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1. Introduction

Function spaces of generalised smoothness have been introduced and considered
by several authors, in particular since the middle of the seventies up to the end of
the eighties, with different starting points and in different contexts.

The Steklov Mathematical Institute in Moscow was the starting point for many
contributions to the topic. M.L. Goldman and G.A. Kalyabin developed indepen-
dently an approach via the approximation by series of entire analytic functions and
coverings, see for example [Go79], [Go80], [Ka77a] and [Ka80]. Another approach
is due to M.L. Goldman, see [Go84a], who gave a systematic treatment based on
differences and moduli of the continuity of those type of spaces. His setting has
PL. Ul’'yanov (1968) and A.S. Dzhafarov (1965) as forerunners.

In both cases mentioned above, the spaces consist of functions belonging to L,
with additional smoothness properties.

Many remarkable and final results were obtained, for example results concern-
ing embeddings in different kinds of spaces of smoothness level zero, equivalent
norms, trace theorems and estimates of capacities. The survey [KaLi87], the sup-
plement in [Tr86], or [KuNi88, Chap. 5 §4] cover, in particular, the literature up to
the end of the eighties in this direction.

In our work we will take up some basic ideas from the above settings but now
from the standpoint of a Fourier analytic characterisation. This allows us to obtain
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the description of the full scale of spaces, including spaces of negative smoothness
and duality results.

Further, spaces of generalised smoothness defined on ideal spaces E as basic
spaces, instead of L ,, were considered in [Go86], [G092], [Ne88], and in [Ne&9].

Moreover, at the end of the eighties C. Merucci, see [Me83], F. Cobos and
D.L. Fernandez, see [CoFe86], investigated some classes of function spaces of
generalised smoothness. More precisely they characterised interpolation spaces
between L, and W’p‘ which were obtained with respect to a generalised real inter-
polation method.

We have noticed an increasing interest in spaces of generalised smoothness
in the last years. First of all, this interest is in connection with embeddings,
limiting embeddings and entropy numbers. We mention here the papers [Le98],
[EGO97], [EdHa99], [OpTr00] where such problems were considered. Further-
more, in [Bu99] function spaces of generalised smoothness are investigated in
order to characterise properties of bounded extension operators from W;,(.Q) into
function spaces on R” for arbitrary bounded open domains §2 with 952 € Lip y,
O<y <L

Additionally, in connection with generalised d-sets and /-sets (special fractals)
those spaces appeared in a natural way in [EdTr98], [EdTr99], [M099], [MoO1],
and in [Br02].

We would like to point out that function spaces of a variable and generalised
order of smoothness play a key role in other mathematical fields such as probability
theory and the theory of stochastic processes.

At least since the publication of M. Fukushima’s work, see [Fu71], on Dirich-
let forms and Markov processes, the (functional) analytic approach to stochastic
processes turned into the centre of probabilists interest. More precisely, the point
of view based on the relation of Fourier analysis and Markov processes, a sub-
ject which was first taken up by P. Lévy and by S. Bochner when discussing
stochastically continuous processes with stationary and independent increments,
is at present an area of intensive development, see the books of N. Jacob [Ja96],
[JaO1], and the references therein.

In the problem of construction and investigation of Lévy and special Markov
processes, function spaces of generalised smoothness of Bessel potential type
appear in a natural way.

The key observation is that every Lévy process (Y;),>0 with state space R" and
related to a translation invariant symmetric Dirichlet form is completely determined
by one and only one function ¢ : R* — C, which is defined by the relation

E(eiy"é) — o ®)

The function v, called the characteristic exponent of (Y¥;),>0, is a continuous
negative definite function and contains all the information about (Y;),>0. By the
exact characterisation of the domain of definition of the related semigroup one can
get information about the process.

Furthermore, as a matter of fact every reasonable Feller process with state
space R" is characterised by a family (parametrised by R") of continuous negative
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definite functions. More precisely, following [Ja98], see also [Sc98b], for the Feller
process ((X;);>0, P*)rern one finds that

) E* (ei(thx)E) -1

—q(x,8) = lflg)l ,
is the symbol of the generator of the semigroup

Tu(x) = E*(u(X))

associated with ((X;);>0, P*)xern, i.€. on C3° (R") we have

Au(x) = —q(x, Dyu(x) = —(2m) "> /R ) g, U ds. (1.1

Moreover, &€ — g(x, &) is for each x € R" a continuous negative definite function.
This result complements a theorem of Ph. Courrége, see [Co66], which states that
on Ci°(R") the generator of a Feller semigroup necessarily has the structure (1.1).

Now, assuming for example that g(x, §) ~ (&), where ¢ : R" — R is a fixed
continuous negative definite function (independent of x), one should expect that
the operator g(x, D) behaves up to a perturbation like (D). Hence the scales of
spaces associated with ¥ should play for g(x, D) the same role as Sobolev or Besov
and Triebel-Lizorkin spaces do for elliptic operators in the classical situation, i.e.
for operators with symbol g(x, £) ~ |£]*".

This topic was discussed in [FJSO1a] and [FJSO1b] where the role played by
some generalised Bessel potential spaces, which are domains of definition for
L ,-generators of sub-Markovian semigroups, is pointed out. In particular the ob-
taining of embedding theorems for those spaces was a central point in that investi-
gation.

The aim of this paper is twofold. The first is to give a unified approach on
function spaces of generalised smoothness and the second one is to characterise
these spaces in terms of new tools such as local means and atoms.

Our approach has as background the Fourier-analytic characterisation of func-
tion spaces based on a suitable resolution of unity on the Fourier side and a suitable
weighted summation of the resulting parts.

Any temperate distribution f € §’(R") is decomposed in a sum of entire ana-
lytic functions (¢; f)v. This decomposition in the Fourier-image is in the classical
case usually related to the symbol of the Laplacian and to the sequence 2/. Then
this sequence of entire analytic functions (¢ j]"\)v is considered in L, and after-
wards in a weighted /, space with weight sequence 2*/ in the case of B, ,(R"),
and vice-versa for F° );, q(R”). These two scales B;, q(R") and F 1‘, q(R") contain, as
special cases, many well-known spaces such as Holder—Zygmund spaces, Sobolev
spaces, fractional Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces and
spaces of BMO-type.

To extend the classical construction to the case of generalised smoothness we
replace the sequences 2/ and 2%/ by two sequences N and o. The first is strongly
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increasing and determines the decomposition on the Fourier side. The second
one is the weight sequence for /, and is, together with its inverse, of bounded
growth.

We show that such a construction is suitable and covers many classes of function
spaces of generalised smoothness known so far in the literature. Furthermore we
give a comprehensive study of those spaces including Littlewood—Paley theorems,
existence of a lift operator and duality. A main point is also an equivalent char-
acterisation of some generalised Bessel potential spaces — introduced in [FJSO1a]
and [FJSO1b] in connection with the problem of constructing Markov processes —
in our context as function spaces of generalised smoothness.

In the eighties and nineties new far-reaching tools for classical spaces Bj, , (R")
and F,  (R") have been developed. The key words are maximal functions, local
means, atomic and, most recently, quarkonial decompositions.

First, under some mild restrictions on the sequence N determining the decom-
position on the Fourier side, we prove a general characterisation of these spaces
in terms of maximal functions and local means, which essentially generalises the
characterisation from [BPT96] and [BPT97] of H.-Q. Bui, M. Paluszynski, and
M. Taibleson (which complemented some earlier results of J. Peetre, see [Pe75],
and H. Triebel, see [Tr88] and [Tr92]). This result (see the precise formulation in
Theorem 4.3.4) is of independent interest but it played the key role in proving the
central result of this paper, the atomic decomposition theorem.

Entire analytic functions may be considered as building blocks for the spaces
By, q(R”) and F}, q(R”) in the sense described above or in the sense of approxima-
tion theory.

However there is a well known other type of decomposition in simple building
blocks, the so-called atoms. They have a history of some twenty years and in [Tr92,
Sect. 1.9] a historical report was given on this topic; we do not repeat it here. We
only want to mention that the (smooth) atoms in B‘;)q (R™) and F ;q (R™) spaces as
they were defined by M. Frazier and B. Jawerth in [FrJa85], [FrJa90] (cf. also
[FIWO91]), proved to be a powerful tool in the theory of function spaces. We also
wish to emphasise that there exist many other types of atomic decompositions
in such spaces but we will not discuss this point here. More information about
this subject is given in [FrJa90], [Tr92] and [AdHe96] where one can find many
modifications and applications as well as comprehensive references extending the
subject.

We conclude our work by obtaining a decomposition theorem which extends
the atomic decomposition theorem of M. Frazier and B. Jawerth, see [FrJa85] and
[FrJa90], to the function spaces B Y (R") and F7 ) (R").

Consequently, the study of function spaces can be done with the help of some
sequence spaces in an analogous way as it is done in the classical (isotropic) case
in the above cited works of M. Frazier, B. Jawerth and H. Triebel.

In a forthcoming paper we will use the atomic decomposition theorem in
the study of mapping properties for pseudo-differential operators on some func-
tion spaces of generalised smoothness. In particular this will allow us to discuss
conditions under which pseudo-differential operators are generators of L ,-sub-
Markovian semigroups.
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Briefly here is the organisation and contents of this paper.

We tried to make our exposition as self-contained as possible so that Sec-
tion 2 has a preparatory character. We set up notation and introduce the sequences
determining the generalised smoothness.

The first sequence is a so-called strongly increasing sequence N = (N;) jen,
(an almost increasing sequence such that, additionally, there exists a natural number
ko with 2N; < Ny for all j and all k with j 4 ko < k, see the precise formulation
in Definition 2.2.1) which generalises the sequence (2% jeN, and induces a decom-
position in R” in the sets .ij ={EecR": [§| < Njytforj=0,1,...,6 —1
and .Q;V ={£eR" : Nj_, <I§] < Njpy) for j > ko. To this decomposition of
R" there is associated a family (goﬁ.v ) jen, of compactly supported smooth functions
which extends the classical partition of unity. We then have a decomposition of any
tempered distribution f into a series of entire analytic functions f; = ((pj.v ]/(\)V like
in the classical case.

Secondly, we will consider a so-called admissible sequence o = (o) jen, (i.€.
it satisfies dyo; < 0j41 < dio; forany j € Np) which generalises the sequence
(27%) jeN, and which is a smoothness weight for the different functions f;. We
want to point out that an admissible sequence o is considerably more general
than (27) jen, or than (27W(277)) jen, (for monotone functions ¥ on (0, 1] with
w277y ~ @(27%))), see Example 2.2.7.

In Section 3, for given sequences N and ¢ and for 1 < p <00, 1 < g < 00,
Besov, respectively Triebel-Lizorkin, spaces of generalised smoothness are de-
fined as Athe collection of all tempered distributions f s1fh that || f'| B;’:g’ | =
loj (@ )Y gLyl respectively [ £ | FENI = lloj(@Y )Y [ Lyl is finite,
see Definition 3.1.2.

To show that the definition of the spaces is consistent, one has to use the classical
Fourier-multiplier theorem of the Michlin-Hormander type (for convenience we
recall it in Proposition 3.1.1). It is easy to show that standard properties in the
classical situation, such as the density of test functions 4 (for appropriate values
of the parameters) are still true.

Then we prove a theorem of Littlewood—Paley type: FZ,(;N = L, for any
strongly increasing sequence N (here o° denotes the sequence with all terms equal
to 1), we prove embeddings on the level of zero-smoothness, we show the existence
of a lift operator between spaces Bf; i]v and Bg:;v (and also for F-spaces) and finally
we prove a duality result.

In particular in Subsection 3.1.2 we study some special classes of function
spaces of generalised smoothness, those in which the strongly increasing sequence
N = (Nj)jen, is obtained from a smooth, given, so-called admissible function
(see Definition 3.1.11) in a canonical way. In particular the considerations in this
subsection allow us to treat some Bessel potential spaces introduced in [FJSO1a]
and [FJSO1b] (which appear in the context of Markov processes).

To extend the definition of the spaces of generalised smoothness to p = oo,
p =1and 0 < p < 1, an additional assumption on the sequence N is necessary,
namely that sequence N has to be not only strongly increasing but also of bounded
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growth. The reason is that we have to use in these cases another Fourier-multiplier
theorem than before. A brief discussion is contained in Subsection 3.2.
Subsection 3.3 illustrates how our approach covers many classes of function
spaces of generalised smoothness known up to now in the literature.
Simultaneously, due to the flexibility of the admissible sequence o, this covering
is a strict one.

Finally, Section 4 contains the main results of this work. Under the assumption
that the sequence N = (N;) jen, satisfies Ao Nj < Nj41 < Ay Nj4 forany j € No,
with some constants 1 < Xy < A;, we prove the characterisation with local means
and the atomic decomposition theorem.

The theorem on local means (Theorem 4.3.4) is highly technical and its proof
required (compared with the classical situation) new techniques and ideas. We
summarised the basic ideas of the proof in Subsection 4.3.4.

Roughly speaking, the atomic decomposition theorem states that, for any
g€ B(p’*’ i]v (R™), it is possible to find a decomposition (convergence in §'(R"))

)
8= Z Z Avm Pvm s

v=0 meZ"

where p,, are the N-atoms and A = {A,, : v € No,m € Z"} belongs to an
appropriate sequence space b, 4, such that

lg| BGY ®R™|| ~inf |1 ]byqll,

where the infimum is taken over all admissible representations of g and

oo a/p\ V4
I 1bpgll= (D (Z MWV’)

v=0 \meZ"

(with the usual modification if p = oo and/or ¢ = 00), and a corresponding

assertion for F7: év (R™) spaces. The precise formulation is given in Theorem 4.4.3.

Finally we would like to mention that it is to be expected that our main results
have an anisotropic counterpart but, due to the technical complications, no attempt
in this direction has been made here.

Acknowledgements. 1t is a pleasure to give our warm thanks to Professor Niels Jacob for
fruitful discussions and encouragement.

We also thank Michele Bricchi for his comments on a preliminary version ([FaLeO1])
of this paper.

2. Preliminaries

2.1. Notation

Let N be the collection of all natural numbers and Ny = NU{0}. Let R” be Euclidean
n-space, where n € N; as usual R = R!. For x € R” let (x) = (1 + |x|?)!/%.
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If @« = (a1, ...,4) € Nfj is a multi-index its length is || = o + ... + a,
the derivatives D“ have the usual meaning and if x = (xy,...,x,) € R” then
x¥% :x?] ...xgn_
Let 8(R") be the Schwartz space of all complex-valued rapidly decreasing
infinitely differentiable functions on R" equipped with the usual topology. By
&' (R™) we denote its topological dual, the space of all tempered distributions on R”.

If ¢ € S(R") then

PO =Fo®) =0m? / e g(x) dx
Rn
and § = F !¢ are, respectively, the Fourier and inverse Fourier transform of ¢.
One extends F and F~! in the usual way from 8(R") to 8'(R"). For ¢ € 8(R")
and f € 8’(R") we will use the notation (D) f(x) = [F ' (¢F )]1(x), where this
is the extension of

o(DYY(x) = 2)" A n /R ey ) dyds, € SR

to elements f € §'(R").
Furthermore, L,(R") with 0 < p < oo, is the standard quasi-Banach space
with respect to the Lebesgue measure, quasi-normed by

1/p
11 LR = ( /R n If(x)l”dx> ,

with the obvious modification if p = co.

