = 2.

• Unfortunately, for general Bernstein functions f with lim
t→∞ f(t) = ∞ the inequal-

ity N j+1 � λ1 N j is not always satisfied.
However, if the Bernstein function f with lim

t→∞ f(t) = ∞ additionally satisfies

there is an r ∈ (0, 1] such that t �→ f(r)(t) = f(t)

tr
is increasing, (4.104)

then N j+1 � λ1 N j for some λ1 > 1, at least if λ1 satisfies λ2
1 � 22/r + (22/r −

1) N−2
0 . Indeed, from f(r)(1 + N2

j ) � f(r)(1 + N2
j+1) we get N2

j+1 � 22/r N2
j +

22/r − 1 � λ2
1 N2

j for any such λ1.
Note that in (4.104) one cannot assume r = 0. One should also note that the

function f(t) = log(1 + t) does not satisfy condition (4.104) whereas the functions√
t log(1 + √

t) and
√

t(1 − exp(−4
√

t)) satisfy condition (4.104) with r = 1/2.
One should also note that (4.104) is in some sense not surprising since it implies

f(t) � c tr for large t and this leads to ψ(ξ) = f(1+|ξ|2) � C (1+|ξ|2)r if ξ ∈ Rn .
When treating continuous negative definite functions, the last inequality is

a restriction often used, see, for example, [Ja01] and the references therein.

Consequently, if f is a Bernstein function with lim
t→∞ f(t) = ∞ which satisfies

(4.104) condition (4.1) is fulfilled with λ0 = 2 and with some λ1 with λ1 �
21/r � 2.

Clearly condition (4.3) is fulfilled with d0 = d1 = 2s.
The restriction (4.27) in the theorem on local means is then K > −1 + s.
The restrictions (4.69) and (4.70) in the atomic decomposition theorem are

M > s and

L > −1 + n

(
log2 λ1

min(1, p, 2)
− 1

)
− s = −1 + n

(
log2 λ1 − 1

)− s.
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