We adopt here and in the sequel the following convention: if there is no danger
of confusion we omit R” in 4(R") and in the other spaces below.

Let0 < g < oo, then/, is the set of all sequences (a)en, of complex numbers

such that
o0 1/q
I(ar)keny | Lgll = (Z w) < o0,

k=0
with the obvious modification if ¢ = oo.
Let0 < p<ooand 0 < g < oo. If (fi)ren, is a sequence of complex-valued
Lebesgue measurable functions on R”, then

00 a/p\ /4
Il (fidreng g (Lp)|l = <Z (An |fk(x)|1’dx> )
k=0

and
1/p

) r/q
ICfokeny | Lyl = fR ) (Z |fk(x)|q) x| .
k=0

again with obvious modifications if p = oo and/or g = co.

The equivalence a; ~ by or ¢(x) ~ ¥(x) means that there are two positive
constants ¢ and ¢; such that ciay < by < caar or cip(x) < Y(x) < c0(x), for
all admissible values of the discrete variable k or of the continuous variable x.

All unimportant positive constants are denoted with ¢, occasionally with addi-
tional subscripts within the same formulae.
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2.2. Sequences

Definition 2.2.1. A sequence y = (y;) jen, of positive real numbers is called:

(i) almost increasing if there is a positive constant dy such that
doyj <y forall j and k with 0<j<k;

(ii) strongly increasing if it is almost increasing and, in addition, there is a natural
number K such that

2y <y forall j and k with j+ko <k;

(iii) of bounded growth if there are a positive constant dy and a number Jy € Ny
such that

Yit1 Sdvyj forany j = Jo.

Remark 2.2.2. 1tis easy to see that each sequence y = (¥;) jen,, With the property
that there is a constant Ao > 1 such that

Aoyj < Yj+1 forall jeN, (2.1

is strongly increasing in the sense of the above definition. However, not every
strongly increasing sequence satisfies property (2.1).

Example 2.2.3. The sequence y = (y;) jen, With y; = 27(1 + j)®, where § > 0,
b € R, is strongly increasing and of bounded growth, whereas y = (y;) jen, With
y; = j!is strongly increasing but not of bounded growth. Finally, the sequence
vy = (¥j) jen,, With y; = j, is not strongly increasing, but of bounded growth.

As it was already mentioned in the Introduction, in the function spaces we will
consider in this work we will have two parameters determining the generalised
smoothness.

First we will deal with a sequence N = (N;);en, which will be strongly
increasing in the next section and additionally of bounded growth in the main
theorems of this work (local means and atomic decompositions).

Secondly, we will consider a sequence o = (0;) jen, Which can be considered
as a smoothness weight on the different functions f;, which are the result of the
decomposition on the Fourier side. This sequence will fulfill

dO gj < 6j+1 g dl O'j for all J € N, (22)

with two positive constants dy and d;. In other words, both (¢7;) jen, and (crj_l ) jeNy
are of bounded growth.

Sequences o satisfying (2.2) will be called admissible sequences.

To illustrate the flexibility of the last condition we give some examples:



Characterisations of function spaces of generalised smoothness 9

Example 2.2.4. The sequence o = (07;) jeN,
oj =2 1+ )’ +log (1 + )", (2.3)

with arbitrary fixed real numbers s, b and c, is the standard example of an admissible
sequence and it can be considered in some sense as a model sequence. However,
as it is shown in the next examples, the general definition also includes other
sequences, which cannot be reduced to the one above or to a similar one.

For any s € R we will denote

o = (%) jery- (2.4)

Of course, o is a special case of (2.3) with b = 0 and ¢ = 0. In particular o will
denote the sequence with all terms equal with 1.

Example 2.2.5. Lets € R be fixed and
o; =2"w27), jeN,,

where V¥ is a positive monotone function on (0, 1] and there are positive constants
by and b such that, for all j € Ny,

boW(2™7) < W27y < by w(27).

Then it is easy to see that o is an admissible sequence.
This example goes back to [EdTr99] and gives a qualitative description of the
model case in Example 2.2.4 with fixed main order 2/°.

Example 2.2.6. Let (ji)en, be a strongly increasing sequence of natural numbers,
defined recursively by

Jo=0, ji=1, jy=2ju1— juo, Jjup1 =27, leN.

The sequence (aj) jeN, 1s defined by

=1 .21'21 it ju < j< jug
J T ) 242 4G if Jore1 < J < Jaga.

Then o is an admissible sequence. Moreover, the sequence (aj) jen, oscillates
between () jen, and (27) jen, i.€.

and there exist infinitely many ;' and j”

respectively.

such that o, = j' and 0, = 20",

Example 2.2.7. Lets € R be fixed and (o j) jeN, be the above sequence. If

. 0Js
Tp =2 o,
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then 7 is admissible. (t;);en, oscillates between (j 25%) jen, and (276D oy,
ie.
jzjs < _L,j < 2](s+1)

and, again, infinitely many 7; equal the left-hand side or the right-hand side of the
above double inequality.

Remark 2.2.8. We would like to point out that the last two examples, which are
due to G.A. Kalyabin, show that an admissible sequence does not have necessarily
a fixed main order. Consequently the class of admissible sequences is larger than
the class described in Example 2.2.5.

2.3. Decompositions

For a fixed strongly increasing sequence N = (N;) en, and a fixed J € N we
define the associate covering 2V = (2"/) jen, of R" by

QV ={EeR" : |E| < Njjug) if j=0.1,...Jko—1, (2.5)
and
Q0 = {6 €R" : Nj_jy <IEI < Njvuo) if Jj=Jko, o+ 1,.... (2.6)

From the above definition it is obvious that each .Q;V ' hasa non-empty intersection

with at most 2(J + L + 1)k different sets .Q,iv ‘L from a covering associated to the
same sequence N = (N;) jen,-

For a fixed strongly increasing sequence N = (N;) jen,, a fixed J € N, and for
the associated covering 2"/ = (.Q;.V’J) jeny, of R”, let @/ be the collection of

all function systems ™/ = ((p?”l)jeNO such that:

() ¢} e CPR") and ¢}/ (€ >0 if & € R" forany j € No; (2.7)

(ii) suppe’ c 237 (2.8)
(iii) for any y € Nj there exists a constant ¢, > 0 such that for any j € Ng
D76} ®)] <y (§)77 forany &R (2.9)
(iv) there exists a constant ¢, > 0 such that
oo
0<> ¢ ® =c, <00 forany &eR" (2.10)
j=0

By the relatively free choice of the sequence (N;) jen, the construction of func-
tion systems (¢;) jeN, satisfying properties (2.7)—(2.10)1s a little more complicated
as in the classical case. We give a complete description in the following examples.
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Example 2.3.1. Let pe C3°(R) with p() =1if 1] <1,suppp C {r e R : 1| <2},
and decreasing for ¢ > 0.

A. Let
oV @ =p(N7'E) =01, Tk —1
or
Jko—1
Pl 1 ® = > p(NIEN. @) =0f j=0,1,.... Jg -2,
k=0
and

oY’ (& = p(N7'I&l) — o(N; ) [E])  forany j > Jko.

Then it is easy to see that the system ¢/ = ((pj.V‘J) jen, satisfies (2.7)-(2.10) with
cy = koJ.

B. Let also
2J+1)kg
WE= > eul® with 9 g =-- - =¢1=0.
r=—Q2J+1kg

Then (g[/,ﬁv )keN, 18 a function system which satisfies properties (i)—(iii) from above
with respect to the covering £2"3/%2 | This system has the useful property

Y (€ =c, on suppg,’.
Moreover, if we define

2J+1Dro—1

WEO=vwW©®+ > (@I+Dko—1 oM@

r=0

then we have

U@+ Y U ® =y =47 + 2k + ey,

k=1

Remark 2.3.2. Tt is easy to see that if (<p§“ ) jeny, fulfills (2.7)~(2.9) then for any
multi-index « there is a constant ¢, > 0 such that

D D% ®)] <12+ Droley (8)7, forany & e R".
j=0

In particular, the last inequality implies
1/2

sup | R / Z|Dacp§v’1(§)|2d$ < 00, (2.11)

j=0
IR

where the supremum is taken over all R > 0 and all multi-indices o with 0 < || <
+[5]

The same is true for the system (ylf,iv ’3”2);(61\10 in the previous example.
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3. Function spaces of generalised smoothness
3.1. Thecasel < p < 00

3.1.1. Definition and basic facts. For the definition of function spaces of gen-
eralised smoothness of Besov and Triebel-Lizorkin type for 1 < p < oo, the
main tool is the following classical Fourier-multiplier theorem of the Michlin—
Hormander type.

For a system (mg )i, jeny C Loo(R") let

172

o0
M = sup | R2I=" / Z |Damk,j(§)|2d§ )

k. j=0
R<lEI<2r

where the supremum is taken over all R > 0 and all multi-indices o with 0 < |e| <
1+ 3]

Proposition 3.1.1. Let1 < p < ocoand1 < g < oo. Let f = (f}) jen, be a system
of measurable functions in R".

(1) (General case) There exists a positive constant c such that

ka,j(D)fj | L))l <cM-((f)jeny | Ly, 3.1

J=0 keNg

for all systems (my )k, jeny C Loo(R").
(i1) (Diagonal case) There exist a positive constant ¢ such that

[m3D)£3) iy [ Lo < MM 11,000 G2
for all systems (my )i, jeng C Loo(R") withmy ; = 0ifk # j.

A proof of the above result can be found in [Tr78, Theorem 2.2.4]. The first
part is contained also in [Tr83, Equation 2.5.6/(1)].

In analogy to the classical case we introduce now function spaces of generalised
smoothness of the Besov and Triebel-Lizorkin type.

Definition 3.1.2. Let N = (N}) jen, be a strongly increasing sequence, not neces-
sarily of bounded growth, let J € N, and let ((p;V’J)jeNO e N Let (0)jen, be
an admissible sequence.

(1) Letl < p < 00,1 < g < 00. Then the Besov space of generalised smoothness
is

By = (s €8 | 1BY | = (0 0)" D)) sy VL] < o0}
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(i) Let 1 < p < 00, 1 < g < 00. Then the Triebel-Lizorkin space of generalised
smoothness is

Frd={res 1] = o0} (D) O) oy | Lol < 00}
3.3)

Note thatif N; = 2/ and 0 = 0° = (2%) jen, (recall notation (2.4) with s real),
then the above spaces coincide with the usual function spaces B), , and F, , onR",
respectively, systematically treated in the books of H. Triebel, see [Tr78], [Tr83],
[Tr92] and [Tr01] and the references therein.

For sequences (0;);en, With (oj_l)jeNO € ly, where ¢ = q/(g — 1),
G.A. Kalyabin gave in [Ka80] a similar characterisation for such spaces, defined
initially by approximation; for more details see Section 3.3.

Remark 3.1.3. Both B;’:g’ and FI;’;ZIV are Banach spaces which are independent of
the choice of the system (go;v’J) jeNy» in the sense of equivalent norms (and this is

the reason why we may omit in our notation the subscript ((p;.v 7y jeNg)-

This can be shown in the standard way; compare for example [Tr78, Theo-
rem 2.3.2] or [Tr83, Proposition 2.3.2/1].

Let us consider two different function systems ((pj.v’j) jeN, and (@;V’L ) jeN, Te-
lated to the same strongly increasing sequence N.

Clearly for a fixed j € Ny the intersection supp (p% / Nsupp 'é,iv "L is non-empty
at most for k in between jo — (L + J + 1)kp and jo + (L + J + 1)«p.

The desired equivalence result is a simple consequence of the second part of
Proposition 3.1.1, (diagonal case —my ; = 0 if k # j) which is based on (2.11). In
the case of Besov spaces, we use a scalar version —the classical Michlin—-Hormander
Fourier-multiplier theorem for L, spaces.

As in the classical case, compare [Tr78, Theorem 2.3.2] or [Tr83, Proposi-
tion 2.3.3], the embeddings § — B}/ Nes 8 and § — Fgév — 4’ hold true for
all admissible values of the parameters and sequences. If ¢ < oo then 4 is dense
in BN and in FO).

Moreover it is clear that B, N — =Fy N

If the sequences (o) jen, have additionally the property ((rj_l) jeNg € ly, then
all elements of B and of F7) are at least functions in L.

In this case many different results are already known from the works of
G.A. Kalyabin and M.L. Goldman. We mention here only one final and remarkable
embedding result, proved first in [Ka81].

Proposition 3.1.4. Let1 < p < ococand 1 < g < oo. Let also N = (N;) jen, be
a strongly increasing sequence and let (0;) jen, be an admissible sequence with
(crj_l )jeNy € lg. Then the following assertions are equivalent:
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(i) FI‘,’:;V is embedded into C(R"), (B(p’: i]v is embedded into C(R"));

(ii) FI‘)’:Z]V is a multiplication algebra, (B;:;V is a multiplication algebra);

(iii) (o7 NI'P) jeny € Ly, (7' NPy jeryy €1y )
respectively.

For embeddings into L,-spaces, but also into Lorentz and Orlicz spaces we refer
to [Go84a], [Go84b], [Go85], or to [G092] for embeddings in a more complicated
context.

Because the Fourier analytic approach allows us to consider also spaces of

non-positive smoothness, we can obtain, and this is done in the rest of the section,
results similar to those in the classical case.

A Littlewood—Paley-type theorem

Theorem 3.1.5. Let 1 < p < oo and N = (N;)jen, be a strongly increasing
sequence. Recall o° denotes the sequence with all terms equal 1. Then

0
o N __
FosN =1L,

Proof. The proof is similar to that from [Tr83, Theorem 2.5.6] and it is based on
the first part of Proposition 3.1.1 so that we will only sketch it.
If f € L, we take, for any k € Ny, the function m; o = (p,’{\” and my ; = 0if

Jj = 1. Weapply 3.1) with fo = fand f; =0if j > 1, and get f € F;’OZ’N and
00
IFTES M < el f 1Lyl

To prove the reverse inequality, let f € F;’OZ’N and let, for any £ € Ny as in
Example 2.3.1,

QJ+1D)kg

v = Z %ﬁ’ri (¢) with @_@j11ey =-... =91 =0.
r=— 27+ ko

Clearly ¥¥ (&) = ¢, if & € supp (p,]{V’J. Taking, for any j € Ny, the function
mo,; =y andmy ;= 0if k > 1, we apply (3.1) with f; = ¢}*/ (D) f and get

Ly(l2)

()2 1Lyl = H (ak,o > oy D) (D) f)
j=0

kENO

N.J
<] (@] D) e, | Lo
and consequently || f | L,|l < c || f | F;(JZ’NII, which proves the reverse inclusion. O

Corollary 3.1.6. If N = (N;) jen, is a strongly increasing sequence then B;(;’N
= L.

0
This can also be proved directly using the definition of the space B; 2’N .
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Embeddings on the level of zero-smoothness

On the level of zero-smoothness we have the following embeddings with respect
to the usual Besov spaces B | and B)

Theorem 3.1.7. Let N = (N;)jen, be a strongly increasing sequence and let
1 <p<oo.
(i) Then
0
L, Bgf)c;év — B), and B), — B;ql’N < L.

(i) If, in addition, the sequence N = (N}) jen, is of bounded growth then, for any

I <g<oo

O N _ no
Byi” =Bpg

Proof. Although the proof is in some sense straightforward, we will give a short
outline. The main point is, that we compare here decompositions with respect to
different sequences (N;) jen, and (2k)keNO.

We can assume that the parameter J in the definition of the coverings equals
1 in both cases. Let ((,0;V )jen, be a function system belonging to the covering

associated to (N;) jen, and (Y)ren, a system belonging to the covering associated
to (2k)keN0, respectively. If ky is fixed, then

supp ¢ N supp v, # 9
at most for 4k + 1 indices j.
On the other hand, fixing jo, we find out that
supp ¢y N supp Y # ¥

is possible in general for all indices & in between log(N, —«,/2) and 1og(2 N, 4.,)-
4 Nio+<o )

This means, the number of indices can increase and tends to infinity, if log (
JO 0]

is not bounded.
Now let f € L,. Then by the scalar Fourier-multiplier theorem in L, we have

| £1B3Y | = sup @Y (D) f | L,
J€Ng
< sup @Y (D) [ LWL | IF 1Lyl < clf LI,
Jj€Np

where L(L p) is the space of linear bounded operators from L, into itself.
If f € BN, then

p.q
|71 Bl = sup 19x(D) f 1 Ll = (c)”" sup YD) f|L,
kENQ 0

J(k)+4ko

= (cy)”! oY D) f|L,
Jj=Jjk)

<€ sup [Y(D) | L(Lp) | (o + 1) sup le¥ D) f| L

€lNo
< B
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We omit the proof of the second inclusion in (i).
To prove the second part, we recall that, if the sequence (N;) jen, is of bounded
growth, then we have
Nijg+q < (d{N))ZKO.
N Jo—Ko
Consequently for these sequences there are finite universal upper bounds for the
cardinality of indices k such that supp ¥ and supp (p% can have a non-empty
intersection. So we get

71BN " =22 ey )f [ L]
Jj=0
k()+K
oY(D) Y wk(D)f|L
k=k(j)
oo k(jH)+K
< sup leY @) [ LL| DD D) FIL,|

J=0 k=k(j)

o0

< (ep)™! Z

=0

El

<c | rl8,l°

where the constants ¢ and ¢’ depend, of course, on K, ko and ¢. The main point is,
that each Y (D) f can appear at most 4kp + 1 times.

The reverse estimate can be proved in the same way, changing the roles of the
function systems and of K and 4« + 1, respectively. O

Remark 3.1.8. The results stated in the above theorem are sharp.
To see this, we will show that if the sequence N is N; = j! (for any j) then we
have, even in the case p = 2,
BN < By and BN £BY.

2,00

To prove this, again let (Yx)rery, be a system belonging to the covering as-
sociated to (2%)en, — as in Example 2.3.1.A. defined by ¥ (&) = p(27¥|&]) —
P~ 1£]), where p € Cy*(R) with p(r) = 1if |[t| < 1 and p(f) = 0if [¢] > 2

Consequently, the special sequence leads to Y (§) = ¥ (27¥+1€) fork > 1.

Let u be such that N

wE =y 27 Y.
k=0
We will show that

0 0N
u€eB,, and u¢B, . 3.4

One has, for any k € N,

1
Z 272y i | Lo

j=k—1
2 1y | La|| (3.5)

lx(D)u | Ly|| = Wit | La|| =
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(with appropriate changes if kK = 0). Since

el LalP = [ @t oPde =200 [ i @P de = 27,
we get that there exists a constant C > 0 with

sup [[Ye(Dyu | Lo| = |Ju | B | < €
kENO

and this proves the first part in (3.4). Now we will show that u ¢ Bgf;‘oN .

Let (x;' )ken, be a function system belonging to the covering associated to
(kDken, as in Example 2.3.1.B. That is, we have additionally

xNE =1 on Ar={EecR": (k-1 <|&| <k+1!]}

and
supp x2 C{&: (k=) < [&] < (k+5)!}.

. . . . 0
Clearly this system gives an equivalent norm in B O’ON, too. We have

2
I oy L = | @] Lo = | ds

2\/\
Ak

we consider only even indices since supp ¥ N supp Y241y = 4. Now we deter-
mine the number of indices / such that supp vy C Ay = {£ e R": (k—1)! <
€] < (k+ 1)!}. Let [y be fixed in such a way that

X @ 27y
j=0

00 2 o0
St de > Y2 [ P de
=0 1=0 k

22U0=D=1  (k — 1)1 < 2201, (3.6)

in particular this implies supp ¥, C {§ e R" : (k= D! < |§] < (k+ D!} if
k > 4 and L is fixed such that

220 +L)+1 _ k+1)! < 920 +L+D+1 3.7

Then L + 1 is the cardinality of those / such that suppyry C {£ e R" : (k—1)! <
€] < (k+ 1)!}is guaranteed. Using (3.6) and (3.7) it is easy to see that we get

logk +log(k + 1) < 2L + 6.

For any / in between [y and /p + L we have
1Yo (€) > dE = Yo | La||> = ¢, 22",
Ak

and this leads to

lo+L
| Dy | Lo = Y ep = ¢p (L+1) > ¢, (logh —2),
1=l
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and consequently to

Jue] B3 = sup [ (Dyu | La | = o0
kENO

which proves our statement.

Existence of a lift operator

In the next theorem we show the existence of a lift operator between the spaces of
BY:Y and F3, Y type.
Theorem 3.1.9. Let (0}) jen, and (B)) jen, be two admissible sequences and let
(goj.v’J) jeN, be a function system associated to the strongly increasing sequence
(N;) jeng-

Then the operator (D), defined by the symbol

n@=> o; B el (),
=0

defines, for all parameters 1 < p < oo and 1 < g < 00, an isomorphism between
By, N and Bﬁ q-» respectively, between F); év and F 5,'3[ .

Proof. The symbol is well defined and smooth, because, for fixed &, at most
(4J + 2)ko terms in the infinite sum are not zero.

It is easy to see that, due to the construction and the properties of the sequences
o and B on supp (p,iv’l, one has

gy o @ DO < max  (ons,Bc,) €7 < conp @7 39
and
o' < min (ouBr,) <Xy, N0 (E) @) (3.9)

[rI<Q2J+ Do SUPP

The rest of the proof is a standard application of Definition 3.1.2 of the spaces B}, 2’
and Fg:év using the inequalities (3.8) and (3.9). O

Duality

In the following theorem we determine the dual spaces of B‘”qV and F9 év The
previous results — see the end of Remark 3.1.3 — give the possibility of i 1nterpret1ng
the dual spaces (B"N "and (Fp, V)" as subspaces of 4’. Furthermore, because

4 is dense in these spaces if ¢ < oo, f belongs to (Fg’év)’ <> 4’ (similar for
(B;‘,:g’ ) < 4’), if, and only if, there is a number ¢ such that, for all ¢ € 4,

| < fy>I<c|v|FY] (3.10)

For an admissible sequence o = (0}) jen, We denote 1/0 = (1/0}) jen,. Clearly
1 /o is also admissible.
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Theorem 3.1.10. Let N = (N;)jen, be a strongly increasing sequence and
(0)) jen, be an admissible sequence. Furthermore, let 1 < p < 00, 1 < g < 00
and let p’ and q' denote their conjugates.

Then

o, N 1/0 N o, N 1/0 N
(Bg ) B, and (Fy ) Fog -
Proof. The proof follows essentially that of [Tr83, Theorem 2.11.2]. First we prove

FoN e (FoNY. (3.11)

Let f € Fl/‘;N and let ((p;.v’J)jeNO and (%ﬁv)keNg be the systems from Ex-
ample 2.3.1, that is

2J+ 1Dk
e = > enl® and Y& =c, on supp ¢’
r=—QJ+1xg
Then
€)=Y e DD f in 8
and

[ (o v (D) e, -

If ¥ € 4, we have

<elr|E

2
) I < fiyr>|
o (2J+Dkg

Yoo <D f S Fol Gel®F Ty >

k=0 r=—QJ+1)xg

2J+1)kg
<e 2 e WD)y,
r=—2J+1kg
[ (@ F e ©er O F ), [ Lo
< IR vl 77y

In view of (3.10) this proves (3.11).
We will prove the reverse embedding. Because, for f € F;’:N , the mapping

f (0507 (D)) iy,

is a one-to-one mapping onto a subspace of L ,(/;), every functional g € (Fg:év )
can be interpreted as a functional on that subspace. By the Hahn—Banach theorem,
g can be extended to a continuous linear functional g on the whole space L,(l,),
where the norm is preserved. But the representation of these linear functionals is



20 W. Farkas, H.-G. Leopold

well known. Proposition 2.11.1 in [Tr83] gives an exact characterisation and yields
to

oo
<8 f>=) f o, 'g;(0)0; f;(x) dx,
j=0 /R
forevery f = (0 fj)jen, € Lp(ly), where (o]flgj)jeNO € Ly(ly) and
I - ’ —_
[s | (F7:g) | = 121 Lo Il = (07" 8)) ey | L) |-
If again ¢ € 4, this gives, with ¥ — (oj(p?/’l(D)y[/)jeNO,
o o
Cop<V> =ZA g (e (D) dx =< Y (Fel ' ®F 'g)). v >.
j=0 j=0
So we obtain

@]
lg| FoM) = H (%lwly’J(D)Z(f“<pj.‘“(s)f‘“1gj)) | Ly(y)
=0

kENO
(2J+Dxg
<c o Y o DO(F Ol OF " giir)) e, | Lo ) |
r=—2J+1kg

< | (G{ng)keNO | Ly (lg)
< el (Frd) |-

The last estimate follows again by the second part of the Proposition 3.1.1 and the
property of the sequence (o) jen,-
In the case of Besov spaces the proof can be given in a similar way. O

3.1.2. Special classes: function spaces of generalised smoothness associated to
an admissible symbol. In the previous subsection we have introduced and consid-
ered function spaces of generalised smoothness associated to a general strongly
increasing sequence N and to an admissible sequence o.

In recent years there has been an increasing interest in investigating function
spaces of general smoothness for which the strongly increasing sequence N is as-
sociated (in a canonical way) to a fixed smooth function satisfying some reasonable
conditions; we will call those smooth functions admissible symbols.

Definition 3.1.11. Let A be the class of all non-negative functions a : R" — R of
class C* with the following properties:

(i) lim a(€) = oo;

[§]—>00
(i1) a is almost increasing in |&|, i.e. there exists a constant 5y > 1, and an R > 0
such that a(§) < Soa(n) if R < |§] < Inl;
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(iii) there exists an m > 0 such that & — a(&)|&|™" is almost decreasing in |&],
i.e. there exists a constant §,,, 0 < §,, < 1, and an R > 0 such that

a@) 1§17 = ma(m) Inl™™ if R<IE[<nl;

(iv) for every multi-index o € N} there exists some ¢, > 0 such that

ID%a(§)] < caa(®) (&)™ if 1€l > R. (3.12)
The functions a from A are called admissible symbols.

Clearly the functions & > |£|?> and £ > 1 4 |£|* are admissible symbols.
Itis easy to give further examples with the help of Bernstein functions; compare
Corollary 3.1.14 below.

Recall that an arbitrarily often differentiable function f : (0, c0) — R with
continuous extension to [0, co) is called a Bernstein function if f(t) > 0 for all
t>0and (=) fO@F) <Oforallr> 0andall k € N.

For any Bernstein function f : (0, co) — (0, 0o) one has, for any j € N,

. !
FO01< T . r>o. (3.13)
In particular, for j = 1 we have

[

0< f'(n < .

for t> 0. (3.14)

For more information on Bernstein functions the reader is referred to [Sc94],
[Sc98a] or [Ja01]. Here we will restrict ourselves only to some examples.

Example 3.1.12. The function t — ¢, ¢ > 0, is a Bernstein function as well as
the function ¢ — bt, b > 0. Moreover, f(f) = 1 — e, with fixed r > 0, is also
obviously a Bernstein function.

For ¢ € [0, 1] the function f,(f) = t¢ is a Bernstein function.

The function f(f) = log(1 + 1) is also a Bernstein function.

For m > 0 the function f() = Vt + m? — m is a Bernstein function.

The functions f(f) = «/tlog(1 + /1), f(t) = J/t(1 — exp(—4+/1)), f(H) =
Vtlog(1+coth /1) and f(1) = , [, , with & > 0, are further examples of Bernstein
functions.

Lemma 3.1.13. If f is a Bernstein function and a : R" — R is a non-negative
function satisfying (3.12) then b(&§) = f(a(§)) satisfies (3.12).

Proof. To show (3.12) for the function b let us recall that for the arbitrarily often

differentiable functions f : (0, c0) — (0,00) and a : R" — (0, co) and for any
a € Njj one has

Jee] ' DP s D® s

o =S Ol o O (PO

D(fomy=3 f (a())zaﬁzayz-...-awz( B! U )

j=1
(3.15)
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where the second sum extends over all pairwise different multi-indices 0 #
B.v,..., o€ Njandall §,9,,...,8, € Nsuchthat §gB8+6,y+---+,0 =
and8,3+8 4+ 48, =

Using (3. 13) and the fact that a satisfies (3.12), we get, for any o € N,

o]

. o!
|D“b<s>|<2 @,f(a@)Z 5508, .5
Jer|

<%Z (é)Jf(a(E))]_[a(E)‘sﬁ )

< ¢, fla®) (1 + (g1 )78

‘Dﬂa(éf) ‘Sﬁ o ‘D"’a(é) 8
'

B!

! w!

and this completes the proof. For a similar calculation one can see also [JaSc96]. O

The next corollary is a simple consequence of the above lemma, of the mono-
tonicity of Bernstein functions, and of property (3.14).

Corollary 3.1.14. For any Bernstein function f with tlim f(t) = oo the function
—00

b(&) = f(1 4 |£|?) is an admissible symbol.
If. in addition, f € C>([0, 00)) then the function b(€) = f(|€|?) is also an
admissible symbol.

As a simple consequence we obtain:

Example 3.1.15. The functions

a® =€), 0€l0,1],

a(®) =log(1 + [£]%),

a® =VIER+m>—m, m>0,
a(®) = (£) log(1 + (&),

a(€) = (§) (1 — exp(—4(£))),

a(€) = (&) log(1 + coth(£)),

are admissible symbols.

Note that if f, g are two Bernstein functions then obviously f o g is also
a Bernstein function.

Consequently, using Corollary 3.1.14 we obtain many non-trivial examples of
admissible symbols a of the form f(|£|%) or f(1+|£|?), with f a Bernstein function
satisfying tgn;o f(H) =0

Remark 3.1.16. Properties (i) and (iv) from Definition 3.1.11 guarantee the hypo-
ellipticity of the function a.

If 690 = 1 then the function a is radial symmetric and increasing. Moreover, if
8, = 1 then a is radial symmetric, too.
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We want to point out that the class « is larger than the class $*(m, m’, 0)
considered in [Le90]. For $*(m, m’; 0) it was additionally required that there exists
an m’ > 0, such that a(&) |E|””/ is almost increasing in |&|. Now the case m’ = 0
and examples as a(£) = (log(£))”, with some positive b > 0, are also included.

Lemma 3.1.17. For a function a € A let
N¢ =sup{|§| : a(§) <2/}, forany jeN. (3.16)

The sequence N* = (N]“.) jeN, IS a strongly increasing sequence in the sense of
Definition 2.2.1.

Proof. 1t is clear from (3.16) that N* = (N;‘) jeN, 18 increasing. Let us sketch the
proof of the existence of a constant ky € N such that 2N;‘ < N{, for any j and k
such that j + «o < k.

For simplicity let us denote N = Nj, for any j € N. From the definition of
the numbers N; it follows that there exists an & with

N;
2

Due to the properties of the function « it is clear that the function  — a(#&p) is
a one-dimensional continuous function with lim a(t§,) = oo. Consequently, for
—>00

<&l < N; and a(&) <2/,

ko € N, there exists a fp > 1 with
altoky) = 21720,
Then taking no = #& one has |no| = 19|&| > |&o| and
1ol < Njip = supllnl : a(n) <270},
Now applying property (iii) from Definition 3.1.11 we have
2/ a a i3+
Ny /20m ” LA

J+Ko
for sufficiently large j (depending on R in property (iii)) and arbitrary «p € N.
Consequently,

1 ko— ) 1/m
Nitwo > (8n2072) "

and using the fact that (NV;)en is increasing we have Ny > Njy = 2N; if
k > j 4+ ko, for a fixed large enough «y.
This completes the proof that (N;) jen, is strongly increasing. O

Remark 3.1.18. Given an admissible function a € 4 we can define, for any r > 0,

N;” =sup{|€| : a(¥) <277}, forany j e Ny. 3.17)

Using the same technique as above it is easy to see that N = (N?’r) jeN, 1s again
a strongly increasing sequence.
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Lemma 3.1.19. [fa : R" — R satisfies (3.12) then for any real number m the
Sfunction b(§) = (1 + a(§))™ also satisfies (3.12).

Proof. Applying (3.15) with f() = " and 1 + a(-) instead of a(-), and using the
assumption on a, we get, for any o € N{,

lo|

ID*bE) <Y e (1 +a@)"

j=1
Y (PR Ra@ P a®)
8!8, B! !
o]
<Y e +a®) e 1‘[(1 +a(®) (&)
j=l1
< (1+a@)" (57
and this shows that b also satisfies (3.12). m]

The next result generalises the Littlewood—Paley-type Theorem 3.1.5. Recall
the notation o = (27) jen, .

Theorem 3.1.20. Let a € A be an admissible symbol, letr > 0 and let N = N*',
the strongly increasing sequence associated to a andr, see (3.17). Let 1 < p < 00
and1 < g < oo.

Then, for any real number s, we have

ONar

|Gd+a(D))" u | Fy,

N ||I,t ’ F;séNu,r

and the corresponding assertion for B-spaces.

Proof. We will give here the proof for F-spaces since the proof for B-spaces is
essentially similar but simpler.
Using Lemma 3.1.19 and the construction of the strongly increasing sequence
= (Nj“.’r) jeny» we get, for any multi-index «,

D (270 @) X 00 ) < 271+ ANV (€)1 )
A
since (1 +a(§)"" ~ 27 on supp}’ C {§ € R" : Nj_yqy < €] < Nt}

Consequently we may apply Proposition 3.1.1, diagonal case — see (3.2), and get

[Gd+a))u| F7 M| = |77 6} @ +a@) Fu] | Ly,
= |F 727 A+ a@) 2" o @ Fu] | Ly
c |27 M (Dyu | Ly

= c|ul 775N

N
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For the reverse inequality note that

v (§)

D <2f“(1+a(s>>~‘/’ SWW@)) €2 (1 4a®) ™ ) Ky
<, (£)77,

since (1 +a(€) ™" ~ 277 on suppp}’ C {& € R" : Ny < IE] < Njjsh-
Consequently we may apply again Proposition 3.1.1, diagonal case — see (3.2), and
get

| 7™ = 1127 @ Dy | L,y @)
=¥~ [2"‘ (1+a@®) ™" ¢}’ & (1 +a@)" Fu] | L,(y)|
< F e @ +a@) " Fu] | Lydy)|
= c|Gd+a(D)”u | FN

’

which completes the proof. |
As a simple consequence of the above theorem and of Theorem 3.1.5 we get:

Corollary 3.1.21. Let a € A be an admissible symbol, and let N = N%2,
the strongly increasing sequence associated to a and to r = 2, see (3.17). Let
1< p<oo.

Then, for any real number s, we have

I Gd +a(D)?u| L[ ~ ||u| F;;N"‘z I

Remark 3.1.22. Note thatif s > 0 a similar result as stated in Corollary 3.1.21 was
mentioned in [Ka79].

3.2. ThecasesO < p < land p = o0

To extend the definition of the spaces of generalised smoothnessto p = oo, p =1
and 0 < p < 1, an additional assumption on the sequence N is necessary. The
reason is, that we can not use in these cases the previous Fourier-multiplier theorem
(Proposition 3.1.1).

A substitute of it is a Fourier-multiplier theorem which was proved in spaces
of entire analytic functions by the help of maximal functions.

Proposition 3.2.1. Let 0 < p < 00, 0 < g < 00. Forevery j € Ny, let R; > 0 be
a given number, let 2; = {§ e R" : |§| < R;} and let 2 = (£2)) jen,-
If0 < t < min (p, q) then there exists a constant ¢ > 0 such that

‘( 1£i(- =2

sup Sl fILpAI,
Jorall f = (f})jen, € Lp(ly) such that supp F f; C £2;, forall j € N.

L,,)
zern 1+ |Rjzln/t>jeN0 ’
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This result was proved in [Tr83, Theorem 1.6.2] and was the main tool in the
proof of the following Fourier-multiplier theorem [Tr83, Theorem 1.6.3]:

Proposition 3.2.2. Let 0 < p < 00,0 < g < 00. Let (£2)) jen, be a sequence of
compact subsets of R" and d; > 0 be the diameter of $2;.
Ift > n/2+ n/min(p, q), then there exists a constant ¢ > 0 such that

(M (D) f)jen, | Lply)|l < ¢ sup [Mid; ) |H5| - ICf7)jero | Lp)l
JENg

holds for all systems (f;)jen, € Lp(ly) with supp F f; C $2; for all j, and all
sequences (M) jen, C Hj, where Hj is the standard Bessel potential space of
smoothness t.

Let ((pj.v Ty jeN, be a usual system associated to a strongly increasing sequence
N = (N;) jen,- Then an easy computation shows that for an integer L we have

”(pN T@Njsse ) | Wr | < (2Njtae N;! JKO) (3.18)

but unfortunately the right-hand side is — in general — not uniformly bounded with
respect to j. This happens only if the sequence (NV;) jen, is additionally of bounded
growth.

Assuming N is of bounded growth with N;; < A|N; the right-hand side of
(3.18) can be estimated for arbitrary j by ¢ AZJKO

With this preparation we extend the definition of the spaces B}, N and Fr N to
all0 < p<ooand 0 < p < oo, respectively.

Definition 3.2.3. Let (N;) jen, be a strongly increasing sequence and of bounded
growth. Let J € N, let (goj.v’J)jeNo e &N and let (0))jen, be an admissible
sequence.

(1) Let0 < p < ooand0 < g < oo. The Besov space of generalised smoothness
is

B =7 e 8 171 BE | = 1oy o) (D11) L) | < o0)

(1) Let0 < p < 00 and 0 < g < o0. The Triebel-Lizorkin space of generalised
smoothness is

FJN {f€5' ||f|FUN||—HGJ‘pJ (D)fjeN’L(l)H<OO}

Of course, it can be easily shown that all standard results (independence of the
system (¢;) jen,, density of 4, embeddings, lift-operator, etc.) extend to the whole
scale of spaces considered in the above definition; compare [Tr83, Sect. 2.3] or
[Tr86, Sect. 2.3].

In Section 4 we will consider strongly increasing sequences N which are of
bounded growth so we will be able to deal with all admissible parameters in
Definition 3.2.3 of the spaces B} and Fg.Y.
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3.3. Examples and comparison with other classes

As we have have already mentioned, if N; = 2/ and o = (2°) je,, then BY,Y and
Fy N are the classical Besov and Triebel-Lizorkin spaces B, ,and F, |

“Ttis the aim of this subsection to show that the function spaces con51dered so far
in this work cover many other classes of function spaces of generalised smoothness
known in the literature.

For simplicity we will restrict ourselves in this part to function spaces of Besov
type. The scale of F-spaces is usually defined in most of the cases in a natural way
but we will not go into details.

e In the middle of the seventies M.L. Goldman and G.A. Kalyabin introduced
and investigated, independently, function spaces of generalised smoothness. These
spaces are defined on the basis of expansions in series of entire functions, and are
connected with a general covering method — see [Go79], [Ka79], [Ka80], [Go80]
or [Go89].

Let1 < p < 00,1 < g < 00, let (N))en, be strongly increasing, let («;) jen,
be of bounded growth and (oz ; D) jeNg € Iy . Then let B;g’ (R™) be the collection of

all f € L, such that
oo
f= ij

j=1

with supp(¥ f;) C {§ € R" = [§] < N;}and [[(a; fj) jeng | Lg(Lp) | < oo
By a standardisation result [Ka77b] B?‘,fqv (R™) can be identified with a space

Bﬂ M ¢ (R™), where B = (B;) jen, almost strongly increasing and of bounded growth
(and therefore an admissible sequence), and where the sequence M = (M) jen, is
determined by the sequences f, o and N via

[0}
My = N¢w  with  k(k) =min{m : Za;q < B a4

A simple calculation shows that both || f | B“ N g lland [ £ B o || are equivalent to

118531 = 1(Beoi™ (D) f) e, a2

where ((p,[:/l’K)keNo is a system from Section 2.3 associated to the covering defined
by the sequence (M)ren, above. Consequently, the above spaces are a subclass of
Besov spaces of generalised smoothness as introduced in Section 3.1.

Thus, in this way function spaces with ‘positive’ generalised smoothness, whose
elements are at least L ,-functions, can be described.

Many results are known for the spaces ng" for example, embedding theo-
rems — see [Ka81], [Go80], [Go84b], [Go85] or [G092]; trace theorems — see
[Ka78], [Ka79], [Go79], [Go80]; and characterisations by differences and moduli
of continuity — see [Go76], [Ka77b], [Ka80].

The last one leads to the following characterisation or definition, often used by
M.L. Goldman.
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Let A : (0,1) — R" be a non-decreasing, continuous function with liﬂ)l A1)
t

=0,MeNand1l < p, g <o0.Let
LM (DN da )
A ny __ . 14
Bp'q(R)_ifEL”'</o( A0 ) A(r)) =

wp (F,0 = sup [ 4}1u0) [ L |
<t

where

and AY = AL AY1 where Abu(x) = u(x + h) — u(x).
If, in addition, t > A ()t M is increasing and 7 > A(@)t~% is almost decreasing
then
i _ paN
B, ,(R") = B, /(R"),

with o; = 2/, N; = h7', A(h;) = 2771(1), compare [Go76], [KaLi87, Theo-
rem 8.2] or, for a similar form, see [Ka80].

e In [Tr77, Chap. 2] a general covering method was also introduced and used
to define and investigate general function spaces of Besov—Hardy—Sobolev type,
B3 and F3%) on R". This approach was used also in [Go80]. It contains isotropic
spaces, anisotropic spaces, spaces with dominating mixed derivatives and some
others. In the case of the usual weight sequence (2/) jeny, all these special spaces
were studied in detail in [ScTr87], [Tr83], [Tr92]. However the general approach
was not developed further in its full generality.

e Other function spaces of generalised smoothness appear as a result of real inter-
polation with a function parameter — see [Me83] and [CoFe86]. In these papers,
afunction ¥ : RT™ — R™ belongs to the class B if ¥ is continuous, ¥(1) = 1 and,
for all ¢ € (0, 00), holds

Y (ts)

VO e =%

Let1 < p, g < oo, let ¥ € B and let (¢;)en, the usual resolution of unity,

2 .
associated to the symbol || of the Laplacian and to the sequence N}" 2 =),
Then

> ‘ 1/q
B}gq(Rn) = {u (<] /S/ . (Zw(zj)q”(/)](D)u | Lp”q> < OO}
j=0

One has the following interpolation result:

(Lp(R"), WER™) = B. (R") where p(1) = (p1(t™) ™" .

P1-9

Here y(f) = t*log (1 + 7)? with s < 0 is now an admissible function too, related to
the sequence o; = 2/° j® which does not fulfil (oe;l )jeNy € ly. On the other hand,

the decomposition is always fixed by the sequence (N;) jen, = (27) jen,-
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With o; = ¥(2/), we have

V(1/2)0; < 011 < Y(2)0;,

which means (0;) jen, is an admissible sequence and consequently these spaces
are covered by Definition 3.1.2.

e Generalising fractal d-sets to (d, ¥)-sets, D.E. Edmunds and H. Triebel considered
in [EdTr98] and [EdTr99] function spaces of generalised smoothness, related to
Example 2.2.5.

Let ¥ be a positive monotone function on the interval (0, 1] such that there are
some positive constants by and by with boW(27/) < W(27%) < b W(27/), for any
j € Ny. Then

> . 1
BYY = {u s : |u|BSD| = (Z(szf(zf))q llg;(D)u | Lp||4) < oo}
j=0

(modification if ¢ = 00). Here (¢;)jen, is again the usual resolution of unity
associated to the sequence N; = 2/.

Including the F-spaces an extensive study of these scales of spaces — embed-
dings, lifting properties, subatomic decompositions, local means, function spaces
on fractals, entropy numbers and applications — was done by S. Moura in [M099]
and [MoO1].

Again o; = 2#y(27/) is an admissible sequence and N; = 2/ is strongly
increasing and of bounded growth. So, for all admissible parameters p, g, these
spaces are covered by Definition 3.2.3, too.

e In [OpTr00] generalised smoothness of ‘logarithmic’ order was used to describe
general embeddings of Pohozhaev—Trudinger type. The spaces under consideration
in [OpTr00Q] are defined as

H*(L,)(R") ={u:uelL, and u=gsux*f, f €Ly},

with Fg,q(8) = (1 4+ 1&1)772(1 4+ log (1 + |£]*))™*, o > 0, « real.

Similarly they defined spaces H™%(L,, ,(log L)?)(R"), where L, is replaced
by some suitable Lorentz—Zygmund space.

The first case is again covered by our definition, compare Theorem 3.1.20 and
Corollary 3.1.21 with a(§) = F g5.4(%).

e Motivated by the problem of constructing Markov processes starting in every point
from R” in [FJSO1a] and [FISO1b], Bessel potential spaces H;,b‘S(R") associated to
a continuous negative definite function ¢ : R” — R were introduced and studied
(embeddings, interpolation, etc). Note that all examples of admissible functions
from Example 3.1.15 are continuous negative definite functions.

For 1 < p < oo and s > 0 the space H;,b‘S(R”) is the collection of all f € L,
such that

|/ HES@®D| = [ Gd+w (D)2 f| Ly| < oo, (3.19)
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whereas if s < 0 the space H ,‘f’ “(R™) is the closure of test functions in the above
norm.

We want to point out here that the spaces H;,/f’s (R™) can be regarded, at least
for a class of continuous negative definite functions v, as function spaces of
generalised smoothness of type ng’;N . Indeed, considering the continuous negative
definite function ¥ : R” — R of the form ¥(&) = f(1 + |£]) or ¥(&) = f(£]%),
respectively, where f is a Bernstein function with tl_1)rgo f(t) = oo, then ¥ is an
admissible symbol in the sense of Definition 3.1.11 and we have only to apply
Corollary 3.1.21 to see that

Vs _ O.s,N!//,Z
Hp = pr2 .

4. Local means and atomic decompositions
4.1. Preliminaries

Assumption 4.1.1. Throughout the whole section we will assume N = (N;) jen, is
a sequence of real positive numbers such that there exist two numbers 1 < Ag < Aj
with

XongNjH S)»lN‘, forany jEN(). (41)

In particular N is strongly increasing and of bounded growth.

Note that the first inequality in (4.1) implies in particular Ny < N; < N;....
However we would like to point out that the condition Ag > 1 is a stronger
restriction and it plays a key role in all the following considerations.

Remark 4.1.2. Nevertheless, the assumption concerning X is not restrictive with
regard to the function spaces we are interested in. Indeed, let (M) jen, be strongly
increasing and of bounded growth and let (8;)jen, be an admissible sequence.
Defining

Nj=Mjq, and 0;=Pjq

it is easy to see that the sequence (N;) jen, satisfies (4.1) with A = 2 and
BM _ po.N BM _ poN
B,y =By, and F . =F.
This observation is similar to that in [Ka88, Remark 1].
Assumption 4.1.3. To avoid technical complications we will assume
Ny > Aq. 4.2)

We should note that there is no loss of generality in assuming (4.2). Indeed,
since Ag > 1, there exists an m € N such that Aj' Ng > A;. Let

my =min{m € N : 2{'No > 1.}

andso N,,, = Ag' No = A1.If we would not have Ny > A, then in all considerations
below one has to replace N; with N,,, .
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Assumption 4.1.4. We will always denote o0 = (07;) jen, an admissible sequence,
this means that there are two constants 0 < dy < d; < oo such that

dooj <041 <dioj forany jeNp. (4.3)

Under the above conditions on the sequences N and o, the aim of this section
. . . . o,N o,N
is to give equivalent quasi-norms for the spaces By g (0 < p,g < 00) and F}; g
(0 < p < 00,0 < g < o0)interms of maximal functions, local means, and atomic
decompositions.

4.2. Equivalent quasi-norms

Let N = (N;) jen, be an admissible sequence of positive numbers satisfying (4.1)
with A¢ > 1. Then there exists an natural number [y = [y(1g, A1) with

A0 > A (4.4)

We choose an [y > 1 satisfying (4.4) and fix it from now on.
Let wo, ;1 € 8 be two positive functions on R” such that

mo() =1 if |§] <Ny and suppuo C {5 €R" : [§] <A N} (45)

and
o1 1 I
p@=1if , <lel<h and suppuC {EER s <IE <A
1
0
(4.6)
For any j > 1 we define
ni® =un(N;'g), §eR. (4.7)

Remark 4.2.1. Using (4.1) it is easy to see that we have
suppu; C {S eR" : Nj < |§] < Nj+lo} forany j > 1.

This shows that for each fixed jo € N the set supp u j, has a non-empty intersection
with at most 4/y + 1 different supports of the functions ;.

Moreover, a simple computation shows that for any multi-index « there is
a constant ¢, (depending on p but not on j) such that

|D*1;(§)| < co (€)1 forany &eR" andany jeN.

Note that the family (1) jen, does not —in general — satisfy a condition of type
(2.10) — resolution of “unity”. However, we have a counterpart of (2.10) which
reads as follows:

po®) + > pj® >1 forany £eR". (4.8)
j=1

Indeed, the sum in (4.8) is finite and each function u;, j € Ny, is positive. If now

|&] < Np then puo(§) = 1;if thereis a jo > 2 such that N,y < [§] < Njj41 then
it follows that /\11 Nj, < |§] < A1 Nj, and this implies u ,(§) = 1.



32 W. Farkas, H.-G. Leopold

Theorem 4.2.2. Underthe above assumptions on the sequences (N;) jen,, (0}) jeN,
and on the functions |y and (, we have:
(i) Let0 < p < ooand0 < g < oo. Then [ € 8 (R") belongs to Bg:;v if, and
only if
1/q
[o.¢]
171 BGY ], = o) FILpl+ | D ol (DY f 1LY | < o0
j=1
(with the usual modification if ¢ = 00). Moreover, || - | B;”quHM is an equivalent
quasi-norm in B;:g’
(ii) Let0 < p < o00oand0 < g < oo. Then f € 8'(R") belongs to F"N if, and
only if

1/q

oo
[ TEZY ], = oD FIL I+ || Dol (DY FOI | L] < o0
j=1
4.9)
(with the usual modification if ¢ = 00). Moreover, || - | F" N||M is an equivalent

quasi-norm in F;’;V-

Proof. We will indicate the proof in the more complicated case of F-spaces. To do
this we will apply Proposition 3.2.2.

Let ((pj.v ) jen, be a smooth partition of unity satisfying (2.7)-(2.10), withc, = 1,
and let || f'| FI‘,’:Q’ ll, be the quasi-norm from Definition 3.2.3.

Choose ¢t > | + min?p,q) , an integer. Since for any j € Ny clearly 1 ;(§) = 1 on

supp (p;v we get, applying Proposition 3.2.2,

|71 F53 N, = oz i ms F 111 Lo
= [F7) F (o 7 [ 7 £]) [ L0
< e sup ¢ N | Ha| - | | 77,
J€No

S PAR g

T (4.10)

where || /| ) N 4 |l,« is the quasi-norm from (4.9) and we have used the fact that for
any o with |a| t there exists a constant ¢, > 0 with

|| Do‘(p;-v(NjH-) | L, || < ¢y forany ;e N,

as a simple consequence of properties (2.8) and (2.9).
To prove the reverse inequality we note that, due to the support properties of
the functions u ;, we have, for any j € Ny,

2y

D wieh

k=—21,
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where V) = @) | =+ = ¢ = 0. Then again one has to apply Proposi-
tion 3.2.2 and to make appropriate changes in (4.10).
Consequently, || f | FYll, and || f | F5:) I, are equivalent. O

4.3. Maximal functions and local means

4.3.1. Some preparatory results. Before stating the main result of this subsection,
see Theorem 4.3.4 below, we have to give some auxiliary results.
For any smooth function x and for any # > 0 we will use the notation

() = 17" (). (4.11)
The next lemma will play a key role in our further considerations.

Lemma 4.3.1. Let M > —1 be an integer and
Sy={nesd:Du0 =0 forany |a|< M}

For any L > 0 there exists a constant Cy, > 0 such that

sup [ £ M@I(1 + 2" < Cp - M5 max | D | Loc ]
ZeRn M~+1<|Bl<max(M+1,L+1)
© max / (14 |EDMH DY 7(®)] dE, (4.12)
lyISL+1 Jpn

foranyt € (0, 1], for any i € 8y and any n € 8.

Proof. By elementary properties of the Fourier transform it is easy to show that,
for any L > 0, there exists a constant ¢, such that, for any g € 4,

sup [¢@)|(1 + 2" < er - Jnax ID*g | L1l (4.13)

zeR o<

Taking t € (0, 1], u € 8y and n € 4 and inserting g = i, * n in (4.13) we have,
in particular,

sup [(ue * M(2)| < e - max | D% x7| Ly (4.14)
zeRM la|<L+1

Applying Leibniz’s product rule for differentiation we have

D+ @) <co Y, DRI - IDHE)]

[8l+1y|=lal|
=co »y, (DD IDHE.  “15)
[8l+1y]=a

Fix now § < «. Recall D*11(0) = O for any |«| < M. Then for any § with |§] <
we have, by Taylor’s expansion theorem (with some positive constant cs),

(DT (18)| < cs Jmax ||Dﬂﬁ|Loo|| (t]g)M-1I+1
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and so
P DD )] < et <| Jmax | DR | Lo ||) S(LHIEDM (416)
forany |§| <M
We have now to distinguish if M > L or not.
If M > L then clearly the desired estimate (4.12) is a simple consequence of
(4.14) using (4.15) and (4.16).

If M < L then for amulti-index § < « it mighthappenthat M+1 < |§] < L+1.
Then for any such § we have (recall 0 < t < 1)

P D) <cs- M max  |DPR|Le|.  @17)
M+I<IBISL+1

Using (4.16) and (4.17) in (4.15), the inequality (4.12) follows again from (4.14). O
Another result which we will use is the following:

Lemma4.3.2. Let 0 < p,qg < oo, p > 0. For any sequence (g;) jen, of non-
negative measurable functions, denote

o0
Gj(x) = ZZfljfmlpgm(x), x € R

Then there exist some positive constants ¢c; = c(q, 0) and ¢, = c2(p, q, 0) such
that

1(Gj)jeng | L) < c1 11(g7) jeng | LU
and
1€G ) jemo g (LIl < c2 11(8)) jeng | g (Lp)I-

The above lemma is well known and widely used. A proof can be found, for
example, in [Ry99, Lemma 2]. We do not go into further details.

Let again (N;) jen, be a sequence satisfying (4.1) with 1o > 1. We will also
need:

Lemma 4.3.3. Let 0 < ¢ < 1 and (b)) jen, (a;)jen, be two sequences taking
values in (0, oo], respectively (0, 0o). Assume that, for some Ag > 0,

lim a;N; Ao oxistsin R, (4.18)

]—)OO

and that, for any A > 0, there is a positive constant C 4 such that
oo
A, 1 ;
a; < Ca Y (N;N7')'bia) ™%, jeN. (4.19)

Then, for any A > 0, we have
o0
a? < Ca Y (N;NT)br jeNo, (4.20)
I=j

with the same constant C 4.
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Proof. Forany j € No put Dj o = sup,,~; ((N;N,,")"a,). By (4.19) we have

oo
quA < Sup ((NJNn;l)A . CA . Z (Nleil)Abla[l7Q>

mzj I=m
0 A S A
< Ca- Y (NN biay 0 < Ca- Y (NN b (D)0
I=j I=j
Consequently
- A
—1
af < (D) < Ca- ) (NN by, @21)

I=j

provided that D; 4 is finite, which is satisfied by (4.18) at least for A > Ag. Thus
we have proved (4.20) for A > Ay and therefore also for A < A with constant
C 4, since the right-hand side of (4.20) decreases as A increases.

Now let A < A and assume that the right-hand side of (4.20) is finite (other-
wise there is nothing to prove). By (4.20) with constant Cy4,, form > j,

o0 /e
(431 < (") €5 (2 (6001
1=,
o0 Am /e
<CL/;’<Z(NJ-N,;1) sz) :

I=m

hence D; 4 < oo, and we can use (4.21) which gives the desired estimate with
constant C4. a

4.3.2. The theorem: equivalent quasi-norms based on maximal functions and local
means. We are now prepared for the main result of this subsection.
Let kg and k € 4, let K > —1 be an integer such that

ko(®)] >0 for |£] < Ny, (4.22)
k&) >0 for ;] <1< A, (4.23)

and
/Rn x%k(x)dx =0 forany |o| < K. (4.24)

Here (4.22) and (4.23) are Tauberian conditions, while (4.24) (which is in fact
D“k(0) = 0 for any |a| < K) are moment conditions on k.
Foranyr > 0, f € 4, and any x € R", let

k
ko) = sup [0 D)

, (4.25)
zern (L+[x —z|)"
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andfor j > 1

|(ky—1 % f)(2)]

“ P 42
Kyt 0= S0 44 Wyl — iy (420

(J. Peetre’s maximal functions); we recall the notation k-1 (x) = N}“ k(N;jx) —
see (4.11). !

Theorem 4.3.4. Let (N;) jen, be an admissible sequence with Lo > 1 and (0;) jen,
be an admissible sequence.
Let

log, d
K> 14 0824 (4.27)

log, Ao’

and let ko and k functions from 8 which satisfy conditions (4.22)—(4.24) from above.

Let 0 < p < oo, respectively) < p < 00, let0 < g < o0, andletr > min’:p’q),
respectively r > Z
Then there exist two constants ¢, ¢’ > 0 such that, for all f € &/,
1D Lol + (o3t 10r) [ Lot | <ellF LR @2®)
and
L1 Eg < (ko F1Lp0 + (o5 # ) [ Lp0)]). 29
respectively
1G D Lol + | (osK0r) e | <elrlBg] @30
and

17182V < <||(ko>l<f|Lp|| + H (oj(kal *f))jeN}zq(L,,)H). 4.31)

Remark 4.3.5. Note that the above inequalities are valid for all f € §'.
It is easy to see that, for any x € R” and any f € §’, we have |(kN71 * ()] <

_] f)r(x). This shows that the right-hand side in (4.29) is less than the left-hand

s1de in (4.28).
Consequently the left-hand side in (4.28) and the right-hand side in (4.29) are
equivalent quasi-norms in F "’N

Of course a correspondlng assertion is valid for the spaces B¢ o q , now based on
(4.30) and (4.31).
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4.3.3. Proof of Theorem 4.3.4. We will present here the proof of the inequalities
(4.28) and (4.29). The inequalities (4.30) and (4.31) can be proved in a similar
manner interchanging the roles of the quasi-normsin L, and /,.

Step 1. Take any pair of functions 6y and € € 4 such that
Bo(®)1 >0 if |5 <N,

and

P 1
0@ =>C>0 if S S 1§ < A1, (4.32)
1

and define, for any r > 0, the functions (6; f), and (9;\‘{_] f)r as in (4.25) and
J
(4.26), where 0, -1 (x) = N70(N,x).
We will prolee in this step that there is a constant ¢ > 0 such that, for any

fed,

16D Lyl + [ (o331 10r) [ Loth)]

J€
<e <||<95‘f>r Lol + | (5050000) | Lp(zq>H) SRS
j jeN
Take ((pj.v)jeNO, a fixed partition of unity associated to (N;);en,, that means

((p}v ) jen, has the properties (2.7)~(2.10) with ¢, = 1.
We define the functions ¥; € Ci°(R"), j € Ny, by

oY (®
(N9

NG

e VIO

Vo(§) = for jeN. (434

Due to the properties of the functions 8y and 6, the functions g/[/\o and fl'/; are well
defined and it is easy to see that, for any j € N, we have supp(lf; Cl{EeR":
Nj—1 < |§] < Nji}.

Moreover, applying the rule of differentiation for a product of functions, using
(2.9) and (4.32) it follows that for any multi-index « there is a constant ¢, > 0
such that, for any j > 1,

ID*V;(8)] < co (§)71 forany & eR". (4.35)
From (4.34) clearly
1 =0@Vo® + > U;E (N '¢),
j=1
and so, for any f € 4§/,

F=Yo%00% f+ Y Y *0y-1 % f.

m=1
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Consequently, we have, for any j > 1,

oo
Kyt f =Ky o % 0% f + > Kyt % Um % Oy f. (4.36)

m=1

For a fixed m > 1 one has
|(kNj_] * Y * 9]\/;' * f)(y)|
< f I(kNj—l * Y ) (@) - [Op-1 % [y —2)|dz
Rn
<(0311), ) f |1 % Ym) @)1+ (1 + NinJ21)" dz
m RI’L
= (051 1), ) L 4.37)
We are going now to obtain convenient estimates from above for the integral

Iy, in (4.37).

First, let m < j.
After a change of variables, inserting k-1 (x) = N;'k(ij) we have
J

I = A Gyt 5 Y]+ (1 -+ Nl 2

=M’ ./Rn iU‘N,-" # Yn) (N, ) |- (L )" du

=N," y fR NIN,"k(N;N,'u — NiN, ') (N, v) dv| - (14 Ju]) du
- N,;"/ )(kN;INm s Y (N ~))(u)‘ (1 + [u])" du,
RVL
where again k;(x) = t"k(t~'x). It follows that for some positive constant c

(independent of j and m)

Ijm < cN," sup (\(kNj_uNm * YU (Ny ) @)] - (1 + |M|)r+n+l>.

uelR”

We may apply Lemma 4.3.1 with r = N;le < 1, u =k € 8k (k has K moment
conditions), n = }[fm(Nn;I -); taking L = r + n + 1 we obtain (with some positive

constant c;)

— _ K+1
Lim < c1 N, (N7 'Ni)

max ||D’37<\| Ly || .
K+1<|B|<max(K+1,r+n+2)

max /R"(] + |§|)K+1|Da[1/fm(Nn;1 ')]A(S)Idé

la|<r4+n+2

<o N (NT'N,) S max (1 + [EDXY D [Y (N 1| NI, dE
J || <r+n+2 Jrn

= (N7'N,)ST max (1 + [EDKH NI [(DUh) (N, )] dE.
J | <r+n+2 Jn
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Due to the localisation of the support of ﬁn the last integral is in fact taken over

the set {£ e R" : ;\ll < |&] < Ap}. Using (4.35) we get

Lin <3 (NN,

max / (14 [EDFFINIEL (1 + N, 8] dg,
la|<r+n+2 A']glé;lg)\]

which is
Lim < ¢ (N7'N,) T (4.38)
with some positive constant ¢ > 0 independent of j and m.
Letnowm > j.
Then, again making use of changing of variables, and inserting k,-1(x) =
J
N}“k(ij), we have
i = [ Wy 0 @I + N
Rn
<Y [ 105 v @10+ N2
—1 roa—
= (N;'Na) Nj”fn
—1 o —
= (N7'Ny) Nj”/n

= (Nlem)’Nf”f |(Wn (N7 ) k) )| (1 + Ju])" du.

R”

(I + u)" du

J

f ky-1 (Nj_lu — V)Y (V)dv

An U (N7 y) k(= ) dy‘ (1+ lul)" du

Consequently there exists a constant ¢ > 0, independent of j and m, such that, for
any L >r+n+1,

Lin < (NiN, ) N7 sup ([(0n (N7 ) ) @] (14 uD®) . (439)

ueR”

Again using Lemma 4.3.1 we define, for any m > 1, the function
v W) = Yu(N,'u), ueR"

Then ) (&) = N}, Y (Ny&) and suppy™ C {& : | < [£] < i1} which
implies, in particular,

D"‘W> (0) =0 for any multi-index «. (4.40)

Moreover, by (4.35) it follows that for any multi-index «, there is a constant ¢,
such that

|D°‘1p/@)($)| <co N, forany m >1 andforany £ eR" (4.41)
Writing, as usual, ™ (x) = ="y (+~'x) we have

(Y (N7' ) 5 k) @) = (¥ (Na N7 ) k) @) = (NN, )" (wfv";)w * k) ().
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So (4.39) becomes

I < e )N Y sup (10 <RG0l + ).

uelR”
(4.42)

Since m > j we can use Lemma 4.3.1 with r = Nanjl, w =™ e 8, (where
M can be chosen arbitrary large due to (4.40)) and n = k and obtain

sup Q(xlf(N"T)N_] k) ()| (1 + |u|>L) <er (NN )M
uelk”n Jjtm

max | DPyr | Log || - max / (1 + [EDM DR(®)| e,
M+1<|Bl<max(M+1,L+1) lo|<LA+1

and using (4.41) we have, with a positive constant ¢’ > 0,

M+1

sup (}(W;Zivml k) ()| (1 + IMI)L> < (N;N,N)T N (4.43)

ueR”

Inserting the last inequality in (4.42) we finally obtain

)M-‘rl N (N N ) r+M+l‘

Lim < c (NN, ) N (NN (NN,
(4.44)

Recall that by (4.40) we may choose M as large as we want. We choose M, an
integer of the form

M = —1+42r+s withareal s satisfying slog, Ao +1og,dp >0 (4.45)
(note that such an s exists due to the fact that Ay > 1), and (4.44) can be written

Lim < (NN (4.46)

Further, note that, for all x, y € R”,

Or-1.0r() < O N+ Nolx =y
< O 1 (0 - max (1, (N7 Np)") - (14 Nl = y])"

Inserting the last inequality in (4.37), then dividing by (1 4+ N;|x — y|)" and using
the estimates (4.38) and (4.46) for 1, we have

|(kNj_I * Y * 9er| * W
sup
yeRn (I+ Njlx —yD"

N7'N )K+1 ifm < j

<c® 0 -max (1, (NN,Y) - | NV N

¢ 0 /r(0 - max (1, (N7 Na)) {(Nijl)s+r it > j
(V) M) i <

=@ 1) { (4:47)

(N;N,Y  ifm>
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Note that in the above computations we did not use moment conditions for the
function ;. So, replacing | and 6, with 1y and 6y we get the similar estimate

[(ky—1 % Yo * 6o % f)(y)]
sup !

< e @ e (N N) 44
yeR" 1+ Nj|x -y ¢ (Qof) (x) (N] N()) (4.48)

Using now (4.47) and (4.48) in (4.36), after multiplying with o, we have

o (K1 [)r () < ¢ (65 (o N ETD
J
i (N7 NG) it m <

: 4.49
o;(N;N,Y  ifm > j @49

+ ) O ) -
m=1

with some positive constants ¢, ¢’ independent of j and m.
Letm < j. Then, after using (4.1) and (4.3) we have
o (N7 Nw) T < af oy - 29U

=0, - 2-U=mI=log di+(K+Dlogy ko]
Let now m > j. Again, using (4.1) and (4.3), we have

—1\s —(m—j) —(m—j)s
O'j(Nij ) gdo Gm.)“O
=0y 9~ (m—j)(logy do+slog 20)

Moreover,

Uj N]-_(K+l) g d{ oo - )\‘aj(’("rl)NO—(K"rl) =0y NO_(K+I) 2—j[—]og2d1+(K+l)log2)»0].

Note that due to (4.45) and to our assumption on K, we have

o = min{—log, d; + (K + 1) log, Ao, slog, A9 + log, dp} > 0.
Inserting the last two estimates in (4.49) we get, for all f € 4’, all x € R” and all
jeN,

0 (K51 () < €00 (65.))r (@) 2772+ Y0 (631 f),(x) - 277,
J m=1

Again for j = 1 we did not use moment conditions to obtain this estimate so we
can replace k-1 with ko and get
1

ks £)r(x) < c @ )r(x) +¢ Yo 051 f)r () - 27",

m=1

The estimate (4.33) follows now as a simple consequence of the elementary
Lemma 4.3.2.
Consequently we have finished the proof of the inequality (4.33).
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Step 2. Take again ((p}v ) jeN, a fixed partition of unity associated to (N;) jen,, that
means ((pj.V ) jen, has the properties (2.7)—(2.10) with ¢, = 1.
For a fixed j € Ny let

J
i) =Y on®.
m=0

Using the properties of the system ((p?’)jeNo we have @;(§) = 1if |§] < Nj_y,
®;(&) = 0if |§] > N,41 and for any multi-index « there exists a constant cq
(independent of j) such that

|D*®;(§)] < o ().
Let us consider now the function ¥; defined by

P&
ko(N;'®)

Note that, for |§] < Nj41 < AN, it follows that Nj_l €] < A1 < Ny, and due to
the assumption (4.22) on ko, this shows that ¥; is well defined.

Clearly one has supp@; C {6 € R" ¢ |§] < Njji} since @;(§) = 0 if
€] > N1

Moreover, applying Leibniz’s rule for differentiation of a product we get that,
for any multi-index y, there exists a constant ¢,, > 0 independent of j such that

U6 = j € Np. (4.50)

— 1
|D[W; (NI < Y ey D'[@;(N;§)] D™ [A } <oy (4.51)
<y ko(8)

From (4.50) we get that, for any f € 4, we have
Wik Niko(Nj ) x f =& x f.

Later on we will use the notation (ko) y—1(x) = N 7 ko(N;x).

On the other hand, for a fixed j, we define, for any m > j + 1, the functions
Ym by
M)
(Na'8)
in analogy to the first step, see (4.34), now with k instead of 6. Consequently we
have for any f € 4’ (and for a fixed j),

Ym () = 7

f=x o)y f+ D Uk xS

m=j+1
and this implies
0
kNj—l * f = (V) * (ko)Nj—l) * (kNj—l * f) + Z (kNj—l * Ym) * (ky—1 % f).

m=j+1

(4.52)
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Now (W% (ko) y-1)(2) = (ko*lI/j(Nj_l -))(N,z) and we may apply Lemma4.3.1
J
witht =1, M = —1, u = ko and n = ¥;(N; ). So, forany L > 0,

sup (1) % (ko) 1)(@)] - (1 + N 12D)" )

zeR"
= sup (| (ko x w5 (N} ) V2| - (1 + NyfzD)*)
zeR”
40 B . (NTY )T
S oL [D%ko [ L] |VI|2aLX+1./Rn D[V )] © | ds

lYISL+1
/! n
g Cc N]9

< ¢ max N'f/ |DY [ (N;&)]| di
[E1<A

where ¢” > 0 is independent of j and in the last two inequalities we have used
the properties of the function ¥;, in particular the localisation of its support and
(4.51). Consequently, for any L > 0 there is a positive constant C; > 0 such that

n

N"
. J n
[(¥; * (ko)le)(Z)I <Cp (14 N, lDE z e R (4.53)

Writing, forany m > j + 1,

(k1 Y 0) = (N3, ') (7 %R N,

where ¢ =, (Nnjl u), we get as in Step 1, compare (4.39) and (4.43), that for
any M and L there is a constant ¢ > independent of j and m

N (NN

(ky 1 * YUm)(2)] < (1+N| DL

z e R". (4.54)

Inserting the estimates (4.53) and (4.54) with r = L in (4.52) we get, forall f € §’,
yeR"and j € N,

n

N
J
[Ky-1 . HOI < € / 1+ Njly — 2y |kt % @) dz

Z " (NN
e (1 +N ly =zl

m=j+1
> [(ky-1 % f)(2)]
n A—1\M N,
<C § N} (NN, e (1 Nyly — 2l dz. (4.55)

|(ky=1 % [)(2)] dz

m=j

Fix now any ¢ € (0, 1]. We divide both sides of (4.55) by (1 + N;|x — y|)", then,
on the left-hand side we take the supremum over y € R” and on the right hand-side
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we use the inequalities
(1+ Njlx — YD+ Njly —2)) > 1+ Njlx —zl, (4.56)

[yt DS kg HEI - [ FrNTE - (1 Nl =27,
and | .
(L4 Nulx —2ly0=0 _ (N'N)
(I+Njlx —z)" = (1+ Nylx —z]e’
and get, forall f € 4, allx e R"and all j € N,

= N}”;’l.l(kNV;I *f)(Z)|g

U1 e < e 30 (6w, [

o (Ut Ny —zpye 7 (K DA,

m=j

(4.57)

where A = M — r + n can be still taken arbitrary large.
Quite analogously one proves, for all f € §', the estimate

(ko * f)(2)]°
re (14 [x —z[)re

= Ny - |(ky-1 5 f)(2)]°
—A m N k . * 1—o
" /R (14 Nyl —zye. 100 ) 39

(ko f)r(x) < C< dz - [(kg (0] ¢

At this moment we need Lemma 4.3.3. We fix x € R” and apply Lemma 4.3.3
with
am = (K} f)r (), meN, ao= (kg f)r (%),

Ny [yt % f)(2)] [(ko * f)(2)]
bm = " dZ, b() =
g (14 Nylx —z))e rr (14 [x —z[)"
The assumption (4.18) is satisfied with Ay equal to the order of the distribution

f € 4. The estimates (4.57) and (4.58) take the form (4.19). Consequently (4.20)
is true and this means that, for every A > 0, there is a constant c4 > 0 such that

o0

Ny [k p-1 3 f)(2)]°
* o a—1)4e m Nin
(s 0 < ea 3 (NiN,) /R e e 459

m=j
together with the corresponding estimate for (kj f),(x). Note that c4 in (4.59) is
independent of f € 8’,x € R", j € Nand g € (0, 1] because of Lemma 4.3.3.
Further note that (4.59) is also true for ¢ > 1 with a simpler proof. It suffices
to take r 4 n instead of r, apply Holder’s inequality in m and in z, and finally the
inequality (4.56). We omit the details.
It is possible to choose o so that

n n
< o <min(p, q) (respectively < p < pfor Besov spaces).
r r

We make such a choice and fix o for the rest of the proof.



Characterisations of function spaces of generalised smoothness 45

Now the function z +— a lel),g isin L and we may use the majorant property
for the Hardy-Littlewood maximal operator M, see E.M. Stein and G. Weiss
[StWe71, Chap. 2,(3.9)],

N}‘l

N,
<|g|Q * ) x) < M(|glg)(x) : ” (L+ Ny |-]re

(I + Ny |- e

| Ly

It follows from (4.59) that

oo

(1 e < e 3NN Mk F10) 0, (460)

m=j

together with the corresponding estimate for (kg f),(x).
Again we use that, form > j,

NN, ' < ag "7 = a=m=plogalo

and
o; < do—(m—])o_m — 2—(m—])log2d0’
and so (4.60) becomes (with some positive constant c)

oo
0;? (k:]ﬂf)r(x)g <c Z2*("1*])(14@10g2>»0+Q1082d0)051 ) ‘M(lkN,;' * f|Q)(x).
j

m=j

4.61)

We can choose A > 0 large enough such that
& = Aplog, Ao + 0log,dy > 0.
Now we apply Lemma 4.3.2 with
gj(x) = o «M(IkNj—l * f19)(x),  jeN,  go=M(lko* fI°)

in L,/,(ly/,) and get, from (4.61),

16D Lol 4 | (o5 Gy r) [ 2ol

< (IMotho x ) 1Lyl + | (0 Moyt ) | Ly

J

where we used the notation M,(g) = M(|g|9)Ve.
By the maximal inequality of C. Fefferman and E.M. Stein, see [FeSt71], we
know that .M, is a bounded operator

Mo Lp(ly) = Lp(ly), 0<p<00, ©0<qg<X© (4.62)

(respectively M, : I,(L,) — I,(L,), @ < p<oo, 0<g < 00). Ourchoice
of o enables us to apply (4.62) and we obtain (with some positive constant C)
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16D Lyl + | (o3 Gy £0r) [ Loth)]
<C <||k0 « F1L,l + H (o,» ey 1+ j))jeN ‘ Lp(lq)”) forany f € 8. (4.63)

A corresponding inequality is obtained for the spaces /,(L ).

Step 3. Let po and p € 4 be two positive functions on R” satisfying (4.5) and
(4.6). Let
90 = Wo and 6 = 12

We have successively
165 Lol + (o3 0r) [ 2ol
<||<90f)r|L I+ | (o5 1r) | 2ot )H)

<a (”90 « f1Lpl + (o) (91\/1.—' * f))jeN | Lp(lq)”)
<el|flFg

)

where the first inequality is (4.33), see Step 1; the second inequality is (4.63) (with
6 and 6 instead of ko and k), see Step 2; and finally the last inequality is nothing
else than (4.9), see Theorem 4.2.2, since 0y * f = (o f)v and 6 Ny * f = (1 f)v
Consequently we have proved (4.28).

Moreover,

[r1F5dl < <||<90f),|L 1+ (s -000) |0t )H)
<o (u(kof)ru ||+H(a,(k*_] f)) }L { )(D

<o (Il(ko*f)IL N (GO B P )H>

where the first inequality is an obvious consequence of (4.9), see Theorem 4.2.2,

the second inequality is (4.33), see Step 1, with the roles of k¢ and k, respectively,

0y and 6 interchanged, and finally the last inequality is (4.63), see Step 2.
Consequently we have proved (4.29), too. O

4.3.4. Comments. We would like to point out that we used at several places the
fact that the sequence N is of bounded growth.

The above argument follows essentially H.-Q. Bui, M. Paluszyriski and
M. Taibleson, see [BPT96] and [BPT97], and the simplified version of their papers
given by V. Rychkov in [Ry99]. However, due to the general structure of the
sequences (N;) jen, satisfying (4.1) we had to adapt some steps of their proof.

First, the key Lemma4.3.1 is related to Lemma 2.1 in [BPT96] and to Lemma 1
in [Ry99] but we needed to indicate the dependence of & and 7 of the factor that
multiplies M+,
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Secondly, the argument of Step 1 and the idea of proving (4.33) essentially go
back to J. Peetre, see [Pe75]. Compared with the classical situation (N; = 2/ for
any j € Np) and with the proof in [Ry99], to estimate the integral /;,, in (4.37)
for m > j we had to take into account that the functions v, are not generated
from a single function ¥. This caused complications which were solved applying
Lemma 4.3.1 in the form which was stated.

As a third observation we point out, see Step 2, that in order to prove (4.63)
we had to introduce the function @; to obtain the equality (4.52). This allowed us
to avoid the dilation argument from [Ry99] which could not work in the case of
general sequences (N;) jen,-

Finally, note that the above technique to prove the estimate (4.59) (if N; = 2/
forany j € Np) is due to J.-O. Stromberg and A. Torchinsky, see [StTo89, Chap. 5,
Theorem 2(a)].

Remark 4.3.6. Theorem 4.3.4 paves the way to the proof of the atomic decom-
position theorem, see next section, but it is of independent interest since it covers
the classical results of H.-Q. Bui, M. Paluszynski and M. Taibleson, see [BPT96]
and [BPT97], the theorem on local means from [Tr92, Theorem 2.4.6], and the
theorem on local means from [M099] and [MoO1]. We will return to this aspect
later on.

4.4. N-atoms and the atomic decomposition theorem

4.4.1. Preliminaries: N-atoms and sequence spaces. Recall that N = (N;) jen,
is an admissible sequence with bounded growth which satisfies (4.1) with g > 1.

Let Z" be the lattice of all points in R" with integer-valued components.

Ifv e Noandm = (m, ..., m,) € Z" we denote Q,,, the cube in R” centred at
N;lm = (Nv’lml s eees N;lmn) which has sides parallel to the axes and side length
N

If Q. is such a cube in R” and ¢ > 0 then cQ,,, is the cube in R” concentric
with Q,,, and with side length ¢N; .

‘We are now prepared to introduce the N-atoms (associated to the sequence N).

Definition 4.4.1. (i) Let M € R, ¢* > 1. A function p : R* — C, for which
there exist all derivatives D*p if || < M (continuous if M < 0), is called an
1p-N-atom if

supp p C ¢*Qom  for some m e Z", (4.64)
[Dp(0)| <1 if el <M. (4.65)

(ii) Let 0 = (0/)jen, be an admissible sequence, let 0 < p < oo, M,L € R,
Jj)jeNy q p
c¢* > 1. A function p : R" — C, for which there exist all derivatives D*p if
|a| < M (continuous if M < 0), is called an (o, p)y,1-N-atom if

supp p C ¢*Qum forsome veN,melZ", (4.66)
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ler|

|DO[ —1 :l7+ .
p)| <o, Ny if lal <M, (4.67)

/x”,o(x)dx:O if |yl <L. (4.68)
Rn

If the atom p is located at Q,,, (that means supp p C ¢*Q,, with v € Np,
m € Z", ¢* > 1) then we will denote it by py,.

This concept generalises the smooth (isotropic) atoms from the works of M. Fra-
zier and B. Jawerth, [FrJa85] and [FrJa90], which correspond to N, = 2" and
o, = 2¥ with real s.

We give some technical explanations.

The value of the number ¢* > 1 in (4.64) and (4.66) is unimportant. It simply
makes clear that at the level v some controlled overlapping of the supports of p,,,
must be allowed.

The moment conditions (4.68) can be reformulated as DY p(0) = 0if |y| < L,
which shows that a sufficiently strong decay of  at the origin is required. If L < 0
then (4.68) simply means that there are no moment conditions.

The reason for the normalising factor in (4.65) and (4.67) is that there exists
a constant ¢ > 0 such that, for all these atoms, we have |p | ng;\’ I < ¢ and

ol Fg;év I < c. Hence, as in the classical case, atoms are normalised building
blocks satisfying some moment conditions.

Before we state the atomic decomposition theorem we have to introduce the
sequence spaces b, , and pr” 7

Ifve Nyg,me Z" and Q,,, is a cube as above let y,,, be the characteristic
function of Q,,,;1f 0 < p < oo let

X2 = NP yom
(obvious modification if p = c0) be the L ,-normalised characteristic function of
Qum-
Definition 4.4.2. Let 0 < p < 00, 0 < g < o0. Then:

(i) bp,q is the collection of all sequences A = {A,, € C : v e Ny, m e Z"} such

that
1/q

00 q/p
I 1bpgll = [ (Z MWV’)
v=0 \meZ"
(with the usual modification if p = oo and/or ¢ = 00) is finite;
(ii) ;,Yq is the collection of all sequences . = {Ay;, € C : v e Ny, m € Z"} such

that
00 1/q
] 72 = (zznmxsfw) L

v=0 meZ"
(with the usual modification if p = oo and/or g = 00) is finite.

One can easily see that b, , and flff , are quasi-Banach spaces and using

||X,S,’,’1) | Lyl = 1itis clear that, comparing ||A|b, 4|l and ||)»|flffq

of the quasi-norms in L, and /, are interchanged.

I, the roles
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4.4.2. The atomic decomposition theorem. We are able now to state the main
result of this section.

Theorem 4.4.3. Let N = (N;)en, be an admissible sequence with Ay > 1 in
(4.1) and let 0 = (0}) jen, be an admissible sequence.
Let0 < p < 00, respectively 0 < p < 00,0 < g < 00, andlet M, L € R such
that
log, d,
>

4.69
log, Ao (469)
and
log, A 1 log, d
L>—l4n( 82" 1) - B9 (4.70)
log, A9 min(1, p, q) log, Ao
respectively
log, A 1 log, d|
L>—1+4n( 82" 1) - &g 471
log, Ao min(1, p) log; Ao

Then g € &' belongs to FI(,’:;V , respectively to BZ’,SJ , if and only if, it can be
represented as

o0
8= Z Z Avm Pom s “4.72)

v=0 meZ"

convergence being in 8, where p,,, are 1 y-N-atoms (v = 0) or (o, p)m..-N-atoms

(veN)and ) € pr,]q’ respectively A € by, 4, where .. = {\,,, : ve Ng,m € Z"}.

Furthermore, inf || | f,?,/q”: respectively inf ||\ | b, , ||, where the infimum is taken

over all admissible representations (4.72), is an equivalent quasi-norm in Fg:é\’,
. o,N

respectively B .

The convergence in 4" can be obtained as a by-product of the proof using the
same method as in [Tr97, Theorem 13.7], compare also the discussion in [Tr01],
so we will not stress this point. We refer to the above theorem as to the atomic
decomposition theorem in function spaces of generalised smoothness.

Before giving the proof let us make here some remarks. The first part of the
proof, that one in which the atoms are constructed and where it is shown that the
decomposition (4.72) holds, is essentially based on a version of a resolution of
unity of Calderon type, cf. [FJW91, Lemma 5.12].

To prove the second part we will use the theorem on local means, see Theo-

rem 4.3.4, the technique of maximal functions and an inequality of Fefferman—Stein
type.
Remark 4.4.4. For spaces Bj)  of positive smoothness, defined in the spirit of
M.L. Goldman, see Section 3.3, an atomic decomposition in the sense of M. Frazier
and B. Jawerth was described by Yu.V. Netrusov in [Ne89]. There are no moment
conditions in his characterisation — in contrast to the case 0 < p < 1 in the above
theorem. The reason is that Yu.V. Netrusov defined the spaces B}, , in a slightly
different way which insures a priori the embedding L, < B, , for all admissible
parameters 0 < p < oo.
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4.4.3. An auxiliary result: a partition of unity of Calderon type. We will need the
following:

Lemma 4.4.5. Let N = (N;) jen, be an admissible sequence with Lo > 1 in (4.1)
and let (.Q;V)jeNO be the associated covering of R" with J = ko = 1, see (2.5) and
(2.6).

Let also (<,0§-V)jeN0 € @V be fixed with ¢y = land L > 0 be also fixed.

Then there exist functions 6y, 6 € 8 with:

supp 6p, supp 6 C {x e R" : |x]| < 1}, (4.73)
B0 > co>0 if |5 <Ny (4.74)
POIzc>0 i | <<, (4.75)
An x0(xydx =0 if |yl <L, (4.76)
and
B0 (&) V0 (&) +§j§(zv;‘s)@(s> =1, forall §€R", (4.77)

j=1

where the functions \; € 8 are defined by

ol ()
~1

(N; &)

Let us mention that the difference to the classical result is due to the fact

that the functions ; are in general not obtained simply by dilation from a fixed
function .

o) (©)

and ;&) = 5 for jeN. (4.78)

Proof. Recall (¢}) jen, € @V is fixed.
Let, as in [FrJa85, Theorem 2.6], ® € & be a real-valued radial function
satisfying
supp® C {x e R" : [x| <1} and ©(0) = 1.
Then, for some 1 > ¢ > 0, we have @(E) > 1/2 for all & satisfying || < eX;.
Then
—n L X
0x) = 6" (—A) @( )
e

satisfies requirements (4.73)—(4.77).

Since 6(N;'8) > ¢ > 0 for AUN; < |l < A Nj, using A7'N; < Nj
and Ny < Ay N; one has 9(N;1$) >c¢ > 0foranyé € suppgojy Cc{EeR":
Nj—1 < |§] < Nj1}.



Characterisations of function spaces of generalised smoothness 51

Consequently, the functions ; are well defined for j > 1 and

oo

Z@(N;lé) Vi€ =1 forany & e R"\suppey.

j=1
Similarly one has to find by with éf)(é) ¢ > 0 for any & € supp (po Taking
afunction ® € 4 such that O(S) > 1/2for || < 8N, the functionfy = §7"O(x/6)
satisfies the above mentioned requirement. Now one has to define the corresponding
function v and the proof is complete. O

Remark 4.4.6. From the proof of the above lemma it is clear that for a given system
((p}v)jeNO € @V and fixed functions 6y, 0 € 4§ the associated system (V/;) jen, from
(4.78) satisfies

V;(§)=>0 and supp ¢, C{E€R" : Nj_; < |§| < Njyy) forany j>1.

An easy application of Leibniz’s rule shows that, for any y € N, there is
a constant ¢,, > 0 (independent of j) such that

ID"Y;E)| < ¢, (€)" forany &eR"

Consequently, each function Tp\] is a Fourier multiplier in L , as a simple application
of the scalar version of Proposition 3.1.1.

4.4.4. Proof of the atomic decomposition theorem.

Part1. Let g € FI‘,’:Q’ ; we use the method of M. Frazier, B. Jawerth and G. Weiss
from [FJWO91, Theorem 5.11] to construct atoms and to decompose g as in (4.72).
Let 6y, 0, ¥ and ¥, functions in 4 satisfying (4.73)—(4.77).
Using O(N;'&) = N"[6(N,-)] (£) we have

o
g=90*1lf0*g+29Nv—l Yy kg

v=1

and using the definition of the cubes Q,,, we obtain the following equality in §’:

s=3 / BoCx — Y)W * D)y

mezZ"

P / BN, (x — Y)Wy * ©) ().

v=1 meZ"

We define, for every v € N and all m € Z",

n

dam =Co 0 Ny " sup |(%y % (). (4.79)
VGQU}’I’[
where Cy = max{ sup |DY0(x)| : |a| < K} Define also
[x[<1
1
Pum (x) = N Ny / 0Ny (x — Y)Wy % @) (y) dy, (4.80)

if Ay # 0 and p,,, = 0 otherwise.
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Similarly we define, for every m € Z", the numbers A, and the functions py,,
taking in (4.79) and (4.80) v = 0 and replacing v; and 6 by ¥ and 6y, respectively.

It is obvious that (4.72) is satisfied and it follows by straightforward cal-
culations, using the properties of the functions 6y, 6, Yo and ;, that pg, are
13-N-atoms and that p,,, are (o, p) . -N-atoms for v € N.

Finally, we will show that there exists a constant ¢ > 0 such that ||A | Ifg I <
cllgl FoNI.

.4
We have, for a fixed v € N,

Z )\umxs;ﬁ)(x) =Cy o, N;p Z sup |(% * 8)(y)| : va Kom (X)

meZn mezn Y€Qum
*g)(x —z
<o, sup [(Yy * g)( r )| (1 + Ny J2])
dl<e Ny (14 Nylz])
<oy (Y g)r(x),
since |x — y| < ch_l forx,y € Quyand Y xym(x) = 1.Herer > min’(’p’q) and

meZ

(¥ g)r 1s the maximal function of J. Peetre, compare (4.26). It follows that

o

DD B O < e Y ol (i) (), (4.81)

v=1 meZm v=1

(with the usual modification if ¢ = c0) where c is a positive constant.

Now we have to use (4.81) and its counterpart for v = 0 (which can be obtained
by a similar calculation) and get

oo 1/q
(Zoﬁ (w:‘g)r(-w) L,
v=0

(with the usual modification if ¢ = 00) and this completes the proof of the first
part of the theorem if we would be able to justify the last inequality in (4.82).

But the last inequality in (4.82) is nothing else than a simple application of
Proposition 3.2.1 taking in that theorem f = (f,)ven,, Where, for any v € Ny,
the function f, is 0, (¥, * g) and the domain £2, is {£ € R" : |&] < N,4+1} and
recalling the definition of the maximal functions from (4.25) and (4.26).

7] £l < e <l g

, (4.82)

Part I1. Reciprocally, assume now that g can be represented by (4.72), with M and
L satisfying (4.69) and (4.70), respectively. We will show that g € FI‘)’:ZIV and that
ligl Fg:'ll < ¢ a1 £, |l for some constant ¢ > 0.

Let kp and k be two functions in 4§ such that supp kg, suppk C {x € R" :

Ix| < 1} and |ko(&)| > O for |€] < Ny, [k(€)| > O for ) <IEI< 2 and

f x%k(x)dx =0 forany |o| < K. (4.83)
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Our intention is to apply Theorem 4.3.4. Let K be large enough such that
K>M-—1.

Temporarily let v, j € Ng, m € Z" and x € R" be fixed; we start finding
convenient estimates for o; (k N.—l * Pym) (X).

Step 111 Let j > v and let again k, 1(x) = N}’ k(N;x). Then
o) (ky=1 % pun)(X) = / k() oo (x — N7 y)dy.
N

Due to (4.66) the above integral is non-zero only if |x — Nj_ly — N]jlml <cN,
which implies that x is located in some cQ,,, since

}x—N‘jlm} |x—N y—N; m}+|N y| cN,; +N <IN

According to (4.67) the derivatives D% p,,, exist if |o| < M so we can use Taylor’s
expansion theorem of order M for the function w — p,,,, (w) on the set B(x, Nj_l)

(the ball centred at x and of radius N;l ).

Then we put w = x — N;ly and noting that if z € B(x, N;l) thenz € cQyp
we get the expansion

pm(x = N7'y) = D calx = N;'y = 2)"D*oum(2) + Ru(x.y).  (4.84)
la|<M—1
where

Ry (x, y)| <c max (N lo sup |D"‘pvm(z)|)

|or|= zec’ Qum
M 1 M
<INMoT "N Fom ()
= oy (NT'N) Y X0 (), (4.85)

for some ¢, ¢’ > 0, where X.(,,’,)l) is the p-normalised characteristic function of some

cube cQ,,.

Recall that K is large enough such that K > M — 1; using the moment
conditions for the function k we obtain fR,, (x — Nj_l y—2)*k(y)dy = 0 for all «
such that || < M — 1. Hence (4.84) and (4.85) yield

) (1 % ,ovm)(x)‘ cojo; (NN 7D ). (4.86)
Now using (4.3) and (4.1) we have, for j > v
o; 0;1 < d{ﬂ; — 2—U=w(=logad) 414 N,-_le < AS(H) — 2~ (=mlog Ao
Inserting the last estimates in (4.86) we get
0 (ky=1 % pun) (x)| < ¢ 2707V lor it MIoE 20 3 () = 27U 50 ),
(4.87)
for § = —log, di + M log, Ay. Clearly § > O since M satisfies the estimate (4.69).



54 W. Farkas, H.-G. Leopold

Step 11.2 Let now j < v. We chose K in (4.83) enough large such that, in addition,
K > L. Then

o) (ky-1 % pun) @) = o N} /R K(N;Y) pun(x = )y (4.88)

and, due to the support localisation of k, the above integration can be restricted to
theset {y e R" : |y| < Nj_l}.

We remark also that by our assumption on jand v, and to the support localisation
for p,,,, one has

’x—N‘flm’<|x—y—NV_1m’+|y|<ch_l+Nj_l <C’Nj_l

and this implies that, if the above integral is non-zero, then x is located in some
CBjm, where Bj, = {z € R" : [z — N, 'm| < N;'}.

Since k is a smooth function on R"” we may use Taylor’s expansion theorem
of order L for the function w — k(w) on the set B(z,, NjN,jl) ={w e R" :
lw—zx] < NjNV’I}, where z, = z(j, v, m, x) = Nj(N‘jlm —X).

After that we let w = N;y and get

K(INjy) = Y ea (Njy = 2)"D*k(z2) + Re(y, %), (4.89)

la| <L

where
) L+1

|RL(y, 0)| < ¢ (NN,
for some positive constant ¢ since k is smooth and has compact support.
By the moment conditions (4.68) we have fRn (N;jy —z)%pum (x — y)dy = 0if
|ae] < L since we have chosen K > L; using (4.89) we may replace (4.88) by:

loj (k-1 % pum) ()| < 0 N} / RLG, ) pum (6 = )| dy
J ISN;
—_IN(L+D
< co; N} (NN, ') / 1ovm (x = )| dy.
DISN

Using (4.67) to estimate p,,,, we get

CNEAD 1 ~
o (k-1 % o) )] < € 0 NF (NN 1) ot v / om (x = ) dy,
IyI<N;

(4.90)

where ¥, is the characteristic function of some cube cQ,,,.
Let now x/” be the characteristic function of the ball ¢B im Where x is located;
by a straightforward computation we have

f Fm(x = 0 dy < e N " 0. “91)
IYISNT
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Due to condition (4.70) on L we may choose an w < min(1, p, ¢) such that

nlog, A

> . (4.92)
log, do + (L + 1+ n)log, Ao

Denoting by M x,,, the Hardy-Littlewood maximal function of yx,,, we get
X" < e (NTTNG)® (Mogum (). (4.93)
Finally, using (4.91) and (4.93), the estimate (4.90) becomes
o (kNj—l * pum) (X)|
<oy N} (NNT) o N (NS (MER ) o
where again x(p ) is the p-normalised characteristic function of some cube cQ,,.
Now using (4.3) and (4.1) we have, for j < v,
o 0171 < dof(vfj) — 2=z do)
NjN,,_l < )\a(v—j) —o~=ployky 404 Nj—lNV < )“f_j — 2~ (=D(=log A1)
so that (4.94) becomes
loj (kNj—l * Pum) (X)|
< 2~ w=plogydp »—(v=/(L+1+n)log; Ao 27(1171')2',(* logy A1) ( ~(p) (x))

l/w

— sz(v*j)s( "'(P)( )) 4.95)

where n
e=log,dy+ (L+1+4+n)log, Ao — log, A1 >0,
w

due to our choice of w, see (4.92).
Remark that the terms with j = 0 and/or v = 0 can also be covered by the
technique in Steps 11.1-2.

Step 11.3 Using (4.87) and (4.95) we get, for0 < g < 1,

O'J(k —1 *Z Z )\vmpvm)(x)

< YD 127007V 7P () 4

v=0 meZ" v j meZ"
—e(v—7 ~ q/o
YD P27 (MFED) (x))
v>j meZ

with 8, ¢ > 0, with the usual modification if 1 < g < oo
We sum over j, take the ;-th power and then the L ,-quasi-norm and obtain

that
o0 l/q
H(za;f(mz > b )| )18
j=1

v=0 meZ"
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can be estimated from above by

00 1/q
(Z Z Mumlq ’)‘("(”I'?l)()fl)

v=0 meZ"

00 /
(X X (Mﬁf;)o)q/w)l q

v=0 meZ"

c L,

L L, (4.96)

with the usual modification if ¢ = oo.
The first term of (4.96) is just what we want since ')‘('ﬁ,ﬁ) can be replaced by Xﬁ,’,’).
With A, = Ay, Xﬁf’,,) the second term of (4.96) can be written as

00 w/
(T X s 00) q

v=0 mezZ"

w
"
C

Ly

(usual modification if ¢ = 00). Recall that 1 < ” < ooand 1 < ? < oo so that
we can apply the Fefferman—Stein inequality and again obtain what we want.
The term with j = 0 can be incorporated by the same technique. O

4.4.5. Comments

Remark 4.4.7. Letd > 0 be given, let v € Ny and m € Z" fixed and let us denote
by R, a cube with sides parallel to the axes, centred at x" where

|x"" — Ny'm| < d N, (4.97)

and with side length N 1.
Then let ¢ > 0 be chosen in dependence of d such that, for every choice of
v € Ny and all choices of x" in (4.97), we have

U ¢Ryn = R". (4.98)

mezZ"

It is clear from the previous proof that we may replace in Definition 4.4.1 the cube
Oym by Ry, with the number ¢ being from (4.98).

A similar remark in the classical case (N, = 2" and o, = 2%, s € R) turned
out to be very useful in the work of H. Triebel and H. Winkelvof3, [TrWi96].

Remark 4.4.8. Leto = (0}) jen, be an admissible sequence. A lower, respectively
a upper, index of the sequence o, was introduced in [Br02] by

o <0j+1) L (6]41)'
5(0) = liminf log and s(o0) = limsuplog ; (4.99)
j—o0o 0; j—oo Oj

clearly, based on (4.3), the above numbers are finite and they satisfy s(o) <

5(0). Moreover, for any d < 2° and for any df > 2°( there exists a natural

number J = J(djj, d}) such that djo; < 041 < dj o}, forany j > J. Similar

considerations hold true (with obvious appropriate changes) for an admissible
sequence N = (N;) jeng-

However a change of the sequences o and N in the first J terms will not change

Y]\[ . 3 N . .
the spaces B} /', respectively F 7, up to equivalent quasi-norms.
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Based on the above remark and following the proofs in the previous sections,
it is clear that we may replace in the statements of the main results (local means
and atomic decomposition theorem) the numbers dy and d; by 2, respectively
250 and the numbers Aq and A; by 2°™ respectively 25V,

More precisely, the assumption Ao > 1 in (4.1) has to be replaced by s(N) > 0
and in Theorem 4.3.4 (local means) condition (4.27) can be replaced by

K>-14°9 (4.100)
s(N)
Moreover, in Theorem 4.4.3 (atomic decomposition) one can replace condition
(4.69) by

5(0)
> sV)’ (4.101)

and condition (4.70), respectively (4.71), by
L>—l+n <§(N) 1 - 1) _s@ (4.102)

s(N) min(l, p, q) s(N)
respectively
s5(N) 1 5(0)

L>—1+n (5(N) min(1., p) — 1) TSNy (4.103)

4.5. Examples

For people interested in concrete situations we would like to point out in this section
how our main results (the theorem on local means and the atomic decomposition
theorem) look in some special cases.

4.5.1. The classical case. As we have already mentioned several times in this
work, if N; = 27, and o; = 275 s € R, then the spaces B;’:g’ and FI(,’:;V are the
classical spaces B), , and F), .

Condition (4.1) is fulfilled with Ay = A; = 2. Moreover, condition (4.3) is
fulfilled with dy = d; = 2°.

The restriction (4.27) in the theorem on local means is then K > —1 + 5. Note
that if s < O there are no moment conditions needed. Theorem 4.3.4 coincides
with the result of H.-Q. Bui, M. Paluszyniski and M. Taibleson as it was already
mentioned.

The restrictions (4.69), (4.70), respectively (4.71), and their counterparts, in
the atomic decomposition theorem are M > s and

L>—-1 —1) -y,
=140 oy 1)
respectively

1
L>—1 1) —s
~ +n(min(1,p) ) s

which are essentially the restrictions from the works of M. Frazier and B. Jawerth,
cf. also the formulation in [Tr97].
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4.5.2. The spaces B,/ and F{,”. In Example 2.2.5 we mentioned that if s € R
is fixed and _ _
o, =20w2)), jeN,

where ¥ is a positive monotone function on (0, 1] such that there are positive
constants by and b with

bo W2 < W2y < by w2 ) forall je Ny,

then o is an admissible sequence with appropriate dy = b, 2* and d; = b} 2° in
(2.2).

If, in addition N; = 2/ then the spaces B, and F77. Y are the spaces B'} and
F (Y ‘1’) considered in [M099] and [MoO1].

Condltlon (4.1) is fulfilled with Ay = A; = 2.

The restriction (4.27) in the theorem on local means is then K > —1 + s +
log, b;.

The restrictions (4.69), (4.70), respectively (4.71), in the atomic decomposition
theorem are M > s + log, b} and

L>—1+n< s — log, by,

1
—1)=
min(l, p, q) )
respectively

L>—1+n< s — log, by

1
—1) =
min(1, p) )
Our conditions concerning the constants K, L and M are slightly different (because
of the additional log-terms) from those in the atomic decomposition of S. Moura,
see [MoO1, Theorem 1.18], which was proved directly for the spaces B},” and

(s,¥)
F b themselves.

4.5.3. Function spaces associated to a continuous negative definite function.
We have already mentioned in the Introduction as well as in Section 3.3 that in
[FISO1a] and [FJSO1b] Bessel potential spaces H, Vs *(R™) associated to a continuous
negative definite function ¢ : R* — R were 1ntr0duced and studied in the context
of constructing a Markov process starting in every point of R”.

Recall (3.19) for the norm in H;)/”S (1 < p<oo,5seRR).

In Section 3.3 we have noticed that considering the continuous negative definite
function ¥ : R" — R of the form ¥(£§) = f(1 + |£]?), & € R", where f is
a Bernstein function with ;lggo Sf(t) = oo, then the spaces H “*(R") can be regarded

as function spaces of generalised smoothness.
More precisely, if (£) = f(1 + |£|?) then Corollary 3.1.21 leads to

FA+-P)s _ ot ,NV2
H] =F ;"

where, as usual, 0° = (2%) jen, and the sequence NV = (N}/”z) jen, is determined,
cf. (3.17), as follows

NY? =sup{|g] : f(1+|€) <2%} forany jeNp.
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For simplicity let N; = N;/”z. Obviously (N;)jen, is increasing. Clearly, for
any j, there exists a £ such that |£V)| = N; and consequently f(1 + NJ2.) =
1+ 1§DP) =22,

e Each Bernstein function satisfies f(cf) < cf(#) for any ¢ > 1 (see for example
[Ja01, Lemma 3.9.34]) so that f(4 - (1 + Nf.)) <4 f1+ N}) = 220U+D which
immediately implies 2 N; < N;4;. Consequently N = (N;) en, is strongly in-
creasing and satisfies the first inequality in (4.1) with Ao = 2.

e Unfortunately, for general Bernstein functions f with lim f(f) = oo the inequal-
—>00

ity Nj41 < A1 N; is not always satisfied.
However, if the Bernstein function f with tlim f(t) = oo additionally satisfies
— 00

t
thereisan r € (0, 1] suchthat ¢+ fy() = ft(r) is increasing, (4.104)

then N1 < A N; for some Ay > 1, at least if A satisfies A% > 2% 4 (23 —
1) Ny % Indeed, from fi(1 + N7) < fio(1 + N7,,) we get N7, < 2%"N; +
22r 1K )\% NJZ for any such ;.

Note that in (4.104) one cannot assume r = 0. One should also note that the
function f(r) = log(1 + f) does not satisfy condition (4.104) whereas the functions
Jtlog(1 4 /1) and /1(1 — exp(—4+/1)) satisfy condition (4.104) with r = 1/2.

One should also note that (4.104) is in some sense not surprising since it implies
f() > ct” forlarge t and this leads to (£) = f(1+]£]%) > C (1+|£|*)"if & € R™.

When treating continuous negative definite functions, the last inequality is
a restriction often used, see, for example, [Ja01] and the references therein.

Consequently, if f is a Bernstein function with lim f(#) = oo which satisfies
1—>00

(4.104) condition (4.1) is fulfilled with Ay = 2 and with some A; with A; >
21 > 2,

Clearly condition (4.3) is fulfilled with dy = d; = 2°.

The restriction (4.27) in the theorem on local means is then K > —1 + s.

The restrictions (4.69) and (4.70) in the atomic decomposition theorem are
M > s and

log, A

L>—1+n< —1>—s=—l+n(log2)»1—l)—s.

min(1, p, 2)
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